1
|
da Trindade NS, Valentini MB, Rognon A, Mendes TMF, Gomes MDS, Allegretti SM, Grunau C, Cabral FJ. Heterochromatin protein 1 (HP1) of Schistosoma mansoni: non-canonical chromatin landscape and oviposition effects. Mem Inst Oswaldo Cruz 2025; 120:e240075. [PMID: 40172426 PMCID: PMC11961034 DOI: 10.1590/0074-02760240075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/14/2024] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Heterochromatin protein 1 (HP1) is widespread in several organisms playing a role in control of gene expression by heterochromatin formation and maintenance of silent chromatin. Schistosoma mansoni is a human parasite that is responsible for Schistosomiasis, a tropical neglected disease in the tropical and subtropical areas in the world, where the intermediate host Biomphalaria glabrata is present. OBJECTIVES In this study we attempted to investigate if the SmHP1 is enriched in S. mansoni chromatin in cercariae larvae stage, compared with another larvae stage sporocysts and its importance for S. mansoni life cycle progression and parasite oviposition. METHODS We used ChIPmentation with commercial antibody ab109028 that passed in-house quality control. We also used RNA interference, mice infection and histology. FINDINGS Our data show that S. mansoni HP1 enrichment is non-canonical with a peak at the transcription end sites of protein coding genes. We did not find strong differences in SmHP1 chromatin landscapes between sporocysts and cercariae. Knock- down of SmHP1 in schistosomula and in vivo experiments in mice unexpectedly increased parasite oviposition. MAIN CONCLUSIONS Our results suggest that SmHP1 may influence chromatin structure in a non-canonical way in S. mansoni stages and may play a role in regulation of parasite oviposition.
Collapse
Affiliation(s)
- Natália Silva da Trindade
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
- Hosts-Pathogens-Environments Interactions, University of Perpignan Via Domitia, Centre National de la Recherche Scientifique, Institut français de Recherche pour l’Exploitation de la Mer, University of Montpellier, Perpignan, France
| | - Marilia Bergamini Valentini
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| | - Anne Rognon
- Hosts-Pathogens-Environments Interactions, University of Perpignan Via Domitia, Centre National de la Recherche Scientifique, Institut français de Recherche pour l’Exploitation de la Mer, University of Montpellier, Perpignan, France
| | | | | | - Silmara Marques Allegretti
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| | - Christoph Grunau
- Hosts-Pathogens-Environments Interactions, University of Perpignan Via Domitia, Centre National de la Recherche Scientifique, Institut français de Recherche pour l’Exploitation de la Mer, University of Montpellier, Perpignan, France
| | - Fernanda Janku Cabral
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| |
Collapse
|
2
|
Lasica C, de Carvalho Augusto R, Moné H, Mouahid G, Chaparro C, Veillard AC, Zelisko-Schmidt A, Grunau C. Automated ChIPmentation procedure on limited biological material of the human blood fluke Schistosoma mansoni. Wellcome Open Res 2024; 7:133. [PMID: 37521535 PMCID: PMC10372461 DOI: 10.12688/wellcomeopenres.17779.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 08/01/2023] Open
Abstract
In living cells, the genetic information stored in the DNA sequence is always associated with chromosomal and extra-chromosomal epigenetic information. Chromatin is formed by the DNA and associated proteins, in particular histones. Covalent histone modifications are important bearers of epigenetic information and as such have been increasingly studied since about the year 2000. One of the principal techniques to gather information about the association between DNA and modified histones is chromatin immunoprecipitation (ChIP), also combined with massive sequencing (ChIP-Seq). Automated ChIPmentation procedure is a convenient alternative to native chromatin immunoprecipitation (N-ChIP). It is now routinely used for ChIP-Seq in many model species, using in general roughly 10 6 cells per experiment. Such high cell numbers are sometimes difficult to produce. Using the human parasite Schistosoma mansoni, whose production requires sacrificing animals and should therefore be kept to a minimum, we show here that automated ChIPmentation is suitable for limited biological material. We define the operational limit as ≥20,000 Schistosoma cells with 30,000-300,000 cells as optimum. We also present a streamlined protocol for the preparation of ChIP input libraries.
Collapse
Affiliation(s)
- Chrystelle Lasica
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, 66860, France
| | - Ronaldo de Carvalho Augusto
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, 66860, France
- LBMC, Laboratoire de Biologie et Modélisation de la Cellule Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1210,, Lyon, 69000, France
| | - Hélène Moné
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, 66860, France
| | - Gabriel Mouahid
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, 66860, France
| | - Cristian Chaparro
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, 66860, France
| | | | | | - Christoph Grunau
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, 66860, France
| |
Collapse
|
3
|
Park MJ, Sohn WM, Bae YA. Genome-wide identification of histone lysine methyltransferases and their implications in the epigenetic regulation of eggshell formation-related genes in a trematode parasite Clonorchis sinensis. PARASITES, HOSTS AND DISEASES 2024; 62:98-116. [PMID: 38443774 PMCID: PMC10915263 DOI: 10.3347/phd.23116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 03/07/2024]
Abstract
Epigenetic writers including DNA and histone lysine methyltransferases (DNMT and HKMT, respectively) play an initiative role in the differentiation and development of eukaryotic organisms through the spatiotemporal regulation of functional gene expressions. However, the epigenetic mechanisms have long been suspected in helminth parasites lacking the major DNA methyltransferases DNMT1 and DNMT3a/3b. Very little information on the evolutionary status of the epigenetic tools and their role in regulating chromosomal genes is currently available in the parasitic trematodes. We previously suggested the probable role of a DNMT2-like protein (CsDNMT2) as a genuine epigenetic writer in a trematode parasite Clonorchis sinensis. Here, we analyzed the phylogeny of HKMT subfamily members in the liver fluke and other platyhelminth species. The platyhelminth genomes examined conserved genes for the most of SET domain-containing HKMT and Disruptor of Telomeric Silencing 1 subfamilies, while some genes were expanded specifically in certain platyhelminth genomes. Related to the high gene dosages for HKMT activities covering differential but somewhat overlapping substrate specificities, variously methylated histones were recognized throughout the tissues/organs of C. sinensis adults. The temporal expressions of genes involved in eggshell formation were gradually decreased to their lowest levels proportionally to aging, whereas those of some epigenetic tool genes were re-boosted in the later adult stages of the parasite. Furthermore, these expression levels were significantly affected by treatment with DNMT and HKMT inhibitors. Our data strongly suggest that methylated histones are potent epigenetic markers that modulate the spatiotemporal expressions of C. sinensis genes, especially those involved in sexual reproduction.
Collapse
Affiliation(s)
- Min-Ji Park
- Department of Microbiology, College of Medicine and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999,
Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999,
Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
| | - Young-An Bae
- Department of Microbiology, College of Medicine and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999,
Korea
| |
Collapse
|
4
|
Schiedel M, McArdle DJB, Padalino G, Chan AKN, Forde-Thomas J, McDonough M, Whiteland H, Beckmann M, Cookson R, Hoffmann KF, Conway SJ. Small Molecule Ligands of the BET-like Bromodomain, SmBRD3, Affect Schistosoma mansoni Survival, Oviposition, and Development. J Med Chem 2023; 66:15801-15822. [PMID: 38048437 PMCID: PMC10726355 DOI: 10.1021/acs.jmedchem.3c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/15/2023] [Accepted: 11/01/2023] [Indexed: 12/06/2023]
Abstract
Schistosomiasis is a disease affecting >200 million people worldwide, but its treatment relies on a single agent, praziquantel. To investigate new avenues for schistosomiasis control, we have conducted the first systematic analysis of bromodomain-containing proteins (BCPs) in a causative species, Schistosoma mansoni. Having identified 29 putative bromodomains (BRDs) in 22 S. mansoni proteins, we selected SmBRD3, a tandem BRD-containing BCP that shows high similarity to the human bromodomain and extra terminal domain (BET) family, for further studies. Screening 697 small molecules identified the human BET BRD inhibitor I-BET726 as a ligand for SmBRD3. An X-ray crystal structure of I-BET726 bound to the second BRD of SmBRD3 [SmBRD3(2)] enabled rational design of a quinoline-based ligand (15) with an ITC Kd = 364 ± 26.3 nM for SmBRD3(2). The ethyl ester pro-drug of compound 15 (compound 22) shows substantial effects on sexually immature larval schistosomula, sexually mature adult worms, and snail-infective miracidia in ex vivo assays.
Collapse
Affiliation(s)
- Matthias Schiedel
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Darius J. B. McArdle
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Gilda Padalino
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Anthony K. N. Chan
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | | | - Michael McDonough
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Helen Whiteland
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Manfred Beckmann
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Rosa Cookson
- GlaxoSmithKline
R&D, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Karl F. Hoffmann
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Stuart J. Conway
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Chemistry & Biochemistry, University
of California Los Angeles, 607 Charles E. Young Drive East, P.O. Box 951569, Los Angeles, California 90095-1569, United States
| |
Collapse
|
5
|
Saidu U, Ibrahim MA, de Koning HP, McKerrow JH, Caffrey CR, Balogun EO. Human schistosomiasis in Nigeria: present status, diagnosis, chemotherapy, and herbal medicines. Parasitol Res 2023; 122:2751-2772. [PMID: 37851179 DOI: 10.1007/s00436-023-07993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
Schistosomiasis is a neglected tropical disease caused by a parasitic, trematode blood fluke of the genus Schistosoma. With 20 million people infected, mostly due to Schistosoma haematobium, Nigeria has the highest burden of schistosomiasis in the world. We review the status of human schistosomiasis in Nigeria regarding its distribution, prevalence, diagnosis, prevention, orthodox and traditional treatments, as well as snail control strategies. Of the country's 36 states, the highest disease prevalence is found in Lagos State, but at a geo-political zonal level, the northwest is the most endemic. The predominantly used diagnostic techniques are based on microscopy. Other methods such as antibody-based serological assays and DNA detection methods are rarely employed. Possible biomarkers of disease have been identified in fecal and blood samples from patients. With respect to preventive chemotherapy, mass drug administration with praziquantel as well as individual studies with artemisinin or albendazole have been reported in 11 out of the 36 states with cure rates between 51.1 and 100%. Also, Nigerian medicinal plants have been traditionally used as anti-schistosomal agents or molluscicides, of which Tetrapleura tetraptera (Oshosho, aridan, Aidan fruit), Carica papaya (Gwanda, Ìbẹ́pẹ, Pawpaw), Borreria verticillata (Karya garma, Irawo-ile, African borreria), and Calliandra portoricensis (Tude, Oga, corpse awakener) are most common in the scientific literature. We conclude that the high endemicity of the disease in Nigeria is associated with the limited application of various diagnostic tools and preventive chemotherapy efforts as well as poor knowledge, attitudes, and practices (KAP). Nonetheless, the country could serve as a scientific base in the discovery of biomarkers, as well as novel plant-derived schistosomicides and molluscicides.
