1
|
Gao X, Yu M, Huang T, Ge Y, Gao J. Succinate contributes to Staphylococcus aureus skin infection by reactive oxygen species-hypoxic inducible factor 1α-glycolysis axis. Microb Pathog 2025; 204:107529. [PMID: 40185171 DOI: 10.1016/j.micpath.2025.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Skin and soft tissue infections (SSTIs) caused by Staphylococcus aureus (S. aureus), one of the most prevalent and refractory diseases in humans and animals, are potentially involved in the metabolic reprogramming of pathogens and hosts. This study identified succinate as a danger signal. Succinate elevates mitochondrial ROS (mROS) levels, leading to higher HIF1α expression and glycolysis. These changes ultimately drive inflammation. Moreover, as a metabolite shared by pathogens and hosts, succinate facilitated metabolic crosstalk during infection. Through the deletion of S. aureus sucD, our results demonstrated that succinate derived from S. aureus exacerbated infection-induced inflammation. Additionally, our observations revealed consistently high expression levels of S. aureus fumC, a downstream enzyme in succinate metabolism, during skin infection, which maintained elevated glycolysis levels through the depletion of fumarate in the infectious environment. Overall, our findings elucidated the mechanism by which succinate regulates glycolysis via the mROS-HIF1α axis and provided support for targeting bacterial metabolism as a mechanism to prevent bacterial metabolic reprogramming and the development of skin infection.
Collapse
Affiliation(s)
- Xing Gao
- Department of Anesthesiology, Northern Jiangsu People's Hospital, Yangzhou, 225009, China
| | - Min Yu
- Department of Anesthesiology, Northern Jiangsu People's Hospital, Yangzhou, 225009, China
| | - Tianfeng Huang
- Department of Anesthesiology, Northern Jiangsu People's Hospital, Yangzhou, 225009, China
| | - Yali Ge
- Department of Anesthesiology, Northern Jiangsu People's Hospital, Yangzhou, 225009, China
| | - Ju Gao
- Department of Anesthesiology, Northern Jiangsu People's Hospital, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Banerjee D, Menasalvas J, Chen Y, Gin JW, Baidoo EEK, Petzold CJ, Eng T, Mukhopadhyay A. Addressing genome scale design tradeoffs in Pseudomonas putida for bioconversion of an aromatic carbon source. NPJ Syst Biol Appl 2025; 11:8. [PMID: 39809795 PMCID: PMC11732973 DOI: 10.1038/s41540-024-00480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Genome-scale metabolic models (GSMM) are commonly used to identify gene deletion sets that result in growth coupling and pairing product formation with substrate utilization and can improve strain performance beyond levels typically accessible using traditional strain engineering approaches. However, sustainable feedstocks pose a challenge due to incomplete high-resolution metabolic data for non-canonical carbon sources required to curate GSMM and identify implementable designs. Here we address a four-gene deletion design in the Pseudomonas putida KT2440 strain for the lignin-derived non-sugar carbon source, p-coumarate (p-CA), that proved challenging to implement. We examine the performance of the fully implemented design for p-coumarate to glutamine, a useful biomanufacturing intermediate. In this study glutamine is then converted to indigoidine, an alternative sustainable pigment and a model heterologous product that is commonly used to colorimetrically quantify glutamine concentration. Through proteomics, promoter-variation, and growth characterization of a fully implemented gene deletion design, we provide evidence that aromatic catabolism in the completed design is rate-limited by fumarase hydratase (FUM) enzyme activity in the citrate cycle and requires careful optimization of another fumarate hydratase protein (PP_0897) expression to achieve growth and production. A double sensitivity analysis also confirmed a strict requirement for fumarate hydratase activity in the strain where all genes in the growth coupling design have been implemented. Metabolic cross-feeding experiments were used to examine the impact of complete removal of the fumarase hydratase reaction and revealed an unanticipated nutrient requirement, suggesting additional functions for this enzyme. While a complete implementation of the design was achieved, this study highlights the challenge of completely inactivating metabolic reactions encoded by under-characterized proteins, especially in the context of multi-gene edits.
