1
|
Wei C, Xu Y, Zheng Y, Hong L, Lyu C, Li H, Cao B. The LTB4-BLT1 axis attenuates influenza-induced lung inflammation by suppressing NLRP3 activation. Cell Death Discov 2025; 11:148. [PMID: 40189592 PMCID: PMC11973165 DOI: 10.1038/s41420-025-02450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/11/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
The mortality associated with influenza A virus (IAV) infection typically results from excessive immune responses, leading to immunopathological lung damage and compromised pulmonary function. Various immunomodulators are seen beneficial when used in conjunction with direct anti-infection treatment. Leukotriene B4 (LTB4) is a derivative of arachidonic acid (AA) and has been shown to be advantageous for numerous infectious diseases, allergies, and autoimmune disorders. Nonetheless, the function of LTB4 in influenza infection remains unclear. This study demonstrates that LTB4 and its primary receptor BLT1, as opposed to the secondary receptor BLT2, act as a protective immune modulator during influenza infection in bone marrow-derived macrophages and mouse models. Mechanistically, LTB4 promotes K27-linked and K48-linked polyubiquitination of the NLRP3 protein at its K886 and K1023 sites via a cAMP/PKA-dependent pathway, which inhibits NLRP3 inflammasome assembly and thereby diminishes subsequent NLRP3 inflammasome activation. The consequent decline in the release of IL-1β and IL-18 leads to a reduction in inflammation caused by viral infection. Furthermore, the administration of a LTB4 treatment in a fatal IAV infection model can mitigate the excessive NLRP3 inflammasome activation and reduce IAV-induced severe pulmonary damage. These findings illustrate the protective function of LTB4 in fatal IAV infection by mitigating the severe inflammation induced by the virus.
Collapse
Affiliation(s)
- Cheng Wei
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yitian Xu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zheng
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Lizhe Hong
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Lyu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haibo Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Bin Cao
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
- New Cornerstone Science Laboratory, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
2
|
Qiao L, Niu L, Wang Z, Deng Z, Di D, Ma X, Zhou Y, Kong D, Wang Q, Yin J, Jin L, Sun J, Feng B, Lu W, Cai F, Guan N, Ye H. Engineered bacteria for near-infrared light-inducible expression of cancer therapeutics. NATURE CANCER 2025; 6:612-628. [PMID: 40097656 DOI: 10.1038/s43018-025-00932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Bacteria-based therapies hold great promise for cancer treatment due to their selective tumor colonization and proliferation. However, clinical application is hindered by the need for safe, precise control systems to regulate local therapeutic payload expression and release. Here we developed a near-infrared (NIR) light-mediated PadC-based photoswitch (NETMAP) system based on a chimeric phytochrome-activated diguanylyl cyclase (PadC) and a cyclic diguanylate monophosphate-dependent transcriptional activator (MrkH). The NETMAP-engineered bacteria exhibited antitumor performance in mouse tumor models with different levels of immunogenicity. Specifically, in immunogenic lymphoma tumors, NIR-induced PD-L1 and CTLA-4 nanobodies enhanced the activation of adaptive immunity. In low-immunogenic tumors-including mouse-derived colon cancer models, an orthotopic human breast cancer cell line-derived xenograft model and a colorectal cancer patient-derived xenograft model-NIR-induced azurin and cytolysin A predominantly led to tumor inhibition. Our study identifies an NIR light-mediated therapeutic platform for engineered bacteria-based therapies with customizable outputs and precise dosage control.
Collapse
Affiliation(s)
- Longliang Qiao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, Shanghai Academy of Natural Sciences (SANS), East China Normal University, Shanghai, China
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lingxue Niu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, Shanghai Academy of Natural Sciences (SANS), East China Normal University, Shanghai, China
| | - Zhihao Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, Shanghai Academy of Natural Sciences (SANS), East China Normal University, Shanghai, China
| | - Zhenqiang Deng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, Shanghai Academy of Natural Sciences (SANS), East China Normal University, Shanghai, China
| | - Dai Di
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, Shanghai Academy of Natural Sciences (SANS), East China Normal University, Shanghai, China
| | - Xiaoding Ma
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, Shanghai Academy of Natural Sciences (SANS), East China Normal University, Shanghai, China
| | - Yang Zhou
- Wuhu Hospital, Health Science Center, East China Normal University, Wuhu City, China
| | - Deqiang Kong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, Shanghai Academy of Natural Sciences (SANS), East China Normal University, Shanghai, China
| | - Qilin Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, Shanghai Academy of Natural Sciences (SANS), East China Normal University, Shanghai, China
| | - Jianli Yin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, Shanghai Academy of Natural Sciences (SANS), East China Normal University, Shanghai, China
| | - Lingli Jin
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Bo Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Weiqiang Lu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, Shanghai Academy of Natural Sciences (SANS), East China Normal University, Shanghai, China
| | - Fengfeng Cai
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Ningzi Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, Shanghai Academy of Natural Sciences (SANS), East China Normal University, Shanghai, China.
| | - Haifeng Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, Shanghai Academy of Natural Sciences (SANS), East China Normal University, Shanghai, China.
| |
Collapse
|
3
|
Zhang LQ, Zheng WC, Li WY. Zhike Erfang Alleviates MRSA-Induced Pneumonia by Inhibiting TRAF6 and Activating NLRP3 Inflammatory Body. J Inflamm Res 2025; 18:3901-3911. [PMID: 40125087 PMCID: PMC11927506 DOI: 10.2147/jir.s466737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/15/2025] [Indexed: 03/25/2025] Open
Abstract
Purpose The therapeutic effects of Zhike Erfang in modulating the cellular responses and immune microenvironment associated with MRSA-induced acute lung injury remain unclear. This study aims to elucidate the potential mechanisms by which Zhike Erfang mitigate the cellular and molecular effects of MRSA in a laboratory model. Patients and Methods A mouse model of acute lung injury was established using heat-inactivated MRSA. Lung tissue and bronchoalveolar lavage fluid were collected for analysis. Macrophages were pretreated with Zhike Erfang for 30 minutes before exposure to heat-inactivated MRSA for 24 hours. Protein expressions of TRAF6, iNOS, TNF-α, IL-1β, NLRP3, and caspase-1 in lung tissues were quantified using Western blot. The content of LDH was detected by the lactate dehydrogenase cytotoxicity test kit. Results Zhike Erfang significantly reduced the expression of iNOS, LDH, TNF-α, IL-1β, NLRP3, and caspase-1 in a dose-dependent manner in lung tissues from the MRSA model. Zhike Erfang inhibited the expression of TRAF6. Conclusion Zhike Erfang can alleviate pneumonia caused by MRSA by inhibiting TRAF6 and inducing NLRP3 inflammatory body activation.
Collapse
Affiliation(s)
- Lian-Qing Zhang
- Department of Pharmacy, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wen-Can Zheng
- Department of Pharmacy, First People’s Hospital of Qujing City, Yunnan, China
| | - Wen-Yan Li
- Department of Clinical Pharmacy, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| |
Collapse
|
4
|
Zhou T, Li J, Li W, Yu J, Deng Y, Duan X, Lin J, Wang X, Liang Y, Zhang C, Yu M, Shi R, Chen C, Yang S, Zeng S, Shen X, Wang Y, Sun J, Shu Z. Gegen Qinlian Decoction improves H1N1-induced viral pneumonia by modulating the "gut microbiota-metabolomics-immune/inflammation" axis. Int Immunopharmacol 2025; 144:113607. [PMID: 39571267 DOI: 10.1016/j.intimp.2024.113607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/27/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND AND AIM The acute pulmonary infectious disease caused by influenza viruses is known as influenza virus pneumonia (IVP). In recent years, Gegen Qinlian Decoction (GQD) has been widely used to treat pulmonary inflammation; however, the underlying mechanism of action of GQD in IVP remains unclear. This study aimed to elucidate the molecular mechanism through which GQD improved IVP. MATERIALS AND METHODS The efficacy of GQD was evaluated using classical pharmacodynamic indicators in a murine model of H1N1-induced IVP. Network pharmacology predicted the material basis of GQD in improving IVP, while metabonomics and 16 s rDNA sequencing assessed its regulation on small molecule metabolites and intestinal flora. Additionally, molecular biology techniques were used to investigate the molecular mechanism underlying the improvement of IVP by GQD. RESULTS The study results demonstrated that GQD exhibited a significant ameliorative effect on the inflammatory response in lung tissue of IVP mice. The potential pharmacological substances of GQD for improving IVP were identified by network pharmacology combined with ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry (UHPLC-HR-TOFMS) analysis, including puerarin, baicalin, berberine, and glycyrrhizin. Further analysis of biological processes and mechanisms of action predicted that GQD could improve IVP by inhibiting activation of inflammasomes, regulating the body's immune system, and intestinal microecology. Metabolomics and microbiomics findings revealed that GQD could bi-directionally regulate lipid and amino acid metabolites by increasing the abundance of beneficial bacteria like Akkermansia and Acetobacter, thereby maintaining host metabolic balance and immune homeostasis. RT-qPCR and immunohistochemistry results indicated that GQD improved IVP by inhibiting the complement C3/NLRP3 inflammasome pathway. CONCLUSION The findings of this study confirmed that GQD effectively inhibited IVP by modulating the "gut microbiota-metabolomics-immune/inflammation" axis in the host, thereby establishing a solid immunological foundation for the clinical application of GQD.
Collapse
Affiliation(s)
- Tong Zhou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianhua Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wei Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiamin Yu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongan Deng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaodong Duan
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiazi Lin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yefang Liang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chongyang Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Miao Yu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ruixiang Shi
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chengkai Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Simin Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shuting Zeng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuejuan Shen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100029, China.
| | - Zunpeng Shu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
5
|
Zhang C, Jiang Q, Liu Z, Li N, Hao Z, Song G, Li D, Chen M, Lin L, Liu Y, Li X, Shang C, Li Y. SARS-CoV-2 NSP6 reduces autophagosome size and affects viral replication via sigma-1 receptor. J Virol 2024; 98:e0075424. [PMID: 39445785 PMCID: PMC11575221 DOI: 10.1128/jvi.00754-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/29/2024] [Indexed: 10/25/2024] Open
Abstract
Autophagy is a cellular self-defense mechanism by which cells can kill invading pathogenic microorganisms and increase the presentation of components of pathogens as antigens. Contrarily, pathogens can utilize autophagy to enhance their own replication. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) NSP6 can interact with ATPase proton pump component to inhibit lysosomal acidification, which was implicated in the autophagy process. However, research on how SARS-CoV-2 NSP6 affected autophagy, and its impact on virus replication is still lacking. Coronavirus NSP6 has been reported to promote coronavirus replication by limiting autophagosome expansion. However, this finding has not been confirmed in coronavirus disease 2019 (COVID-19). We investigated the effect of NSP6 protein on autophagosomes in different mutant strains of SARS-CoV-2 and revealed that the size of autophagosomes was reduced by NSP6 of the wild-type and Delta variant of SARS-CoV-2. In addition, we found that SARS-CoV-2 NSP6 localized to the lysosome and had an inhibitory effect on the binding of autophagosomes to the lysosome, which blocked the autophagy flux; this may be related to endoplasmic reticulum (ER)-related pathways. We also found that sigma-1 receptor (SIGMAR1) knock out (KO) reversed NSP6-induced autophagosome abnormality and resisted SARS-CoV-2 infection, which responds to the fact that SIGMAR1 is likely to be used as a potential target for the treatment of SARS-CoV-2 infection. In summary, we have provided a preliminary explanation of the effects on autophagy of the SARS-CoV-2 NSP6 protein from the pre-autophagic and late stages, and also found that SIGMAR1 is likely to be used as a potential target for SARS-CoV-2 therapy to develop relevant drugs. IMPORTANCE We have provided a preliminary explanation of the effects on autophagy of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) non-structure protein 6 from the pre-autophagic and late stages, and also found that sigma-1 receptor is likely to be used as a potential target for SARS-CoV-2 therapy to develop relevant drugs.
