1
|
Chen J, Wang J, Zhao H, Tan X, Yan S, Zhang H, Wang T, Tang X. Molecular breeding of pigs in the genome editing era. Genet Sel Evol 2025; 57:12. [PMID: 40065264 PMCID: PMC11892312 DOI: 10.1186/s12711-025-00961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND To address the increasing demand for high-quality pork protein, it is essential to implement strategies that enhance diets and produce pigs with excellent production traits. Selective breeding and crossbreeding are the primary methods used for genetic improvement in modern agriculture. However, these methods face challenges due to long breeding cycles and the necessity for beneficial genetic variation associated with high-quality traits within the population. This limitation restricts the transfer of desirable alleles across different genera and species. This article systematically reviews past and current research advancements in porcine molecular breeding. It discusses the screening of clustered regularly interspaced short palindromic repeats (CRISPR) to identify resistance loci in swine and the challenges and future applications of genetically modified pigs. MAIN BODY The emergence of transgenic and gene editing technologies has prompted researchers to apply these methods to pig breeding. These advancements allow for alterations in the pig genome through various techniques, ranging from random integration into the genome to site-specific insertion and from target gene knockout (KO) to precise base and prime editing. As a result, numerous desirable traits, such as disease resistance, high meat yield, improved feed efficiency, reduced fat deposition, and lower environmental waste, can be achieved easily and effectively by genetic modification. These traits can serve as valuable resources to enhance swine breeding programmes. CONCLUSION In the era of genome editing, molecular breeding of pigs is critical to the future of agriculture. Long-term and multidomain analyses of genetically modified pigs by researchers, related policy development by regulatory agencies, and public awareness and acceptance of their safety are the keys to realizing the transition of genetically modified products from the laboratory to the market.
Collapse
Affiliation(s)
- Jiahuan Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Jiaqi Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Haoran Zhao
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Xiao Tan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Shihan Yan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Huanyu Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Tiefeng Wang
- College of Life Science, Baicheng Normal University, Baicheng, 137000, China.
| | - Xiaochun Tang
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Ju WS, Kim S, Lee JY, Lee H, No J, Lee S, Oh K. Gene Editing for Enhanced Swine Production: Current Advances and Prospects. Animals (Basel) 2025; 15:422. [PMID: 39943192 PMCID: PMC11815767 DOI: 10.3390/ani15030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Traditional pig breeding has improved production traits but faces limitations in genetic diversity, disease resistance, and environmental adaptation. Gene editing technologies, such as CRISPR/Cas9, base editing, and prime editing, enable precise genetic modifications, overcoming these limitations and expanding applications to biomedical research. Here, we reviewed the advancements in gene editing technologies in pigs and explored pathways toward optimized swine genetics for a resilient and adaptive livestock industry. This review synthesizes recent research on gene editing tools applied to pigs, focusing on CRISPR/Cas9 and its derivatives. It examines their impact on critical swine production traits and their role as human disease models. Significant advancements have been made in targeting genes for disease resistance, such as those conferring immunity to porcine reproductive and respiratory syndrome viruses. Additionally, gene-edited pigs are increasingly used as models for human diseases, demonstrating the technology's broader applications. However, challenges such as off-target effects, ethical concerns, and varying regulatory frameworks remain. Gene editing holds substantial potential for sustainable and productive livestock production by enhancing key traits and supporting biomedical applications. Addressing technical and ethical challenges through integrated approaches will be essential to realize its full potential, ensuring a resilient, ethical, and productive livestock sector for future generations.
Collapse
Affiliation(s)
| | - Seokho Kim
- Correspondence: ; Tel.: +82-63-238-7271; Fax: +82-63-238-729
| | | | | | | | | | | |
Collapse
|
3
|
Cao J, Ren R, Li X, Zhang X, Sun Y, Tian X, Liu R, Liu X, Ruan Y, Li G, Zhao S. Virus Infection Induces Immune Gene Activation with CTCF-anchored Enhancers and Chromatin Interactions in Pig Genome. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae062. [PMID: 39312688 PMCID: PMC11725346 DOI: 10.1093/gpbjnl/qzae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 09/25/2024]
Abstract
Chromatin organization is important for gene transcription in pig genome. However, its three-dimensional (3D) structure and dynamics are much less investigated than those in human. Here, we applied the long-read chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) method to map the whole-genome chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) in porcine macrophage cells before and after polyinosinic-polycytidylic acid [Poly(I:C)] induction. Our results reveal that Poly(I:C) induction impacts the 3D genome organization in the 3D4/21 cells at the fine-scale chromatin loop level rather than at the large-scale domain level. Furthermore, our findings underscore the pivotal role of CTCF-anchored chromatin interactions in reshaping chromatin architecture during immune responses. Knockout of the CTCF-binding locus further confirms that the CTCF-anchored enhancers are associated with the activation of immune genes via long-range interactions. Notably, the ChIA-PET data also support the spatial relationship between single nucleotide polymorphisms (SNPs) and related gene transcription in 3D genome aspect. Our findings in this study provide new clues and potential targets to explore key elements related to diseases in pigs and are also likely to shed light on elucidating chromatin organization and dynamics underlying the process of mammalian infectious diseases.
Collapse
Affiliation(s)
- Jianhua Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruimin Ren
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolong Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqian Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohuan Tian
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ru Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangdong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yijun Ruan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Guoliang Li
- Key Laboratory of Smart Farming for Agricultural Animals, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Intelligent Technology for Agriculture, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Qi C, Zhao D, Wang X, Hu L, Wang Y, Wu H, Li F, Zhou J, Zhang T, Qi A, Huo Y, Tu Q, Zhong S, Yuan H, Lv D, Yan S, Ouyang H, Pang D, Xie Z. Identification of porcine PARP11 as a restricted factor for pseudorabies virus. Front Cell Infect Microbiol 2024; 14:1414827. [PMID: 39445214 PMCID: PMC11496260 DOI: 10.3389/fcimb.2024.1414827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction PRV infection in swine can cause devastating disease and pose a potential threat to humans. Advancing the interplay between PRV and host is essential to elucidate the pathogenic mechanism of PRV and identify novel anti-PRV targets. Methods PARP11-KO PK-15 cells were firstly constructed by CRISPR/Cas9 technology. Next, the effect of PARP11-KO on PRV infection was determined by RT-qPCR, TCID50 assay, RNA-seq, and western blot. Results and discussion In this study, we identified PARP11 as a host factor that can significantly affect PRV infection. Inhibition of PARP11 and knockout of PARP11 can significantly promoted PRV infection. Subsequently, we further found that PARP11 knockout upregulated the transcription of NXF1 and CRM1, resulting in enhanced transcription of viral genes. Furthermore, we also found that PARP11 knockout could activate the autophagy pathway and suppress the mTOR pathway during PRV infection. These findings could provide insight into the mechanism in which PARP11 participated during PRV infection and offer a potential target to develop anti-PRV therapies.
Collapse
Affiliation(s)
- Chunyun Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Dehua Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Lanxin Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yao Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Heyong Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Feng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Tianyi Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Aosi Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yuran Huo
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Qiuse Tu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Shuyu Zhong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Dongmei Lv
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Shouqing Yan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
- Laboratory of Biotechnology and Biomedical Research, Shenzhen Kingsino Technology Co., Ltd., Shenzhen, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Zicong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| |
Collapse
|
5
|
Khairullah AR, Effendi MH, Moses IB, Fauzia KA, Puspitasari Y, Riwu KHP, Fauziah I, Raissa R, Silaen OSM, Wibowo S, Yanestria SM, Kusala MKJ, Abdila SR, Pratama BP, Hasib A. Classical swine fever: Unveiling the complexity through a multifaceted approach. Open Vet J 2024; 14:2497-2508. [PMID: 39545196 PMCID: PMC11560257 DOI: 10.5455/ovj.2024.v14.i10.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/05/2024] [Indexed: 11/17/2024] Open
Abstract
Classical swine fever (CSF), sometimes referred to as hog cholera, is a highly contagious, virally based, systemic illness that affects both domestic and wild pigs. The virus known as classical swine fever virus (CSFV) is a member of the Flaviviridae family, specifically the genus Pestivirus. This disease is thought to be endemic in many Asian countries that produce pork as well as in several countries in Central and South America, the Caribbean, and elsewhere. As previously indicated, depending on the virulence of the virus strain involved and several host circumstances, clinical indications of CSFV infection can vary greatly, ranging from abrupt fatality to an occult course. CSF diagnosis can be made by serological detection, antigen, RNA, and isolation. CSF's highly varied symptoms and post-mortem pathology resemble those of African swine fever (ASF). ASF, the kind of CSFV, the pig's age, and its susceptibility all affect the clinical symptoms. Pigs that contract CSFV, a highly infectious and economically significant virus. The great economic significance of the swine business makes the CSFV a potential bioterrorism threat. Live attenuated CSF vaccinations have been around for many years and are quite safe and effective. Controlling epidemics in CSFV-free zones requires quick action. Pigs that are impacted must be slaughtered, and the carcasses must be buried or burned.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yulianna Puspitasari
- Division of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | | | - Syafiadi Rizki Abdila
- Research Center for Structural Strength Technology, National Research and Innovation Agency (BRIN), Tangerang, Indonesia
| | - Bima Putra Pratama
- Research Center for Agroindustry, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton QLD, Queensland
| |
Collapse
|
6
|
Liu Y, Yang L, Xiang HY, Niu M, Deng JC, Li XY, Hao WJ, Ou-Yang HS, Liu TY, Tang XC, Pang DX, Yuan HM. Genetically modified pigs with CD163 point mutation are resistant to HP-PRRSV infection. Zool Res 2024; 45:833-844. [PMID: 39004861 PMCID: PMC11298667 DOI: 10.24272/j.issn.2095-8137.2024.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a globally prevalent contagious disease caused by the positive-strand RNA PRRS virus (PRRSV), resulting in substantial economic losses in the swine industry. Modifying the CD163 SRCR5 domain, either through deletion or substitution, can eff1ectively confer resistance to PRRSV infection in pigs. However, large fragment modifications in pigs inevitably raise concerns about potential adverse effects on growth performance. Reducing the impact of genetic modifications on normal physiological functions is a promising direction for developing PRRSV-resistant pigs. In the current study, we identified a specific functional amino acid in CD163 that influences PRRSV proliferation. Viral infection experiments conducted on Marc145 and PK-15 CD163 cells illustrated that the mE535G or corresponding pE529G mutations markedly inhibited highly pathogenic PRRSV (HP-PRRSV) proliferation by preventing viral binding and entry. Furthermore, individual viral challenge tests revealed that pigs with the E529G mutation had viral loads two orders of magnitude lower than wild-type (WT) pigs, confirming effective resistance to HP-PRRSV. Examination of the physiological indicators and scavenger function of CD163 verified no significant differences between the WT and E529G pigs. These findings suggest that E529G pigs can be used for breeding PRRSV-resistant pigs, providing novel insights into controlling future PRRSV outbreaks.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Lin Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Hong-Yong Xiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Ming Niu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Jia-Cheng Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Xue-Yuan Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Wen-Jie Hao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
- Chifeng Best Genetics Technology Co., Ltd., Chifeng, Nei Mongol 024000, China
| | - Hong-Sheng Ou-Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
- Chifeng Best Genetics Technology Co., Ltd., Chifeng, Nei Mongol 024000, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 400015, China
| | - Tong-Yu Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Xiao-Chun Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Da-Xin Pang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
- Chifeng Best Genetics Technology Co., Ltd., Chifeng, Nei Mongol 024000, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 400015, China. E-mail:
| | - Hong-Ming Yuan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China. E-mail:
| |
Collapse
|
7
|
Ledesma AV, Van Eenennaam AL. Global status of gene edited animals for agricultural applications. Vet J 2024; 305:106142. [PMID: 38788996 DOI: 10.1016/j.tvjl.2024.106142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Gene editing (GnEd) involves using a site-directed nuclease to introduce a double-strand break (DSB) at a targeted location in the genome. A literature search was performed on the use of GnEd in animals for agricultural applications. Data was extracted from 212 peer-reviewed articles that described the production of at least one living animal employing GnEd technologies for agricultural purposes. The most common GnEd system reported was CRISPR/Cas9, and the most frequent type of edit was the unguided insertion or deletion resulting from the repair of the targeted DSB leading to a knock-out (KO) mutation. Animal groups included in the reviewed papers were ruminants (cattle, sheep, goats, n=63); monogastrics (pigs and rabbits, n=60); avian (chicken, duck, quail, n=17); aquatic (many species, n=65), and insects (honeybee, silkworm, n=7). Yield (32%), followed by reproduction (21%) and disease resistance (17%) were the most commonly targeted traits. Over half of the reviewed papers had Chinese first-authorship. Several countries, including Argentina, Australia, Brazil, Colombia and Japan, have adopted a regulatory policy that considers KO mutations introduced following GnEd DSB repair as akin to natural genetic variation, and therefore treat these GnEd animals analogously to those produced using conventional breeding. This approach has resulted in a non-GMO determination for a small number of GnEd food animal applications, including three species of GnEd KO fast-growing fish, (red sea bream, olive flounder and tiger pufferfish in Japan), KO fish and cattle in Argentina and Brazil, and porcine reproductive and respiratory syndrome (PRRS) virus disease-resistant KO pigs in Colombia.