Collapse
Affiliation(s)
- Umar Saidu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Mohammed Auwal Ibrahim
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - James H McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC0657, La Jolla, CA, 92093, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC0657, La Jolla, CA, 92093, USA
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC0657, La Jolla, CA, 92093, USA.
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
6
|
Martín-Zamora FM, Davies BE, Donnellan RD, Guynes K, Martín-Durán JM. Functional genomics in Spiralia. Brief Funct Genomics 2023; 22:487-497. [PMID: 37981859 PMCID: PMC10658182 DOI: 10.1093/bfgp/elad036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 11/21/2023] Open
Abstract
Our understanding of the mechanisms that modulate gene expression in animals is strongly biased by studying a handful of model species that mainly belong to three groups: Insecta, Nematoda and Vertebrata. However, over half of the animal phyla belong to Spiralia, a morphologically and ecologically diverse animal clade with many species of economic and biomedical importance. Therefore, investigating genome regulation in this group is central to uncovering ancestral and derived features in genome functioning in animals, which can also be of significant societal impact. Here, we focus on five aspects of gene expression regulation to review our current knowledge of functional genomics in Spiralia. Although some fields, such as single-cell transcriptomics, are becoming more common, the study of chromatin accessibility, DNA methylation, histone post-translational modifications and genome architecture are still in their infancy. Recent efforts to generate chromosome-scale reference genome assemblies for greater species diversity and optimise state-of-the-art approaches for emerging spiralian research systems will address the existing knowledge gaps in functional genomics in this animal group.
Collapse
Affiliation(s)
- Francisco M Martín-Zamora
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Billie E Davies
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Rory D Donnellan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Kero Guynes
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
7
|
Grecco A, Macchiaroli N, Pérez MG, Casulli A, Cucher MA, Rosenzvit MC. microRNA silencing in a whole worm cestode model provides insight into miR-71 function. Int J Parasitol 2023; 53:699-710. [PMID: 37699506 DOI: 10.1016/j.ijpara.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/13/2023] [Accepted: 08/05/2023] [Indexed: 09/14/2023]
Abstract
Parasites belonging to the class Cestoda include zoonotic species such as Echinococcus spp. and Taenia spp. that cause morbidity and mortality in endemic areas, mainly affecting pastoral and rural communities in low income countries but also upper middle income countries. Cestodes show remarkable developmental plasticity, implying tight regulation of gene expression throughout their complex life cycles. Despite the recent availability of genomic data for cestodes, little progress was made on postgenomic functional studies. MicroRNAs (miRNAs) are key components of gene regulatory systems that guide diverse developmental processes in multicellular organisms. miR-71 is a highly expressed miRNA in cestodes, which is absent in vertebrates and targets essential parasite genes, representing a potential key player in understanding the role of miRNAs in cestodes biology. Here we used transfection with antisense oligonucleotides to perform whole worm miRNA knockdown in tetrathyridia of Mesocestoides vogae (syn. Mesocestoides corti), a laboratory model of cestodes. We believe this is the first report of miRNA knockdown at the organism level in these parasites. Our results showed that M. vogae miR-71 is involved in the control of strobilation in vitro and in the establishment of murine infection. In addition, we identified miR-71 targets in M. vogae, several of them being de-repressed upon miR-71 knockdown. This study provides new knowledge on gene expression regulation in cestodes and suggests that miRNAs could be evaluated as new selective therapeutic targets for treating Neglected Tropical Diseases prioritised by the World Health Organization.
Collapse
Affiliation(s)
- Andrés Grecco
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Macchiaroli
- Laboratorio de Genómica y Bioinformática de Patógenos, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Matías Gastón Pérez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriano Casulli
- WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis. Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy; European Reference Laboratory for Parasites. Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marcela Alejandra Cucher
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mara Cecilia Rosenzvit
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Padalino G, Celatka CA, Rienhoff Jr. HY, Kalin JH, Cole PA, Lassalle D, Forde-Thomas J, Chalmers IW, Brancale A, Grunau C, Hoffmann KF. Chemical modulation of Schistosoma mansoni lysine specific demethylase 1 (SmLSD1) induces wide-scale biological and epigenomic changes. Wellcome Open Res 2023; 8:146. [PMID: 37520936 PMCID: PMC10375057 DOI: 10.12688/wellcomeopenres.18826.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Schistosoma mansoni, a parasitic worm species responsible for the neglected tropical disease schistosomiasis, undergoes strict developmental regulation of gene expression that is carefully controlled by both genetic and epigenetic processes. As inhibition of S. mansoni epigenetic machinery components impairs key transitions throughout the parasite's digenetic lifecycle, a greater understanding of how epi-drugs affect molecular processes in schistosomes could lead to the development of new anthelmintics. Methods: In vitro whole organism assays were used to assess the anti-schistosomal activity of 39 Homo sapiens Lysine Specific Demethylase 1 (HsLSD1) inhibitors on different parasite life cycle stages. Moreover, tissue-specific stains and genomic analysis shed light on the effect of these small molecules on the parasite biology. Results: Amongst this collection of small molecules, compound 33 was the most potent in reducing ex vivo viabilities of schistosomula, juveniles, miracidia and adults. At its sub-lethal concentration to adults (3.13 µM), compound 33 also significantly impacted oviposition, ovarian as well as vitellarian architecture and gonadal/neoblast stem cell proliferation. ATAC-seq analysis of adults demonstrated that compound 33 significantly affected chromatin structure (intragenic regions > intergenic regions), especially in genes differentially expressed in cell populations (e.g., germinal stem cells, hes2 + stem cell progeny, S1 cells and late female germinal cells) associated with these ex vivo phenotypes. KEGG analyses further highlighted that chromatin structure of genes associated with sugar metabolism as well as TGF-beta and Wnt signalling were also significantly perturbed by compound 33 treatment. Conclusions: This work confirms the importance of histone methylation in S. mansoni lifecycle transitions, suggesting that evaluation of LSD1 - targeting epi-drugs may facilitate the search for next-generation anti-schistosomal drugs. The ability of compound 33 to modulate chromatin structure as well as inhibit parasite survival, oviposition and stem cell proliferation warrants further investigations of this compound and its epigenetic target SmLSD1.
Collapse
Affiliation(s)
- Gilda Padalino
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, CF10 3NB, UK
| | | | | | - Jay H. Kalin
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Philip A. Cole
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Josephine Forde-Thomas
- Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Iain W. Chalmers
- Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, CF10 3NB, UK
| | | | - Karl F. Hoffmann
- Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| |
Collapse
|
9
|
Coelho FS, Gava SG, Andrade LF, Geraldo JA, Tavares NC, Lunkes FMN, Neves RH, Machado-Silva JR, Pierce RJ, Oliveira G, Mourão MM. Schistosoma mansoni coactivator associated arginine methyltransferase 1 (SmCARM1) effect on parasite reproduction. Front Microbiol 2023; 14:1079855. [PMID: 36910171 PMCID: PMC9998485 DOI: 10.3389/fmicb.2023.1079855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/01/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction The human blood fluke parasite Schistosoma mansoni relies on diverse mechanisms to adapt to its diverse environments and hosts. Epigenetic mechanisms play a central role in gene expression regulation, culminating in such adaptations. Protein arginine methyltransferases (PRMTs) promote posttranslational modifications, modulating the function of histones and non-histone targets. The coactivator-associated arginine methyltransferase 1 (CARM1/PRMT4) is one of the S. mansoni proteins with the PRMT core domain. Methods We carried out in silico analyses to verify the expression of SmPRMTs in public datasets from different infection stages, single-sex versus mixed-worms, and cell types. The SmCARM1 function was evaluated by RNA interference. Gene expression levels were assessed, and phenotypic alterations were analyzed in vitro, in vivo, and ex vivo. Results The scRNAseq data showed that SmPRMTs expression is not enriched in any cell cluster in adult worms or schistosomula, except for Smcarm1 expression which is enriched in clusters of ambiguous cells and Smprmt1 in NDF+ neurons and stem/germinal cells from schistosomula. Smprmt1 is also enriched in S1 and late female germ cells from adult worms. After dsRNA exposure in vitro, we observed a Smcarm1 knockdown in schistosomula and adult worms, 83 and 69%, respectively. Smcarm1-knockdown resulted in reduced oviposition and no significant changes in the schistosomula or adult worm phenotypes. In vivo analysis after murine infection with Smcarm1 knocked-down schistosomula, showed no significant change in the number of worms recovered from mice, however, a significant reduction in the number of eggs recovered was detected. The ex vivo worms presented a significant decrease in the ovary area with a lower degree of cell differentiation, vitelline glands cell disorganization, and a decrease in the testicular lobe area. The worm tegument presented a lower number of tubercles, and the ventral sucker of the parasites presented a damaged tegument and points of detachment from the parasite body. Discussion This work brings the first functional characterization of SmCARM1 shedding light on its roles in S. mansoni biology and its potential as a drug target. Additional studies are necessary to investigate whether the reported effects of Smcarm1 knockdown are a consequence of the SmCARM1-mediated methylation of histone tails involved in DNA packaging or other non-histone proteins.