Collapse
Affiliation(s)
- Deepanwita Banerjee
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Javier Menasalvas
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yan Chen
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer W Gin
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Edward E K Baidoo
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thomas Eng
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Aindrila Mukhopadhyay
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Coco LB, Freel Meyers CL. An activity-based probe for antimicrobial target DXP synthase, a thiamin diphosphate-dependent enzyme. FRONTIERS IN CHEMICAL BIOLOGY 2024; 3:1389620. [PMID: 39544285 PMCID: PMC11562961 DOI: 10.3389/fchbi.2024.1389620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
This work reports an alkyl acetylphosphonate (alkylAP) activity-based probe (ABP) for 1-deoxy-d-xylulose 5-phosphate synthase DXPS, a promising antimicrobial target. This essential thiamin diphosphate (ThDP)-dependent enzyme operates at a branchpoint in bacterial central metabolism and is believed to play key roles in pathogen adaptation during infection. How different bacterial pathogens harness DXPS activity to adapt and survive within host environments remains incompletely understood, and tools for probing DXPS function in different contexts of infection are lacking. Here, we have developed alkylAP-based ABP 1, designed to react with the ThDP cofactor on active DXPS to form a stable C2α-phosphonolactylThDP adduct which subsequently crosslinks to the DXPS active site upon photoactivation. ABP 1 displays low micromolar potency against DXPS and dose-dependent labeling of DXPS that is blocked by alkylAP-based inhibitors. The probe displays selectivity for DXPS over ThDP-dependent enzymes and is capable of detecting active DXPS in a complex proteome. These studies represent an important advance toward development of tools to probe DXPS function in different contexts of bacterial infection, and for drug discovery efforts on this target.
Collapse
Affiliation(s)
- Lauren B Coco
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Shea AE, Forsyth VS, Stocki JA, Mitchell TJ, Frick-Cheng AE, Smith SN, Hardy SL, Mobley HLT. Emerging roles for ABC transporters as virulence factors in uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 2024; 121:e2310693121. [PMID: 38607934 PMCID: PMC11032443 DOI: 10.1073/pnas.2310693121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/07/2024] [Indexed: 04/14/2024] Open
Abstract
Urinary tract infections (UTI) account for a substantial financial burden globally. Over 75% of UTIs are caused by uropathogenic Escherichia coli (UPEC), which have demonstrated an extraordinarily rapid growth rate in vivo. This rapid growth rate appears paradoxical given that urine and the human urinary tract are relatively nutrient-restricted. Thus, we lack a fundamental understanding of how uropathogens propel growth in the host to fuel pathogenesis. Here, we used large in silico, in vivo, and in vitro screens to better understand the role of UPEC transport mechanisms and their contributions to uropathogenesis. In silico analysis of annotated transport systems indicated that the ATP-binding cassette (ABC) family of transporters was most conserved among uropathogenic bacterial species, suggesting their importance. Consistent with in silico predictions, we determined that the ABC family contributed significantly to fitness and virulence in the urinary tract: these were overrepresented as fitness factors in vivo (37.2%), liquid media (52.3%), and organ agar (66.2%). We characterized 12 transport systems that were most frequently defective in screening experiments by generating in-frame deletions. These mutant constructs were tested in urovirulence phenotypic assays and produced differences in motility and growth rate. However, deletion of multiple transport systems was required to achieve substantial fitness defects in the cochallenge murine model. This is likely due to genetic compensation among transport systems, highlighting the centrality of ABC transporters in these organisms. Therefore, these nutrient uptake systems play a concerted, critical role in pathogenesis and are broadly applicable candidate targets for therapeutic intervention.
Collapse
Affiliation(s)
- Allyson E. Shea
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Valerie S. Forsyth
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Jolie A. Stocki
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Taylor J. Mitchell
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Arwen E. Frick-Cheng
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Sicily L. Hardy
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL36688
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| |
Collapse
|
5
|
Chen EC, Shapiro RL, Pal A, Bartee D, DeLong K, Carter DM, Serrano-Diaz E, Rais R, Ensign LM, Freel Meyers CL. Investigating inhibitors of 1-deoxy-d-xylulose 5-phosphate synthase in a mouse model of UTI. Microbiol Spectr 2024; 12:e0389623. [PMID: 38376151 PMCID: PMC10986598 DOI: 10.1128/spectrum.03896-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
The rising rate of antimicrobial resistance continues to threaten global public health. Further hastening antimicrobial resistance is the lack of new antibiotics against new targets. The bacterial enzyme, 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), is thought to play important roles in central metabolism, including processes required for pathogen adaptation to fluctuating host environments. Thus, impairing DXPS function represents a possible new antibacterial strategy. We previously investigated a DXPS-dependent metabolic adaptation as a potential target in uropathogenic Escherichia coli (UPEC) associated with urinary tract infection (UTI), using the DXPS-selective inhibitor butyl acetylphosphonate (BAP). However, investigations of DXPS inhibitors in vivo have not been conducted. The goal of the present study is to advance DXPS inhibitors as in vivo probes and assess the potential of inhibiting DXPS as a strategy to prevent UTI in vivo. We show that BAP was well-tolerated at high doses in mice and displayed a favorable pharmacokinetic profile for studies in a mouse model of UTI. Further, an alkyl acetylphosphonate prodrug (homopropargyl acetylphosphonate, pro-hpAP) was significantly more potent against UPEC in urine culture and exhibited good exposure in the urinary tract after systemic dosing. Prophylactic treatment with either BAP or pro-hpAP led to a partial protective effect against UTI, with the prodrug displaying improved efficacy compared to BAP. Overall, our results highlight the potential for DXPS inhibitors as in vivo probes and establish preliminary evidence that inhibiting DXPS impairs UPEC colonization in a mouse model of UTI.IMPORTANCENew antibiotics against new targets are needed to prevent an antimicrobial resistance crisis. Unfortunately, antibiotic discovery has slowed, and many newly FDA-approved antibiotics do not inhibit new targets. Alkyl acetylphosphonates (alkyl APs), which inhibit the enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), represent a new possible class of compounds as there are no FDA-approved DXPS inhibitors. To our knowledge, this is the first study demonstrating the in vivo safety, pharmacokinetics, and efficacy of alkyl APs in a urinary tract infection mouse model.