Collapse
Affiliation(s)
- Alba V Ledesma
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
8
|
Guo X, Geng L, Jiang C, Yao W, Jin J, Liu Z, Mu Y. Multiplexed genome engineering for porcine fetal fibroblasts with gRNA-tRNA arrays based on CRISPR/Cas9. Anim Biotechnol 2023; 34:4703-4712. [PMID: 36946758 DOI: 10.1080/10495398.2023.2187402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Multiplex gene modifications are highly required for various fields of porcine research. In many species, the CRISPR/Cas9 system has been widely applied for genomic editing and provides a potential tool for introducing multiplex genome mutations simultaneously. Here, we present a CRISPR-Cas9 gRNA-tRNA array (GTR-CRISPR) for multiplexed engineering of porcine fetal fibroblasts (PFFs). We successfully produced multiple sgRNAs using only one Pol III promoter by taking advantage of the endogenous tRNA processing mechanism in porcine cells. Using an all-in-one construct carrying GTR and Cas9, we disrupted the IGFBP3, MSTN, MC4R, and SOCS2 genes in multiple codon regions in one PFF cell simultaneously. This technique allows the simultaneous disruption of four genes with 5.5% efficiency. As a result, this approach may effectively target multiple genes at the same time, making it a powerful tool for establishing multiple genes mutant cells in pigs.
Collapse
Affiliation(s)
- Xiaochen Guo
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Lishuang Geng
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Chaoqian Jiang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Wang Yao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Junxue Jin
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Gao F, Li P, Yin Y, Du X, Cao G, Wu S, Zhao Y. Molecular breeding of livestock for disease resistance. Virology 2023; 587:109862. [PMID: 37562287 DOI: 10.1016/j.virol.2023.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Animal infectious diseases pose a significant threat to the global agriculture and biomedicine industries, leading to significant economic losses and public health risks. The emergence and spread of viral infections such as African swine fever virus (ASFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and avian influenza virus (AIV) have highlighted the need for innovative approaches to develop resilient and disease-resistant animal populations. Gene editing technologies, such as CRISPR/Cas9, offer a promising avenue for generating animals with enhanced disease resistance. This review summarizes recent advances in molecular breeding strategies for generating disease-resistant animals, focusing on the development of disease-resistant livestock. We also highlight the potential applications of genome-wide CRISPR/Cas9 library screening and base editors in producing precise gene modified livestock for disease resistance in the future. Overall, gene editing technologies have the potential to revolutionize animal breeding and improve animal health and welfare.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Pan Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ye Yin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Gengsheng Cao
- Henan Livestock Genome Editing and Biobreeding Engineering Research Center, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Sen Wu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China; Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Yaofeng Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China.
| |
Collapse
|
10
|
Menchaca A. Assisted Reproductive Technologies (ART) and genome editing to support a sustainable livestock. Anim Reprod 2023; 20:e20230074. [PMID: 37720722 PMCID: PMC10503885 DOI: 10.1590/1984-3143-ar2023-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023] Open
Abstract
This article provides an overview of assisted reproductive technologies (ART) and genome engineering to improve livestock production systems for the contribution of global sustainability. Most ruminant production systems are conducted on grassland conditions, as is the case of South American countries that are leaders in meat and milk production worldwide with a well-established grass-feed livestock. These systems have many strengths from an environmental perspective and consumer preferences but requires certain improvements to enhance resource efficiency. Reproductive performance is one of the main challenges particularly in cow-calf operations that usually are conducted under adverse conditions and thus ART can make a great contribution. Fixed-time artificial insemination is applied in South America in large scale programs as 20 to 30% of cows receive this technology every year in each country, with greater calving rate and significant herd genetic gain occurred in this region. Sexed semen has also been increasingly implemented, enhancing resource efficiency by a) obtaining desired female replacement and improving animal welfare by avoiding newborn male sacrifice in dairy industry, or b) alternatively producing male calves for beef industry. In vitro embryo production has been massively applied, with this region showing the greatest number of embryos produced worldwide leading to significant improvement in herd genetics and productivity. Although the contribution of these technologies is considerable, further improvements will be required for a significant livestock transformation and novel biotechnologies such as genome editing are already available. Through the CRISPR/Cas-based system it is possible to enhance food yield and quality, avoid animal welfare concerns, overcome animal health threats, and control pests and invasive species harming food production. In summary, a significant enhancement in livestock productivity and resource efficiency can be made through reproductive technologies and genome editing, improving at the same time profitability for farmers, and global food security and sustainability.
Collapse
Affiliation(s)
- Alejo Menchaca
- Plataforma de Salud Animal, Instituto Nacional de Investigación Agropecuaria, Montevideo, Uruguay
- Fundación Instituto de Reproducción Animal Uruguay, Montevideo, Uruguay
| |
Collapse
|
11
|
Okamoto R, Ito N, Ide Y, Kitab B, Sakoda Y, Tsukiyama-Kohara K. Development of short hairpin RNA expression vectors targeting the internal ribosomal entry site of the classical swine fever virus genomic RNA. BMC Biotechnol 2023; 23:37. [PMID: 37684601 PMCID: PMC10492304 DOI: 10.1186/s12896-023-00805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Classical swine fever (CSF) is a fatal contagious disease affecting pigs caused by classical swine fever virus (CSFV). The disease can be transmitted by pigs and wild boars, and it is difficult to prevent and control. To obtain necessary information to establish the CSFV resistant animals in a future study, we designed lentiviral vector-delivered short hairpin RNAs (shRNAs) targeting the conserved domain III of the internal ribosomal entry site (IRES) of the CSFV genomic RNA. RESULTS First, we confirmed the effects of siRNAs on CSFV-IRES activity. We observed significant inhibition of CSFV-IRES activity by si42 (domain IIIa), si107 (domain IIIc), and si198 (domain IIIf) in SK-L cells and si56 (domain IIIb), si142 (domain IIId1) and si198 in HEK293 cells without affecting the amount of luciferase RNA. Next, we constructed lentiviral vectors expressing shRNA based on siRNA sequences. Treatment with shRNA-expressing lentivirus was examined at 7 and 14 days post infection in SK-L cells and HEK293 cells, and CSFV-IRES was significantly suppressed at 14 days (sh42) post infection in HEK293 cells without significant cytotoxicity. Next, we examined the silencing effect of siRNA on CSFV replicon RNA and observed a significant effect by si198 after 2 days of treatment and by shRNA-expressing lentivirus (sh56, sh142, and sh198) infection after 14 days of treatment. Treatment of sh198-expressing lentivirus significantly suppressed CSFV infection at 3 days after infection. CONCLUSION The IRES targeting sh198 expressing lentivirus vector can be a candidate tool for CSFV infection control.
Collapse
Affiliation(s)
- Riai Okamoto
- Transboundary Animal Disease Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Nobumasa Ito
- Transboundary Animal Disease Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Yutaro Ide
- Transboundary Animal Disease Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Bouchra Kitab
- Transboundary Animal Disease Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Yoshihiro Sakoda
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Disease Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.
| |
Collapse
|
12
|
Mazloum A, Karagyaur M, Chernyshev R, van Schalkwyk A, Jun M, Qiang F, Sprygin A. Post-genomic era in agriculture and veterinary science: successful and proposed application of genetic targeting technologies. Front Vet Sci 2023; 10:1180621. [PMID: 37601766 PMCID: PMC10434572 DOI: 10.3389/fvets.2023.1180621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Gene editing tools have become an indispensable part of research into the fundamental aspects of cell biology. With a vast body of literature having been generated based on next generation sequencing technologies, keeping track of this ever-growing body of information remains challenging. This necessitates the translation of genomic data into tangible applications. In order to address this objective, the generated Next Generation Sequencing (NGS) data forms the basis for targeted genome editing strategies, employing known enzymes of various cellular machinery, in generating organisms with specifically selected phenotypes. This review focuses primarily on CRISPR/Cas9 technology in the context of its advantages over Zinc finger proteins (ZNF) and Transcription activator-like effector nucleases (TALEN) and meganucleases mutagenesis strategies, for use in agricultural and veterinary applications. This review will describe the application of CRISPR/Cas9 in creating modified organisms with custom-made properties, without the undesired non-targeted effects associated with virus vector vaccines and bioactive molecules produced in bacterial systems. Examples of the successful and unsuccessful applications of this technology to plants, animals and microorganisms are provided, as well as an in-depth look into possible future trends and applications in vaccine development, disease resistance and enhanced phenotypic traits will be discussed.