Collapse
Affiliation(s)
- Fernanda Sales Coelho
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil.,Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sandra Grossi Gava
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Luiza Freire Andrade
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Assis Geraldo
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Naiara Clemente Tavares
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Felipe Miguel Nery Lunkes
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Renata Heisler Neves
- Laboratório de Helmintologia Romero Lascasas Porto, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Roberto Machado-Silva
- Laboratório de Helmintologia Romero Lascasas Porto, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raymond J Pierce
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Guilherme Oliveira
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil.,Instituto Tecnológico Vale, Belém, Pará, Brazil
| | - Marina Moraes Mourão
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
10
|
Comparative proteomic profiles of Schistosoma japonicum male worms derived from single-sex and bisexual infections. Int J Parasitol 2022; 52:815-828. [PMID: 36265673 DOI: 10.1016/j.ijpara.2022.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
Abstract
Schistosomiasis, which is caused by parasitic schistosomes, remains the second most prevalent parasitic disease of mammals worldwide. To successfully maintain fecundity, schistosomes have evolved a lifecycle that involves the cooperation of morphologically distinct male and female forms. Eggs produced by worm pairs are vital to the lifecycle of the parasite and are responsible for pathogenesis. Understanding the reproductive mechanism of schistosomes will help to control infection. In this study, the proteomic profiles of single-sex infected male (SM) worms and bisexual infected mated male (MM) worms of Schistosoma japonicum at 18, 21, 23, and 25 days p.i. were identified through data-independent acquisition. In total, 674 differentially expressed proteins (DEPs) were identified for the SM and MM worms at all four timepoints. Bioinformatic analysis demonstrated that most of the DEPs were involved in biosynthetic processes including locomotion, cell growth and death, cell motility, and metabolic processes such as protein metabolism and glucose metabolism. Schistosoma japonicum glycosyltransferase (SjGT) and S. japonicum nicastrin protein (SjNCSTN) were selected for quantitative real‑time PCR analysis and long-term interference with small interfering RNA (siRNA) to further explore the functions of the DEPs. Sjgt mRNA expression was mainly enriched in male worms, while Sjncstn was enriched in both sexes. siRNA against SjGT and SjNCSTN resulted in minor morphological changes in the testes of male worms and significant decreased vitality and fertility. The present study provides comprehensive proteomic profiles of S. japonicum SM and MM worms at 18, 21, 23, and 25 days p.i. and offers insights into the mechanisms underlying the growth and maturation of schistosomes.
Collapse
|
11
|
Suleiman M, Kounosu A, Murcott B, Dayi M, Pawluk R, Yoshida A, Viney M, Kikuchi T, Hunt VL. piRNA-like small RNAs target transposable elements in a Clade IV parasitic nematode. Sci Rep 2022; 12:10156. [PMID: 35710810 PMCID: PMC9203780 DOI: 10.1038/s41598-022-14247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
The small RNA (sRNA) pathways identified in the model organism Caenorhabditis elegans are not widely conserved across nematodes. For example, the PIWI pathway and PIWI-interacting RNAs (piRNAs) are involved in regulating and silencing transposable elements (TE) in most animals but have been lost in nematodes outside of the C. elegans group (Clade V), and little is known about how nematodes regulate TEs in the absence of the PIWI pathway. Here, we investigated the role of sRNAs in the Clade IV parasitic nematode Strongyloides ratti by comparing two genetically identical adult stages (the parasitic female and free-living female). We identified putative small-interfering RNAs, microRNAs and tRNA-derived sRNA fragments that are differentially expressed between the two adult stages. Two classes of sRNAs were predicted to regulate TE activity including (i) a parasite-associated class of 21-22 nt long sRNAs with a 5' uridine (21-22Us) and a 5' monophosphate, and (ii) 27 nt long sRNAs with a 5' guanine/adenine (27GAs) and a 5' modification. The 21-22Us show striking resemblance to the 21U PIWI-interacting RNAs found in C. elegans, including an AT rich upstream sequence, overlapping loci and physical clustering in the genome. Overall, we have shown that an alternative class of sRNAs compensate for the loss of piRNAs and regulate TE activity in nematodes outside of Clade V.
Collapse
Affiliation(s)
- Mona Suleiman
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Asuka Kounosu
- Parasitology, Department of Infectious Dieses, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Ben Murcott
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Mehmet Dayi
- Parasitology, Department of Infectious Dieses, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
- Forestry Vocational School, Duzce University, 81620, Duzce, Turkey
| | - Rebecca Pawluk
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Akemi Yoshida
- Laboratory of Genomics, Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Mark Viney
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Taisei Kikuchi
- Parasitology, Department of Infectious Dieses, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan.
| | - Vicky L Hunt
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
12
|
Barban do Patrocinio A. Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The parasite blood flukes belonging to the genus Schistosoma cause schistosomiasis. Among the Schistosoma species that infect humans, three stand out: Schistosoma japonicum (S. japonicum), which occurs in Asia, mainly in China and the Philippines; Schistosoma haematobium (S. haematobium), which occurs in Africa; and Schistosoma mansoni (S. mansoni), which occurs in Africa and South America and the center of Venezuela (Brazil). Research has shown that these species comprise strains that are resistant to Praziquantel (PZQ), the only drug of choice to fight the disease. Moreover, patients can be reinfected even after being treated with PZQ , and this drug does not act against young forms of the parasite. Therefore, several research groups have focused their studies on new molecules for disease treatment and vaccine development. This chapter will focus on (i) parasite resistance to PZQ , (ii) molecules that are currently being developed and tested as possible drugs against schistosomiasis, and (iii) candidates for vaccine development with a primary focus on clinical trials.
Collapse
|
13
|
Luviano N, Duval D, Ittiprasert W, Allienne JF, Tavernier G, Chaparro C, Cosseau C, Grunau C. Hit-and-Run Epigenetic Editing for Vectors of Snail-Borne Parasitic Diseases. Front Cell Dev Biol 2022; 10:794650. [PMID: 35295851 PMCID: PMC8920497 DOI: 10.3389/fcell.2022.794650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022] Open
Abstract
Snail-borne parasitic diseases represent an important challenge to human and animal health. Control strategies that target the intermediate snail host has proved very effective. Epigenetic mechanisms are involved in developmental processes and therefore play a fundamental role in developmental variation. DNA methylation is an important epigenetic information carrier in eukaryotes that plays a major role in the control of chromatin structure. Epigenome editing tools have been instrumental to demonstrate functional importance of this mark for gene expression in vertebrates. In invertebrates, such tools are missing, and the role of DNA methylation remains unknown. Here we demonstrate that methylome engineering can be used to modify in vivo the CpG methylation level of a target gene in the freshwater snail Biomphalaria glabrata, intermediate host of the human parasite Schistosoma mansoni. We used a dCas9-SunTag-DNMT3A complex and synthetic sgRNA to transfect B. glabrata embryos and observed an increase of CpG methylation at the target site in 50% of the hatching snails.
Collapse
Affiliation(s)
- Nelia Luviano
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| | - David Duval
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| | - Wannaporn Ittiprasert
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | | | - Geneviève Tavernier
- Transgenesis Core Facility of UMS006/Inserm/Paul Sabatier University/National Medical Veterinary School, Toulouse, France
- Inserm UMR 1048, Paul Sabatier University, Toulouse, France
| | - Cristian Chaparro
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| | - Celine Cosseau
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| | - Christoph Grunau
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| |
Collapse
|
14
|
Padalino G, El-Sakkary N, Liu LJ, Liu C, Harte DSG, Barnes RE, Sayers E, Forde-Thomas J, Whiteland H, Bassetto M, Ferla S, Johnson G, Jones AT, Caffrey CR, Chalmers I, Brancale A, Hoffmann KF. Anti-schistosomal activities of quinoxaline-containing compounds: From hit identification to lead optimisation. Eur J Med Chem 2021; 226:113823. [PMID: 34536671 PMCID: PMC8626775 DOI: 10.1016/j.ejmech.2021.113823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 12/18/2022]
Abstract
Schistosomiasis is a neglected disease of poverty that is caused by infection with blood fluke species contained within the genus Schistosoma. For the last 40 years, control of schistosomiasis in endemic regions has predominantly been facilitated by administration of a single drug, praziquantel. Due to limitations in this mono-chemotherapeutic approach for sustaining schistosomiasis control into the future, alternative anti-schistosomal compounds are increasingly being sought by the drug discovery community. Herein, we describe a multi-pronged, integrated strategy that led to the identification and further exploration of the quinoxaline core as a promising anti-schistosomal scaffold. Firstly, phenotypic screening of commercially available small molecules resulted in the identification of a moderately active hit compound against Schistosoma mansoni (1, EC50 = 4.59 μM on schistosomula). Secondary exploration of the chemical space around compound 1 led to the identification of a quinoxaline-core containing, non-genotoxic lead (compound 22). Compound 22 demonstrated substantially improved activities on both intra-mammalian (EC50 = 0.44 μM, 0.20 μM and 84.7 nM, on schistosomula, juvenile and adult worms, respectively) and intra-molluscan (sporocyst) S. mansoni lifecycle stages. Further medicinal chemistry optimisation of compound 22, resulting in the generation of 20 additional analogues, improved our understanding of the structure-activity relationship and resulted in considerable improvements in both anti-schistosome potency and selectivity (e.g. compound 30; EC50 = 2.59 nM on adult worms; selectivity index compared to the HepG2 cell line = 348). Some derivatives of compound 22 (e.g. 31 and 33) also demonstrated significant activity against the two other medically important species, Schistosoma haematobium and Schistosoma japonicum. Further optimisation of this class of anti-schistosomal is ongoing and could lead to the development of an urgently needed alternative to praziquantel for assisting in schistosomiasis elimination strategies. Lead compound 22 was identified with EC50 of 0.44 µM and 84.7 nM for schistosomula and adult worms. 20 analogues of the lead compound 22 were synthesised. Compounds 25, 30 and 32 showed the best selectivity profile. Compounds 31 and 33 are the most active on three medically important schistosome species.