Collapse
Affiliation(s)
- Cuiling Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Qiwei Jiang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zirui Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhuo Hao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Gaojie Song
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Dapeng Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Minghua Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lisen Lin
- Department of Chemistry, Northeastern University, Shenyang, China
| | - Yan Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yiquan Li
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Sun Y, Liu K. Mechanistic Insights into Influenza A Virus-Induced Cell Death and Emerging Treatment Strategies. Vet Sci 2024; 11:555. [PMID: 39591329 PMCID: PMC11598850 DOI: 10.3390/vetsci11110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Influenza A virus (IAV) infection initiates a complex interplay of cell death modalities, including apoptosis, necroptosis, pyroptosis, and their integration, known as PANoptosis, which significantly impacts host immune responses and tissue integrity. These pathways are intricately regulated by viral proteins and host factors, contributing to both viral clearance and pathogenesis-related tissue damage. This review comprehensively explores the molecular mechanisms underlying these cell death processes in influenza infection. We highlight the roles of key regulatory proteins, such as ZBP1 (Z-DNA binding protein 1) and RIPK3 (receptor-interacting protein kinase 3), in orchestrating these responses, emphasizing the dual roles of cell death in both antiviral defense and tissue injury. Furthermore, we discuss emerging therapeutic strategies targeting these pathways, aiming to enhance antiviral efficacy while minimizing collateral tissue damage. Future research should focus on targeted approaches to modulate cell death mechanisms, aiming to reduce tissue damage and improve clinical outcomes for patients with severe influenza.
Collapse
Affiliation(s)
- Yuling Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Kaituo Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Shang C, Yu J, Zou S, Li H, Cao B. Functional evaluation of TMEM176B and its predictive role for severe respiratory viral infection through integrated analysis of single-cell and bulk RNA-sequencing. J Med Virol 2024; 96:e29954. [PMID: 39377494 DOI: 10.1002/jmv.29954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Transmembrane protein 176B (TMEM176B), localized mainly on the endosomal membrane, has been reported as an immune regulatory factor in malignant diseases. However, the biological function of this molecule remains undetermined during respiratory viral infections. To investigate the functions and prognostic value of this gene, six gene sets were selected from the Gene Expression Omnibus database for research. First, the function of TMEM176B and its co-expressed genes were evaluated at different levels (cell, peripheral blood, lung tissue). Afterwards, a machine learning algorithm was utilized to analyze the relationship between TMEM176B and its interacting genes with prognosis. After importance evaluation and variable screening, a prognostic model was established. Finally, the reliability of the model was further verified through external data sets. In vitro experiments were conducted to validate the function of TMEM176B. TMEM176B and its co-expressed genes are involved in multiple processes such as inflammasome activation, myeloid immune cell development, and immune cell infiltration. Machine learning further screened 27 interacting gene modules including TMEM176B as prognostic models for severe respiratory viral infections, with the area under the ROC curve (AUCs) of 0.986 and 0.905 in derivation and external validation sets, respectively. We further confirmed that viral load as well as NLRP3 activation and cell death were significantly enhanced in TMEM176B-/- THP-1-differentiated macrophages via in vitro experiments. Our study revealed that TMEM176B is involved in a wide range of biological functions in respiratory viral infections and has potential prognostic value, which is expected to bring new insights into the clinical management of severe respiratory viral infection hosts.
Collapse
Affiliation(s)
- Congcong Shang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jiapei Yu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory for Medical Virology, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Bin Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Guo R, Liu H, Su R, Mao Q, Zhao M, Zhang H, Mu J, Zhao N, Wang Y, Hao Y. Tanreqing injection inhibits influenza virus replication by promoting the fusion of autophagosomes with lysosomes: An integrated pharmacological study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118159. [PMID: 38677572 DOI: 10.1016/j.jep.2024.118159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tanreqing injection (TRQ) is widely used, traditional Chinese medicine (TCM) injection used in China to treat respiratory infections. Modern pharmacological studies have confirmed that TRQ can protect against influenza viruses. However, the mechanism by which TRQ inhibits influenza viruses remains unclear. AIM OF THE STUDY To explore the therapeutic effects and possible mechanisms of TRQ inhibition by the influenza virus. MATERIALS AND METHODS Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) was used to determine the chemical composition of TRQ. Isobaric tags for relative and absolute quantification (iTRAQ) were used to define differential proteins related to TRQ inhibition of viruses. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed for functional annotation. For experimental validation, we established an in vitro model of the influenza virus infection by infecting A549 cells with the virus. The detection of the signaling pathway was carried out through qPCR, western blotting,and immunofluorescence. RESULTS Fifty one components were identified using UPLC/Q-TOF MS. We confirmed the inhibitory effect of TRQ on influenza virus replication in vitro. Ninety nine differentially expressed proteins related to the inhibitory effect of TRQ were identified using iTRAQ. KEGG functional enrichment analysis showed that the TRQ may inhibit influenza virus replication by affecting autophagy. Through network analysis, 29 targets were selected as major targets, and three key targets, HSPA5, PARP1, and GAPDH, may be the TRQ targets affecting autophagy. In vitro experiments showed that TRQ inhibits influenza virus replication by interfering with the expression and localization of STX17 and VAMP8 proteins, thereby promoting the fusion of autophagosomes with lysosomes. CONCLUSION TRQ inhibits influenza virus replication by promoting the fusion of autophagosomes with lysosomes. We additionally established potential gene and protein targets which are affected by TRQ. Therefore, our findings provide new therapeutic targets and a foundation further studies on influenza treatment with TRQ.
Collapse
Affiliation(s)
- Rui Guo
- Beijing University of Chinese Medicine, Beijing, PR China; Union Stem Cell & Gene Engineering Co., Ltd, Tianjin, PR China
| | - Hui Liu
- Beijing University of Chinese Medicine, Beijing, PR China
| | - Rina Su
- Beijing University of Chinese Medicine, Beijing, PR China
| | - Qin Mao
- Beijing University of Chinese Medicine, Beijing, PR China
| | - Mengfan Zhao
- Beijing University of Chinese Medicine, Beijing, PR China
| | - Haili Zhang
- Beijing University of Chinese Medicine, Beijing, PR China
| | - Jingwei Mu
- Shanghai Kaibao Pharmaceutical CO., LTD, Shanghai, PR China
| | - Ningbo Zhao
- Shanghai Kaibao Pharmaceutical CO., LTD, Shanghai, PR China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, PR China.
| | - Yu Hao
- Beijing University of Chinese Medicine, Beijing, PR China.
| |
Collapse
|
9
|
Su G, Yang X, Lin Q, Su G, Liu J, Huang L, Chen W, Wei W, Chen J. Fangchinoline Inhibits African Swine Fever Virus Replication by Suppressing the AKT/mTOR/NF-κB Signaling Pathway in Porcine Alveolar Macrophages. Int J Mol Sci 2024; 25:7178. [PMID: 39000284 PMCID: PMC11241579 DOI: 10.3390/ijms25137178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 07/16/2024] Open
Abstract
African swine fever (ASF), caused by the African swine fever virus (ASFV), is one of the most important infectious diseases that cause high morbidity and mortality in pigs and substantial economic losses to the pork industry of affected countries due to the lack of effective vaccines. The need to develop alternative robust antiviral countermeasures, especially anti-ASFV agents, is of the utmost urgency. This study shows that fangchinoline (FAN), a bisbenzylisoquinoline alkaloid found in the roots of Stephania tetrandra of the family Menispermaceae, significantly inhibits ASFV replication in porcine alveolar macrophages (PAMs) at micromolar concentrations (IC50 = 1.66 µM). Mechanistically, the infection of ASFV triggers the AKT/mTOR/NF-κB signaling pathway. FAN significantly inhibits ASFV-induced activation of such pathways, thereby suppressing viral replication. Such a mechanism was confirmed using an AKT inhibitor MK2206 as it inhibited AKT phosphorylation and ASFV replication in PAMs. Altogether, the results suggest that the AKT/mTOR pathway could potentially serve as a treatment strategy for combating ASFV infection and that FAN could potentially emerge as an effective novel antiviral agent against ASFV infections and deserves further in vivo antiviral evaluations.
Collapse
Affiliation(s)
- Guanming Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqun Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qisheng Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Guoming Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jinyi Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Li Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Wenkang Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-Biological Gene Research Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Paukner S, Kimber S, Cumper C, Rea-Davies T, Sueiro Ballesteros L, Kirkham C, Hargreaves A, Gelone SP, Richards C, Wicha WW. In Vivo Immune-Modulatory Activity of Lefamulin in an Influenza Virus A (H1N1) Infection Model in Mice. Int J Mol Sci 2024; 25:5401. [PMID: 38791439 PMCID: PMC11121702 DOI: 10.3390/ijms25105401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Lefamulin is a first-in-class systemic pleuromutilin antimicrobial and potent inhibitor of bacterial translation, and the most recent novel antimicrobial approved for the treatment of community-acquired pneumonia (CAP). It exhibits potent antibacterial activity against the most prevalent bacterial pathogens that cause typical and atypical pneumonia and other infectious diseases. Early studies indicate additional anti-inflammatory activity. In this study, we further investigated the immune-modulatory activity of lefamulin in the influenza A/H1N1 acute respiratory distress syndrome (ARDS) model in BALB/c mice. Comparators included azithromycin, an anti-inflammatory antimicrobial, and the antiviral oseltamivir. Lefamulin significantly decreased the total immune cell infiltration, specifically the neutrophils, inflammatory monocytes, CD4+ and CD8+ T-cells, NK cells, and B-cells into the lung by Day 6 at both doses tested compared to the untreated vehicle control group (placebo), whereas azithromycin and oseltamivir did not significantly affect the total immune cell counts at the tested dosing regimens. Bronchioalveolar lavage fluid concentrations of pro-inflammatory cytokines and chemokines including TNF-α, IL-6, IL-12p70, IL-17A, IFN-γ, and GM-CSF were significantly reduced, and MCP-1 concentrations were lowered (not significantly) by lefamulin at the clinically relevant 'low' dose on Day 3 when the viral load peaked. Similar effects were also observed for oseltamivir and azithromycin. Lefamulin also decreased the viral load (TCID50) by half a log10 by Day 6 and showed positive effects on the gross lung pathology and survival. Oseltamivir and lefamulin were efficacious in the suppression of the development of influenza-induced bronchi-interstitial pneumonia, whereas azithromycin did not show reduced pathology at the tested treatment regimen. The observed anti-inflammatory and immune-modulatory activity of lefamulin at the tested treatment regimens highlights a promising secondary pharmacological property of lefamulin. While these results require confirmation in a clinical trial, they indicate that lefamulin may provide an immune-modulatory activity beyond its proven potent antibacterial activity. This additional activity may benefit CAP patients and potentially prevent acute lung injury (ALI) and ARDS.