Collapse
Affiliation(s)
- Ali Mazloum
- Federal Center for Animal Health, Vladimir, Russia
| | - Maxim Karagyaur
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | | | - Antoinette van Schalkwyk
- Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Ma Jun
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Fu Qiang
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | | |
Collapse
|
13
|
Abstract
BACKGROUND Genetic engineering has allowed a major development of research in this field, with specialists attempting to edit the human genome, after the successful editing of the genomes of plants and animals. However, human gene editing technologies are at the center of ethical debates around the world. AREAS OF UNCERTAINTY Ethical concerns about genetic editing of the human embryo raise several issues that can be viewed through the prism of optimism and reluctance leading to a number of recommendations regarding the acceptance of what may soon become a reality. DATA SOURCES A literature search was conducted through PubMed, MEDLINE, Plus, Scopus, and Web of Science (2015-2022) using combinations of keywords, including: human genome or gene editing plus ethics. ETHICS AND THERAPEUTIC ADVANCES Gene therapy is seen by researchers as a way to solve congenital diseases, multifactorial diseases in general or specific diseases such as cystic fibrosis, muscular dystrophy, or can increase resistance to HIV infection. Genome editing technologies, germline gene editing, clustered regularly interspaced short palindromic repeats gene editing technology, technologies such as zinc finger nucleases are not only advanced gene therapies that require solving technical problems, but also techniques that require complex and complete analysis of ethical problems. Genetic engineering raises many ethical concerns such as: safety concerns especially the risk of off-target effects; autonomy of the individual-with the limitation of the future generations to consent for an intervention over their genome; social justice-keeping in mind the costs of the procedures and their availability to the general population. Discussions can go further from questions such as "How can we do this?" to questions such as "Should we do this?" or "Is society ready to accept this technology and is it able to manage it rationally?" CONCLUSIONS The ethics of biomedical research should be based on global dialogue, on the involvement of experts and the public, to achieve a broad social consensus. The fundamental review of the ethics of genetics is a desire and an opportunity of the current period.
Collapse
|
14
|
Watanabe M, Nagashima H. Genome Editing of Pig. Methods Mol Biol 2023; 2637:269-292. [PMID: 36773154 DOI: 10.1007/978-1-0716-3016-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Pigs have anatomical and physiological characteristics similar to humans; therefore, genetically modified pigs have the potential to become a valuable bioresource in biomedical research. In fact, considering the increasing need for translational research, pigs are useful for studying intractable diseases, organ transplantation, and regenerative medicine as large-scale experimental animals with excellent potential for extrapolation to humans. With the advent of zinc finger nucleases (ZFNs), breakthroughs in genome editing tools such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9) have facilitated the efficient generation of genetically modified pigs. Genome editing has been used in pigs for more than 10 years; now, along with knockout pigs, knock-in pigs are also gaining increasing importance. In this chapter, we describe the establishment of gene-modified cells (nuclear donor cells), which are necessary for gene knockout and production of knock-in pigs via somatic cell nuclear transplantation, as well as the production of gene knockout pigs using a simple cytoplasmic injection method.
Collapse
Affiliation(s)
- Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Kanagawa, Japan.,PorMedTec Co., Ltd., Kawasaki, Kanagawa, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Kanagawa, Japan. .,Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
15
|
Liu Z, Zhang M, Huang P, Ji Z, Qi C, Jiao S, Zhao D, Jiang Y, Chen X, Lv D, Pang D, Zhang X, Feng L, Xie Z, Ouyang H. Generation of APN-chimeric gene-edited pigs by CRISPR/Cas9-mediated knock-in strategy. Gene 2023; 851:147007. [DOI: 10.1016/j.gene.2022.147007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
16
|
Monteiro CJ, Heery DM, Whitchurch JB. Modern Approaches to Mouse Genome Editing Using the CRISPR-Cas Toolbox and Their Applications in Functional Genomics and Translational Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:13-40. [PMID: 37486514 DOI: 10.1007/978-3-031-33325-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Mice have been used in biological research for over a century, and their immense contribution to scientific breakthroughs can be seen across all research disciplines, with some of the main beneficiaries being the fields of medicine and life sciences. Genetically engineered mouse models (GEMMs), along with other model organisms, are fundamentally important research tools frequently utilised to enhance our understanding of pathophysiology and biological mechanisms behind disease. In the 1980s, it became possible to precisely edit the mouse genome to create gene knockout and knock-in mice, although with low efficacy. Recent advances utilising CRISPR-Cas technologies have considerably improved our ability to do this with ease and precision, while also allowing the generation of desired genetic variants from single nucleotide substitutions to large insertions/deletions. It is now quick and relatively easy to genetically edit somatic cells which were previously more recalcitrant to traditional approaches. Further refinements have created a 'CRISPR toolkit' that has expanded the use of CRISPR-Cas beyond gene knock-ins and knockouts. In this chapter, we review some of the latest applications of CRISPR-Cas technologies in GEMMs, including nuclease-dead Cas9 systems for activation or repression of gene expression, base editing and prime editing. We also discuss improvements in Cas9 specificity, targeting efficacy and delivery methods in mice. Throughout, we provide examples wherein CRISPR-Cas technologies have been applied to target clinically relevant genes in preclinical GEMMs, both to generate humanised models and for experimental gene therapy research.
Collapse
Affiliation(s)
- Cintia J Monteiro
- Department of Genetics, Molecular Immunogenetics Group, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
17
|
Bobier C, Rodger D, Hurst DJ, Omelianchuk A. In defense of xenotransplantation research: Because of, not in spite of, animal welfare concerns. Xenotransplantation 2023; 30:e12791. [PMID: 36573621 DOI: 10.1111/xen.12791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
It is envisioned that one day xenotransplantation will bring about a future where transplantable organs can be safely and efficiently grown in transgenic pigs to help meet the global organ shortage. While recent advances have brought this future closer, worries remain about whether it will be beneficial overall. The unique challenges and risks posed to humans that arise from transplanting across the species barrier, in addition to the costs borne by non-human animals, has led some to question the value of xenotransplantation altogether. In response, we defend the value of xenotransplantation research, because it can satisfy stringent welfare conditions on the permissibility of animal research and use. Along the way, we respond to the alleged concerns, and conclude that they do not currently warrant a cessation or a curtailing of xenotransplantation research.
Collapse
Affiliation(s)
- Christopher Bobier
- Department of Theology and Philosophy, Hendrickson Institute for Ethical Leadership, St. Mary's University of Minnesota, Winona, Minnesota, USA
| | - Daniel Rodger
- Operating Department Practice, Institute of Health and Social Care, School of Allied and Community Health, London South Bank University, London, UK.,Department of Psychological Sciences, Birkbeck, University of London, London, UK
| | - Daniel J Hurst
- Department of Family Medicine Rowan University School of Osteopathic Medicine Stratford, New Jersey, USA
| | - Adam Omelianchuk
- The Center for Medical Ethics and Health Policy at Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
18
|
Generation of PCBP1-deficient pigs using CRISPR/Cas9-mediated gene editing. iScience 2022; 25:105268. [PMID: 36274935 PMCID: PMC9579030 DOI: 10.1016/j.isci.2022.105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/16/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Classical swine fever virus (CSFV), a classic swine fever pathogen, causes severe economic losses worldwide. Poly (rC)-binding protein 1 (PCBP1), which interacts with Npro of CSFV, plays a vital role in CSFV growth. We are the first to report the generation of PCBP1-deficient pigs via gene-editing technology. The PCBP1-deficient pigs exhibited normal birth weight and reproductive-performance traits and developed normally. Viral challenge experiments indicated that primary cells isolated from F0- and F1-generation pigs exhibited significantly reduced CSFV infection. Additional mechanistic exploration further confirmed that the PCBP1 deficiency-mediated antiviral effect is related to the activation of type I interferon (IFN). Besides showing that a gene-editing strategy could be used to generate PCBP1-deficient pigs, our study introduces a valuable animal model for further investigating the infection mechanisms of CSFV that will help to develop better antiviral solutions. Reduced CSFV infection in PCBP1-deficient cells is related to activated ISGs expression PCBP1-deficient pigs were successfully generated via gene-editing technology Primary cells isolated from PCBP1-deficient pigs exhibited reduced CSFV infection
Collapse
|
19
|
Hassoun A, Cropotova J, Trif M, Rusu AV, Bobiş O, Nayik GA, Jagdale YD, Saeed F, Afzaal M, Mostashari P, Khaneghah AM, Regenstein JM. Consumer acceptance of new food trends resulting from the fourth industrial revolution technologies: A narrative review of literature and future perspectives. Front Nutr 2022; 9:972154. [PMID: 36034919 PMCID: PMC9399420 DOI: 10.3389/fnut.2022.972154] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
The growing consumer awareness of climate change and the resulting food sustainability issues have led to an increasing adoption of several emerging food trends. Some of these trends have been strengthened by the emergence of the fourth industrial revolution (or Industry 4.0), and its innovations and technologies that have fundamentally reshaped and transformed current strategies and prospects for food production and consumption patterns. In this review a general overview of the industrial revolutions through a food perspective will be provided. Then, the current knowledge base regarding consumer acceptance of eight traditional animal-proteins alternatives (e.g., plant-based foods and insects) and more recent trends (e.g., cell-cultured meat and 3D-printed foods) will be updated. A special focus will be given to the impact of digital technologies and other food Industry 4.0 innovations on the shift toward greener, healthier, and more sustainable diets. Emerging food trends have promising potential to promote nutritious and sustainable alternatives to animal-based products. This literature narrative review showed that plant-based foods are the largest portion of alternative proteins but intensive research is being done with other sources (notably the insects and cell-cultured animal products). Recent technological advances are likely to have significant roles in enhancing sensory and nutritional properties, improving consumer perception of these emerging foods. Thus, consumer acceptance and consumption of new foods are predicted to continue growing, although more effort should be made to make these food products more convenient, nutritious, and affordable, and to market them to consumers positively emphasizing their safety and benefits.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtech Innovation and Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Janna Cropotova
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Ålesund, Norway
| | - Monica Trif
- Department of Food Research, Centre for Innovative Process Engineering (CENTIV) GmbH, Syke, Germany
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Genetics and Genetic Engineering, Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Otilia Bobiş
- Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College, Shopian, India
| | - Yash D. Jagdale
- MIT School of Food Technology, MIT ADT University, Pune, India
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Parisa Mostashari
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology – State Research Institute, Warsaw, Poland
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
20
|
Sukhno VV, Vashchenko PA, Saenko AM, Zhukorskyi OM, Tserenyuk OM, Kryhina NV. Association of Fut1 and Slc11a1 gene polymorphisms with productivity traits of Large White pigs. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The purpose of our work was to study the polymorphism of genes associated with disease resistance and to search for their associations with productive traits in the population of the Ukrainian Large White pigs. For this study, 50 pigs were used, observations and measurements were carried out at the age from birth to 180 days. Genetic studies were carried out in a certified laboratory of the Institute of Pig Breeding and Agroindustrial Production. In the study of fucosyltransferase 1 and solute carrier family 11 member 1 genes, polymorphism was found in three of the five analyzed loci. In the Ukrainian Large White subpopulation of pigs the informativeness of these gene polymorphisms was at the optimal level for associative analysis, Polymorphism Information Content was greater than 0.3 in two loci. A sufficiently high level of Polymorphism Information Content indicates the value of this breed to preserve the biodiversity of pigs. The distribution of genotypes at some loci of the solute carrier family 11 member 1 gene was characterized by a deviation from the theoretically expected one due to the increase in the frequency of the heterozygous genotype. There was also a statistically confirmed deviation of the genotypes’ distribution from the normal and polymorphism fucosyltransferase 1 gene, but in this case in the direction of increasing the frequency of both homozygous variants. These results indicate the presence of a certain selection pressure on the mentioned polymorphisms and their possible impact on productive traits. The influence of solute carrier family 11 member 1 gene polymorphism on the weight of pigs at the age of 120 and 180 days, the average daily gain recorded in the period 28–120 days and from birth to 180 days, as well as on the backfat thickness, was established. The preferred genotype is TT, which can be used in breeding to obtain more productive animals with increased disease resistance, but in the selection of animals at this locus, it is necessary to control the backfat thickness and prevent breeding of pigs that may worsen this trait.