Collapse
Affiliation(s)
- Gilda Padalino
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom
| | - Nelly El-Sakkary
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lawrence J Liu
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chenxi Liu
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Danielle S G Harte
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Rachel E Barnes
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Edward Sayers
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, United Kingdom
| | - Josephine Forde-Thomas
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom
| | - Helen Whiteland
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom
| | - Marcella Bassetto
- Department of Chemistry, College of Science and Engineering, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Salvatore Ferla
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - George Johnson
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, United Kingdom
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Iain Chalmers
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, United Kingdom
| | - Karl F Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom.
| |
Collapse
|
15
|
Amaral MS, Santos DW, Pereira ASA, Tahira AC, Malvezzi JVM, Miyasato PA, Freitas RDP, Kalil J, Tjon Kon Fat EM, de Dood CJ, Corstjens PLAM, van Dam GJ, Nakano E, Castro SDO, Mattaraia VGDM, Augusto RDC, Grunau C, Wilson RA, Verjovski-Almeida S. Rhesus macaques self-curing from a schistosome infection can display complete immunity to challenge. Nat Commun 2021; 12:6181. [PMID: 34702841 PMCID: PMC8548296 DOI: 10.1038/s41467-021-26497-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
The rhesus macaque provides a unique model of acquired immunity against schistosomes, which afflict >200 million people worldwide. By monitoring bloodstream levels of parasite-gut-derived antigen, we show that from week 10 onwards an established infection with Schistosoma mansoni is cleared in an exponential manner, eliciting resistance to reinfection. Secondary challenge at week 42 demonstrates that protection is strong in all animals and complete in some. Antibody profiles suggest that antigens mediating protection are the released products of developing schistosomula. In culture they are killed by addition of rhesus plasma, collected from week 8 post-infection onwards, and even more efficiently with post-challenge plasma. Furthermore, cultured schistosomula lose chromatin activating marks at the transcription start site of genes related to worm development and show decreased expression of genes related to lysosomes and lytic vacuoles involved with autophagy. Overall, our results indicate that enhanced antibody responses against the challenge migrating larvae mediate the naturally acquired protective immunity and will inform the route to an effective vaccine. To date there is only one single drug with modest efficacy and no vaccine available to protect from schistosomiasis. Here, Amaral et al. characterize the self-cure process of rhesus macaques following primary infection and secondary challenge with Schistosoma mansoni to inform future vaccine development studies.
Collapse
Affiliation(s)
| | - Daisy Woellner Santos
- Laboratório de Parasitologia, Instituto Butantan, Sao Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Adriana S A Pereira
- Laboratório de Parasitologia, Instituto Butantan, Sao Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | - Jorge Kalil
- Heart Institute, Faculty of Medicine, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Elisa M Tjon Kon Fat
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Claudia J de Dood
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul L A M Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Govert J van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eliana Nakano
- Laboratório de Parasitologia, Instituto Butantan, Sao Paulo, Brazil
| | | | | | - Ronaldo de Carvalho Augusto
- LBMC, Laboratoire de Biologie et Modélisation de la Cellule Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1210, Lyon, France.,IHPE, Univ. Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France
| | - Christoph Grunau
- IHPE, Univ. Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France
| | - R Alan Wilson
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Sergio Verjovski-Almeida
- Laboratório de Parasitologia, Instituto Butantan, Sao Paulo, Brazil. .,Departamento de Bioquímica, Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
16
|
How much epigenetics and quantitative trait loci (QTL) mapping tell us about parasitism maintenance and resistance/susceptibility to hosts. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166214. [PMID: 34271118 DOI: 10.1016/j.bbadis.2021.166214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023]
Abstract
Interactions between the environment, parasites, vectors, and/or intermediate hosts are complex and involve several factors that define the success or failure of an infection. Among these interactions that can affect infections by a parasite, it is possible to highlight the genetic and epigenetic mechanisms in hosts and parasites. The interaction between genetics, epigenetics, infection, and the host's internal and external environment is decisive and dictates the outcome of a parasitic infection and the resistance, susceptibility, and transmission of this parasite. Epigenetic changes become important mediators in the regulation of gene expression, allowing the evasion of the parasite to immune host barriers, its transmission to new hosts, and the end of its development cycle. Epigenetics is a new frontier in the understanding of the interaction mechanisms between parasite and host that, along with information from the gene regions associated with complex phenotypic variations, the Quantitative Trait Loci, brings new possibilities to investigate more modern and efficient approaches to the treatment, control, and eradication of parasitic diseases. In this brief review, a general overview of the use of epigenetic information and mapping of Quantitative Trait Loci was summarized, both in genes of parasites and hosts, for understanding the mechanisms of resistance and/or susceptibility in parasitic relationships; also, the main search platforms were quantitatively compared, aiming to facilitate access data produced over a period of twenty years.
Collapse
|
17
|
Schistosoma mansoni Heterochromatin Protein 1 (HP1) nuclear interactome in cercariae. J Proteomics 2021; 239:104170. [PMID: 33662613 DOI: 10.1016/j.jprot.2021.104170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/21/2022]
Abstract
Schistosoma mansoni causes schistosomiasis, which affects 240 million people, and 700 million people are living at risk of infection. Epigenetic mechanisms are important for transcriptional control and are well-known conserved transcriptional co-regulators in evolution, already described in mammal, yeast, protozoa and S. mansoni, responsible for heterochromatization and gene silence mechanisms through the formation of complexes of transcriptional repression in chromatin. Previous results from another group have shown that HP1 (SmCBX) proteins form chromatin complexes with SmMDB2/3 proteins and regulate stem cells and oviposition in parasite adult worms. In addition, results from other groups have shown that cercariae are transcriptionally silent and epigenetic mechanisms are involved in the regulation of gene expression in this stage. In this work, our aim was to give insights into SmHP1 and proteins involved in transcriptional regulation in the cercariae stage. Using monoclonal anti-HP1 antibody for Western blotting, immunoprecipitation, and mass spectrometry, we preliminarily determined nuclear proteins that putatively interact with HP1 to form complexes to regulate gene expression, heterochromatin formation, and translational complexes in the cercariae stage. So far, our data is to give some insights into nuclear interactors in S. mansoni cercariae. SIGNIFICANCE: The significance of this original paper is the evidence for Heterochromatin Protein (HP1), interaction with nuclear proteins in the cercariae stage. Schistosoma mansoni cercariae are the infective stage of the human beings in endemic areas of schistosomiasis, a neglected disease, most prevalent in Brazil and Africa. While cercariae are waiting for a host, it does not feed, gene expression is silent and protein synthesis is stopped. These biochemical mechanisms are recovered when cercariae find a human host, but all proteins and mechanisms are not still elucidated. Until now, literature shows that these phenomena are regulated by epigenetics mechanisms, dependent of histone posttranslational modifications. But we have few pieces of evidence about the other proteins that participates in these processes and which are the co-regulators of expression.
Collapse
|
18
|
Epigenetic Markers Associated with Schistosomiasis. Helminthologia 2021; 58:28-40. [PMID: 33664616 PMCID: PMC7912237 DOI: 10.2478/helm-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/01/2020] [Indexed: 11/21/2022] Open
Abstract
It is important to consider the use of the epigenome as source of complementary data for genome knowledge, which is suitable for the diagnosis of schistosomiasis. Usually, a laboratory diagnosis of schistosomiasis is performed by means of 1. Egg detection in the stool or urine by microscopy remains with limited sensitivity; 2. Immunological screening, in which positivity persists after treatment, and 3. Molecular appraisals prevail over the disadvantages of the currently used methods. In this sense, molecular methodologies are being developed based on epigenetic biomarkers, aiming to improve the diagnosis of the disease and clinical treatment as early as possible to prevent the occurrence of serious liver damage.
Collapse
|
19
|
Augusto RDC, Rey O, Cosseau C, Chaparro C, Vidal-Dupiol J, Allienne JF, Duval D, Pinaud S, Tönges S, Andriantsoa R, Luquet E, Aubret F, Dia Sow M, David P, Thomson V, Joly D, Gomes Lima M, Federico D, Danchin E, Minoda A, Grunau C. A simple ATAC-seq protocol for population epigenetics. Wellcome Open Res 2021; 5:121. [PMID: 33521328 PMCID: PMC7814285 DOI: 10.12688/wellcomeopenres.15552.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 11/20/2022] Open
Abstract
We describe here a protocol for the generation of sequence-ready libraries for population epigenomics studies, and the analysis of alignment results. We show that the protocol can be used to monitor chromatin structure changes in populations when exposed to environmental cues. The protocol is a streamlined version of the Assay for transposase accessible chromatin with high-throughput sequencing (ATAC-seq) that provides a positive display of accessible, presumably euchromatic regions. The protocol is straightforward and can be used with small individuals such as daphnia and schistosome worms, and probably many other biological samples of comparable size (~10,000 cells), and it requires little molecular biology handling expertise.
Collapse
Affiliation(s)
- Ronaldo de Carvalho Augusto
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan and F-34095, Montpellier, France
- LBMC, Laboratoire de Biologie et Modélisation de la Cellule Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1210, Lyon, 69007, France
| | - Oliver Rey
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan and F-34095, Montpellier, France
| | - Céline Cosseau
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan and F-34095, Montpellier, France
| | - Cristian Chaparro
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan and F-34095, Montpellier, France
| | - Jérémie Vidal-Dupiol
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan and F-34095, Montpellier, France
| | - Jean-François Allienne
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan and F-34095, Montpellier, France
| | - David Duval
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan and F-34095, Montpellier, France
| | - Silvain Pinaud
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan and F-34095, Montpellier, France
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sina Tönges
- Division of Epigenetics, DKFZ ZMBH Alliance, German Cancer Research Center, Heidelberg, 69120, Germany
| | - Ranja Andriantsoa
- Division of Epigenetics, DKFZ ZMBH Alliance, German Cancer Research Center, Heidelberg, 69120, Germany
| | - Emilien Luquet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, 69622, France
| | - Fabien Aubret
- CNRS,Station d'Ecologie Théorique et Expérimentale, Université Paul Sabatier, Moulis, 09200, France
- School of Molecular and Life Sciences, Curtin University, Bentley, Australia
| | | | - Patrice David
- Univ. Montpellier, CNRS, CEFE, F-34293, Montpellier, France
| | - Vicki Thomson
- School of Biological Sciences, University of Adelaide, Adelaide, 5005, Australia
| | - Dominique Joly
- Laboratoire Evolution, Génomes Comportement, Ecologie, CNRS Université Paris Sud UMR 9191, Gif sur Yvette, 91198, France
| | - Mariana Gomes Lima
- Laboratório de Malacologia, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Déborah Federico
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse; CNRS, Toulouse, 31062, France
| | - Etienne Danchin
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse; CNRS, Toulouse, 31062, France
| | - Aki Minoda
- RIKEN Center for Integrative Medical Sciences, Epigenome Technology Exploration Unit, Tsurumi, Kanagawa, 230-0045, Japan
| | - Christoph Grunau
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan and F-34095, Montpellier, France
| |
Collapse
|
20
|
Long non-coding RNA levels can be modulated by 5-azacytidine in Schistosoma mansoni. Sci Rep 2020; 10:21565. [PMID: 33299037 PMCID: PMC7725772 DOI: 10.1038/s41598-020-78669-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Schistosoma mansoni is a flatworm that causes schistosomiasis, a neglected tropical disease that affects more than 200 million people worldwide. There is only one drug indicated for treatment, praziquantel, which may lead to parasite resistance emergence. The ribonucleoside analogue 5-azacytidine (5-AzaC) is an epigenetic drug that inhibits S. mansoni oviposition and ovarian development through interference with parasite transcription, translation and stem cell activities. Therefore, studying the downstream pathways affected by 5-AzaC in S. mansoni may contribute to the discovery of new drug targets. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein coding potential that have been involved in reproduction, stem cell maintenance and drug resistance. We have recently published a catalog of lncRNAs expressed in S. mansoni life-cycle stages, tissues and single cells. However, it remains largely unknown if lncRNAs are responsive to epigenetic drugs in parasites. Here, we show by RNA-Seq re-analyses that hundreds of lncRNAs are differentially expressed after in vitro 5-AzaC treatment of S. mansoni females, including intergenic, antisense and sense lncRNAs. Many of these lncRNAs belong to co-expression network modules related to male metabolism and are also differentially expressed in unpaired compared with paired females and ovaries. Half of these lncRNAs possess histone marks at their genomic loci, indicating regulation by histone modification. Among a selected set of 8 lncRNAs, half of them were validated by RT-qPCR as differentially expressed in females, and some of them also in males. Interestingly, these lncRNAs are also expressed in other life-cycle stages. This study demonstrates that many lncRNAs potentially involved with S. mansoni reproductive biology are modulated by 5-AzaC and sheds light on the relevance of exploring lncRNAs in response to drug treatments in parasites.