Collapse
Affiliation(s)
- Eric C. Chen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rachel L. Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Arindom Pal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Bartee
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin DeLong
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Davell M. Carter
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erika Serrano-Diaz
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rana Rais
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laura M. Ensign
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Bouillet S, Bauer TS, Gottesman S. RpoS and the bacterial general stress response. Microbiol Mol Biol Rev 2024; 88:e0015122. [PMID: 38411096 PMCID: PMC10966952 DOI: 10.1128/mmbr.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SUMMARYThe general stress response (GSR) is a widespread strategy developed by bacteria to adapt and respond to their changing environments. The GSR is induced by one or multiple simultaneous stresses, as well as during entry into stationary phase and leads to a global response that protects cells against multiple stresses. The alternative sigma factor RpoS is the central GSR regulator in E. coli and conserved in most γ-proteobacteria. In E. coli, RpoS is induced under conditions of nutrient deprivation and other stresses, primarily via the activation of RpoS translation and inhibition of RpoS proteolysis. This review includes recent advances in our understanding of how stresses lead to RpoS induction and a summary of the recent studies attempting to define RpoS-dependent genes and pathways.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Taran S. Bauer
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| |
Collapse
|
7
|
McQuail J, Matera G, Gräfenhan T, Bischler T, Haberkant P, Stein F, Vogel J, Wigneshweraraj S. Global Hfq-mediated RNA interactome of nitrogen starved Escherichia coli uncovers a conserved post-transcriptional regulatory axis required for optimal growth recovery. Nucleic Acids Res 2024; 52:2323-2339. [PMID: 38142457 PMCID: PMC10954441 DOI: 10.1093/nar/gkad1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023] Open
Abstract
The RNA binding protein Hfq has a central role in the post-transcription control of gene expression in many bacteria. Numerous studies have mapped the transcriptome-wide Hfq-mediated RNA-RNA interactions in growing bacteria or bacteria that have entered short-term growth-arrest. To what extent post-transcriptional regulation underpins gene expression in growth-arrested bacteria remains unknown. Here, we used nitrogen (N) starvation as a model to study the Hfq-mediated RNA interactome as Escherichia coli enter, experience, and exit long-term growth arrest. We observe that the Hfq-mediated RNA interactome undergoes extensive changes during N starvation, with the conserved SdsR sRNA making the most interactions with different mRNA targets exclusively in long-term N-starved E. coli. Taking a proteomics approach, we reveal that in growth-arrested cells SdsR influences gene expression far beyond its direct mRNA targets. We demonstrate that the absence of SdsR significantly compromises the ability of the mutant bacteria to recover growth competitively from the long-term N-starved state and uncover a conserved post-transcriptional regulatory axis which underpins this process.
Collapse
Affiliation(s)
- Josh McQuail
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Faculty of Medicine, Imperial College London, UK
| | - Gianluca Matera
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Tom Gräfenhan
- Core Unit Systems Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Per Haberkant
- Proteomics Core Facility, EMBL Heidelberg, D-69117,Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, D-69117,Heidelberg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
- Institute for Molecular Infection Biology (IMIB), Faculty of Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Sivaramesh Wigneshweraraj
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
8
|
Dashti AA, Vali L, Shamsah S, Jadaon M, ElShazly S. Genomic Characteristics of an Extensive-Drug-Resistant Clinical Escherichia coli O99 H30 ST38 Recovered from Wound. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e143910. [PMID: 39005734 PMCID: PMC11246641 DOI: 10.5812/ijpr-143910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 07/16/2024]
Abstract
Background Antibiotic-resistant Escherichia coli is one of the major opportunistic pathogens that cause hospital-acquired infections worldwide. These infections include catheter-associated urinary tract infections (UTIs), ventilator-associated pneumonia, surgical wound infections, and bacteraemia. Objectives To understand the mechanisms of resistance and prevent its spread, we studied E. coli C91 (ST38), a clinical outbreak strain that was extensively drug-resistant. The strain was isolated from an intensive care unit (ICU) in one of Kuwait's largest hospitals from a patient with UTI. Methods This study used whole-genome sequencing (Illumina, MiSeq) to identify the strain's multi-locus sequence type, resistance genes (ResFinder), and virulence factors. This study also measured the minimum inhibitory concentrations (MIC) of a panel of antibiotics against this isolate. Results The analysis showed that E. coli C-91 was identified as O99 H30 ST38 and was resistant to all antibiotics tested, including colistin (MIC > 32 mg/L). It also showed intermediate resistance to imipenem and meropenem (MIC = 8 mg/L). Genome analysis revealed various acquired resistance genes, including mcr-1, bla CTX-M-14, bla CTX-M-15, and bla OXA1. However, we did not detect bla NDM or bla VIM. There were also several point mutations resulting in amino acid changes in chromosomal genes: gyrA, parC, pmrB, and ampC promoter. Additionally, we detected several multidrug efflux pumps, including the multidrug efflux pump mdf(A). Eleven prophage regions were identified, and PHAGE_Entero_SfI_NC was detected to contain ISEc46 and ethidium multidrug resistance protein E (emrE), a small multidrug resistance (SMR) protein family. Finally, there was an abundance of virulence factors in this isolate, including fimbriae, biofilm, and capsule formation genes. Conclusions This isolate has a diverse portfolio of antimicrobial resistance and virulence genes and belongs to ST38 O99 H30, posing a serious challenge to treating infected patients in clinical settings.