Collapse
|
21
|
Application of Gene Editing Technology in Resistance Breeding of Livestock. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071070. [PMID: 35888158 PMCID: PMC9325061 DOI: 10.3390/life12071070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023]
Abstract
As a new genetic engineering technology, gene editing can precisely modify the specific gene sequence of the organism’s genome. In the last 10 years, with the rapid development of gene editing technology, zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR/Cas9 systems have been applied to modify endogenous genes in organisms accurately. Now, gene editing technology has been used in mice, zebrafish, pigs, cattle, goats, sheep, rabbits, monkeys, and other species. Breeding for disease-resistance in agricultural animals tends to be a difficult task for traditional breeding, but gene editing technology has made this easier. In this work, we overview the development and application of gene editing technology in the resistance breeding of livestock. Also, we further discuss the prospects and outlooks of gene editing technology in disease-resistance breeding.
Collapse
|
22
|
Rules of thumb to obtain, isolate, and preserve porcine peripheral blood mononuclear cells. Vet Immunol Immunopathol 2022; 251:110461. [PMID: 35870231 DOI: 10.1016/j.vetimm.2022.110461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
One of the most used biospecimens in immunology are peripheral blood mononuclear cells (PBMC). PBMC are particularly useful when evaluating immunity through responses of circulating B- and T-cells, during an infection, or after a vaccination. While several reviews and research papers have been published aiming to point out critical steps when sampling, isolating, and cryopreserving human PBMC -or even analyzing any parameter before sampling that could impair the immune assays' outcomes-, there are almost no publications in swine research dealing with these topics. As it has been demonstrated, several factors, such as stress, circadian rhythmicity, or the anticoagulant used have serious negative impact, not only on the separation performance of PBMC, but also on the ulterior immune assays. The present review aims to discuss studies carried out in humans that could shed some light for swine research. When possible, publications in pigs are also discussed. The main goal of the review is to encourage swine researchers to standardize protocols to obtain, manage and preserve porcine PBMC, as well as to minimize, or at least to consider, the bias that some parameters might induce in their studies before, during and after isolating PBMC.
Collapse
|
23
|
Development and validation of a PCR-free nucleic acid testing method for RNA viruses based on linear molecular beacon probes. J Nanobiotechnology 2022; 20:269. [PMID: 35690818 PMCID: PMC9187886 DOI: 10.1186/s12951-022-01470-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background RNA viruses periodically trigger pandemics of severe human diseases, frequently causing enormous economic losses. Here, a nucleic acid extraction-free and amplification-free RNA virus testing probe was proposed for the sensitive and simple detection of classical swine fever virus (CSFV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), based on a double-stranded molecular beacon method. This RNA virus probe contains two base sequences—a recognition strand that binds to the specific domain of CSFV N2 or SARS-CoV-2 N, with a fluorophore (FAM) labeled at the 5′ end, and a complementary strand (CSFV-Probe B or SARS-CoV-2-Probe B), combined with a quencher (BHQ2) labeled at the 3′ end. Results Using linear molecular beacon probe technology, the detection limit of the RNA virus probe corresponding to CSFV and SARS-CoV-2 were as low as 0.28 nM and 0.24 nM, respectively. After CSFV E2 and SARS-CoV-2 N genes were transfected into corresponding host cells, the monitoring of RNA virus probes showed that fluorescence signals were dramatically enhanced in a concentration- and time-dependent manner. These results were supported by those of quantitative (qRT-PCR) and visualization (confocal microscopy) analyses. Furthermore, CSF-positive swine samples and simulated SARS-CoV-2 infected mouse samples were used to demonstrate their applicability for different distributions of viral nucleic acids in series tissues. Conclusions The proposed RNA virus probe could be used as a PCR-free, cost-effective, and rapid point-of-care (POC) diagnostic platform for target RNA virus detection, holding great potential for the convenient monitoring of different RNA viruses for early mass virus screening. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01470-1.
Collapse
|
24
|
Sanchez-Fernandez C, Bolatti EM, Culasso ACA, Chouhy D, Kowalewski MM, Stella EJ, Schurr TG, Rinas MA, Liotta DJ, Campos RH, Giri AA, Badano I. Identification and evolutionary analysis of papillomavirus sequences in New World monkeys (genera Sapajus and Alouatta) from Argentina. Arch Virol 2022; 167:1257-1268. [PMID: 35353206 DOI: 10.1007/s00705-022-05420-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/03/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE In this study, we investigated the occurrence of papillomavirus (PV) infection in non-human primates (NHPs) in northeastern Argentina. We also explored their evolutionary history and evaluated the co-speciation hypothesis in the context of primate evolution. METHODS We obtained DNA samples from 57 individuals belonging to wild and captive populations of Alouatta caraya, Sapajus nigritus, and Sapajus cay. We assessed PV infection by PCR amplification with the CUT primer system and sequencing of 337 bp (112 amino acids) of the L1 gene. The viral sequences were analyzed by phylogenetic and Bayesian coalescence methods to estimate the time to the most common recent ancestor (tMRCA) using BEAST, v1.4.8 software. We evaluated viral/host tree congruence with TreeMap v3.0. RESULTS We identified two novel putative PV sequences of the genus Gammapapillomavirus in Sapajus spp. and Alouatta caraya (SPV1 and AcPV1, respectively). The tMRCA of SPV1 was estimated to be 11,941,682 years before present (ybp), and that of AcPV1 was 46,638,071 ybp, both before the coalescence times of their hosts (6.4 million years ago [MYA] and 6.8 MYA, respectively). Based on the comparison of primate and viral phylogenies, we found that the PV tree was no more congruent with the host tree than a random tree would be (P > 0.05), thus allowing us to reject the model of virus-host coevolution. CONCLUSION This study presents the first evidence of PV infection in platyrrhine species from Argentina, expands the range of described hosts for these viruses, and suggests new scenarios for their origin and dispersal.
Collapse
Affiliation(s)
- C Sanchez-Fernandez
- Laboratorio de Biología Molecular Aplicada, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - E M Bolatti
- Laboratorio de Virología Humana, Instituto de Biología Molecular y Celular de Rosario, CONICET/UNR, Rosario, Argentina.,Área Virología, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - A C A Culasso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - D Chouhy
- Laboratorio de Virología Humana, Instituto de Biología Molecular y Celular de Rosario, CONICET/UNR, Rosario, Argentina.,Área Virología, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - M M Kowalewski
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Estación Biológica Corrientes (EBCo-MACN-CONICET), Corrientes, Argentina
| | - E J Stella
- Laboratorio de Virología Humana, Instituto de Biología Molecular y Celular de Rosario, CONICET/UNR, Rosario, Argentina
| | - T G Schurr
- Laboratory of Molecular Anthropology, Department of Anthropology, University of Pennsylvania, Philadelphia, 19104, USA
| | - M A Rinas
- Ministerio de Ecología y Recursos Naturales Renovables, Posadas, Misiones, Argentina
| | - D J Liotta
- Laboratorio de Biología Molecular Aplicada, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Argentina.,Instituto Nacional de Medicina Tropical, ANLIS, Pto. Iguazú, Misiones, Argentina
| | - R H Campos
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - A A Giri
- Laboratorio de Virología Humana, Instituto de Biología Molecular y Celular de Rosario, CONICET/UNR, Rosario, Argentina.,Área Virología, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - I Badano
- Laboratorio de Biología Molecular Aplicada, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
25
|
Höltig D, Reiner G. [Opportunities and risks of the use of genetic resistances to infectious diseases in pigs - an overview]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2022; 50:46-58. [PMID: 35235982 DOI: 10.1055/a-1751-3531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Demands for health, performance and welfare in pigs, as well as the desire for consumer protection and reduced antibiotic use, require optimal measures in advance of disease development. This includes, in principle, the use of genetically more resistant lines and breeding animals, whose existence has been proven for a wide range of pathogen-host interactions. In addition, attempts are being made to identify the gene variants responsible for disease resistance in order to force the selection of suitable populations, also using modern biotechnical technics. The present work is intended to provide an overview of the research status achieved in this context and to highlight opportunities and risks for the future.The evaluation of the international literature shows that genetic disease resistance exist in many areas of swine diseases. However, polygenic inheritance, lack of animal models and the influence of environmental factors during evaluation render their implementation in practical breeding programs demanding. This is where modern molecular genetic methods, such as Gene Editing, come into play. Both approaches possess their pros and cons, which are discussed in this paper. The most important infectious diseases in pigs, including general diseases and epizootics, diseases of the respiratory and digestive tract and diseases of the immune system are taken into account.
Collapse
Affiliation(s)
- Doris Höltig
- Klinik für kleine Klauentiere, forensische Medizin und Ambulatorische Klinik, Stiftung Tierärztliche Hochschule Hannover
| | - Gerald Reiner
- Klinikum Veterinärmedizin, Justus-Liebig-Universität
| |
Collapse
|
26
|
Current Status of Genetically Modified Pigs That Are Resistant to Virus Infection. Viruses 2022; 14:v14020417. [PMID: 35216010 PMCID: PMC8874825 DOI: 10.3390/v14020417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 02/02/2023] Open
Abstract
Pigs play an important role in agriculture and biomedicine. The globally developing swine industry must address the challenges presented by swine-origin viruses, including ASFV (African swine fever virus), PRRSV (porcine reproductive and respiratory syndrome virus), PEDV (porcine epidemic diarrhea virus), PRV (pseudorabies virus), CSFV (classical swine fever virus), TGEV (transmissible gastroenteritis virus), et al. Despite sustained efforts by many government authorities, these viruses are still widespread. Currently, gene-editing technology has been successfully used to generate antiviral pigs, which offers the possibility for increasing animal disease tolerance and improving animal economic traits in the future. Here, we summarized the current advance in knowledge regarding the host factors in virus infection and the current status of genetically modified pigs that are resistant to virus infection in the world. There has not been any report on PEDV-resistant pigs, ASFV-resistant pigs, and PRV-resistant pigs owing to the poor understanding of the key host factors in virus infection. Furthermore, we summarized the remaining problems in producing virus-resistant pigs, and proposed several potential methods to solve them. Using genome-wide CRISPR/Cas9 library screening to explore the key host receptors in virus infection may be a feasible method. At the same time, exploring the key amino acids of host factors in virus infection with library screening based on ABEs and CBEs (Bes) may provide creative insight into producing antiviral pigs in the future.