Collapse
|
21
|
Padalino G, Chalmers IW, Brancale A, Hoffmann KF. Identification of 6-(piperazin-1-yl)-1,3,5-triazine as a chemical scaffold with broad anti-schistosomal activities. Wellcome Open Res 2020; 5:169. [PMID: 32904763 PMCID: PMC7459852 DOI: 10.12688/wellcomeopenres.16069.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Schistosomiasis, caused by infection with blood fluke schistosomes, is a neglected tropical disease of considerable importance in resource-poor communities throughout the developing world. In the absence of an immunoprophylactic vaccine and due to over-reliance on a single chemotherapy (praziquantel), schistosomiasis control is at risk should drug insensitive schistosomes develop. In this context, application of in silico virtual screening on validated schistosome targets has proven successful in the identification of novel small molecules with anti-schistosomal activity. Methods: Focusing on the Schistosoma mansoni histone methylation machinery, we herein have used RNA interference (RNAi), ELISA-mediated detection of H3K4 methylation, homology modelling and in silico virtual screening to identify a small collection of small molecules for anti-schistosomal testing. A combination of low to high-throughput whole organism assays were subsequently used to assess these compounds' activities on miracidia to sporocyst transformation, schistosomula phenotype/motility metrics and adult worm motility/oviposition readouts. Results: RNAi-mediated knockdown of smp_138030/smmll-1 (encoding a histone methyltransferase, HMT) in adult worms (~60%) reduced parasite motility and egg production. Moreover, in silico docking of compounds into Smp_138030/SmMLL-1's homology model highlighted competitive substrate pocket inhibitors, some of which demonstrated significant activity on miracidia, schistosomula and adult worm lifecycle stages together with variable effects on HepG2 cells. Particularly, the effect of compounds containing a 6-(piperazin-1-yl)-1,3,5-triazine core on adult schistosomes recapitulated the results of the smp_138030/smmll-1 RNAi screens. Conclusions: The biological data and the structure-activity relationship presented in this study define the 6-(piperazin-1-yl)-1,3,5-triazine core as a promising starting point in ongoing efforts to develop new urgently needed schistosomicides.
Collapse
Affiliation(s)
- Gilda Padalino
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Iain W. Chalmers
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, CF10 3NB, UK
| | - Karl F. Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| |
Collapse
|
22
|
Padalino G, Chalmers IW, Brancale A, Hoffmann KF. Identification of 6-(piperazin-1-yl)-1,3,5-triazine as a chemical scaffold with broad anti-schistosomal activities. Wellcome Open Res 2020; 5:169. [PMID: 32904763 PMCID: PMC7459852 DOI: 10.12688/wellcomeopenres.16069.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Schistosomiasis, caused by infection with blood fluke schistosomes, is a neglected tropical disease of considerable importance in resource-poor communities throughout the developing world. In the absence of an immunoprophylactic vaccine and due to over-reliance on a single chemotherapy (praziquantel), schistosomiasis control is at risk should drug insensitive schistosomes develop. In this context, application of in silico virtual screening on validated schistosome targets has proven successful in the identification of novel small molecules with anti-schistosomal activity. Methods: Focusing on the Schistosoma mansoni histone methylation machinery, we herein have used RNA interference (RNAi), ELISA-mediated detection of H3K4 methylation, homology modelling and in silico virtual screening to identify a small collection of small molecules for anti-schistosomal testing. A combination of low to high-throughput whole organism assays were subsequently used to assess these compounds' activities on miracidia to sporocyst transformation, schistosomula phenotype/motility metrics and adult worm motility/oviposition readouts. Results: RNAi-mediated knockdown of smp_138030/smmll-1 (encoding a histone methyltransferase, HMT) in adult worms (~60%) reduced parasite motility and egg production. Moreover, in silico docking of compounds into Smp_138030/SmMLL-1's homology model highlighted competitive substrate pocket inhibitors, some of which demonstrated significant activity on miracidia, schistosomula and adult worm lifecycle stages together with variable effects on HepG2 cells. Particularly, the effect of compounds containing a 6-(piperazin-1-yl)-1,3,5-triazine core on adult schistosomes recapitulated the results of the smp_138030/smmll-1 RNAi screens. Conclusions: The biological data and the structure-activity relationship presented in this study define the 6-(piperazin-1-yl)-1,3,5-triazine core as a promising starting point in ongoing efforts to develop new urgently needed schistosomicides.
Collapse
Affiliation(s)
- Gilda Padalino
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Iain W. Chalmers
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, CF10 3NB, UK
| | - Karl F. Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| |
Collapse
|
23
|
Coutinho Carneiro V, de Abreu da Silva IC, Amaral MS, Pereira ASA, Silveira GO, Pires DDS, Verjovski-Almeida S, Dekker FJ, Rotili D, Mai A, Lopes-Torres EJ, Robaa D, Sippl W, Pierce RJ, Borrello MT, Ganesan A, Lancelot J, Thiengo S, Fernandez MA, Vicentino ARR, Mourão MM, Coelho FS, Fantappié MR. Pharmacological inhibition of lysine-specific demethylase 1 (LSD1) induces global transcriptional deregulation and ultrastructural alterations that impair viability in Schistosoma mansoni. PLoS Negl Trop Dis 2020; 14:e0008332. [PMID: 32609727 PMCID: PMC7329083 DOI: 10.1371/journal.pntd.0008332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Treatment and control of schistosomiasis still rely on only one effective drug, praziquantel (PZQ) and, due to mass treatment, the increasing risk of selecting for schistosome strains that are resistant to PZQ has alerted investigators to the urgent need to develop novel therapeutic strategies. The histone-modifying enzymes (HMEs) represent promising targets for the development of epigenetic drugs against Schistosoma mansoni. In the present study, we targeted the S. mansoni lysine-specific demethylase 1 (SmLSD1), a transcriptional corepressor, using a novel and selective synthetic inhibitor, MC3935, which was used to treat schistosomula and adult worms in vitro. By using cell viability assays and optical and electron microscopy, we showed that treatment with MC3935 affected parasite motility, egg-laying, tegument, and cellular organelle structures, culminating in the death of schistosomula and adult worms. In silico molecular modeling and docking analysis suggested that MC3935 binds to the catalytic pocket of SmLSD1. Western blot analysis revealed that MC3935 inhibited SmLSD1 demethylation activity of H3K4me1/2. Knockdown of SmLSD1 by RNAi recapitulated MC3935 phenotypes in adult worms. RNA-Seq analysis of MC3935-treated parasites revealed significant differences in gene expression related to critical biological processes. Collectively, our findings show that SmLSD1 is a promising drug target for the treatment of schistosomiasis and strongly support the further development and in vivo testing of selective schistosome LSD1 inhibitors.
Collapse
Affiliation(s)
- Vitor Coutinho Carneiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabel Caetano de Abreu da Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Adriana S. A. Pereira
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Gilbert Oliveira Silveira
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | | | - Sergio Verjovski-Almeida
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Frank J. Dekker
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan, AV Groningen, Netherlands
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Eduardo José Lopes-Torres
- Laboratório de Helmintologia Romero Lascasas Porto, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dina Robaa
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Germany
| | - Raymond J. Pierce
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, Lille, France
| | - M. Teresa Borrello
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - A. Ganesan
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Julien Lancelot
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Silvana Thiengo
- Laboratório de Malacologia, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Monica Ammon Fernandez
- Laboratório de Malacologia, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Amanda Roberta Revoredo Vicentino
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marina Moraes Mourão
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Fernanda Sales Coelho
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Marcelo Rosado Fantappié
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Augusto RDC, Rey O, Cosseau C, Chaparro C, Vidal-Dupiol J, Allienne JF, Duval D, Pinaud S, Tönges S, Andriantsoa R, Luquet E, Aubret F, Dia Sow M, David P, Thomson V, Joly D, Gomes Lima M, Federico D, Danchin E, Minoda A, Grunau C. A simple ATAC-seq protocol for population epigenetics. Wellcome Open Res 2020; 5:121. [PMID: 33521328 PMCID: PMC7814285 DOI: 10.12688/wellcomeopenres.15552.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2020] [Indexed: 08/04/2023] Open
Abstract
We describe here a protocol for the generation of sequence-ready libraries for population epigenomics studies. The protocol is a streamlined version of the Assay for transposase accessible chromatin with high-throughput sequencing (ATAC-seq) that provides a positive display of accessible, presumably euchromatic regions. The protocol is straightforward and can be used with small individuals such as daphnia and schistosome worms, and probably many other biological samples of comparable size, and it requires little molecular biology handling expertise.