Collapse
Affiliation(s)
- Susanne Paukner
- Nabriva Therapeutics GmbH, Leberstrasse 20, 1110 Vienna, Austria;
| | - Sandra Kimber
- Charles River Discovery, Portishead BS20 7AW, UK; (S.K.); (C.C.); (T.R.-D.); (L.S.B.); (C.K.); (C.R.)
| | - Charlotte Cumper
- Charles River Discovery, Portishead BS20 7AW, UK; (S.K.); (C.C.); (T.R.-D.); (L.S.B.); (C.K.); (C.R.)
| | - Tina Rea-Davies
- Charles River Discovery, Portishead BS20 7AW, UK; (S.K.); (C.C.); (T.R.-D.); (L.S.B.); (C.K.); (C.R.)
| | - Lorena Sueiro Ballesteros
- Charles River Discovery, Portishead BS20 7AW, UK; (S.K.); (C.C.); (T.R.-D.); (L.S.B.); (C.K.); (C.R.)
| | - Christopher Kirkham
- Charles River Discovery, Portishead BS20 7AW, UK; (S.K.); (C.C.); (T.R.-D.); (L.S.B.); (C.K.); (C.R.)
| | | | | | - Claire Richards
- Charles River Discovery, Portishead BS20 7AW, UK; (S.K.); (C.C.); (T.R.-D.); (L.S.B.); (C.K.); (C.R.)
| | | |
Collapse
|
11
|
Su QY, Li HC, Jiang XJ, Jiang ZQ, Zhang Y, Zhang HY, Zhang SX. Exploring the therapeutic potential of regulatory T cell in rheumatoid arthritis: Insights into subsets, markers, and signaling pathways. Biomed Pharmacother 2024; 174:116440. [PMID: 38518605 DOI: 10.1016/j.biopha.2024.116440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune inflammatory rheumatic disease characterized by an imbalance between immunological reactivity and immune tolerance. Regulatory T cells (Tregs), which play a crucial role in controlling ongoing autoimmunity and maintaining peripheral tolerance, have shown great potential for the treatment of autoimmune inflammatory rheumatic diseases such as RA. This review aims to provide an updated summary of the latest insights into Treg-targeting techniques in RA. We focus on current therapeutic strategies for targeting Tregs based on discussing their subsets, surface markers, suppressive function, and signaling pathways in RA.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Huan-Cheng Li
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Xiao-Jing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Yan Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - He-Yi Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China.
| |
Collapse
|
12
|
Zhou B, Wang L, Yang S, Liang Y, Zhang Y, Liu X, Pan X, Li J. Pyrogallol protects against influenza A virus-triggered lethal lung injury by activating the Nrf2-PPAR-γ-HO-1 signaling axis. MedComm (Beijing) 2024; 5:e531. [PMID: 38617435 PMCID: PMC11014464 DOI: 10.1002/mco2.531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024] Open
Abstract
Pyrogallol, a natural polyphenol compound (1,2,3-trihydroxybenzene), has shown efficacy in the therapeutic treatment of disorders associated with inflammation. Nevertheless, the mechanisms underlying the protective properties of pyrogallol against influenza A virus infection are not yet established. We established in this study that pyrogallol effectively alleviated H1N1 influenza A virus-induced lung injury and reduced mortality. Treatment with pyrogallol was found to promote the expression and nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor gamma (PPAR-γ). Notably, the activation of Nrf2 by pyrogallol was involved in elevating the expression of PPAR-γ, both of which act synergistically to enhance heme oxygenase-1 (HO-1) synthesis. Blocking HO-1 by zinc protoporphyrin (ZnPP) reduced the suppressive impact of pyrogallol on H1N1 virus-mediated aberrant retinoic acid-inducible gene-I-nuclear factor kappa B (RIG-I-NF-κB) signaling, which thus abolished the dampening effects of pyrogallol on excessive proinflammatory mediators and cell death (including apoptosis, necrosis, and ferroptosis). Furthermore, the HO-1-independent inactivation of janus kinase 1/signal transducers and activators of transcription (JAK1/STATs) and the HO-1-dependent RIG-I-augmented STAT1/2 activation were both abrogated by pyrogallol, resulting in suppression of the enhanced transcriptional activity of interferon-stimulated gene factor 3 (ISGF3) complexes, thus prominently inhibiting the amplification of the H1N1 virus-induced proinflammatory reaction and apoptosis in interferon-beta (IFN-β)-sensitized cells. The study provides evidence that pyrogallol alleviates excessive proinflammatory responses and abnormal cell death via HO-1 induction, suggesting it could be a potential agent for treating influenza.
Collapse
Affiliation(s)
- Beixian Zhou
- The People's Hospital of GaozhouGaozhouChina
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | | | - Sushan Yang
- The People's Hospital of GaozhouGaozhouChina
| | | | | | - Xuanyu Liu
- The People's Hospital of GaozhouGaozhouChina
| | | | - Jing Li
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center of Respiratory DiseaseGuangzhou Institute of Respiratory HealthInstitute of Chinese Integrative MedicineGuangdong‐Hongkong‐Macao Joint Laboratory of Infectious Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
13
|
Huckestein BR, Zeng K, Westcott R, Alder JK, Antos D, Kolls JK, Alcorn JF. Mammalian Target of Rapamycin Complex 1 Activation in Macrophages Contributes to Persistent Lung Inflammation following Respiratory Tract Viral Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:384-401. [PMID: 38159723 PMCID: PMC10913760 DOI: 10.1016/j.ajpath.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
Respiratory tract virus infections cause millions of hospitalizations worldwide each year. Severe infections lead to lung damage that coincides with persistent inflammation and a lengthy repair period. Vaccination and antiviral therapy help to mitigate severe infections before or during the acute stage of disease, but there are currently limited specific treatment options available to individuals experiencing the long-term sequelae of respiratory viral infection. Herein, C57BL/6 mice were infected with influenza A/PR/8/34 as a model for severe viral lung infection and allowed to recover for 21 days. Mice were treated with rapamycin, a well-characterized mammalian target of rapamycin complex 1 (mTORC1) inhibitor, on days 12 to 20 after infection, a time period after viral clearance. Persistent inflammation following severe influenza infection in mice was primarily driven by macrophages and T cells. Uniform manifold approximation and projection analysis of flow cytometry data revealed that lung macrophages had high activation of mTORC1, an energy-sensing kinase involved in inflammatory immune cell effector functions. Rapamycin treatment reduced lung inflammation and the frequency of exudate macrophages, T cells, and B cells in the lung, while not impacting epithelial progenitor cells or adaptive immune memory. These data highlight mTORC1's role in sustaining persistent inflammation following clearance of a viral respiratory pathogen and suggest a possible intervention for post-viral chronic lung inflammation.
Collapse
Affiliation(s)
- Brydie R Huckestein
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kelly Zeng
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rosemary Westcott
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonathan K Alder
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Danielle Antos
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, Louisiana
| | - John F Alcorn
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
14
|
Singla A, Harun N, Dilling DF, Merchant K, McMahan S, Ingledue R, French A, Corral JA, Korbee L, Kopras EJ, Gupta N. Safety and efficacy of sirolimus in hospitalised patients with COVID-19 pneumonia. Respir Investig 2024; 62:216-222. [PMID: 38211546 DOI: 10.1016/j.resinv.2023.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND There is a critical need to develop novel therapies for COVID-19. METHODS We conducted a phase 2, multicentre, placebo-controlled, double-blind, randomised trial; hospitalised patients with hypoxemic respiratory failure due to COVID-19 and at least one poor prognostic biomarker, were given sirolimus (6 mg on Day 1 followed by 2 mg daily for 14 days or hospital discharge, whichever happens first) or placebo, in a 2:1 randomization scheme favouring sirolimus. Primary outcome was the proportion of patients alive and free from advanced respiratory support measures at Day 28. RESULTS Between April 2020 and April 2021, 32 patients underwent randomization and 28 received either sirolimus (n = 18) or placebo (n = 10). Mean age was 57 years and 75 % of the subjects were men. Twenty-two subjects had at least one co-existing condition (Diabetes, hypertension, obesity, CHF, or asthma/COPD) associated with worse prognosis. Mean FiO2 requirement was 0.35. There was no difference in the proportion of patients who were alive and free from advanced respiratory support measures in the sirolimus group (n = 15, 83 %) compared with the placebo group (n = 8, 80 %). Although patients in the sirolimus group demonstrated faster improvement in oxygenation and spent less time in the hospital, these differences were not statistically significant. There was no between-group difference in the rate of change in serum biomarkers such as LDH, ferritin, d-dimer or lymphocyte count. There was a decreased risk of thromboembolic complications in patients on sirolimus compared with placebo. CONCLUSIONS Larger studies are warranted to evaluate the role sirolimus in COVID-19 infection.
Collapse
Affiliation(s)
- Abhishek Singla
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, 231 Albert Sabin Way, ML0564, Cincinnati, OH, 45267, USA
| | - Nusrat Harun
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Centre, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Daniel F Dilling
- Division of Pulmonary and Critical Care Medicine, Loyola University Medical Centre, 2160 S. First Avenue, Maywood, IL, 60153, USA
| | - Karim Merchant
- Division of Pulmonary and Critical Care Medicine, Keck Hospital of University of Southern California, IRD Building 7th Floor, 2020 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Susan McMahan
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, 231 Albert Sabin Way, ML0564, Cincinnati, OH, 45267, USA
| | - Rebecca Ingledue
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, 231 Albert Sabin Way, ML0564, Cincinnati, OH, 45267, USA
| | - Alexandria French
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, 231 Albert Sabin Way, ML0564, Cincinnati, OH, 45267, USA
| | - Josefina A Corral
- Clinical Research Office, Loyola University Chicago, 2160 S. First Avenue, Maywood, IL, 60153, USA
| | - Leslie Korbee
- Academic Regulatory & Monitoring Services LLC, 7806 Gapstow Bridge, Cincinnati, OH, 45231, USA
| | - Elizabeth J Kopras
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, 231 Albert Sabin Way, ML0564, Cincinnati, OH, 45267, USA
| | - Nishant Gupta
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, 231 Albert Sabin Way, ML0564, Cincinnati, OH, 45267, USA.
| |
Collapse
|
15
|
Deng CH, Li TQ, Zhang W, Zhao Q, Wang Y. Targeting Inflammasome Activation in Viral Infection: A Therapeutic Solution? Viruses 2023; 15:1451. [PMID: 37515138 PMCID: PMC10384481 DOI: 10.3390/v15071451] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammasome activation is exclusively involved in sensing activation of innate immunity and inflammatory response during viral infection. Accumulating evidence suggests that the manipulation of inflammasome assembly or its interaction with viral proteins are critical factors in viral pathogenesis. Results from pilot clinical trials show encouraging results of NLRP3 inflammasome suppression in reducing mortality and morbidity in SARS-CoV-2-infected patients. In this article, we summarize the up-to-date understanding of inflammasomes, including NLRP3, AIM2, NLRP1, NLRP6, and NLRC4 in various viral infections, with particular focus on RNA viruses such as SARS-CoV-2, HIV, IAV, and Zika virus and DNA viruses such as herpes simplex virus 1. We also discuss the current achievement of the mechanisms involved in viral infection-induced inflammatory response, host defense, and possible therapeutic solutions.