Collapse
Affiliation(s)
- Ali A Dashti
- Department of Medical Laboratory Sciences, Health Sciences Center, Faculty of Allied Health Sciences, Kuwait University, Kuwait
| | - Leila Vali
- School of Education and Applied Science, University of Gloucestershire, Cheltenham, UK
| | - Sara Shamsah
- Department of Medical Laboratory Sciences, Health Sciences Center, Faculty of Allied Health Sciences, Kuwait University, Kuwait
| | - Mehrez Jadaon
- Department of Medical Laboratory Sciences, Health Sciences Center, Faculty of Allied Health Sciences, Kuwait University, Kuwait
| | | |
Collapse
|
9
|
Zhou Y, Cheng Y, Ma T, Wang J, Li S, Wang J, Han L, Hou X, Ma X, Jiang S, Li P, Lv J, Han B, Da R. Transcriptomic and phenotype analysis revealed the role of rpoS in stress resistance and virulence of a novel ST3355 ESBL-producing hypervirulent Klebsiella pneumoniae isolate. Front Cell Infect Microbiol 2023; 13:1259472. [PMID: 37937207 PMCID: PMC10627032 DOI: 10.3389/fcimb.2023.1259472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/29/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction An extended-spectrum beta-lactamase (ESBL)-hypervirulent Klebsiella pneumoniae (HvKP) strain HKE9 was isolated from the blood in an outpatient. Methods The effect of the global regulatory factor RpoS on antimicrobial resistance, pathogenicity, and environmental adaptability was elucidated. Results HKE9 is a novel ST3355 (K20/O2a) hypervirulent strain with a positive string test and resistant to cephems except cefotetan. It has a genome size of 5.6M, including two plasmids. CTX-M-15 was found in plasmid 2, and only ompk37 was found in the chromosome. HKE9 could produce bacterial siderophores, and genes of enterobactin, yersiniabactin, aerobactin, and salmochelin have been retrieved in the genome. As a global regulatory factor, knockout of rpoS did not change antimicrobial resistance or hemolytic phenotype while increasing the virulence to Galleria mellonella larvae and showing higher viscosity. Moreover, rpoS knockout can increase bacterial competitiveness and cell adhesion ability. Interestingly, HKE9-M-rpoS decreased resistance to acidic pH, high osmotic pressure, heat shock, and ultraviolet and became sensitive to disinfectants (H2O2, alcohol, and sodium hypochlorite). Although there were 13 Type 6 secretion system (T6SS) core genes divided into two segments with tle1 between segments in the chromosome, transcriptomic analysis showed that rpoS negatively regulated T4SS located on plasmid 2, type 1, and type 3 fimbriae and positively regulate genes responsible for acidic response, hyperosmotic pressure, heat shock, oxidative stress, alcohol and hypochlorous acid metabolism, and quorum sensing. Discussion Here, this novel ST3355 ESBL-HvKP strain HKE9 may spread via various clonal types. The important regulation effect of rpoS is the enhanced tolerance and resistance to environmental stress and disinfectants, which may be at the cost of reducing virulence and regulated by T4SS.