Collapse
Affiliation(s)
- Ronaldo de Carvalho Augusto
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan and F-34095, Montpellier, France
- LBMC, Laboratoire de Biologie et Modélisation de la Cellule Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1210, Lyon, 69007, France
| | - Oliver Rey
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan and F-34095, Montpellier, France
| | - Céline Cosseau
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan and F-34095, Montpellier, France
| | - Cristian Chaparro
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan and F-34095, Montpellier, France
| | - Jérémie Vidal-Dupiol
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan and F-34095, Montpellier, France
| | - Jean-François Allienne
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan and F-34095, Montpellier, France
| | - David Duval
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan and F-34095, Montpellier, France
| | - Silvain Pinaud
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan and F-34095, Montpellier, France
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sina Tönges
- Division of Epigenetics, DKFZ ZMBH Alliance, German Cancer Research Center, Heidelberg, 69120, Germany
| | - Ranja Andriantsoa
- Division of Epigenetics, DKFZ ZMBH Alliance, German Cancer Research Center, Heidelberg, 69120, Germany
| | - Emilien Luquet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, 69622, France
| | - Fabien Aubret
- CNRS,Station d'Ecologie Théorique et Expérimentale, Université Paul Sabatier, Moulis, 09200, France
- School of Molecular and Life Sciences, Curtin University, Bentley, Australia
| | | | - Patrice David
- Univ. Montpellier, CNRS, CEFE, F-34293, Montpellier, France
| | - Vicki Thomson
- School of Biological Sciences, University of Adelaide, Adelaide, 5005, Australia
| | - Dominique Joly
- Laboratoire Evolution, Génomes Comportement, Ecologie, CNRS Université Paris Sud UMR 9191, Gif sur Yvette, 91198, France
| | - Mariana Gomes Lima
- Laboratório de Malacologia, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Déborah Federico
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse; CNRS, Toulouse, 31062, France
| | - Etienne Danchin
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse; CNRS, Toulouse, 31062, France
| | - Aki Minoda
- RIKEN Center for Integrative Medical Sciences, Epigenome Technology Exploration Unit, Tsurumi, Kanagawa, 230-0045, Japan
| | - Christoph Grunau
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan and F-34095, Montpellier, France
| |
Collapse
|
25
|
Measuring Histone Modifications in the Human Parasite Schistosoma mansoni. Methods Mol Biol 2020. [PMID: 32451999 DOI: 10.1007/978-1-0716-0635-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
DNA-binding proteins play critical roles in many major processes such as development and sexual biology of Schistosoma mansoni and are important for the pathogenesis of schistosomiasis. Chromatin immunoprecipitation (ChIP) experiments followed by sequencing (ChIP-seq) are useful to characterize the association of genomic regions with posttranslational chemical modifications of histone proteins. Challenges in the standard ChIP protocol have motivated recent enhancements in this approach, such as reducing the number of cells required and increasing the resolution. In this chapter, we describe the latest advances made by our group in the ChIP methods to improve the standard ChIP protocol to reduce the number of input cells required and to increase the resolution and robustness of ChIP in S. mansoni.
Collapse
|
26
|
do Patrocinio AB, Cabral FJ, Bitencourt ALB, Brigato OM, Magalhães LG, de Lima Paula LA, Franco L, Guerra-Sá and R, Rodrigues V. Inhibition of 19S proteasome deubiquitinating activity in Schistosoma mansoni affects viability, oviposition, and structural changes. Parasitol Res 2020; 119:2159-2176. [DOI: 10.1007/s00436-020-06686-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/07/2020] [Indexed: 01/21/2023]
|
27
|
Mota EA, do Patrocínio AB, Rodrigues V, da Silva JS, Pereira VC, Guerra-Sá R. Epigenetic and parasitological parameters are modulated in EBi3-/- mice infected with Schistosoma mansoni. PLoS Negl Trop Dis 2020; 14:e0008080. [PMID: 32078636 PMCID: PMC7053770 DOI: 10.1371/journal.pntd.0008080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/03/2020] [Accepted: 01/22/2020] [Indexed: 12/16/2022] Open
Abstract
Schistosoma mansoni adaptive success is related to regulation of replication, transcription and translation inside and outside the intermediate and definitive host. We hypothesize that S. mansoni alters its epigenetic state in response to the mammalian host immune system, reprogramming gene expression and altering the number of eggs. In response, a change in the DNA methylation profile of hepatocytes could occurs, modulating the extent of hepatic granuloma. To investigate this hypothesis, we used the EBi3-/- murine (Mus musculus) model of S. mansoni infection and evaluated changes in new and maintenance DNA methylation profiles in the liver after 55 days of infection. We evaluated expression of epigenetic genes and genes linked to histone deubiquitination in male and female S. mansoni worms. Comparing TET expression with DNMT expression indicated that DNA demethylation exceeds methylation in knockout infected and uninfected mice and in wild-type infected and uninfected mice. S. mansoni infection provokes activation of demethylation in EBi3-/-I mice (knockout infected). EBi3-/-C (knockout uninfected) mice present intrinsically higher DNA methylation than WTC (control uninfected) mice. EBi3-/-I mice show decreased hepatic damage considering volume and reduced number of granulomas compared to WTI mice; the absence of IL27 and IL35 pathways decreases the Th1 response resulting in minor liver damage. S. mansoni males and females recovered from EBi3-/-I mice have reduced expression of a deubiquitinating enzyme gene, orthologs of which target histones and affect chromatin state. SmMBD and SmHDAC1 expression levels are downregulated in male and female parasites recovered from EBi3-/-, leading to epigenetic gene downregulation in S. mansoni. Changes to the immunological background thus induce epigenetic changes in hepatic tissues and alterations in S. mansoni gene expression, which attenuate liver symptoms in the acute phase of schistosomiasis.
Collapse
Affiliation(s)
- Ester Alves Mota
- Biochemistry and Molecular Biology Laboratory, Department of Biological Sciences, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| | - Andressa Barban do Patrocínio
- Universidade de São Paulo, Medicine Faculty of Ribeirão Preto, Department of Biochemistry and Immunology; Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - Vanderlei Rodrigues
- Universidade de São Paulo, Medicine Faculty of Ribeirão Preto, Department of Biochemistry and Immunology; Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - João Santana da Silva
- Universidade de São Paulo, Medicine Faculty of Ribeirão Preto, Department of Biochemistry and Immunology; Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Carregaro Pereira
- Universidade de São Paulo, Medicine Faculty of Ribeirão Preto, Department of Biochemistry and Immunology; Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - Renata Guerra-Sá
- Biochemistry and Molecular Biology Laboratory, Department of Biological Sciences, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
28
|
Nawaz M, Malik I, Hameed M, Hussain Kuthu Z, Zhou J. Modifications of histones in parasites as drug targets. Vet Parasitol 2020; 278:109029. [PMID: 31978703 DOI: 10.1016/j.vetpar.2020.109029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Post-translational modifications of histones and histone modifying enzymes play important roles in gene regulations and other physiological processes in parasites. Inhibitors of such modifying enzymes could be useful as novel therapeutics against parasitic diseases or as chemical probes for investigation of epigenetics. Development of parasitic histone modulators has got rapid expansion in the last few years. A number of highly potent and selective compounds have been reported, together with extensive preclinical studies of their biological activity. Some of these compounds have been widely used in humans targeting cancer and are found non-toxic. This review summarizes the antiparasitic activities of histone and histone modifying enzymes inhibitors evaluated in last few years. As the current chemotherapy against parasites is still not satisfactory, therefore, such compounds represents good starting points for the discovery of effective antiparasitic drugs.
Collapse
Affiliation(s)
- Mohsin Nawaz
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Irfan Malik
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Mudassar Hameed
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zulfiqar Hussain Kuthu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
29
|
Abstract
Bacteria participate in a wide diversity of symbiotic associations with eukaryotic hosts that require precise interactions for bacterial recognition and persistence. Most commonly, host-associated bacteria interfere with host gene expression to modulate the immune response to the infection. However, many of these bacteria also interfere with host cellular differentiation pathways to create a hospitable niche, resulting in the formation of novel cell types, tissues, and organs. In both of these situations, bacterial symbionts must interact with eukaryotic regulatory pathways. Here, we detail what is known about how bacterial symbionts, from pathogens to mutualists, control host cellular differentiation across the central dogma, from epigenetic chromatin modifications, to transcription and mRNA processing, to translation and protein modifications. We identify four main trends from this survey. First, mechanisms for controlling host gene expression appear to evolve from symbionts co-opting cross-talk between host signaling pathways. Second, symbiont regulatory capacity is constrained by the processes that drive reductive genome evolution in host-associated bacteria. Third, the regulatory mechanisms symbionts exhibit correlate with the cost/benefit nature of the association. And, fourth, symbiont mechanisms for interacting with host genetic regulatory elements are not bound by native bacterial capabilities. Using this knowledge, we explore how the ubiquitous intracellular Wolbachia symbiont of arthropods and nematodes may modulate host cellular differentiation to manipulate host reproduction. Our survey of the literature on how infection alters gene expression in Wolbachia and its hosts revealed that, despite their intermediate-sized genomes, different strains appear capable of a wide diversity of regulatory manipulations. Given this and Wolbachia's diversity of phenotypes and eukaryotic-like proteins, we expect that many symbiont-induced host differentiation mechanisms will be discovered in this system.