Collapse
Affiliation(s)
- Chuan-Han Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Tian-Qi Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Av. Wai Long, Taipa, Macao 999078, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
- Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
16
|
Niu J, Meng G. Roles and Mechanisms of NLRP3 in Influenza Viral Infection. Viruses 2023; 15:1339. [PMID: 37376638 DOI: 10.3390/v15061339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Pathogenic viral infection represents a major challenge to human health. Due to the vast mucosal surface of respiratory tract exposed to the environment, host defense against influenza viruses has perpetually been a considerable challenge. Inflammasomes serve as vital components of the host innate immune system and play a crucial role in responding to viral infections. To cope with influenza viral infection, the host employs inflammasomes and symbiotic microbiota to confer effective protection at the mucosal surface in the lungs. This review article aims to summarize the current findings on the function of NACHT, LRR and PYD domains-containing protein 3 (NLRP3) in host response to influenza viral infection involving various mechanisms including the gut-lung crosstalk.
Collapse
Affiliation(s)
- Junling Niu
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building B-205, Shanghai 200031, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building B-205, Shanghai 200031, China
| |
Collapse
|
17
|
Teulière J, Bernard C, Bonnefous H, Martens J, Lopez P, Bapteste E. Interactomics: Dozens of Viruses, Co-evolving With Humans, Including the Influenza A Virus, may Actively Distort Human Aging. Mol Biol Evol 2023; 40:msad012. [PMID: 36649176 PMCID: PMC9897028 DOI: 10.1093/molbev/msad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Some viruses (e.g., human immunodeficiency virus 1 and severe acute respiratory syndrome coronavirus 2) have been experimentally proposed to accelerate features of human aging and of cellular senescence. These observations, along with evolutionary considerations on viral fitness, raised the more general puzzling hypothesis that, beyond documented sources in human genetics, aging in our species may also depend on virally encoded interactions distorting our aging to the benefits of diverse viruses. Accordingly, we designed systematic network-based analyses of the human and viral protein interactomes, which unraveled dozens of viruses encoding proteins experimentally demonstrated to interact with proteins from pathways associated with human aging, including cellular senescence. We further corroborated our predictions that specific viruses interfere with human aging using published experimental evidence and transcriptomic data; identifying influenza A virus (subtype H1N1) as a major candidate age distorter, notably through manipulation of cellular senescence. By providing original evidence that viruses may convergently contribute to the evolution of numerous age-associated pathways through co-evolution, our network-based and bipartite network-based methodologies support an ecosystemic study of aging, also searching for genetic causes of aging outside a focal aging species. Our findings, predicting age distorters and targets for anti-aging therapies among human viruses, could have fundamental and practical implications for evolutionary biology, aging study, virology, medicine, and demography.
Collapse
Affiliation(s)
- Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Charles Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Hugo Bonnefous
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Johannes Martens
- Sciences, Normes, Démocratie (SND), Sorbonne Université, CNRS, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
18
|
Influenza Virus Infection during Pregnancy as a Trigger of Acute and Chronic Complications. Viruses 2022; 14:v14122729. [PMID: 36560733 PMCID: PMC9786233 DOI: 10.3390/v14122729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus (IAV) infection during pregnancy disrupts maternal and fetal health through biological mechanisms, which are to date poorly characterised. During pregnancy, the viral clearance mechanisms from the lung are sub-optimal and involve hyperactive innate and adaptive immune responses that generate wide-spread inflammation. Pregnancy-related adaptations of the immune and the cardiovascular systems appear to result in delayed recovery post-viral infection, which in turn promotes a prolonged inflammatory phenotype, increasing disease severity, and causing maternal and fetal health problems. This has immediate and long-term consequences for the mother and fetus, with complications including acute cardiopulmonary distress syndrome in the mother that lead to perinatal complications such as intrauterine growth restriction (IUGR), and birth defects; cleft lip, cleft palate, neural tube defects and congenital heart defects. In addition, an increased risk of long-term neurological disorders including schizophrenia in the offspring is reported. In this review we discuss the pathophysiology of IAV infection during pregnancy and its striking similarity to other well-established complications of pregnancy such as preeclampsia. We discuss general features of vascular disease with a focus on vascular inflammation and define the "Vascular Storm" that is triggered by influenza infection during pregnancy, as a pivotal disease mechanism for short and long term cardiovascular complications.
Collapse
|
19
|
Shi X, Wu B, Chen J, Luo J, Li M, Jiang Z, Shi Y. Enhanced activity of NLRP3 inflammasome and its proinflammatory effect in influenza A viral pneumonia. Future Virol 2022. [DOI: 10.2217/fvl-2021-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Aim: The aim of this study was to investigate the activity of NLRP3 inflammasome and its effect on inducing severe pneumonia 1 week after influenza A virus (IAV) infection. Materials & methods: The expression levels of NLRP3, caspase-1 and IL-1β were assessed in murine macrophages stimulated with IAV. And the severity of viral pneumonia in mice was explored. Results & conclusion: The data showed that although the expression of NLRP3 diverged, activity of NLRP3 inflammasome was enhanced 1 week after IAV infection, and more severe viral pneumonia was associated with IL-1β in serum. It infers that enhanced activity of NLRP3 inflammasome induces augmented expression of IL-1β and severe pneumonia in a NLRP3-independent way, 1 week after IAV infection.
Collapse
Affiliation(s)
- Xiaohan Shi
- Department of MICU, Department of Respiratory & Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
- Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, PR China
| | - Benquan Wu
- Department of MICU, Department of Respiratory & Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
- Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, PR China
| | - Junxian Chen
- Department of MICU, Department of Respiratory & Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
- Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, PR China
| | - Jinmei Luo
- Department of MICU, Department of Respiratory & Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
- Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, PR China
| | - Mei Li
- VIP Healthcare Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - ZhenYou Jiang
- Department of Microbiology & Immunology, Basic Medical College, Jinan University, Guangzhou, PR China
| | - Yunfeng Shi
- Department of MICU, Department of Respiratory & Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
- Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
20
|
Ji S, Dai MY, Huang Y, Ren XC, Jiang ML, Qiao JP, Zhang WY, Xu YH, Shen JL, Zhang RQ, Fei GH. Influenza a virus triggers acute exacerbation of chronic obstructive pulmonary disease by increasing proinflammatory cytokines secretion via NLRP3 inflammasome activation. J Inflamm (Lond) 2022; 19:8. [PMID: 35739522 PMCID: PMC9219228 DOI: 10.1186/s12950-022-00305-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Background Influenza A virus (IAV) triggers acute exacerbation of chronic obstructive pulmonary disease (AECOPD), but the molecular mechanisms remain unclear. In this study, we investigated the role of IAV induced NLRP3 inflammasome activation to increase airway inflammation response in the progression of AECOPD. Methods Human bronchial epithelial cells were isolated and cultured from normal and COPD bronchial tissues and co-cultured with IAV. The NLRP3 inflammasome associated genes were identified using RNA sequencing, and the expressions of NLRP3 inflammasome components were measured using qRT-PCR and western blot after cells were transfected with siRNA and treated with MCC950. Moreover, IAV-induced COPD rat models were established to confirm the results; 37 AECOPD patients were included to measure the serum and bronchoalveolar lavage fluid (BALF) of interleukin (IL)-18 and IL-1β. Results Increased levels of NLRP3 inflammasome components were not seen until 6 h post-inoculation in normal cells. However, both cell groups reached peak NLRP3 level at 12 h post-inoculation and maintained it for up to 24 h. ASC, Caspase-1, IL-1β and IL-18 were also elevated in a similar time-dependent pattern in both cell groups. The mRNA and protein expression of the NLRP3 inflammasome components were decreased when COPD cells treated with siRNA and MCC950. In COPD rats, the NLRP3 inflammasome components were elevated by IAV. MCC950 alleviated lung damage, improved survival time, and reduced NLRP3 inflammasome components expression in COPD rats. Additionally, the serum and BALF levels of IL-1β and IL-18 were increased in AECOPD patients. Conclusions NLRP3 inflammasome is activated in COPD patients as a pre-existing condition that is further exacerbated by IAV infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12950-022-00305-y.
Collapse
|
21
|
Yao D, Bao L, Li F, Liu B, Wu X, Hu Z, Xu J, Wang W, Zhang X. H1N1 influenza virus dose dependent induction of dysregulated innate immune responses and STAT1/3 activation are associated with pulmonary immunopathological damage. Virulence 2022; 13:1558-1572. [PMID: 36082929 PMCID: PMC9467583 DOI: 10.1080/21505594.2022.2120951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Influenza A virus (IAV) infection poses a substantial challenge and causes high morbidity and mortality. Exacerbated pulmonary inflammatory responses are the major causes of extensive diffuse alveolar immunopathological damage. However, the relationship between the extent of cytokine storm, neutrophils/macrophages infiltration, and different IAV infection dose and time still needs to be further elucidated, and it is still unclear whether the signal transduction and transcriptional activator 1/3 (STAT1/3) signalling pathway plays a beneficial or detrimental role. Here, we established a mouse model of high- and low-dose pH1N1 infection. We found that pH1N1 infection induced robust and early pathological damage and cytokine storm in an infection dose- and time-dependent manner. High-dose pH1N1 infection induced massive and sustained recruitment of neutrophils as well as a higher ratio of M1:M2, which may contribute to severe lung immunopathological damage. pH1N1 infection activated dose- and time-dependent STAT1 and STAT3. Inhibition of STAT1 and/or STAT3 aggravated low-dose pH1N1 infection, induced lung damage, and decreased survival rate. Appropriate activation of STAT1/3 provided survival benefits and pathological improvement during low-dose pH1N1 infection. These results demonstrate that high-dose pH1N1 infection induces robust and sustained neutrophil infiltration, imbalanced macrophage polarization, excessive and earlier cytokine storm, and STAT1/3 activation, which are associated with pulmonary dysregulated proinflammatory responses and progress of acute lung injury. The severe innate immune responses may be the threshold at which protective functions give way to immunopathology, and assessing the magnitude of host innate immune responses is necessary in adjunctive immunomodulatory therapy for alleviating influenza-induced pneumonia.
Collapse
Affiliation(s)
- Duoduo Yao
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Linlin Bao
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infection, Beijing, China
| | - Fengdi Li
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infection, Beijing, China
| | - Bo Liu
- Department of Pulmonary and Critical Care Medicine, Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, China
| | - Xu Wu
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Ziqi Hu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiangnan Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Caceres CJ, Seibert B, Cargnin Faccin F, Cardenas‐Garcia S, Rajao DS, Perez DR. Influenza antivirals and animal models. FEBS Open Bio 2022; 12:1142-1165. [PMID: 35451200 PMCID: PMC9157400 DOI: 10.1002/2211-5463.13416] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
Influenza A and B viruses are among the most prominent human respiratory pathogens. About 3-5 million severe cases of influenza are associated with 300 000-650 000 deaths per year globally. Antivirals effective at reducing morbidity and mortality are part of the first line of defense against influenza. FDA-approved antiviral drugs currently include adamantanes (rimantadine and amantadine), neuraminidase inhibitors (NAI; peramivir, zanamivir, and oseltamivir), and the PA endonuclease inhibitor (baloxavir). Mutations associated with antiviral resistance are common and highlight the need for further improvement and development of novel anti-influenza drugs. A summary is provided for the current knowledge of the approved influenza antivirals and antivirals strategies under evaluation in clinical trials. Preclinical evaluations of novel compounds effective against influenza in different animal models are also discussed.