Collapse
Affiliation(s)
- Yi Zhou
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Yue Cheng
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Tianyou Ma
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Jun Wang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
- Department of Microbiology Laboratory, Tongchuan Center for Disease Control and Prevention, Tongchuan, Shaanxi, China
| | - Shaoru Li
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Jingdan Wang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Lei Han
- School of Basic Medicine, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Xinyao Hou
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Xinxin Ma
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Sijin Jiang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Pu Li
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Jia Lv
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Bei Han
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Rong Da
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
10
|
Brothwell JA, Fortney KR, Williams JS, Batteiger TA, Duplantier R, Grounds D, Jannasch AS, Katz BP, Spinola SM. Formate production is dispensable for Haemophilus ducreyi virulence in human volunteers. Infect Immun 2023; 91:e0017623. [PMID: 37594273 PMCID: PMC10501210 DOI: 10.1128/iai.00176-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/29/2023] [Indexed: 08/19/2023] Open
Abstract
Haemophilus ducreyi is a causative agent of cutaneous ulcers in children who live in the tropics and of the genital ulcer disease chancroid in sexually active persons. In the anaerobic environment of abscesses and ulcers, anaerobic respiration and mixed acid fermentation (MAF) can be used to provide cellular energy. In Escherichia coli, MAF produces formate, acetate, lactate, succinate, and ethanol; however, MAF has not been studied in H. ducreyi. In human challenge experiments with H. ducreyi 35000HP, transcripts of the formate transporter FocA and pyruvate formate lyase (PflB) were upregulated in pustules compared to the inocula. We made single and double mutants of focA and pflB in 35000HP. Growth of 35000HPΔfocA was similar to 35000HP, but 35000HPΔpflB and 35000HPΔfocA-pflB had growth defects during both aerobic and anaerobic growth. Mutants lacking pflB did not secrete formate into the media. However, formate was secreted into the media by 35000HPΔfocA, indicating that H. ducreyi has alternative formate transporters. The pH of the media during anaerobic growth decreased for 35000HP and 35000HPΔfocA, but not for 35000HPΔpflB or 35000HPΔfocA-pflB, indicating that pflB is the main contributor to media acidification during anaerobic growth. We tested whether formate production and transport were required for virulence in seven human volunteers in a mutant versus parent trial between 35000HPΔfocA-pflB and 35000HP. The pustule formation rate was similar for 35000HP (42.9%)- and 35000HPΔfocA-pflB (62%)-inoculated sites. Although formate production occurs during in vitro growth and focA-pflB transcripts are upregulated during human infection, focA and pflB are not required for virulence in humans.
Collapse
Affiliation(s)
- Julie A. Brothwell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kate R. Fortney
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jalan S. Williams
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Teresa A. Batteiger
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rory Duplantier
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Danielle Grounds
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amber S. Jannasch
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
| | - Barry P. Katz
- Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Stanley M. Spinola
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Hamzah AS. Molecular Typing of fumC, icd, and mdh Genes in Serratia Marcescens. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:S871-S874. [PMID: 37694086 PMCID: PMC10485449 DOI: 10.4103/jpbs.jpbs_93_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 09/12/2023] Open
Abstract
Aim Serratia marcescens genes fumC, icd, and mdh were molecularly typed in various groups of 200 clinical samples. Results According to the findings, 38 (19%) of the isolates are Serratia marcescens. All these bacterial isolates had their DNA extracted. Then, using particular primers, the genes fumC, icd, and mdh are detected and amplified. These genes were sequenced, and the results were aligned with NCBI sequences. Using the Geneious version 9 software, gene sequences were analyzed. Sequencing of these genes revealed variant regions when compared to global isolates in NCBI. Energy levels in bacterial cells may be impacted by TCA cycle enzyme variant sequence genes. Conclusion The bacterial sequences from Iraq that were listed in NCBI with an accession number were LC735551 is a gene bank. (Gene Bank: LC735550, 1 Iraqi 40 fumC gene. One Iraq 41 icd gene; gene accession number: LC735549.42 mdh gene in Iraq.).