Collapse
|
27
|
Tu CF, Chuang CK, Yang TS. The application of new breeding technology based on gene editing in pig industry. Anim Biosci 2022; 35:791-803. [PMID: 34991204 PMCID: PMC9066036 DOI: 10.5713/ab.21.0390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
Genome/gene-editing (GE) techniques, characterized by a low technological barrier, high efficiency, and broad application among organisms, are now being employed not only in medical science but also in agriculture/veterinary science. Different engineered CRISPR/Cas9s have been identified to expand the application of this technology. In pig production, GE is a precise new breeding technology (NBT), and promising outcomes in improving economic traits, such as growth, lean or healthy meat production, animal welfare, and disease resistance, have already been documented and reviewed. These promising achievements in porcine gene editing, including the Myostatin gene knockout (KO) in indigenous breeds to improve lean meat production, the uncoupling protein 1 (UCP1) gene knock-in to enhance piglet thermogenesis and survival under cold stress, the generation of GGTA1 and CMP-N-glycolylneuraminic acid hydroxylase (CMAH) gene double KO (dKO) pigs to produce healthy red meat, and the KO or deletion of exon 7 of the CD163 gene to confer resistance to porcine reproductive and respiratory syndrome virus infection, are described in the present article. Other related approaches for such purposes are also discussed. The current trend of global regulations or legislation for GE organisms is that they are exempted from classification as genetically modified organisms (GMOs) if no exogenes are integrated into the genome, according to product-based and not process-based methods. Moreover, an updated case study in the EU showed that current GMO legislation is not fit for purpose in term of NBTs, which contribute to the objectives of the EU’s Green Deal and biodiversity strategies and even meet the United Nations’ sustainable development goals for a more resilient and sustainable agri-food system. The GE pigs generated via NBT will be exempted from classification as GMOs, and their global valorization and commercialization can be foreseen.
Collapse
Affiliation(s)
- Ching-Fu Tu
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan
| | - Chin-Kai Chuang
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan
| | - Tien-Shuh Yang
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan.,Department of Biotechnology and Animal Science, National Ilan University, Yilan City, 26047 Taiwan
| |
Collapse
|
28
|
Guo Z, Chen W, Lv L, Liu D. Meta-analysis of melatonin treatment and porcine somatic cell nuclear transfer embryo development. Anim Reprod 2021; 18:e20210031. [PMID: 34840610 PMCID: PMC8607851 DOI: 10.1590/1984-3143-ar2021-0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022] Open
Abstract
Porcine somatic cell nuclear transfer (SCNT) plays an important role in many areas of research. However, the low efficiency of SCNT in porcine embryos limits its applications. Porcine embryos contain high concentrations of lipid, which makes them vulnerable to oxidative stress. Some studies have used melatonin to reduce reactive oxygen species damage. At present there are many reports concerning the effect of exogenous melatonin on porcine SCNT. Some studies suggest that the addition of melatonin can increase the number of blastocyst cells, while others indicate that melatonin can reduce the number of blastocyst cells. Therefore, a meta-analysis was carried out to resolve the contradiction. In this study, a total of 63 articles from the past 30 years were analyzed, and six papers were finally selected. Through the analysis, it was found that the blastocyst rate was increased by adding exogenous melatonin. Melatonin had no effect on cleavage rate or the number of blastocyst cells, but did decrease the number of apoptotic cells. This result is crucial for future research on embryo implantation.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Combining Farming and Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Ministry of Agriculture and Rural Affairs, Harbin, P. R., China
| | - Wengui Chen
- Animal Science and Technology College, Northeast Agricultural University, Harbin, P. R., China
| | - Lei Lv
- Wood Science Research Institute of Heilongjiang Academy of Forestry, Harbin, P. R., China
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Ministry of Agriculture and Rural Affairs, Harbin, P. R., China
| |
Collapse
|
29
|
Söllner JH, Mettenleiter TC, Petersen B. Genome Editing Strategies to Protect Livestock from Viral Infections. Viruses 2021; 13:1996. [PMID: 34696426 PMCID: PMC8539128 DOI: 10.3390/v13101996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
The livestock industry is constantly threatened by viral disease outbreaks, including infections with zoonotic potential. While preventive vaccination is frequently applied, disease control and eradication also depend on strict biosecurity measures. Clustered regularly interspaced palindromic repeats (CRISPR) and associated proteins (Cas) have been repurposed as genome editors to induce targeted double-strand breaks at almost any location in the genome. Thus, CRISPR/Cas genome editors can also be utilized to generate disease-resistant or resilient livestock, develop vaccines, and further understand virus-host interactions. Genes of interest in animals and viruses can be targeted to understand their functions during infection. Furthermore, transgenic animals expressing CRISPR/Cas can be generated to target the viral genome upon infection. Genetically modified livestock can thereby reduce disease outbreaks and decrease zoonotic threats.
Collapse
Affiliation(s)
- Jenny-Helena Söllner
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt am Rübenberge, Germany;
| | | | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt am Rübenberge, Germany;
| |
Collapse
|
30
|
Karavolias NG, Horner W, Abugu MN, Evanega SN. Application of Gene Editing for Climate Change in Agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.685801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Climate change imposes a severe threat to agricultural systems, food security, and human nutrition. Meanwhile, efforts in crop and livestock gene editing have been undertaken to improve performance across a range of traits. Many of the targeted phenotypes include attributes that could be beneficial for climate change adaptation. Here, we present examples of emerging gene editing applications and research initiatives that are aimed at the improvement of crops and livestock in response to climate change, and discuss technical limitations and opportunities therein. While only few applications of gene editing have been translated to agricultural production thus far, numerous studies in research settings have demonstrated the potential for potent applications to address climate change in the near future.
Collapse
|
31
|
You W, Li M, Qi Y, Wang Y, Chen Y, Liu Y, Li L, Ouyang H, Pang D. CRISPR/Cas9-Mediated Specific Integration of Fat-1 and IGF-1 at the p Rosa26 Locus. Genes (Basel) 2021; 12:genes12071027. [PMID: 34356043 PMCID: PMC8305104 DOI: 10.3390/genes12071027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Many researchers have focused on knock-in pigs for site-specific integration, but little attention has been given to genetically modified pigs with the targeted integration of multiple recombinant genes. To establish a multigene targeted knock-in editing system, we used the internal ribosome entry site (IRES) and self-cleaving 2A peptide technology to construct a plasmid coexpressing the fatty acid desaturase (Fat-1) and porcine insulin-like growth factor-1 (IGF-1) genes at equal levels. In this study, pigs were genetically modified with multiple genes that were precisely inserted into the pRosa26 locus by using the clustered regularly spaced short palindrome repeat sequence (CRISPR)/CRISPR-related 9 (Cas9) system and somatic cell nuclear transfer technology (SCNT) in combination. Single copies of the Fat-1 and IGF-1 genes were expressed satisfactorily in various tissues of F0-generation pigs. Importantly, gas chromatography analysis revealed a significantly increased n-3 polyunsaturated fatty acid (PUFA) level in these genetically modified pigs, which led to a significant decrease of the n-6 PUFA/n-3 PUFA ratio from 6.982 to 3.122 (*** p < 0.001). In conclusion, the establishment of an editing system for targeted double-gene knock-in in this study provides a reference for the precise integration of multiple foreign genes and lays a foundation for the development of new transgenic pig breeds with multiple excellent phenotypes.
Collapse
Affiliation(s)
- Wenni You
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China; (W.Y.); (M.L.); (Y.Q.); (Y.W.); (Y.C.); (Y.L.); (L.L.); (H.O.)
| | - Mengjing Li
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China; (W.Y.); (M.L.); (Y.Q.); (Y.W.); (Y.C.); (Y.L.); (L.L.); (H.O.)
| | - Yilin Qi
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China; (W.Y.); (M.L.); (Y.Q.); (Y.W.); (Y.C.); (Y.L.); (L.L.); (H.O.)
| | - Yanbing Wang
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China; (W.Y.); (M.L.); (Y.Q.); (Y.W.); (Y.C.); (Y.L.); (L.L.); (H.O.)
| | - Yiwu Chen
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China; (W.Y.); (M.L.); (Y.Q.); (Y.W.); (Y.C.); (Y.L.); (L.L.); (H.O.)
| | - Ying Liu
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China; (W.Y.); (M.L.); (Y.Q.); (Y.W.); (Y.C.); (Y.L.); (L.L.); (H.O.)
| | - Li Li
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China; (W.Y.); (M.L.); (Y.Q.); (Y.W.); (Y.C.); (Y.L.); (L.L.); (H.O.)
| | - Hongsheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China; (W.Y.); (M.L.); (Y.Q.); (Y.W.); (Y.C.); (Y.L.); (L.L.); (H.O.)
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China; (W.Y.); (M.L.); (Y.Q.); (Y.W.); (Y.C.); (Y.L.); (L.L.); (H.O.)
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Correspondence: ; Tel.: +86-131-9437-3800
| |
Collapse
|
32
|
Application of the modified cytosine base-editing in the cultured cells of bama minipig. Biotechnol Lett 2021; 43:1699-1714. [PMID: 34189671 DOI: 10.1007/s10529-021-03159-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022]
Abstract
Bama minipig is a unique miniature swine bred from China. Their favorable characteristics include delicious meat, strong adaptability, tolerance to rough feed, and high levels of stress tolerance. Unfavorable characteristics are their low lean meat percentage, high fat content, slow growth rate, and low feed conversion ratio. Genome-editing technology using CRISPR/Cas9 efficiently knocked out the myostatin gene (MSTN) that has a negative regulatory effect on muscle production, effectively promoting pig muscle growth and increasing lean meat percentage of the pigs. However, CRISPR/Cas9 genome editing technology is based on random mutations implemented by DNA double-strand breaks, which may trigger genomic off-target effects and chromosomal rearrangements. The application of CRISPR/Cas9 to improve economic traits in pigs has raised biosafety concerns. Base editor (BE) developed based on CRISPR/Cas9 such as cytosine base editor (CBE) effectively achieve targeted modification of a single base without relying on DNA double-strand breaks. Hence, the method has greater safety in the genetic improvement of pigs. The aim of the present study is to utilize a modified CBE to generate MSTN-knockout cells of Bama minipigs. Our results showed that the constructed "all-in-one"-modified CBE plasmid achieved directional conversion of a single C·G base pair to a T·A base pair of the MSTN target in Bama miniature pig fibroblast cells. We successfully constructed multiple single-cell colonies of Bama minipigs fibroblast cells carrying the MSTN premature termination and verified that there were no genomic off-target effects detected. This study provides a foundation for further application of somatic cell cloning to construct MSTN-edited Bama minipigs that carry only a single-base mutation and avoids biosafety risks to a large extent, thereby providing experience and a reference for the base editing of other genetic loci in Bama minipigs.