Collapse
Affiliation(s)
- C. Joaquin Caceres
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Brittany Seibert
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Flavio Cargnin Faccin
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | | | - Daniela S. Rajao
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Daniel R. Perez
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
23
|
Sarker A, Gu Z, Mao L, Ge Y, Hou D, Fang J, Wei Z, Wang Z. Influenza-existing drugs and treatment prospects. Eur J Med Chem 2022; 232:114189. [DOI: 10.1016/j.ejmech.2022.114189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/24/2022] [Accepted: 02/06/2022] [Indexed: 01/03/2023]
|
24
|
Fattahi S, Khalifehzadeh-Esfahani Z, Mohammad-Rezaei M, Mafi S, Jafarinia M. PI3K/Akt/mTOR pathway: a potential target for anti-SARS-CoV-2 therapy. Immunol Res 2022; 70:269-275. [PMID: 35107743 PMCID: PMC8808470 DOI: 10.1007/s12026-022-09268-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A single-stranded RNA virus from a β-Coronaviridae family causes acute clinical manifestations. Its high death rate and severe clinical symptoms have turned it into the most significant challenge worldwide. Up until now, several effective COVID-19 vaccines have been designed and marketed, but our data on specialized therapeutic drugs for the treatment of COVID-19 is still limited. In order to synthesis virus particles, SARS-CoV-2 uses host metabolic pathways such as phosphoinositide3-kinase (PI3K)/protein kinase B (PKB, also known as AKT)/mammalian target of rapamycin (mTOR). mTOR is involved in multiple biological processes. Over-activation of the mTOR pathway improves viral replication, which makes it a possible target in COVID-19 therapy. Clinical data shows the hyperactivation of the mTOR pathway in lung tissues during respiratory viral infections. However, the exact impact of mTOR pathway inhibitors on the COVID-19 severity and death rate is yet to be thoroughly investigated. There are several mTOR pathway inhibitors. Rapamycin is the most famous inhibitor of mTORC1 among all. Studies on other respiratory viruses suggest that the therapeutic inhibitors of the mTOR pathway, especially rapamycin, can be a potential approach to anti-SARS-CoV-2 therapy. Using therapeutic methods that inhibit harmful immune responses can open a new chapter in treating severe COVID-19 disease. We highlighted the potential contribution of PI3K/Akt/mTOR inhibitors in the treatment of COVID-19.
Collapse
Affiliation(s)
- Soheila Fattahi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Mina Mohammad-Rezaei
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Mafi
- Medical Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
25
|
Bai Y, Zhang R, Liu Q, Guo R, Li G, Sun B, Zhang D, Chen Y, Huang X. Selenium Deficiency Causes Inflammatory Injury in the Bursa of Fabricius of Broiler Chickens by Activating the Toll-like Receptor Signaling Pathway. Biol Trace Elem Res 2022; 200:780-789. [PMID: 33768429 PMCID: PMC7993907 DOI: 10.1007/s12011-021-02688-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/21/2021] [Indexed: 12/29/2022]
Abstract
The aim of our study was to observe the effect of selenium (Se) deficiency on inflammatory injury in the bursa of Fabricius of broiler chickens and to determine the role of the Toll-like receptor (TLR)/myeloid differential protein-88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway during this process. Here, we revealed that severe inflammatory injury occurred in the broiler bursa of Fabricius with Se deficiency via histopathology. Moreover, the ultrastructural pathological results showed that the nuclear, mitochondrial, endoplasmic reticulum and cytomembrane structures were damaged to varying degrees. Additionally, interleukin-2 (IL-2), interleukin-6 (IL-6), and interferon (IFN-γ) mRNA expression was markedly upregulated in the broiler bursa of Fabricius with Se deficiency. Furthermore, TLR, toll-interleukin-1 receptor domain-containing adapter-inducing interferon-β (TRIF), MyD88, and NF-κB mRNA expression was also markedly elevated in the broiler bursa of Fabricius with Se deficiency. The above results suggested that Se deficiency increases the expression of numerous proinflammatory cytokines and is probably due to the activation of the TLR/MyD88/NF-κB signaling pathway, which causes inflammatory injury in the bursa of Fabricius of broiler chickens. Our findings provide a theoretical reference for further studying the underlying mechanism of Se deficiency-induced inflammatory injury in the bursa of Fabricius of broiler chickens.
Collapse
Affiliation(s)
- Yu Bai
- Department of Veterinary Pathology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
- Department of Veterinary Pathophysiology, College of Animal Medicine, China Agricultural University, Beijing, 100193, China
| | - Ruili Zhang
- Department of Veterinary Pathology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qing Liu
- Department of Veterinary Pathology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Rong Guo
- Department of Veterinary Pathology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Guangxing Li
- Department of Veterinary Pathology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bin Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163000, China
| | - Di Zhang
- Department of Veterinary Pathology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Chen
- Department of Veterinary Pathology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaodan Huang
- Department of Veterinary Pathology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
26
|
Li X, Xiao GY, Guo T, Song YJ, Li QM. Potential therapeutic role of pyroptosis mediated by the NLRP3 inflammasome in type 2 diabetes and its complications. Front Endocrinol (Lausanne) 2022; 13:986565. [PMID: 36387904 PMCID: PMC9646639 DOI: 10.3389/fendo.2022.986565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
As a new way of programmed cell death, pyroptosis plays a vital role in many diseases. In recent years, the relationship between pyroptosis and type 2 diabetes (T2D) has received increasing attention. Although the current treatment options for T2D are abundant, the occurrence and development of T2D appear to continue, and the poor prognosis and high mortality of patients with T2D remain a considerable burden in the global health system. Numerous studies have shown that pyroptosis mediated by the NLRP3 inflammasome can affect the progression of T2D and its complications; targeting the NLRP3 inflammasome has potential therapeutic effects. In this review, we described the molecular mechanism of pyroptosis more comprehensively, discussed the most updated progress of pyroptosis mediated by NLRP3 inflammasome in T2D and its complications, and listed some drugs and agents with potential anti-pyroptosis effects. Based on the available evidence, exploring more mechanisms of the NLRP3 inflammasome pathway may bring more options and benefits for preventing and treating T2D and drug development.
Collapse
|
27
|
Abstract
Pyroptosis is a recently identified mechanism of programmed cell death related to Caspase-1 that triggers a series of inflammatory reactions by releasing several proinflammatory factors such as IL-1β and IL-18. The process is characterised by the rupture of cell membranes and the release of cell contents through the mediation of gasdermin (GSDM) proteins. GSDMD is an important member of the GSDM family and plays a critical role in the two pathways of pyroptosis. Diabetic nephropathy (DN) is a microvascular complication of diabetes and a major cause of end-stage renal disease. Recently, it was revealed that GSDMD-mediated pyroptosis plays an important role in the occurrence and development of DN. In this review, we focus on two types of kidney cells, tubular epithelial cells and renal podocytes, to illustrate the mechanism of pyroptosis in DN and provide new ideas for the prevention, early diagnosis and molecular therapy of DN.
Collapse
|
28
|
Yu Y, Xu N, Cheng Q, Deng F, Liu M, Zhu A, Min YQ, Zhu D, Huang W, Feng X, Jing X, Chen Y, Yue D, Fan Y, Shu C, Guan Q, Yang Z, Zhao J, Song W, Guo D, Liu H, Zhao J, Lan P, Shi Z, Liu Y, Chen X, Liang H. IFP35 as a promising biomarker and therapeutic target for the syndromes induced by SARS-CoV-2 or influenza virus. Cell Rep 2021; 37:110126. [PMID: 34910942 PMCID: PMC8639452 DOI: 10.1016/j.celrep.2021.110126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/30/2021] [Accepted: 11/22/2021] [Indexed: 01/08/2023] Open
Abstract
Previous studies have shown that the high mortality caused by viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus primarily results from complications of a cytokine storm. Therefore, it is critical to identify the key factors participating in the cytokine storm. Here we demonstrate that interferon-induced protein 35 (IFP35) plays an important role in the cytokine storm induced by SARS-CoV-2 and influenza virus infection. We find that the levels of serum IFP35 in individuals with SARS-CoV-2 correlates with severity of the syndrome. Using mouse model and cell assays, we show that IFP35 is released by lung epithelial cells and macrophages after SARS-CoV-2 or influenza virus infection. In addition, we show that administration of neutralizing antibodies against IFP35 considerably reduces lung injury and, thus, the mortality rate of mice exposed to viral infection. Our findings suggest that IFP35 serves as a biomarker and as a therapeutic target in virus-induced syndromes.
Collapse
Affiliation(s)
- Yang Yu
- School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Na Xu
- School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Qi Cheng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, Hubei 430071, China
| | - Meiqin Liu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yuan-Qin Min
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, Hubei 430071, China
| | - Dan Zhu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHFPC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research. Beijing 100191, China
| | - Wenbo Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xu Feng
- School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Xizhong Jing
- School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Ying Chen
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoyuan Yue
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yawei Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - Chang Shu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - Qing Guan
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Wenjun Song
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510180, China
| | - Deyin Guo
- School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Huanliang Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, Guangdong 510655, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Jindong Zhao
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, Guangdong 510655, China.
| | - Zhengli Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan 430071, China.
| | - Yingfang Liu
- School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China; Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, Guangdong 510655, China.
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China.
| | - Huanhuan Liang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
29
|
Faniyi AA, Hughes MJ, Scott A, Belchamber KBR, Sapey E. Inflammation, Ageing and Diseases of the Lung: Potential therapeutic strategies from shared biological pathways. Br J Pharmacol 2021; 179:1790-1807. [PMID: 34826882 DOI: 10.1111/bph.15759] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Lung diseases disproportionately affect elderly individuals. The lungs form a unique environment: a highly elastic organ with gaseous exchange requiring the closest proximity of inhaled air containing harmful agents and the circulating blood volume. The lungs are highly susceptible to senescence, with age and "inflammageing" creating a pro-inflammatory environment with a reduced capacity to deal with challenges. Whilst lung diseases may have disparate causes, the burden of ageing and inflammation provides a common process which can exacerbate seemingly unrelated pathologies. However, these shared pathways may also provide a common route to treatment, with increased interest in drugs which target ageing processes across respiratory diseases. In this review, we will examine the evidence for the increased burden of lung disease in older adults, the structural and functional changes seen with advancing age and assess what our expanding knowledge of inflammation and ageing pathways could mean for the treatment of lung disease.
Collapse
Affiliation(s)
- A A Faniyi
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - M J Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - A Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - K B R Belchamber
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - E Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| |
Collapse
|
30
|
Yang D, Hu M, Zhu H, Chen J, Wang D, Ding M, Han L. Mixed polysaccharides derived from shiitake mushroom, Poriacocos, Ginger, and Tangerine peel prevent the H1N1 virus infections in mice. Biosci Biotechnol Biochem 2021; 85:2459-2465. [PMID: 34625799 DOI: 10.1093/bbb/zbab174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/03/2021] [Indexed: 11/12/2022]
Abstract
The pandemic influenza A (H1N1) virus spread globally and posed one of the most serious global public health challenges. The traditional Chinese medicine is served as a complementary treatment strategy with vaccine immunization. Here, we demonstrated that the mixed polysaccharides (MPs) derived from shiitake mushroom, poriacocos, ginger, and tyangerine peel prevent the H1N1 virus infections in mice. MP pretreatment attenuated H1N1 virus-induced weight loss, clinical symptoms, and death. The lymphocytes detection results showed that the CD3+, CD19+, and CD25+ cell proportions were upregulated in thymus under MP pretreatment. Besides, MP pretreatment reduced the inflammatory cell infiltration and increased the cell proportions of CD19+, CD25+, and CD278+ in lung. However, MP treatment have no effective therapeutic effect after H1N1 virus challenge. The current study suggested that pretreatment with MPs could attenuate H1N1 virus-induced lung injury and upregulate humoral and cellular immune responses in nonimmunized mice.