Collapse
Affiliation(s)
- Shelbi L Russell
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.
| | | |
Collapse
|
30
|
Whatley KCL, Padalino G, Whiteland H, Geyer KK, Hulme BJ, Chalmers IW, Forde-Thomas J, Ferla S, Brancale A, Hoffmann KF. The repositioning of epigenetic probes/inhibitors identifies new anti-schistosomal lead compounds and chemotherapeutic targets. PLoS Negl Trop Dis 2019; 13:e0007693. [PMID: 31730617 PMCID: PMC6881072 DOI: 10.1371/journal.pntd.0007693] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/27/2019] [Accepted: 10/30/2019] [Indexed: 01/13/2023] Open
Abstract
Background Praziquantel represents the frontline chemotherapy used to treat schistosomiasis, a neglected tropical disease (NTD) caused by infection with macro-parasitic blood fluke schistosomes. While this drug is safe, its inability to kill all schistosome lifecycle stages within the human host often requires repeat treatments. This limitation, amongst others, has led to the search for novel anti-schistosome replacement or combinatorial chemotherapies. Here, we describe a repositioning strategy to assess the anthelmintic activity of epigenetic probes/inhibitors obtained from the Structural Genomics Consortium. Methodology/Principle findings Thirty-seven epigenetic probes/inhibitors targeting histone readers, writers and erasers were initially screened against Schistosoma mansoni schistosomula using the high-throughput Roboworm platform. At 10 μM, 14 of these 37 compounds (38%) negatively affected schistosomula motility and phenotype after 72 hours of continuous co-incubation. Subsequent dose-response titrations against schistosomula and adult worms revealed epigenetic probes targeting one reader (NVS-CECR2-1), one writer (LLY-507 and BAY-598) and one eraser (GSK-J4) to be particularly active. As LLY-507/BAY-598 (SMYD2 histone methyltransferase inhibitors) and GSK-J4 (a JMJD3 histone demethylase inhibitor) regulate an epigenetic process (protein methylation) known to be critical for schistosome development, further characterisation of these compounds/putative targets was performed. RNA interference (RNAi) of one putative LLY-507/BAY-598 S. mansoni target (Smp_000700) in adult worms replicated the compound-mediated motility and egg production defects. Furthermore, H3K36me2, a known product catalysed by SMYD2 activity, was also reduced by LLY-507 (25%), BAY-598 (23%) and siSmp_000700 (15%) treatment of adult worms. Oviposition and packaging of vitelline cells into in vitro laid eggs was also significantly affected by GSK-J4 (putative cell permeable prodrug inhibitor of Smp_034000), but not by the related structural analogue GSK-J1 (cell impermeable inhibitor). Conclusion/Significance Collectively, these results provide further support for the development of next-generation drugs targeting schistosome epigenetic pathway components. In particular, the progression of histone methylation/demethylation modulators presents a tractable strategy for anti-schistosomal control. Human schistosomiasis is caused by infection with parasitic blood fluke worms. Global control of this NTD is currently facilitated by administration of a single drug, praziquantel (PZQ). This mono-chemotherapeutic strategy of schistosomiasis control presents challenges as PZQ is not active against all human-dwelling schistosome lifecycle stages and the evolution of PZQ resistant parasites remains a threat. Therefore, new drugs to be used in combination with or in replacement of PZQ are urgently needed. Here, continuing our studies on Schistosoma mansoni epigenetic processes, we performed anthelmintic screening of 37 epigenetic probes/epigenetic inhibitors obtained from the Structural Genomics Consortium (SGC). The results of these studies highlighted that schistosome protein methylation/demethylation processes are acutely vulnerable. In particular, compounds affecting schistosome SMYD (LLY-507, BAY-598) or JMJD (GSK-J4) homologues are especially active on schistosomula and adult worms during in vitro phenotypic drug screens. The active epigenetic probes identified here as well as their corresponding S. mansoni protein targets offers new starting points for the development of next-generation anti-schistosomals.
Collapse
Affiliation(s)
- Kezia C. L. Whatley
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Gilda Padalino
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Helen Whiteland
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Kathrin K. Geyer
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Benjamin J. Hulme
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Iain W. Chalmers
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Josephine Forde-Thomas
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Salvatore Ferla
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, United Kingdom
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, United Kingdom
| | - Karl F. Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Maciel LF, Morales-Vicente DA, Silveira GO, Ribeiro RO, Olberg GGO, Pires DS, Amaral MS, Verjovski-Almeida S. Weighted Gene Co-Expression Analyses Point to Long Non-Coding RNA Hub Genes at Different Schistosoma mansoni Life-Cycle Stages. Front Genet 2019; 10:823. [PMID: 31572441 PMCID: PMC6752179 DOI: 10.3389/fgene.2019.00823] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/09/2019] [Indexed: 01/21/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) (>200 nt) are expressed at levels lower than those of the protein-coding mRNAs, and in all eukaryotic model species where they have been characterized, they are transcribed from thousands of different genomic loci. In humans, some four dozen lncRNAs have been studied in detail, and they have been shown to play important roles in transcriptional regulation, acting in conjunction with transcription factors and epigenetic marks to modulate the tissue-type specific programs of transcriptional gene activation and repression. In Schistosoma mansoni, around 10,000 lncRNAs have been identified in previous works. However, the limited number of RNA-sequencing (RNA-seq) libraries that had been previously assessed, together with the use of old and incomplete versions of the S. mansoni genome and protein-coding transcriptome annotations, have hampered the identification of all lncRNAs expressed in the parasite. Here we have used 633 publicly available S. mansoni RNA-seq libraries from whole worms at different stages (n = 121), from isolated tissues (n = 24), from cell-populations (n = 81), and from single-cells (n = 407). We have assembled a set of 16,583 lncRNA transcripts originated from 10,024 genes, of which 11,022 are novel S. mansoni lncRNA transcripts, whereas the remaining 5,561 transcripts comprise 120 lncRNAs that are identical to and 5,441 lncRNAs that have gene overlap with S. mansoni lncRNAs already reported in previous works. Most importantly, our more stringent assembly and filtering pipeline has identified and removed a set of 4,293 lncRNA transcripts from previous publications that were in fact derived from partially processed mRNAs with intron retention. We have used weighted gene co-expression network analyses and identified 15 different gene co-expression modules. Each parasite life-cycle stage has at least one highly correlated gene co-expression module, and each module is comprised of hundreds to thousands lncRNAs and mRNAs having correlated co-expression patterns at different stages. Inspection of the top most highly connected genes within the modules’ networks has shown that different lncRNAs are hub genes at different life-cycle stages, being among the most promising candidate lncRNAs to be further explored for functional characterization.
Collapse
Affiliation(s)
- Lucas F Maciel
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil.,Programa Interunidades em Bioinformática, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - David A Morales-Vicente
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Gilbert O Silveira
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Raphael O Ribeiro
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Giovanna G O Olberg
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil
| | - David S Pires
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil
| | - Murilo S Amaral
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil
| | - Sergio Verjovski-Almeida
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Augusto RDC, Duval D, Grunau C. Effects of the Environment on Developmental Plasticity and Infection Success of Schistosoma Parasites - An Epigenetic Perspective. Front Microbiol 2019; 10:1475. [PMID: 31354641 PMCID: PMC6632547 DOI: 10.3389/fmicb.2019.01475] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/13/2019] [Indexed: 12/20/2022] Open
Abstract
Evidence of how environmental cues affect the phenotypes of, and compatibility between Schistosoma mansoni and their hosts come from studies in environmental parasitology and research on host diet and chemotherapeutic treatment. Schistosomes deal with a multitude of signals from the water environment as well as cues that come from their hosts, particularly in response to molecules that serve to recognize and destroy them, i.e., those molecules that arise from their hosts' immune systems. These interactions shape, not only the parasite's morphology, metabolism and behavior in the short-term, but also their infection success and development into different stage-specific phenotypes later in their life cycle, through the modification of the parasite's inheritance system. Developmental phenotypic plasticity of S. mansoni is based on epigenetic mechanisms which are also sensitive to environmental cues, but are poorly understood. Here, we argue that specific cues from the environment could lead to changes in parasite development and infectivity, and consequently, environmental signals that come from environmental control measures could be used to influence S. mansoni dynamics and transmission. This approach poses a challenge since epigenetic modification can lead to unexpected and undesired outcomes. However, we suggest that a better understanding of how environmental cues are interpreted by epigenome during schistosome development and host interactions could potentially be applied to control parasite's virulence. We review evidence about the role of environmental cues on the phenotype of S. mansoni and the compatibility between this parasite and its intermediate and definitive hosts.
Collapse
|
33
|
Picard MAL, Vicoso B, Roquis D, Bulla I, Augusto RC, Arancibia N, Grunau C, Boissier J, Cosseau C. Dosage Compensation throughout the Schistosoma mansoni Lifecycle: Specific Chromatin Landscape of the Z Chromosome. Genome Biol Evol 2019; 11:1909-1922. [PMID: 31273378 PMCID: PMC6628874 DOI: 10.1093/gbe/evz133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2019] [Indexed: 12/12/2022] Open
Abstract
Differentiated sex chromosomes are accompanied by a difference in gene dose between X/Z-specific and autosomal genes. At the transcriptomic level, these sex-linked genes can lead to expression imbalance, or gene dosage can be compensated by epigenetic mechanisms and results into expression level equalization. Schistosoma mansoni has been previously described as a ZW species (i.e., female heterogamety, in opposition to XY male heterogametic species) with a partial dosage compensation, but underlying mechanisms are still unexplored. Here, we combine transcriptomic (RNA-Seq) and epigenetic data (ChIP-Seq against H3K4me3, H3K27me3, and H4K20me1 histone marks) in free larval cercariae and intravertebrate parasitic stages. For the first time, we describe differences in dosage compensation status in ZW females, depending on the parasitic status: free cercariae display global dosage compensation, whereas intravertebrate stages show a partial dosage compensation. We also highlight regional differences of gene expression along the Z chromosome in cercariae, but not in the intravertebrate stages. Finally, we feature a consistent permissive chromatin landscape of the Z chromosome in both sexes and stages. We argue that dosage compensation in schistosomes is characterized by chromatin remodeling mechanisms in the Z-specific region.
Collapse
Affiliation(s)
- Marion A L Picard
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - David Roquis
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Ingo Bulla
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Ronaldo C Augusto
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Nathalie Arancibia
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Christoph Grunau
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Jérôme Boissier
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Céline Cosseau
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| |
Collapse
|
34
|
Nelwan ML. Schistosomiasis: Life Cycle, Diagnosis, and Control. Curr Ther Res Clin Exp 2019; 91:5-9. [PMID: 31372189 PMCID: PMC6658823 DOI: 10.1016/j.curtheres.2019.06.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Three main schistosomiasis species can infect humans; S. haematobium, S. japonicum, and S. mansoni. The parasites life cycle includes two kind of reproduction; asexual reproduction in snails and sexual reproduction in mammals. Multiple diagnostic techniques are used. Currently praziquantel is the only drug therapy approved for control of schistosomiasis but other promising candidate drugs (e.g. SpAE, and ruthenium compounds) are being tested. A number of vaccine candidates exist including SmCB1, SjAChE, and SmCB. Genetic manipulations are being investigated.