Collapse
|
33
|
Dong H, Song G, Ma D, Wang T, Jing S, Yang H, Tao Y, Tang Y, Shi Y, Dai Z, Zhu JM, Liu T, Wang B, Leng X, Shen X, Zhu C, Zhao Y. Improved Antiviral Activity of Classical Swine Fever Virus-Targeted siRNA by Tetrahedral Framework Nucleic Acid-Enhanced Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29416-29423. [PMID: 34148345 DOI: 10.1021/acsami.1c08143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNA self-assembled nanostructures have been considered as effective vehicles for biomolecule delivery because of their excellent biocompatibility, cellular permeability, noncytotoxicity, and small size. Here, we report an efficient antiviral strategy with self-assembled tetrahedral framework nucleic acids (tFNAs) delivering small interfering RNA (t-siRNA) to silence classical swine fever virus (CSFV) gene in porcine host cells. In this study, two previously reported siRNAs, C3 and C6, specifically targeting the CSFV genome were selected and modified on tFNAs, respectively, and termed t-C3 and t-C6. Results indicate that t-C3 and t-C6 can inhibit the viral proliferation of CSFV in kidney derived porcine cells, PK-15, effectively and that inhibition was markedly stronger than free siRNA-C3 or siRNA-C6 only. In addition, the DNA nanostructure also has high cargo-carrying capacity, allowing to deliver multiple functional groups. To improve the antiviral ability of tFNAs, a dual-targeting DNA nanostructure t-C3-C6 was constructed and used to silence the CSFV gene in porcine host cells. This study found that t-C3-C6 can inhibit the viral release and replication, exhibiting outstanding anti-CSFV capabilities. Therefore, these dual-targeting tFNAs have great potential in virus therapy. This strategy not only provides a novel method to inhibit CSFV replication in porcine cells but also verifies that tFNAs are effective tools for delivery of antiviral elements, which have great application potential.
Collapse
Affiliation(s)
- Haisi Dong
- Clinical Medical College, Jilin Ginseng Academy, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guangqi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200001, China
| | - Danhui Ma
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200001, China
| | - Tiedong Wang
- College of Animal Science, School of Pharmacy, Jilin University, Changchun 130012, China
| | - Shisong Jing
- College of Animal Science, School of Pharmacy, Jilin University, Changchun 130012, China
| | - Haimiao Yang
- Clinical Medical College, Jilin Ginseng Academy, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ye Tao
- Clinical Medical College, Jilin Ginseng Academy, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yong Tang
- Clinical Medical College, Jilin Ginseng Academy, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yan Shi
- College of Animal Science, School of Pharmacy, Jilin University, Changchun 130012, China
| | - Zhen Dai
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200001, China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200001, China
| | - Bingmei Wang
- Clinical Medical College, Jilin Ginseng Academy, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangyang Leng
- Clinical Medical College, Jilin Ginseng Academy, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200001, China
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200001, China
| | - Yicheng Zhao
- Clinical Medical College, Jilin Ginseng Academy, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
34
|
Li M, Tang X, You W, Wang Y, Chen Y, Liu Y, Yuan H, Gao C, Chen X, Xiao Z, Ouyang H, Pang D. HMEJ-mediated site-specific integration of a myostatin inhibitor increases skeletal muscle mass in porcine. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:49-62. [PMID: 34513293 PMCID: PMC8411015 DOI: 10.1016/j.omtn.2021.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/09/2021] [Indexed: 01/27/2023]
Abstract
As a robust antagonist of myostatin (MSTN), follistatin (FST) is an important regulator of skeletal muscle development, and the delivery of FST to muscle tissue represents a potential therapeutic strategy for muscular dystrophies. The N terminus and FSI domain of FST are the functional domains for MSTN binding. Here, we aimed to achieve site-specific integration of FSI-I-I, including the signal peptide, N terminus, and three FSI domains, into the last codon of the porcine MSTN gene using a homology-mediated end joining (HMEJ)-based strategy mediated by CRISPR-Cas9. Based on somatic cell nuclear transfer (SCNT) technology, we successfully obtained FSI-I-I knockin pigs. H&E staining of longissimus dorsi and gastrocnemius cross-sections showed larger myofiber sizes in FSI-I-I knockin pigs than in controls. Moreover, the Smad and Erk pathways were inhibited, whereas the PI3k/Akt pathway was activated in FSI-I-I knockin pigs. In addition, the levels of MyoD, Myf5, and MyoG transcription were upregulated while that of MRF4 was downregulated in FSI-I-I knockin pigs. These results indicate that the FSI-I-I gene mediates skeletal muscle hypertrophy through an MSTN-related signaling pathway and the expression of myogenic regulatory factors. Overall, FSI-I-I knockin pigs with hypertrophic muscle tissue hold great promise as a therapeutic model for human muscular dystrophies.
Collapse
Affiliation(s)
- Mengjing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Xiaochun Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Wenni You
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Yanbing Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Ying Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Chuang Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Xue Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Zhiwei Xiao
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China,Corresponding author: Hongsheng Ouyang, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China.
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China,Corresponding author: Daxin Pang, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China.
| |
Collapse
|
35
|
Sustainable Food Production: The Contribution of Genome Editing in Livestock. SUSTAINABILITY 2021. [DOI: 10.3390/su13126788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The growing demand for animal source foods to feed people has been pushing the livestock industry to increase productivity, a tendency that will continue throughout this century. The challenge for the coming years is to increase the food supply to ensure equity in access to high quality food, while maintaining global sustainability including combating climate change, avoiding deforestation, and conserving biodiversity, as well as ensuring animal health and welfare. The question is, how do we produce more with less? Classical methods to enhance livestock productivity based on the improvement of animal health, nutrition, genetics, reproductive technologies and management have made important contributions; however, this is not going to be enough and thus disruptive approaches are required. Genome editing with CRISPR may be a powerful contributor to global livestock transformation. This article is focused on the scope and perspectives for the application of this technology, which includes improving production traits, enhancing animal welfare through adaptation and resilience, conferring resistance to infectious diseases, and suppressing pests and invasive species that threaten livestock. The main advantages and concerns that should be overcome by science, policy and people are discussed with the aim that this technology can make a real contribution to our collective future. This review is part of the special issue “Genome Editing in Animal Systems to Support Sustainable Farming and Pest Control”.
Collapse
|
36
|
Zhang J, Khazalwa EM, Abkallo HM, Zhou Y, Nie X, Ruan J, Zhao C, Wang J, Xu J, Li X, Zhao S, Zuo E, Steinaa L, Xie S. The advancements, challenges, and future implications of the CRISPR/Cas9 system in swine research. J Genet Genomics 2021; 48:347-360. [PMID: 34144928 DOI: 10.1016/j.jgg.2021.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) genome editing technology has dramatically influenced swine research by enabling the production of high-quality disease-resistant pig breeds, thus improving yields. In addition, CRISPR/Cas9 has been used extensively in pigs as one of the tools in biomedical research. In this review, we present the advancements of the CRISPR/Cas9 system in swine research, such as animal breeding, vaccine development, xenotransplantation, and disease modeling. We also highlight the current challenges and some potential applications of the CRISPR/Cas9 technologies.
Collapse
Affiliation(s)
- Jinfu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Emmanuel M Khazalwa
- Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Hussein M Abkallo
- Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Yuan Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiongwei Nie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jinxue Ruan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Changzhi Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jieru Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, PR China
| | - Jing Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Erwei Zuo
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, PR China.
| | - Lucilla Steinaa
- Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya.
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
37
|
Abstract
Porcine cloning technology can be used to produce progenies genetically identical to the donor cells from high-quality breeding pigs. In addition, genetically modified pigs have been produced by somatic cell nuclear transfer using genetically modified porcine fetal fibroblasts. The method of preparing genetically modified pigs is critical for establishing pig models for human diseases, and for generating donor animals for future xenotransplantation. This chapter describes detailed procedures for generating cloned pigs using fetal fibroblasts as nuclear donors.
Collapse
Affiliation(s)
- Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China.
| | - Jianyong Han
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning, China
| |
Collapse
|
38
|
Ghorbani A, Hadifar S, Salari R, Izadpanah K, Burmistrz M, Afsharifar A, Eskandari MH, Niazi A, Denes CE, Neely GG. A short overview of CRISPR-Cas technology and its application in viral disease control. Transgenic Res 2021; 30:221-238. [PMID: 33830423 PMCID: PMC8027712 DOI: 10.1007/s11248-021-00247-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) together with CRISPR-associated (Cas) proteins have catalysed a revolution in genetic engineering. Native CRISPR-Cas systems exist in many bacteria and archaea where they provide an adaptive immune response through sequence-specific degradation of an invading pathogen's genome. This system has been reconfigured for use in genome editing, drug development, gene expression regulation, diagnostics, the prevention and treatment of cancers, and the treatment of genetic and infectious diseases. In recent years, CRISPR-Cas systems have been used in the diagnosis and control of viral diseases, for example, CRISPR-Cas12/13 coupled with new amplification techniques to improve the specificity of sequence-specific fluorescent probe detection. Importantly, CRISPR applications are both sensitive and specific and usually only require commonly available lab equipment. Unlike the canonical Cas9 which is guided to double-stranded DNA sites of interest, Cas13 systems target RNA sequences and thus can be employed in strategies directed against RNA viruses or for transcriptional silencing. Many challenges remain for these approach, including issues with specificity and the requirement for better mammalian delivery systems. In this review, we summarize the applications of CRISPR-Cas systems in controlling mammalian viral infections. Following necessary improvements, it is expected that CRISPR-Cas systems will be used effectively for such applications in the future.