Collapse
Affiliation(s)
- Alaa S. Hamzah
- Department of Anesthesia Techniques, Institute of Medical Technology, Middle Technical University, Baghdad, Iraq
| |
Collapse
|
12
|
Chen EC, Freel Meyers CL. DXP Synthase Function in a Bacterial Metabolic Adaptation and Implications for Antibacterial Strategies. Antibiotics (Basel) 2023; 12:692. [PMID: 37107054 PMCID: PMC10135061 DOI: 10.3390/antibiotics12040692] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Pathogenic bacteria possess a remarkable ability to adapt to fluctuating host environments and cause infection. Disturbing bacterial central metabolism through inhibition of 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) has the potential to hinder bacterial adaptation, representing a new antibacterial strategy. DXPS functions at a critical metabolic branchpoint to produce the metabolite DXP, a precursor to pyridoxal-5-phosphate (PLP), thiamin diphosphate (ThDP) and isoprenoids presumed essential for metabolic adaptation in nutrient-limited host environments. However, specific roles of DXPS in bacterial adaptations that rely on vitamins or isoprenoids have not been studied. Here we investigate DXPS function in an adaptation of uropathogenic E. coli (UPEC) to d-serine (d-Ser), a bacteriostatic host metabolite that is present at high concentrations in the urinary tract. UPEC adapt to d-Ser by producing a PLP-dependent deaminase, DsdA, that converts d-Ser to pyruvate, pointing to a role for DXPS-dependent PLP synthesis in this adaptation. Using a DXPS-selective probe, butyl acetylphosphonate (BAP), and leveraging the toxic effects of d-Ser, we reveal a link between DXPS activity and d-Ser catabolism. We find that UPEC are sensitized to d-Ser and produce sustained higher levels of DsdA to catabolize d-Ser in the presence of BAP. In addition, BAP activity in the presence of d-Ser is suppressed by β-alanine, the product of aspartate decarboxylase PanD targeted by d-Ser. This BAP-dependent sensitivity to d-Ser marks a metabolic vulnerability that can be exploited to design combination therapies. As a starting point, we show that combining inhibitors of DXPS and CoA biosynthesis displays synergy against UPEC grown in urine where there is increased dependence on the TCA cycle and gluconeogenesis from amino acids. Thus, this study provides the first evidence for a DXPS-dependent metabolic adaptation in a bacterial pathogen and demonstrates how this might be leveraged for development of antibacterial strategies against clinically relevant pathogens.
Collapse
Affiliation(s)
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Phenotypic Assessment of Clinical Escherichia coli Isolates as an Indicator for Uropathogenic Potential. mSystems 2022; 7:e0082722. [PMID: 36445110 PMCID: PMC9765037 DOI: 10.1128/msystems.00827-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
For women in the United States, urinary tract infections (UTIs) are the most frequent diagnosis in emergency departments, comprising 21.3% of total visits. Uropathogenic Escherichia coli (UPEC) causes ~80% of uncomplicated UTIs. To combat this public health issue, it is vital to characterize UPEC strains as well as to differentiate them from commensal strains to reduce the overuse of antibiotics. It has been challenging to determine a consistent genetic signature that clearly distinguishes UPEC from other E. coli strains. Therefore, we examined whether phenotypic data could be predictive of uropathogenic potential. We screened 13 clinical strains of UPEC, isolated from cases of uncomplicated UTI in young otherwise healthy women, in a series of microbiological phenotypic assays using UPEC prototype strain CFT073 and nonpathogenic E. coli strain MG1655 K-12 as controls. Phenotypes included adherence, iron acquisition, biofilm formation, human serum resistance, motility, and stress resistance. By use of a well-established experimental mouse model of UTI, these data were able to predict the severity of the bacterial burden in both the urine and bladders. Multiple linear regression using three different phenotypic assays, i.e., growth in minimal medium, siderophore production, and type 1 fimbrial expression, was predictive of bladder colonization (adjusted R2 = 0.6411). Growth in ex vivo human urine, hemagglutination of red blood cells, and motility modeled urine colonization (adjusted R2 = 0.4821). These results showcase the utility of phenotypic characterization to predict the severity of infection that these strains may cause. We predict that these methods will also be applicable to other complex, genetically redundant, pathogens. IMPORTANCE Urinary tract infections are the second leading infectious disease worldwide, occurring in over half of the female population during their lifetime. Most infections are caused by uropathogenic Escherichia coli (UPEC) strains. These strains can establish a reservoir in the gut, in which they do not cause disease but, upon introduction to the urinary tract, can infect the host and elicit pathogenesis. Clinically, it would be beneficial to screen patient E. coli strains to understand their pathogenic potential, which may lead to the administration of prophylactic antibiotic treatment for those with increased risk. Others have proposed the use of PCR-based genetic screening methods to detect UPEC strains and differentiate them from other E. coli pathotypes; however, this method has not yielded a consistent uropathogenic genetic signature. Here, we used phenotypic characteristics such as growth rate, siderophore production, and expression of fimbriae to better predict uropathogenic potential.
Collapse
|
14
|
Chan CCY, Lewis IA. Role of metabolism in uropathogenic Escherichia coli. Trends Microbiol 2022; 30:1174-1204. [PMID: 35941063 DOI: 10.1016/j.tim.2022.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/13/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) is responsible for more than 75% of urinary tract infections (UTIs) and has been studied extensively to better understand the molecular underpinnings of infection and pathogenesis. Although the macromolecular adaptations UPEC employs - including the expression of virulence factors, adhesion molecules, and iron-acquisition systems - are well described, the role that metabolism plays in enabling infection is still unclear. However, a growing body of literature shows that metabolic function can have a profound impact on which strains can colonize the urinary tract. The goal of this review is to critically appraise this emerging body of literature to better understand the role that nutritional selection plays in enabling urinary tract colonization and the progression of UTIs.