Background Human schistosomiasis is a parasitic disease caused by blood-worms that infect multiple organs, including the liver, intestine, bladder, and urethra. This disease may be eliminated with Praziquantel, vaccines, and gene therapy. Aims In this review, the author describes the progress in a study of schistosomiasis that focused on the life cycle, diagnosis, and control. Methodology The author searched the PubMed Database at NCBI for articles on schistosomiasis published between 2014 and 2018. All articles were open access and in English. Results The life cycle of this parasites involve two hosts: snails and mammals. Manifestations of schistosomiasis can be acute or chronic. Clinical manifestations of acute schistosomiasis can include fever and headache. Symptoms of chronic infections can include dysuria and hyperplasia. Infection can occur in several sites including the bile ducts, intestine, and bladder. The different sites of infection and symptoms seen are related to which of the species involved. Five species can infect humans. The three most commons are S. haematobium, S. japonicum, and S. mansoni. Detection tools for people with schistosomiasis can include the Kato-Katz and PCR. Praziquantel is at present the only effective treatment of this disease. In the future, vaccination or gene therapy may be used. Conclusion Kato-Katz and PCR are tools for detecting schistosomiasis on humans. Praziquantel, diagnosis, vaccines, and gene therapy are useful methods for eliminating schistosomiasis.
Collapse
Affiliation(s)
- Martin L. Nelwan
- Address correspondence to: Department of Animal Science, Nelwan Institution for Human Resource Development, Jl A Yani No. 24, Palu, Indonesia.
| |
Collapse
|
35
|
Lerat E, Casacuberta J, Chaparro C, Vieira C. On the Importance to Acknowledge Transposable Elements in Epigenomic Analyses. Genes (Basel) 2019; 10:genes10040258. [PMID: 30935103 PMCID: PMC6523952 DOI: 10.3390/genes10040258] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic genomes comprise a large proportion of repeated sequences, an important fraction of which are transposable elements (TEs). TEs are mobile elements that have a significant impact on genome evolution and on gene functioning. Although some TE insertions could provide adaptive advantages to species, transposition is a highly mutagenic event that has to be tightly controlled to ensure its viability. Genomes have evolved sophisticated mechanisms to control TE activity, the most important being epigenetic silencing. However, the epigenetic control of TEs can also affect genes located nearby that can become epigenetically regulated. It has been proposed that the combination of TE mobilization and the induced changes in the epigenetic landscape could allow a rapid phenotypic adaptation to global environmental changes. In this review, we argue the crucial need to take into account the repeated part of genomes when studying the global impact of epigenetic modifications on an organism. We emphasize more particularly why it is important to carefully consider TEs and what bioinformatic tools can be used to do so.
Collapse
Affiliation(s)
- Emmanuelle Lerat
- CNRS, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, UMR 5558, F-69622 Villeurbanne, France.
| | - Josep Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Cristian Chaparro
- CNRS, IHPE UMR 5244, University of Perpignan Via Domitia, IFREMER, University Montpellier, F-66860 Perpignan, France.
| | - Cristina Vieira
- CNRS, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, UMR 5558, F-69622 Villeurbanne, France.
| |
Collapse
|
36
|
Padalino G, Ferla S, Brancale A, Chalmers IW, Hoffmann KF. Combining bioinformatics, cheminformatics, functional genomics and whole organism approaches for identifying epigenetic drug targets in Schistosoma mansoni. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:559-570. [PMID: 30455056 PMCID: PMC6288008 DOI: 10.1016/j.ijpddr.2018.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
Schistosomiasis endangers the lives of greater than 200 million people every year and is predominantly controlled by a single class chemotherapy, praziquantel (PZQ). Development of PZQ replacement (to combat the threat of PZQ insensitivity/resistance arising) or combinatorial (to facilitate the killing of PZQ-insensitive juvenile schistosomes) chemotherapies would help sustain this control strategy into the future. Here, we re-categorise two families of druggable epigenetic targets in Schistosoma mansoni, the histone methyltransferases (HMTs) and the histone demethylases (HDMs). Amongst these, a S. mansoni Lysine Specific Demethylase 1 (SmLSD1, Smp_150560) homolog was selected for further analyses. Homology modelling of SmLSD1 and in silico docking of greater than four thousand putative inhibitors identified seven (L1 – L7) showing more favourable binding to the target pocket of SmLSD1 vs Homo sapiens HsLSD1; six of these seven (L1 – L6) plus three structural analogues of L7 (L8 – L10) were subsequently screened against schistosomula using the Roboworm anthelmintic discovery platform. The most active compounds (L10 - pirarubicin > L8 – danunorubicin hydrochloride) were subsequently tested against juvenile (3 wk old) and mature (7 wk old) schistosome stages and found to impede motility, suppress egg production and affect tegumental surfaces. When compared to a surrogate human cell line (HepG2), a moderate window of selectivity was observed for the most active compound L10 (selectivity indices - 11 for schistosomula, 9 for juveniles, 1.5 for adults). Finally, RNA interference of SmLSD1 recapitulated the egg-laying defect of schistosomes co-cultivated in the presence of L10 and L8. These preliminary results suggest that SmLSD1 represents an attractive new target for schistosomiasis; identification of more potent and selective SmLSD1 compounds, however, is essential. Nevertheless, the approaches described herein highlight an interdisciplinary strategy for selecting and screening novel/repositioned anti-schistosomals, which can be applied to any druggable (epigenetic) target encoded by the parasite's genome. Schistosoma mansoni contains 27 histone methyltransferases (HMTs) and 14 histone demethylases (HDMs). S. mansoni lysine specific demethylase 1 (SmLSD1) is a druggable target. Schistosomes treated with the putative SmLSD1 inhibitor pirarubicin or siRNAs targeting SmLSD1 are less fecund.
Collapse
Affiliation(s)
- Gilda Padalino
- The Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, SY23 3DA, Wales, UK.
| | - Salvatore Ferla
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, United Kingdom.
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, United Kingdom.
| | - Iain W Chalmers
- The Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, SY23 3DA, Wales, UK.
| | - Karl F Hoffmann
- The Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, SY23 3DA, Wales, UK.
| |
Collapse
|
37
|
Pereira ASA, Amaral MS, Vasconcelos EJR, Pires DS, Asif H, daSilva LF, Morales-Vicente DA, Carneiro VC, Angeli CB, Palmisano G, Fantappie MR, Pierce RJ, Setubal JC, Verjovski-Almeida S. Inhibition of histone methyltransferase EZH2 in Schistosoma mansoni in vitro by GSK343 reduces egg laying and decreases the expression of genes implicated in DNA replication and noncoding RNA metabolism. PLoS Negl Trop Dis 2018; 12:e0006873. [PMID: 30365505 PMCID: PMC6221359 DOI: 10.1371/journal.pntd.0006873] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/07/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022] Open
Abstract
Background The possibility of emergence of praziquantel-resistant Schistosoma parasites and the lack of other effective drugs demand the discovery of new schistosomicidal agents. In this context the study of compounds that target histone-modifying enzymes is extremely promising. Our aim was to investigate the effect of inhibition of EZH2, a histone methyltransferase that is involved in chromatin remodeling processes and gene expression control; we tested different developmental forms of Schistosoma mansoni using GKS343, a selective inhibitor of EZH2 in human cells. Methodology/Principal findings Adult male and female worms and schistosomula were treated with different concentrations of GSK343 for up to two days in vitro. Western blotting showed a decrease in the H3K27me3 histone mark in all three developmental forms. Motility, mortality, pairing and egg laying were employed as schistosomicidal parameters for adult worms. Schistosomula viability was evaluated with propidium iodide staining and ATP quantification. Adult worms showed decreased motility when exposed to GSK343. Also, an approximate 40% reduction of egg laying by GSK343-treated females was observed when compared with controls (0.1% DMSO). Scanning electron microscopy showed the formation of bulges and bubbles throughout the dorsal region of GSK343-treated adult worms. In schistosomula the body was extremely contracted with the presence of numerous folds, and growth was markedly slowed. RNA-seq was applied to identify the metabolic pathways affected by GSK343 sublethal doses. GSK343-treated adult worms showed significantly altered expression of genes related to transmembrane transport, cellular homeostasis and egg development. In females, genes related to DNA replication and noncoding RNA metabolism processes were downregulated. Schistosomula showed altered expression of genes related to cell adhesion and membrane synthesis pathways. Conclusions/Significance The results indicated that GSK343 presents in vitro activities against S. mansoni, and the characterization of EZH2 as a new potential molecular target establishes EZH2 inhibitors as part of a promising new group of compounds that could be used for the development of schistosomicidal agents. Schistosomiasis is a chronic and debilitating disease caused by a trematode of the genus Schistosoma. The current strategy for the control of the disease involves treatment with praziquantel, the only available drug. The development of new drugs is therefore a top priority. Drugs that inhibit histone modifying enzymes have been used in cancer, altering gene expression, replication, repair and DNA recombination. Schistosoma parasites have some characteristics similar to malignant tumors, such as intense cell division and high levels of metabolic activity. Here we evaluate in Schistosoma mansoni the effect of GSK343, an inhibitor of the histone methyltransferase EZH2 that had been shown to arrest or reduce the growth of human cancer cells. We show that GSK343 causes damage to the parasite tegument and reduces egg laying in vitro, concomitant with a decrease in levels of H3K27me3, the histone mark put in place by EZH2. RNA-seq and proteomic analyses of treated parasites showed changes in the expression of hundreds of genes involved in important metabolic processes. In females, a marked decrease was observed in the expression of genes related to processes such as DNA replication and noncoding RNA metabolism. In conclusion, the histone methyltransferase EZH2 seems to be a promising novel drug target against schistosomiasis.
Collapse
Affiliation(s)
- Adriana S. A. Pereira
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Murilo S. Amaral
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
| | - Elton J. R. Vasconcelos
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - David S. Pires
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
| | - Huma Asif
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
| | - Lucas F. daSilva
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - David A. Morales-Vicente
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Vitor C. Carneiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Claudia B. Angeli
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Laboratório de Glicoproteômica, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Giuseppe Palmisano
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Laboratório de Glicoproteômica, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marcelo R. Fantappie
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Raymond J. Pierce
- Centre d'Infection et d'Immunité de Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - João C. Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Sergio Verjovski-Almeida
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
- * E-mail:
| |
Collapse
|