Collapse
Affiliation(s)
- Diqi Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Minghua Hu
- Joint Laboratory for the Research of Pharmaceutics, Huazhong University of Science and Technology and Infinitus, Wuhan, China
| | - Hongmei Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dehai Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Li Han
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
31
|
Suo L, Yu X, Hu Y, Cao H, Zou X, Wang P, Xu T, Zhou X, Wu Y, Ren L, Liu B, Cao B. Sirolimus combined with oseltamivir and corticosteroid treatment for a puerpera with severe pneumonia caused by 2009 pandemic H1N1: A case report. BIOSAFETY AND HEALTH 2021; 3:343-350. [PMID: 34805966 PMCID: PMC8590738 DOI: 10.1016/j.bsheal.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 10/29/2022] Open
Abstract
Severe pneumonia in patients infected with the 2009 pandemic H1N1 (pH1N1) virus was partially attributed to excessive immune response. Anti-virus treatment for these patients was insufficient. Here we reported the therapy effect of sirolimus, an immunosuppressor, combined with oseltamivir and corticosteroid for a puerpera with severe pneumonia caused by pH1N1 virus. This patient has infected with the pH1N1 virus in late pregnancy, and antiviral therapy was not implemented timely. She developed severe pneumonia and ARDS rapidly and need receive a cesarean section on the 39th week after pregnancy. After giving birth to a healthy baby, she received a combination of oseltamivir, sirolimus and corticosteroid, and improved in the following days. Moreover, the cytokines in serum and viral loads in BALF decreased significantly. She recovered without infectious symptoms and was discharged. Sirolimus combined with oseltamivir and corticosteroid is likely responsible for lowering the viral loads, reducing the patient's cytokine level, and further improving her clinical outcomes. It provides evidence that adjuvant treatment was beneficial to patients with severe pneumonia induced by the pH1N1 virus.
Collapse
Affiliation(s)
- Lijun Suo
- Department of Pulmonary and Critical Care Medicine, Zibo Municipal Hospital, Zibo 255400, China.,Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology & Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo 255400, China
| | - Xiaofeng Yu
- Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology & Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo 255400, China.,Department of Clinical Microbiology, Zibo Municipal Hospital, Zibo 255400, China
| | - Yongfeng Hu
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hongyun Cao
- Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology & Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo 255400, China.,Department of Clinical Microbiology, Zibo Municipal Hospital, Zibo 255400, China
| | - Xiaohui Zou
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100029, China
| | - Peiquan Wang
- Department of Critical Care Medicine, Zibo Municipal Hospital, Zibo 255400, China
| | - Tao Xu
- Department of Critical Care Medicine, Zibo Municipal Hospital, Zibo 255400, China
| | - Xiangzhi Zhou
- Department of Critical Care Medicine, Zibo Municipal Hospital, Zibo 255400, China
| | - Yexin Wu
- Department of Critical Care Medicine, Zibo Municipal Hospital, Zibo 255400, China
| | - Lili Ren
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bo Liu
- Department of Pulmonary and Critical Care Medicine, Zibo Municipal Hospital, Zibo 255400, China.,Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology & Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo 255400, China.,Department of Clinical Microbiology, Zibo Municipal Hospital, Zibo 255400, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100029, China
| |
Collapse
|
32
|
Nan D, Abraira-Meriel C, de la Roz-Fernández S, Maestre-Orozco T, Hernandez JL, Fernandez-Ayala M. Delayed Use of the Recombinant Human IL-1 Receptor Antagonist Anakinra in Five COVID-19 Patients with Pulmonary Fibrosis and Persistent Hypoxaemia: A Preliminary Report. Eur J Case Rep Intern Med 2021; 8:002821. [PMID: 34790623 DOI: 10.12890/2021_002821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is currently a major public health problem. The development of pulmonary fibrosis secondary to acute respiratory distress syndrome (ARDS) is one of the expected sequelae. In this case series, we describe five instances of the use of anakinra in late-phase COVID-19 pneumonia in hospitalized patients with pulmonary fibrosis and refractory respiratory failure fulfilling ARDS criteria. The study demonstrates that anakinra has promising efficacy and safety in late-phase COVID-19 infection in patients with ARDS and refractory hypoxaemia, and suggests its potential application as antifibrotic therapy in these patients. LEARNING POINTS Up to one third of patients with severe COVID-19 pneumonia progress to acute respiratory distress syndrome (ARDS).Pulmonary fibrosis is a known consequence of ARDS.Our study shows promising results regarding the efficacy and safety of anakinra used in late-phase COVID-19 infection in patients with pulmonary fibrosis secondary to ARDS.
Collapse
Affiliation(s)
- Daniel Nan
- Internal Medicine Department, University Hospital Marqués de Valdecilla, Santander, Spain.,University of Cantabria, Santander, Spain
| | | | | | - Tamara Maestre-Orozco
- Internal Medicine Department, University Hospital Marqués de Valdecilla, Santander, Spain
| | - Jose Luis Hernandez
- Internal Medicine Department, University Hospital Marqués de Valdecilla, Santander, Spain.,University of Cantabria, Santander, Spain
| | - Marta Fernandez-Ayala
- Internal Medicine Department, University Hospital Marqués de Valdecilla, Santander, Spain
| |
Collapse
|
33
|
Wu X, Bao L, Hu Z, Yao D, Li F, Li H, Xu X, An Y, Wang X, Cao B, Zhang X. Ficolin A exacerbates severe H1N1 influenza virus infection-induced acute lung immunopathological injury via excessive complement activation. Cell Mol Immunol 2021; 18:2278-2280. [PMID: 34302063 PMCID: PMC8298942 DOI: 10.1038/s41423-021-00737-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xu Wu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Linlin Bao
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS & PUMC), Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infection, Beijing, China
| | - Ziqi Hu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Duoduo Yao
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fengdi Li
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS & PUMC), Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infection, Beijing, China
| | - Hui Li
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| | - Xiaoxue Xu
- Department of Core Facility Center, Capital Medical University, Beijing, China
| | - Yunqing An
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Cao
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
34
|
Bai Y, Cui X, Gao X, Liu C, Lv X, Zheng S. Poly (I: C) inhibits reticuloendothelial virus replication in chicken macrophage-like cells through the activation of toll-like receptor-3 signaling. Mol Immunol 2021; 136:110-117. [PMID: 34098343 DOI: 10.1016/j.molimm.2021.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/16/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Reticuloendothelial virus (REV) is widely found in many domestic poultry areas and results in severe immunosuppression of infected chickens. This increases the susceptibility to other pathogens, which causes economic losses to the poultry industry. The aim of our study was to determine whether polyinosinic-polycytidylic acid [Poly (I: C)] treatment could inhibit REV replication in chicken macrophage-like cell line, HD11. We found that Poly (I: C) treatment could markedly inhibit REV replication in HD11 from 24 to 48 h post infection (hpi). Additionally, Poly (I: C) treatment could switch HD11 from an inactive type into M1-like polarization from 24 to 48 hpi. Furthermore, Poly (I: C) treatment promoted interferon-β secretion from HD11 post REV infection. Moreover, Toll-like receptor-3 (TLR-3) mRNA and protein levels in HD11 treated with Poly (I: C) were markedly increased compared to those of HD11 not treated with Poly (I: C). The above results suggested that Poly (I: C) treatment switches HD11 into M1-like polarization to secret more interferon-β and activate TLR-3 signaling, which contributes to block REV replication. Our findings provide a theoretical reference for further studying the underlying pathogenic mechanism of REV and Poly (I: C) as a potential therapeutic intervention against REV infection.
Collapse
Affiliation(s)
- Yu Bai
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Department of Veterinary Pathophysiology, College of Animal Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinhua Cui
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xueli Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chaonan Liu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoping Lv
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Shimin Zheng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
35
|
Rossi GA, Sacco O, Capizzi A, Mastromarino P. Can Resveratrol-Inhaled Formulations Be Considered Potential Adjunct Treatments for COVID-19? Front Immunol 2021; 12:670955. [PMID: 34093569 PMCID: PMC8172170 DOI: 10.3389/fimmu.2021.670955] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has led to an extraordinary threat to the global healthcare system. This infection disease, named COVID-19, is characterized by a wide clinical spectrum, ranging from asymptomatic or mild upper respiratory tract illness to severe viral pneumonia with fulminant cytokine storm, which leads to respiratory failure. To improve patient outcomes, both the inhibition of viral replication and of the unwarranted excessive inflammatory response are crucial. Since no specific antiviral drug has been proven effective for the treatment of patients and the only upcoming promising agents are monoclonal antibodies, inexpensive, safe, and widely available treatments are urgently needed. A potential anti-inflammatory molecule to be evaluated, which possesses antiviral activities in several experimental models, is the polyphenol resveratrol. This compound has been shown to inhibit SARS-CoV-2 replication in human primary bronchial epithelial cell cultures and to downregulate several pathogenetic mechanisms involved in COVID-19 severity. The use of resveratrol in clinical practice is limited by the low bioavailability following oral administration, due to the pharmacokinetic and metabolic characteristics of the molecule. Therefore, topical administration through inhaled formulations could allow us to achieve sufficiently high concentrations of the compound in the airways, the entry route of SARS-CoV-2.
Collapse
Affiliation(s)
- Giovanni A Rossi
- Department of Pediatrics, Pediatric Pulmonary Disease Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Oliviero Sacco
- Department of Pediatrics, Pediatric Pulmonary Disease Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonino Capizzi
- Department of Pediatrics, Pediatric Pulmonary Disease Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paola Mastromarino
- Department of Public Health and Infectious Diseases, Microbiology Section, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
36
|
Feng Z, Chen Y, Wu Y, Wang J, Zhang H, Zhang W. Kidney involvement in coronavirus-associated diseases (Review). Exp Ther Med 2021; 21:361. [PMID: 33732334 PMCID: PMC7903379 DOI: 10.3892/etm.2021.9792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/05/2021] [Indexed: 01/08/2023] Open
Abstract
Since 2003, coronaviruses have caused multiple global pandemic diseases, including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and coronavirus disease 2019 (COVID-19). Clinical and autopsy findings suggest that the occurrence of kidney injury during infection may negatively affect the clinical outcomes of infected patients. The authoritative model predicts that outbreaks of other novel coronavirus pneumonias will continue to threaten human health in the future. The aim of the present systematic review was to summarize the basic knowledge of coronavirus, coronavirus infection-associated kidney injury and the corresponding therapies, in order to provide new insights for clinicians to better understand the kidney involvement of coronavirus so that more effective therapeutic strategies can be employed against coronavirus infection in the future.