Collapse
Affiliation(s)
- Abozar Ghorbani
- Plant Virology Research Centre, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Shima Hadifar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Roya Salari
- Institute of Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Michal Burmistrz
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-089, Warsaw, Poland
| | - Alireza Afsharifar
- Plant Virology Research Centre, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Christopher E Denes
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW, 2006, Australia
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
39
|
Fan J, Liao Y, Zhang M, Liu C, Li Z, Li Y, Li X, Wu K, Yi L, Ding H, Zhao M, Fan S, Chen J. Anti-Classical Swine Fever Virus Strategies. Microorganisms 2021; 9:microorganisms9040761. [PMID: 33917361 PMCID: PMC8067343 DOI: 10.3390/microorganisms9040761] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 12/23/2022] Open
Abstract
Classical swine fever (CSF), caused by CSF virus (CSFV), is a highly contagious swine disease with high morbidity and mortality, which has caused significant economic losses to the pig industry worldwide. Biosecurity measures and vaccination are the main methods for prevention and control of CSF since no specific drug is available for the effective treatment of CSF. Although a series of biosecurity and vaccination strategies have been developed to curb the outbreak events, it is still difficult to eliminate CSF in CSF-endemic and re-emerging areas. Thus, in addition to implementing enhanced biosecurity measures and exploring more effective CSF vaccines, other strategies are also needed for effectively controlling CSF. Currently, more and more research about anti-CSFV strategies was carried out by scientists, because of the great prospects and value of anti-CSFV strategies in the prevention and control of CSF. Additionally, studies on anti-CSFV strategies could be used as a reference for other viruses in the Flaviviridae family, such as hepatitis C virus, dengue virus, and Zika virus. In this review, we aim to summarize the research on anti-CSFV strategies. In detail, host proteins affecting CSFV replication, drug candidates with anti-CSFV effects, and RNA interference (RNAi) targeting CSFV viral genes were mentioned and the possible mechanisms related to anti-CSFV effects were also summarized.
Collapse
Affiliation(s)
- Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yingxin Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mengru Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Chenchen Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (S.F.); (J.C.); Tel.: +86-20-8528-8017 (J.C.)
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (S.F.); (J.C.); Tel.: +86-20-8528-8017 (J.C.)
| |
Collapse
|
40
|
Salvesen HA, Whitelaw CBA. Current and prospective control strategies of influenza A virus in swine. Porcine Health Manag 2021; 7:23. [PMID: 33648602 PMCID: PMC7917534 DOI: 10.1186/s40813-021-00196-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Influenza A Viruses (IAV) are endemic pathogens of significant concern in humans and multiple keystone livestock species. Widespread morbidity in swine herds negatively impacts animal welfare standards and economic performance whilst human IAV pandemics have emerged from pigs on multiple occasions. To combat the rising prevalence of swine IAV there must be effective control strategies available. MAIN BODY The most basic form of IAV control on swine farms is through good animal husbandry practices and high animal welfare standards. To control inter-herd transmission, biosecurity considerations such as quarantining of pigs and implementing robust health and safety systems for workers help to reduce the likelihood of swine IAV becoming endemic. Closely complementing the physical on-farm practices are IAV surveillance programs. Epidemiological data is critical in understanding regional distribution and variation to assist in determining an appropriate response to outbreaks and understanding the nature of historical swine IAV epidemics and zoonoses. Medical intervention in pigs is restricted to vaccination, a measure fraught with the intrinsic difficulties of mounting an immune response against a highly mutable virus. It is the best available tool for controlling IAV in swine but is far from being a perfect solution due to its unreliable efficacy and association with an enhanced respiratory disease. Because IAV generally has low mortality rates there is a reticence in the uptake of vaccination. Novel genetic technologies could be a complementary strategy for IAV control in pigs that confers broad-acting resistance. Transgenic pigs with IAV resistance are useful as models, however the complexity of these reaching the consumer market limits them to research models. More promising are gene-editing approaches to prevent viral exploitation of host proteins and modern vaccine technologies that surpass those currently available. CONCLUSION Using the suite of IAV control measures that are available for pigs effectively we can improve the economic productivity of pig farming whilst improving on-farm animal welfare standards and avoid facing the extensive social and financial costs of a pandemic. Fighting 'Flu in pigs will help mitigate the very real threat of a human pandemic emerging, increase security of the global food system and lead to healthier pigs.
Collapse
Affiliation(s)
- Hamish A. Salvesen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, UK
| | - C. Bruce A. Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, UK
| |
Collapse
|
41
|
Huang J, Yang X, Wang A, Huang C, Tang H, Zhang Q, Fang Q, Yu Z, Liu X, Huang Q, Zhou R, Li L. Pigs Overexpressing Porcine β-Defensin 2 Display Increased Resilience to Glaesserella parasuis Infection. Antibiotics (Basel) 2020; 9:antibiotics9120903. [PMID: 33327385 PMCID: PMC7764891 DOI: 10.3390/antibiotics9120903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
As the causative agent of Glässer’s disease, Glaesserella (Haemophilus) parasuis has led to serious economic losses to the swine industry worldwide. Due to the low cross-protection of vaccines and increasing antimicrobial resistance of G. parasuis, it is important to develop alternative approaches to prevent G. parasuis infection. Defensins are host defense peptides that have been suggested to be promising substitutes for antibiotics in animal production, while porcine β-defensin 2 (PBD-2) is a potent antimicrobial peptide discovered in pigs. Our previous study generated transgenic (TG) pigs overexpressing PBD-2, which displayed enhanced resistance to Actinobacillus pleuropneumoniae. In this study, the antibacterial activities of PBD-2 against G. parasuis are determined in vitro and in the TG pig model. The concentration-dependent bactericidal activity of synthetic PBD-2 against G. parasuis was measured by bacterial counting. Moreover, after being infected with G. parasuis via a cohabitation challenge model, TG pigs overexpressing PBD-2 displayed significantly milder clinical signs and less severe gross pathological changes than their wild-type (WT) littermates. The TG pigs also exhibited alleviated lung and brain lesions, while bacterial loads in the lung and brain tissues of the TG pigs were significantly lower than those of the WT pigs. Additionally, lung and brain homogenates from TG pigs possessed enhanced antibacterial activity against G. parasuis when compared with those from the WT pigs. Altogether, these proved that overexpression of PBD-2 could also endow pigs with increased resilience to G. parasuis infection, which further confirmed the potential of using the PBD-2 coding gene to develop disease-resistant pigs and provided a novel strategy to combat G. parasuis as well.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyu Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Antian Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiuhong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuming Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Correspondence: (R.Z.); (L.L.)
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
- Correspondence: (R.Z.); (L.L.)
| |
Collapse
|
42
|
Xie Z, Sun R, Qi C, Jiao S, Jiang Y, Liu Z, Zhao D, Liu R, Li Q, Yang K, Hu L, Wang X, Tang X, Ouyang H, Pang D. Generation of a pHSPA6 gene-based multifunctional live cell sensor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118919. [PMID: 33279608 DOI: 10.1016/j.bbamcr.2020.118919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Biosensors utilizing intact live cells can report responses to certain stimuli rapidly and sensitively and have attracted a great deal of attention. The expression pattern of HSPA6, a little studied HSPA family member, has contributed to the development of multifunctional and intelligent whole-cell sensors. Herein, a new pHSPA6-based EGFP fluorescent reporter cell line was designed and developed via a CRISPR/Cas9-mediated knock-in strategy. The fluorescent reporter cell line has a precise EGFP integration site and gene copy number, and no selectable marker genes were introduced during the selection processes. Stimulation experiments with HSPA6-specific stressors indicated that EGFP fluorescent reporter cells could rapidly and effectively convert stress signals into EGFP fluorescent signals. Furthermore, cell proliferation and gene expression pattern analysis showed that the fluorescent reporter cells grew well and that both the integrated EGFP gene and the pHSPA6 gene were expressed rapidly and sensitively in response to stimulation. This study provides a new strategy for the construction of a cell model for HSPA6 expression/interaction and an intelligent live cell sensor, which can potentially be applied to numerous fields, such as those focusing on cellular models of HSPA6 signaling cascades, biomaterials, food security, environmental assessment, and drug screening.
Collapse
Affiliation(s)
- Zicong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Ruize Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Chunyun Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Shuyu Jiao
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Yuan Jiang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Zhenying Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Dehua Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Ruonan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Qirong Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Kang Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Lanxin Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Xinping Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Xiaochun Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China.
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
43
|
Abstract
African swine fever is a devastating disease that can result in death in almost all infected pigs. The continuing spread of African swine fever from Africa to Europe and recently to the high-pig production countries of China and others in Southeast Asia threatens global pork production and food security. The African swine fever virus is an unusual complex DNA virus and is not related to other viruses. This has presented challenges for vaccine development, and currently none is available. The virus is extremely well adapted to replicate in its hosts in the sylvatic cycle in East and South Africa. Its spread to other regions, with different wildlife hosts, climatic conditions, and pig production systems, has revealed unexpected epidemiological scenarios and different challenges for control. Here we review the epidemiology of African swine fever in these different scenarios and methods used for control. We also discuss progress toward vaccine development and research priorities to better understand this complex disease and improve control.
Collapse
Affiliation(s)
- Linda K Dixon
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom;
| | - Karl Stahl
- Department of Disease Control and Epidemiology, National Veterinary Institute, SE-751 89 Uppsala, Sweden;
| | - Ferran Jori
- UMR CIRAD-INRA ASTRE (Animal, Health, Territories, Risks and Ecosystems) Department BIOS, Campus International de Baillarguet, 34398 Montpellier, Cedex 5, France; ,
| | - Laurence Vial
- UMR CIRAD-INRA ASTRE (Animal, Health, Territories, Risks and Ecosystems) Department BIOS, Campus International de Baillarguet, 34398 Montpellier, Cedex 5, France; ,
| | - Dirk U Pfeiffer
- Centre for Applied One Health Research and Policy Advice, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, PR China;
| |
Collapse
|
44
|
Van Eenennaam AL, De Figueiredo Silva F, Trott JF, Zilberman D. Genetic Engineering of Livestock: The Opportunity Cost of Regulatory Delay. Annu Rev Anim Biosci 2020; 9:453-478. [PMID: 33186503 DOI: 10.1146/annurev-animal-061220-023052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetically engineered (GE) livestock were first reported in 1985, and yet only a single GE food animal, the fast-growing AquAdvantage salmon, has been commercialized. There are myriad interconnected reasons for the slow progress in this once-promising field, including technical issues, the structure of livestock industries, lack of public research funding and investment, regulatory obstacles, and concern about public opinion. This review focuses on GE livestock that have been produced and documents the difficulties that researchers and developers have encountered en route. Additionally, the costs associated with delayed commercialization of GE livestock were modeled using three case studies: GE mastitis-resistant dairy cattle, genome-edited porcine reproductive and respiratory syndrome virus-resistant pigs, and the AquAdvantage salmon. Delays of 5 or 10 years in the commercialization of GE livestock beyond the normative 10-year GE product evaluation period were associated with billions of dollars in opportunity costs and reduced global food security.