Collapse
Affiliation(s)
- Carly C Y Chan
- Department of Biological Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Ian A Lewis
- Department of Biological Science, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
15
|
Mäklin T, Thorpe HA, Pöntinen AK, Gladstone RA, Shao Y, Pesonen M, McNally A, Johnsen PJ, Samuelsen Ø, Lawley TD, Honkela A, Corander J. Strong pathogen competition in neonatal gut colonisation. Nat Commun 2022; 13:7417. [PMID: 36456554 PMCID: PMC9715557 DOI: 10.1038/s41467-022-35178-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Opportunistic bacterial pathogen species and their strains that colonise the human gut are generally understood to compete against both each other and the commensal species colonising this ecosystem. Currently we are lacking a population-wide quantification of strain-level colonisation dynamics and the relationship of colonisation potential to prevalence in disease, and how ecological factors might be modulating these. Here, using a combination of latest high-resolution metagenomics and strain-level genomic epidemiology methods we performed a characterisation of the competition and colonisation dynamics for a longitudinal cohort of neonatal gut microbiomes. We found strong inter- and intra-species competition dynamics in the gut colonisation process, but also a number of synergistic relationships among several species belonging to genus Klebsiella, which includes the prominent human pathogen Klebsiella pneumoniae. No evidence of preferential colonisation by hospital-adapted pathogen lineages in either vaginal or caesarean section birth groups was detected. Our analysis further enabled unbiased assessment of strain-level colonisation potential of extra-intestinal pathogenic Escherichia coli (ExPEC) in comparison with their propensity to cause bloodstream infections. Our study highlights the importance of systematic surveillance of bacterial gut pathogens, not only from disease but also from carriage state, to better inform therapies and preventive medicine in the future.
Collapse
Affiliation(s)
- Tommi Mäklin
- grid.7737.40000 0004 0410 2071Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Harry A. Thorpe
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Anna K. Pöntinen
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway ,grid.412244.50000 0004 4689 5540Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Rebecca A. Gladstone
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Yan Shao
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire UK
| | - Maiju Pesonen
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Alan McNally
- grid.6572.60000 0004 1936 7486Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Pål J. Johnsen
- grid.10919.300000000122595234Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- grid.412244.50000 0004 4689 5540Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway ,grid.10919.300000000122595234Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Trevor D. Lawley
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire UK
| | - Antti Honkela
- grid.7737.40000 0004 0410 2071Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Jukka Corander
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway ,grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire UK ,grid.7737.40000 0004 0410 2071Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Kremer A, Whitmer G, Diaz A, Sajwani A, Navarro A, Arshad M. ESBL Escherichia coli Isolates Have Enhanced Gut Colonization Capacity Compared to Non-ESBL Strains in Neonatal Mice. Microbiol Spectr 2022; 10:e0058222. [PMID: 36121240 PMCID: PMC9603109 DOI: 10.1128/spectrum.00582-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/23/2022] [Indexed: 12/30/2022] Open
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli can cause invasive infections in infants and immunocompromised children with high associated morbidity and mortality. The gut is a major reservoir of these strains in the community. Current dogma dictates that antimicrobial resistance is associated with a fitness cost. However, recent data show that some contemporary ESBL E. coli strains may be more "fit" compared to nonresistant E. coli strains. Here, we use whole-genome sequencing to first characterize 15 ESBL E. coli strains isolated from infants in a Pakistani community, a clinical extraintestinal pathogenic ESBL E. coli ST131 strain, and a non-ESBL commensal E. coli strain, and then use a novel animal model of early life gut colonization to assess the ability of these strains to colonize the infant mouse gut. We determined that CTX-M-15 was present in all the ESBL strains, as well as additional beta-lactamases and genes conferring resistance to multiple antibiotic classes. In the animal model, 11/16 ESBL E. coli strains had significantly higher burden of colonization at week four of life compared to commensal strains, even in the absence of selective antibiotic pressure, suggesting that these strains may have enhanced fitness despite being highly antimicrobial resistant. IMPORTANCE Antimicrobial resistance is a global public health emergency. Infants, especially preterm infants and those in the neonatal intensive care unit, immunocompromised hosts, and those with chronic illnesses are at highest risk of adverse outcomes from invasive infections with antimicrobial-resistant strains. It has long been thought that resistance is associated with a fitness cost, i.e., antimicrobial-resistant strains are not able to colonize the gut as well as nonresistant strains, and that antibiotic exposure is a key risk factor for persistent colonization with resistant strains. Here, we use a novel infant mouse model to add to the growing body of literature that some highly-resistant contemporary Escherichia coli strains can persist in the gut with a significant burden of colonization despite absence of antibiotic exposure.