Collapse
Affiliation(s)
- Zhicai Feng
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yuqing Chen
- The Graduate School of Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Yuqin Wu
- Department of Radiology, The First Hospital of Changsha, Changsha, Hunan 410011, P.R. China
| | - Jianwen Wang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
37
|
Ashar HK, Pulavendran S, Rudd JM, Maram P, Achanta M, Chow VTK, Malayer JR, Snider TA, Teluguakula N. Administration of a CXC Chemokine Receptor 2 (CXCR2) Antagonist, SCH527123, Together with Oseltamivir Suppresses NETosis and Protects Mice from Lethal Influenza and Piglets from Swine-Influenza Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:669-685. [PMID: 33453177 PMCID: PMC8027923 DOI: 10.1016/j.ajpath.2020.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Excessive neutrophil influx, their released neutrophil extracellular traps (NETs), and extracellular histones are associated with disease severity in influenza-infected patients. Neutrophil chemokine receptor CXC chemokine receptor 2 (CXCR2) is a critical target for suppressing neutrophilic inflammation. Herein, temporal dynamics of neutrophil activity and NETosis were investigated to determine the optimal timing of treatment with the CXCR2 antagonist, SCH527123 (2-hydroxy-N,N-dimethyl-3-[2-([(R)-1-(5-methyl-furan-2-yl)-propyl]amino)-3,4-dioxo-cyclobut-1-enylamino]-benzamide), and its efficacy together with antiviral agent, oseltamivir, was tested in murine and piglet influenza-pneumonia models. SCH527123 plus oseltamivir markedly improved survival of mice infected with lethal influenza, and diminished lung pathology in swine-influenza-infected piglets. Mechanistically, addition of SCH527123 in the combination treatment attenuated neutrophil influx, NETosis, in both mice and piglets. Furthermore, neutrophils isolated from influenza-infected mice showed greater susceptibility to NETotic death when stimulated with a CXCR2 ligand, IL-8. In addition, CXCR2 stimulation induced nuclear translocation of neutrophil elastase, and enhanced citrullination of histones that triggers chromatin decondensation during NET formation. Studies on temporal dynamics of neutrophils and NETs during influenza thus provide important insights into the optimal timing of CXCR2 antagonist treatment for attenuating neutrophil-mediated lung pathology. These findings reveal that pharmacologic treatment with CXCR2 antagonist together with an antiviral agent could significantly ameliorate morbidity and mortality in virulent and sublethal influenza infections.
Collapse
Affiliation(s)
- Harshini K Ashar
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Sivasami Pulavendran
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Jennifer M Rudd
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Prasanthi Maram
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Mallika Achanta
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Vincent T K Chow
- National University Health System Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, School of Medicine, National University of Singapore, Singapore
| | - Jerry R Malayer
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Timothy A Snider
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | | |
Collapse
|
38
|
Beigel JH, Hayden FG. Influenza Therapeutics in Clinical Practice-Challenges and Recent Advances. Cold Spring Harb Perspect Med 2021; 11:a038463. [PMID: 32041763 PMCID: PMC8015700 DOI: 10.1101/cshperspect.a038463] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last few years, several new direct-acting influenza antivirals have been licensed, and others have advanced in clinical development. The increasing diversity of antiviral classes should allow an adequate public health response should a resistant virus to one agent or class widely circulate. One new antiviral, baloxavir marboxil, has been approved in the United States for treatment of influenza in those at high risk of developing influenza-related complications. Except for intravenous zanamivir in European Union countries, no antivirals have been licensed specifically for the indication of severe influenza or hospitalized influenza. This review addresses recent clinical developments involving selected polymerase inhibitors, neuraminidase inhibitors, antibody-based therapeutics, and host-directed therapies. There are many knowledge gaps for most of these agents because some data are not published and multiple pivotal studies are in progress at present. This review also considers important clinical research issues, including regulatory pathways, study designs, endpoints, and target populations encountered during the clinical development of novel therapeutics.
Collapse
Affiliation(s)
- John H Beigel
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20892-9826, USA
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
39
|
Patocka J, Kuca K, Oleksak P, Nepovimova E, Valis M, Novotny M, Klimova B. Rapamycin: Drug Repurposing in SARS-CoV-2 Infection. Pharmaceuticals (Basel) 2021; 14:ph14030217. [PMID: 33807743 PMCID: PMC8001969 DOI: 10.3390/ph14030217] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Since December 2019, SARS-CoV-2 (COVID-19) has been a worldwide pandemic with enormous consequences for human health and the world economy. Remdesivir is the only drug in the world that has been approved for the treating of COVID-19. This drug, as well as vaccination, still has uncertain effectiveness. Drug repurposing could be a promising strategy how to find an appropriate molecule: rapamycin could be one of them. The authors performed a systematic literature review of available studies on the research describing rapamycin in association with COVID-19 infection. Only peer-reviewed English-written articles from the world’s acknowledged databases Web of Science, PubMed, Springer and Scopus were involved. Five articles were eventually included in the final analysis. The findings indicate that rapamycin seems to be a suitable candidate for drug repurposing. In addition, it may represent a better candidate for COVID-19 therapy than commonly tested antivirals. It is also likely that its efficiency will not be reduced by the high rate of viral RNA mutation.
Collapse
Affiliation(s)
- Jiri Patocka
- Institute of Radiology, Toxicology and Civil Protection, Faculty of Health and Social Studies, University of South Bohemia Ceske Budejovice, 37005 Ceske Budejovice, Czech Republic;
- Biomedical Research Centre, University Hospital, 50003 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital, 50003 Hradec Kralove, Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (P.O.); (E.N.)
- Correspondence: ; Tel.: +420-603-289-166
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (P.O.); (E.N.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (P.O.); (E.N.)
| | - Martin Valis
- Department of Neurology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (M.V.); (M.N.); (B.K.)
| | - Michal Novotny
- Department of Neurology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (M.V.); (M.N.); (B.K.)
| | - Blanka Klimova
- Department of Neurology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (M.V.); (M.N.); (B.K.)
| |
Collapse
|
40
|
Zhang J, Zhang W, Ren L, He Y, Mei Z, Feng J, Shi T, Zhang H, Song Z, Jie Z. Astragaloside IV attenuates IL-1β secretion by enhancing autophagy in H1N1 infection. FEMS Microbiol Lett 2021; 367:5766227. [PMID: 32108899 DOI: 10.1093/femsle/fnaa007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 01/11/2020] [Indexed: 12/12/2022] Open
Abstract
Excessive secretion of inflammatory factors (cytokine storm) plays a significant role in H1N1-induced acute pneumonia, and autophagy acts as a cell-intrinsic mechanism to regulate inflammation. Astragaloside IV (AS-IV), originating from the astragalus root, possesses multiple pharmacological activities, such as anti-inflammation. However, the influences of AS-IV on H1N1-induced autophagy and inflammation have remained elusive. It has been reported that H1N1 infection leads to the accumulation of autophagosomes but obstructs autophagosomes incorporating into lysosomes, whereas the present study showed that AS-IV enhanced autophagy activation in H1N1 infection. Furthermore, we found that AS-IV promoted H1N1-triggered formation of autophagosomes and autolysosomes. Additionally, it was noted that AS-IV did not affect viral replication, mRNA level of interleukin-1 beta (IL-1β) and pro-IL-1β protein level, but significantly decreased secretion of IL-1β, and chloroquine (CQ, as an inhibitor of autophagy) increased secretion of IL-1β in H1N1 infection. In conclusion, AS-IV stimulates the formation of autophagosomes and the fusion of autophagosomes and lysosomes in H1N1 infection and may lead to decreased IL-1β secretion.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Wanju Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lehao Ren
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanchao He
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Zhoufang Mei
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Jingjing Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Huiying Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhigang Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| |
Collapse
|
41
|
Bai Y, Tao X. Comparison of COVID-19 and influenza characteristics. J Zhejiang Univ Sci B 2021; 22:87-98. [PMID: 33615750 PMCID: PMC7885750 DOI: 10.1631/jzus.b2000479] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
The emergence of coronavirus disease 2019 (COVID-19) not only poses a serious threat to the health of people worldwide but also affects the global economy. The outbreak of COVID-19 began in December 2019, at the same time as the influenza season. However, as the treatments and prognoses of COVID-19 and influenza are different, it is important to accurately differentiate these two different respiratory tract infections on the basis of their respective early-stage characteristics. We reviewed official documents and news released by the National Health Commission of the People's Republic of China, the Chinese Center for Disease Control and Prevention (China CDC), the United States CDC, and the World Health Organization (WHO), and we also searched the PubMed, Web of Science, Excerpta Medica database (Embase), China National Knowledge Infrastructure (CNKI), Wanfang, preprinted bioRxiv and medRxiv databases for documents and guidelines from earliest available date up until October 3rd, 2020. We obtained the latest information about COVID-19 and influenza and summarized and compared their biological characteristics, epidemiology, clinical manifestations, pathological mechanisms, treatments, and prognostic factors. We show that although COVID-19 and influenza are different in many ways, there are numerous similarities; thus, in addition to using nucleic acid-based polymerase chain reaction (PCR) and antibody-based approaches, clinicians and epidemiologists should distinguish between the two using their respective characteristics in early stages. We should utilize experiences from other epidemics to provide additional guidance for the treatment and prevention of COVID-19.
Collapse
Affiliation(s)
- Yu Bai
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaonan Tao
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
42
|
Antiviral Activity of 3D, a Butene Lactone Derivative Against Influenza A Virus In Vitro and In Vivo. Viruses 2021; 13:v13020278. [PMID: 33670217 PMCID: PMC7916974 DOI: 10.3390/v13020278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza A virus is a highly variable and contagious respiratory pathogen that can cause annual epidemics and it poses an enormous threat to public health. Therefore, there is an urgent need for a new generation of antiviral drugs to combat the emergence of drug-resistant strains of the influenza virus. A novel series of butene lactone derivatives were screened and the compound 3D was selected, as it exhibited in vitro potential antiviral activity against A/Weiss/43 H1N1 virus with low toxicity. In addition, 3D dose-dependently inhibited the viral replication, expression of viral mRNA and viral proteins. 3D exerted a suppressive effect on A/Virginia/ATCC2/2009 H1N1 and A/California/2/2014 H3N2 in vitro. The time-of-addition analysis indicated that 3D suppressed H1N1 in the early stage of its life cycle. A/Weiss/43 H1N1-induced apoptosis in A549 cells was reduced by 3D via the mitochondrial apoptosis pathway. 3D could decrease the production of H1N1-induced pro-inflammatory cytokines that are induced by H1N1 in vitro and in vivo. The administration of 3D reduced lung lesions and virus load in vivo. These results suggest that 3D, which is a butene lactone derivative, is a promising agent for the treatment of influenza A virus infection.
Collapse
|
43
|
Victoni T, Barreto E, Lagente V, Carvalho VF. Oxidative Imbalance as a Crucial Factor in Inflammatory Lung Diseases: Could Antioxidant Treatment Constitute a New Therapeutic Strategy? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6646923. [PMID: 33628371 PMCID: PMC7889360 DOI: 10.1155/2021/6646923] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Inflammatory lung disease results in a high global burden of death and disability. There are no effective treatments for the most severe forms of many inflammatory lung diseases, such as chronic obstructive pulmonary disease, emphysema, corticosteroid-resistant asthma, and coronavirus disease 2019; hence, new treatment options are required. Here, we review the role of oxidative imbalance in the development of difficult-to-treat inflammatory lung diseases. The inflammation-induced overproduction of reactive oxygen species (ROS) means that endogenous antioxidants may not be sufficient to prevent oxidative damage, resulting in an oxidative imbalance in the lung. In turn, intracellular signaling events trigger the production of proinflammatory mediators that perpetuate and aggravate the inflammatory response and may lead to tissue damage. The production of high levels of ROS in inflammatory lung diseases can induce the phosphorylation of mitogen-activated protein kinases, the inactivation of phosphoinositide 3-kinase (PI3K) signaling and histone deacetylase 2, a decrease in glucocorticoid binding to its receptor, and thus resistance to glucocorticoid treatment. Hence, antioxidant treatment might be a therapeutic option for inflammatory lung diseases. Preclinical studies have shown that antioxidants (alone or combined with anti-inflammatory drugs) are effective in the treatment of inflammatory lung diseases, although the clinical evidence of efficacy is weaker. Despite the high level of evidence for the efficacy of antioxidants in the treatment of inflammatory lung diseases, the discovery and clinical investigation of safer, more efficacious compounds are now a priority.