Collapse
Affiliation(s)
| | | | - Josephine F Trott
- Department of Animal Science, University of California, Davis, California 95616, USA; ,
| | - David Zilberman
- Department of Agricultural and Resource Economics, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
45
|
Huang J, Wang A, Huang C, Sun Y, Song B, Zhou R, Li L. Generation of Marker-Free pbd-2 Knock-in Pigs Using the CRISPR/Cas9 and Cre/loxP Systems. Genes (Basel) 2020; 11:genes11080951. [PMID: 32824735 PMCID: PMC7465224 DOI: 10.3390/genes11080951] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
Porcine β-defensin 2 (PBD-2), expressed by different tissues of pigs, is a multifunctional cationic peptide with antimicrobial, immunomodulatory and growth-promoting abilities. As the latest generation of genome-editing tool, CRISPR/Cas9 system makes it possible to enhance the expression of PBD-2 in pigs by site-specific knock-in of pbd-2 gene into the pig genome. In this study, we aimed to generate marker-free pbd-2 knock-in pigs using the CRISPR/Cas9 and Cre/loxP systems. Two copies of pbd-2 gene linked by a T2A sequence were inserted into the porcine Rosa26 locus through CRISPR/Cas9-mediated homology-directed repair. The floxed selectable marker gene neoR, used for G418 screening of positive cell clones, was removed by cell-penetrating Cre recombinase with a recombination efficiency of 48.3%. Cloned piglets were produced via somatic cell nuclear transfer and correct insertion of pbd-2 genes was confirmed by PCR and Southern blot. Immunohistochemistry and immunofluorescence analyses indicated that expression levels of PBD-2 in different tissues of transgenic (TG) piglets were significantly higher than those of their wild-type (WT) littermates. Bactericidal assays demonstrated that there was a significant increase in the antimicrobial properties of the cell culture supernatants of porcine ear fibroblasts from the TG pigs in comparison to those from the WT pigs. Altogether, our study improved the protein expression level of PBD-2 in pigs by site-specific integration of pbd-2 into the pig genome, which not only provided an effective pig model to study the anti-infection mechanisms of PBD-2 but also a promising genetic material for the breeding of disease-resistant pigs.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (C.H.)
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (A.W.); (Y.S.); (B.S.)
| | - Antian Wang
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (A.W.); (Y.S.); (B.S.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
| | - Chao Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (C.H.)
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (A.W.); (Y.S.); (B.S.)
| | - Yufan Sun
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (A.W.); (Y.S.); (B.S.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
| | - Bingxiao Song
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (A.W.); (Y.S.); (B.S.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (C.H.)
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Correspondence: (R.Z.); (L.L.)
| | - Lu Li
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (A.W.); (Y.S.); (B.S.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
- Correspondence: (R.Z.); (L.L.)
| |
Collapse
|
46
|
Abrogation of PRRSV infectivity by CRISPR-Cas13b-mediated viral RNA cleavage in mammalian cells. Sci Rep 2020; 10:9617. [PMID: 32541822 PMCID: PMC7295971 DOI: 10.1038/s41598-020-66775-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
CRISPR/Cas9 enables dsDNA viral genome engineering. However, the lack of RNA targeting activities limits the ability of CRISPR/Cas9 to combat RNA viruses. The recently identified class II type VI CRISPR/Cas effectors (Cas13) are RNA-targeting CRISPR enzymes that enable RNA cleavage in mammalian and plant cells. We sought to knockdown the viral RNA of porcine reproductive and respiratory syndrome virus (PRRSV) directly by exploiting the CRISPR/Cas13b system. Effective mRNA cleavage by CRISPR/Cas13b-mediated CRISPR RNA (crRNA) targeting the ORF5 and ORF7 genes of PRRSV was observed. To address the need for uniform delivery of the Cas13b protein and crRNAs, an all-in-one system expressing Cas13b and duplexed crRNA cassettes was developed. Delivery of a single vector carrying double crRNAs enabled the simultaneous knockdown of two PRRSV genes. Transgenic MARC-145 cells stably expressing the Cas13b effector and crRNA mediated by lentiviral-based transduction showed a robust ability to splice the PRRSV genomic RNA and subgenomic RNAs; viral infection was almost completely abrogated by the combination of double crRNAs simultaneously targeting the ORF5 and ORF7 genes. Our study indicated that the CRISPR/Cas13b system can effectively knockdown the PRRSV genome in vitro and can potentially be used as a potent therapeutic antiviral strategy.
Collapse
|
47
|
Efficient CRISPR/Cas9-mediated gene editing in Guangdong small-ear spotted pig cells using an optimized electrotransfection method. Biotechnol Lett 2020; 42:2091-2109. [PMID: 32494996 DOI: 10.1007/s10529-020-02930-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/29/2020] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Guangdong Small-ear Spotted (GDSS) pigs are a pig breed native to China that possesses unfortunate disadvantages, such as slow growth rate, low lean-meat percentage, and reduced feed utilization. In contrast to traditional genetic breeding methods with long cycle time and high cost, CRISPR/Cas9-mediated gene editing for the modification of the pig genome can quickly improve production traits, and therefore this technique exhibits important potential in the genetic improvement and resource development of GDSS pigs. In the present study, we aimed to establish an efficient CRISPR/Cas9-mediated gene-editing system for GDSS pig cells by optimizing the electrotransfection parameters, and to realize efficient CRISPR/Cas9-mediated gene editing of GDSS pig cells. RESULTS After optimization of electrotransfection parameters for the transfection of GDSS pig cells, we demonstrated that a voltage of 150 V and a single pulse with a pulse duration of 20 ms were the optimal electrotransfection parameters for gene editing in these cells. In addition, our study generated GDSS pig single-cell colonies with biallelic mutations in the myostatin (MSTN) gene and insulin-like growth factor 2 (IGF2) intron-3 locus, which play an important role in pig muscle growth and muscle development. The single-cell colonies showed no foreign gene integration or off-target effects, and maintained normal cell morphology and viability. These gene-edited, single-cell colonies can in the future be used as donor cells to generate MSTN- and IGF2-edited GDSS pigs using somatic cell nuclear transfer (SCNT). CONCLUSIONS This study establishes the foundation for genetic improvement and resource development of GDSS pigs using CRISPR/Cas9-mediated gene editing combined with SCNT.
Collapse
|
48
|
Zhu X, Wei Y, Zhan Q, Yan A, Feng J, Liu L, Tang D. CRISPR/Cas9-Mediated Biallelic Knockout of IRX3 Reduces the Production and Survival of Somatic Cell-Cloned Bama Minipigs. Animals (Basel) 2020; 10:E501. [PMID: 32192102 PMCID: PMC7142520 DOI: 10.3390/ani10030501] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Bama minipigs are a local pig breed that is unique to China and has a high development and utilization value. However, its high fat content, low feed utilization rate, and slow growth rate have limited its popularity and utilization. Compared with the long breeding cycle and high cost of traditional genetic breeding of pigs, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) endonuclease 9 system (CRISPR/Cas9)-mediated gene editing can cost-effectively implement targeted mutations in animal genomes, thereby providing a powerful tool for rapid improvement of the economic traits of Bama minipigs. The iroquois homeobox 3 (IRX3) gene has been implicated in human obesity. Mouse experiments have shown that knocking out IRX3 significantly enhances basal metabolism, reduces fat content, and controls body mass and composition. This study aimed to knock out IRX3 using the CRISPR/Cas9 gene editing method to breed Bama minipigs with significantly reduced fat content. First, the CRISPR/Cas9 gene editing method was used to efficiently obtain IRX3-/- cells. Then, the gene-edited cells were used as donor cells to produce surviving IRX3-/- Bama minipigs using somatic cell cloning. The results show that the use of IRX3-/- cells as donor cells for the production of somatic cell-cloned pigs results in a significant decrease in the average live litter size and a significant increase in the average number of stillbirths. Moreover, the birth weight of surviving IRX3-/- somatic cell-cloned pigs is significantly lower, and viability is poor such that all piglets die shortly after birth. Therefore, the preliminary results of this study suggest that IRX3 may have important biological functions in pigs, and IRX3 should not be used as a gene editing target to reduce fat content in Bama minipigs. Moreover, this study shows that knocking out IRX3 does not favor the survival of pigs, and whether targeted regulation of IRX3 in the treatment of human obesity will also induce severe adverse consequences requires further investigation.
Collapse
Affiliation(s)
- Xiangxing Zhu
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medical Engineering, Foshan University, Foshan 528225, China; (A.Y.); (J.F.); (L.L.)
| | - Yanyan Wei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.W.); (Q.Z.)
| | - Qunmei Zhan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.W.); (Q.Z.)
| | - Aifen Yan
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medical Engineering, Foshan University, Foshan 528225, China; (A.Y.); (J.F.); (L.L.)
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.W.); (Q.Z.)
| | - Juan Feng
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medical Engineering, Foshan University, Foshan 528225, China; (A.Y.); (J.F.); (L.L.)
| | - Lian Liu
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medical Engineering, Foshan University, Foshan 528225, China; (A.Y.); (J.F.); (L.L.)
| | - Dongsheng Tang
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medical Engineering, Foshan University, Foshan 528225, China; (A.Y.); (J.F.); (L.L.)
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.W.); (Q.Z.)
| |
Collapse
|
49
|
Bishop TF, Van Eenennaam AL. Genome editing approaches to augment livestock breeding programs. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb207159. [PMID: 32034040 DOI: 10.1242/jeb.207159] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The prospect of genome editing offers a number of promising opportunities for livestock breeders. Firstly, these tools can be used in functional genomics to elucidate gene function, and identify causal variants underlying monogenic traits. Secondly, they can be used to precisely introduce useful genetic variation into structured livestock breeding programs. Such variation may include repair of genetic defects, the inactivation of undesired genes, and the moving of useful alleles and haplotypes between breeds in the absence of linkage drag. Editing could also be used to accelerate the rate of genetic progress by enabling the replacement of the germ cell lineage of commercial breeding animals with cells derived from genetically elite lines. In the future, editing may also provide a useful complement to evolving approaches to decrease the length of the generation interval through in vitro generation of gametes. For editing to be adopted, it will need to seamlessly integrate with livestock breeding schemes. This will likely involve introducing edits into multiple elite animals to avoid genetic bottlenecks. It will also require editing of different breeds and lines to maintain genetic diversity, and enable structured cross-breeding. This requirement is at odds with the process-based trigger and event-based regulatory approach that has been proposed for the products of genome editing by several countries. In the absence of regulatory harmony, researchers in some countries will have the ability to use genome editing in food animals, while others will not, resulting in disparate access to these tools, and ultimately the potential for global trade disruptions.
Collapse
|
50
|
Abstract
This chapter highlights the importance of reproductive technologies that are applied to porcine breeds. Nowadays the porcine industry, part of a high technological and specialized sector, offers high-quality protein food. The development of the swine industry is founded in the development of breeding/genetics, nutrition, animal husbandry, and animal health. The implementation of reproductive technologies in swine has conducted to levels of productivity never reached before. In addition, the pig is becoming an important species for biomedicine. The generation of pig models for human disease, xenotransplantation, or production of therapeutic proteins for human medicine has in fact generated a growing field of interest.
Collapse
|