Collapse
Affiliation(s)
- Tatiana Victoni
- University of Lyon, VetAgro Sup, APCSe, Marcy l'Étoile, France
| | - Emiliano Barreto
- Laboratory of Cell Biology, Federal University of Alagoas, Maceió, AL 57072-900, Brazil
| | - Vincent Lagente
- NuMeCan Institute (Nutrition, Metabolism and Cancer), INSERM, INRAE, CHU Rennes, Univ Rennes, Rennes, France
| | - Vinicius F. Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21045-900, Brazil
| |
Collapse
|
44
|
Bondy SC, Wu M, Prasad KN. Attenuation of acute and chronic inflammation using compounds derived from plants. Exp Biol Med (Maywood) 2021; 246:406-413. [PMID: 33023332 PMCID: PMC7885045 DOI: 10.1177/1535370220960690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The appearance of excessive inflammatory activity is associated with onset of many disease states. Such non-productive responses are often the basis of the mortality consequent to incurring numerous disorders. The current outbreak of coronavirus disease 2019 caused by the virus "severe acute respiratory syndrome coronavirus 2" is a striking reflection of the inadequacy of current medical science to adequately address this issue. The usefulness of a range of materials of botanical origin in the attenuation of both chronic and acute inflammatory responses to various disease stressors is described. The properties of preparations of plant-based origin often parallel those of synthesized pharmacologics, but differ from them in some key respects. These differences can lead to more traditional preparations having distinct therapeutic advantages but also a number of specific shortcomings. The strengths and weaknesses of these materials are objectively contrasted with that of a more orthodox pharmacological approach. Each of these emphases in style has specific advantages and they should not be considered as competitors, but rather as accomplices in combating adverse states involving derangement of immune function.
Collapse
Affiliation(s)
- Stephen C Bondy
- Center for Occupational and Environmental Health, University of California, Irvine, CA 92697, USA
| | - Meixia Wu
- Center for Occupational and Environmental Health, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
45
|
Omarjee L, Perrot F, Meilhac O, Mahe G, Bousquet G, Janin A. Immunometabolism at the cornerstone of inflammaging, immunosenescence, and autoimmunity in COVID-19. Aging (Albany NY) 2020; 12:26263-26278. [PMID: 33361522 PMCID: PMC7803547 DOI: 10.18632/aging.202422] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/10/2020] [Indexed: 01/10/2023]
Abstract
Inflammaging constitutes the common factor for comorbidities predisposing to severe COVID-19. Inflammaging leads to T-cell senescence, and immunosenescence is linked to autoimmune manifestations in COVID-19. As in SLE, metabolic dysregulation occurs in T-cells. Targeting this T-cell dysfunction opens the field for new therapeutic strategies to prevent severe COVID-19. Immunometabolism-mediated approaches such as rapamycin, metformin and dimethyl fumarate, may optimize COVID-19 treatment of the elderly and patients at risk for severe disease.
Collapse
Affiliation(s)
- Loukman Omarjee
- Vascular Medicine Department, CHU Rennes, French National Health and Medical Research (Inserm), Clinical Investigation Center (CIC) 1414, University of Rennes 1, Rennes F-35033, France
- NuMeCan Institute, Exogenous and Endogenous Stress and Pathological Responses in Hepato-Gastrointestinal Diseases (EXPRES) Team, French National Health and Medical Research (Inserm) U1241, University of Rennes 1, Rennes F-35033, France
| | | | - Olivier Meilhac
- University of Reunion Island, INSERM, UMR 1188 Reunion, Indian Ocean Diabetic Atherothrombosis Therapies (DéTROI), CHU de La Réunion, Saint-Denis de La Réunion F-97400, France
| | - Guillaume Mahe
- Vascular Medicine Department, CHU Rennes, French National Health and Medical Research (Inserm), Clinical Investigation Center (CIC) 1414, University of Rennes 1, Rennes F-35033, France
| | - Guilhem Bousquet
- AP-HP Hôpital Avicenne, Oncologie Médicale, Bobigny F-93000, France
- Sorbonne University Paris Nord, INSERM, U942, Cardiovascular Markers in Stressed Conditions, MASCOT, Bobigny F-93000, France
| | - Anne Janin
- Sorbonne University Paris Nord, INSERM, U942, Cardiovascular Markers in Stressed Conditions, MASCOT, Bobigny F-93000, France
- Department of Pathology, Paris Diderot University, Sorbonne Paris Cité, Paris F-75010, France
| |
Collapse
|
46
|
Bai Y, Lian P, Li J, Zhang Z, Qiao J. The active GLP-1 analogue liraglutide alleviates H9N2 influenza virus-induced acute lung injury in mice. Microb Pathog 2020; 150:104645. [PMID: 33285220 DOI: 10.1016/j.micpath.2020.104645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 02/08/2023]
Abstract
Influenza virus is responsible for significant morbidity and mortality worldwide. Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is the major cause of death in influenza virus infected patients. Recent studies indicated that active glucagon like peptide-1 (GLP-1) encoded by glucagon (GCG) gene exerts anti-inflammatory functions. The aim of this study was to determine the potential role of active GLP-1 in H9N2 influenza virus-induced ALI/ARDS in mice. First, we uncovered that GCG mRNA expression levels and GCG precursor protein levels were significantly increased, but total GLP-1 and active GLP-1 levels were decreased in the lungs of H9N2-infected mice. Next, liraglutide, an active GLP-1 analogue, was used to treat infected mice and to observe its effects on H9N2 virus-induced ALI. Liraglutide treatment ameliorated the declined body weight, decreased food intake and mortality observed in infected mice. It also alleviated the severity of lung injury, including lowering lung index, decreasing inflammatory cell infiltration and lowing total protein levels in bronchoalveolar lavage fluid (BALF). In addition, liraglutide did not influence viral titers in infected lungs, but decreased the levels of interleukin-1β, interleukin-6 and tumor necrosis factor-α in BALF. These results indicated that liraglutide alleviated H9N2 virus-induced ALI in mice most likely due to lower levels of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Yu Bai
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pengjing Lian
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingyun Li
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zihui Zhang
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Qiao
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
47
|
Duanmu N, He Z, Huang X, Fu L, Wang N. Oseltamivir in the treatment of severe type-A H1N1 flu and autoregressive integrated moving average mathematical model analysis of epidemiology. RESULTS IN PHYSICS 2020; 19:103617. [DOI: 10.1016/j.rinp.2020.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
48
|
Yu H, Li C, Wang X, Duan J, Yang N, Xie L, Yuan Y, Li S, Bi C, Yang B, Li Y. Techniques and Strategies for Potential Protein Target Discovery and Active Pharmaceutical Molecule Screening in a Pandemic. J Proteome Res 2020; 19:4242-4258. [PMID: 32957788 PMCID: PMC7640955 DOI: 10.1021/acs.jproteome.0c00372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 12/12/2022]
Abstract
Viruses remain a major challenge in the fierce fight against diseases. There have been many pandemics caused by various viruses throughout the world over the years. Recently, the global outbreak of COVID-19 has had a catastrophic impact on human health and the world economy. Antiviral drug treatment has become another essential means to overcome pandemics in addition to vaccine development. How to quickly find effective drugs that can control the development of a pandemic is a hot issue that still needs to be resolved in medical research today. To accelerate the development of drugs, it is necessary to target the key target proteins in the development of the pandemic, screen active molecules, and develop reliable methods for the identification and characterization of target proteins based on the active ingredients of drugs. This article discusses key target proteins and their biological mechanisms in the progression of COVID-19 and other major epidemics. We propose a model based on these foundations, which includes identifying potential core targets, screening potential active molecules of core targets, and verifying active molecules. This article summarizes the related innovative technologies and methods. We hope to provide a reference for the screening of drugs related to pandemics and the development of new drugs.
Collapse
Affiliation(s)
| | | | | | - Jingyi Duan
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Na Yang
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Lijuan Xie
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Yu Yuan
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Shanze Li
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Chenghao Bi
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Bin Yang
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Yubo Li
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| |
Collapse
|
49
|
Ginsenoside Rg1 Alleviates Podocyte Injury Induced by Hyperlipidemia via Targeting the mTOR/NF- κB/NLRP3 Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2735714. [PMID: 33133213 PMCID: PMC7568787 DOI: 10.1155/2020/2735714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/03/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
Background Podocyte injury plays an important role in diabetic nephropathy (DN). The aim of this study was to determine the potential therapeutic effects of the ginsenoside Rg1 on hyperlipidemia-stressed podocytes and elucidate the underlying mechanisms. Methods In vitro and in vivo models of DN were established as previously described, and the expression levels of relevant markers were analyzed by Western blotting, real-time Polymerase Chain Reaction (PCR), immunofluorescence, and immunohistochemistry. Results Ginsenoside Rg1 alleviated pyroptosis in podocytes cultured under hyperlipidemic conditions, as well as in the renal tissues of diabetic rats, and downregulated the mammalian target of rapamycin (mTOR)/NF-κB pathway. In addition, Rg1 also inhibited hyperlipidemia-induced NLRP3 inflammasome in the podocytes, which was abrogated by the mTOR activator L-leucine (LEU). The antipyroptotic effects of Rg1 manifested as improved renal function in the DN rats. Conclusion Ginsenoside Rg1 protects podocytes from hyperlipidemia-induced damage by inhibiting pyroptosis through the mTOR/NF-κB/NLRP3 axis, indicating a potential therapeutic function in DN.
Collapse
|
50
|
de Rivero Vaccari JC, Dietrich WD, Keane RW, de Rivero Vaccari JP. The Inflammasome in Times of COVID-19. Front Immunol 2020; 11:583373. [PMID: 33149733 PMCID: PMC7580384 DOI: 10.3389/fimmu.2020.583373] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses (CoVs) are members of the genus Betacoronavirus and the Coronaviridiae family responsible for infections such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and more recently, coronavirus disease-2019 (COVID-19). CoV infections present mainly as respiratory infections that lead to acute respiratory distress syndrome (ARDS). However, CoVs, such as COVID-19, also present as a hyperactivation of the inflammatory response that results in increased production of inflammatory cytokines such as interleukin (IL)-1β and its downstream molecule IL-6. The inflammasome is a multiprotein complex involved in the activation of caspase-1 that leads to the activation of IL-1β in a variety of diseases and infections such as CoV infection and in different tissues such as lungs, brain, intestines and kidneys, all of which have been shown to be affected in COVID-19 patients. Here we review the literature regarding the mechanism of inflammasome activation by CoV infection, the role of the inflammasome in ARDS, ventilator-induced lung injury (VILI), and Disseminated Intravascular Coagulation (DIC) as well as the potential mechanism by which the inflammasome may contribute to the damaging effects of inflammation in the cardiac, renal, digestive, and nervous systems in COVID-19 patients.
Collapse
Affiliation(s)
| | - W Dalton Dietrich
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Robert W Keane
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States.,Center for Cognitive Neuroscience and Aging University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|