Collapse
Affiliation(s)
- Aspen Kremer
- Ann and Robert H. Lurie Children’s Hospital, Chicago, Illinois, USA
| | - Grant Whitmer
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alondra Diaz
- Ann and Robert H. Lurie Children’s Hospital, Chicago, Illinois, USA
| | - Alima Sajwani
- Ann and Robert H. Lurie Children’s Hospital, Chicago, Illinois, USA
| | - Alexis Navarro
- University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mehreen Arshad
- Ann and Robert H. Lurie Children’s Hospital, Chicago, Illinois, USA
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
17
|
Li L, Li Y, Yang J, Xie X, Chen H. The immune responses to different Uropathogens call individual interventions for bladder infection. Front Immunol 2022; 13:953354. [PMID: 36081496 PMCID: PMC9445553 DOI: 10.3389/fimmu.2022.953354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Urinary tract infection (UTI) caused by uropathogens is the most common infectious disease and significantly affects all aspects of the quality of life of the patients. However, uropathogens are increasingly becoming antibiotic-resistant, which threatens the only effective treatment option available-antibiotic, resulting in higher medical costs, prolonged hospital stays, and increased mortality. Currently, people are turning their attention to the immune responses, hoping to find effective immunotherapeutic interventions which can be alternatives to the overuse of antibiotic drugs. Bladder infections are caused by the main nine uropathogens and the bladder executes different immune responses depending on the type of uropathogens. It is essential to understand the immune responses to diverse uropathogens in bladder infection for guiding the design and development of immunotherapeutic interventions. This review firstly sorts out and comparatively analyzes the immune responses to the main nine uropathogens in bladder infection, and summarizes their similarities and differences. Based on these immune responses, we innovatively propose that different microbial bladder infections should adopt corresponding immunomodulatory interventions, and the same immunomodulatory intervention can also be applied to diverse microbial infections if they share the same effective therapeutic targets.
Collapse
Affiliation(s)
- Linlong Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yangyang Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jiali Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
- *Correspondence: Xiang Xie, ; Huan Chen,
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
- *Correspondence: Xiang Xie, ; Huan Chen,
| |
Collapse
|
18
|
Abstract
Uropathogenic Escherichia coli (UPEC) is the principal etiology of more than half of urinary tract infections (UTI) in humans with diabetes mellitus. Epidemiological data and studies in mouse model of ascending UTI have elucidated various host factors responsible for increasing the susceptibility of diabetic hosts to UPEC-UTI. In contrast, diabetic urinary microenvironment-mediated alterations in UPEC physiology and its contributions to shaping UPEC-UTI pathogenesis in diabetes have not been examined. To address our central hypothesis that glycosuria directly induces urinary virulence of UPEC, we compared virulence characteristics and gene expression in human UPEC strains UTI89 (cystitis) and CFT073 (pyelonephritis), exposed for 2 h in vitro to urine from either male or female donors that was either plain or supplemented with glucose to mimic glycosuria. Compared to control UPEC exposed to nutrient-rich culture medium, lysogeny broth, glycosuria-exposed UPEC exhibited significant increase in biofilm formation and reduction in the hemagglutination of Guinea pig erythrocytes (a measure of type 1 piliation). In addition, the analysis of UTI89 transcriptome by RNA sequencing revealed that 2-h-long, in vitro exposure to glycosuria also significantly alters expression of virulence and metabolic genes central to urinary virulence of UPEC. Addition of galactose as an alternative carbon source affected biofilm formation and gene expression profile of UPEC to an extent similar to that observed with glucose exposure. In summary, our results provide novel insights into how glycosuria-mediated rapid changes in UPEC fitness may facilitate UTI pathogenesis in the diabetic urinary microenvironment. IMPORTANCE Uropathogenic Escherichia coli (UPEC) is an important causative agent of urinary tract infections in diabetic humans. We examined the effects of in vitro exposure to glycosuria (presence of glucose in urine) on the virulence and gene expression by UPEC. Our results show that glycosuria rapidly (in 2 h) alters UPEC gene expression, induces biofilm formation, and suppresses type 1 piliation. These results offer novel insights into the pathogenesis of UPEC in the urinary tract.
Collapse
|
19
|
Study of Antibacterial Chemical Substances and Molecular Investigation among Sulfamethoxazole-trimethoprim (SXT)-Resistant Escherichia coli Isolates. Rep Biochem Mol Biol 2022; 11:166-175. [PMID: 35765533 PMCID: PMC9208570 DOI: 10.52547/rbmb.11.1.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/11/2023]
Abstract
Background Escherichia coli (E. coli) remains one of the leading agents of urinary tract infection (UTIs), it has become resistant to many drugs. Current work aimed to evaluate some chemical substances as antibacterial agents and molecular study of virulence factors associated with UTIs. Methods This work involved 133 urine specimens obtained from females' patients suffering from UTIs, Methods of well diffusion and disk diffusion were achieved to assay the effect of some chemical substances and antibiogram profiles toward Sulfamethoxazole-trimethoprim (SXT)-resistant E. coli respectively. Virulence genes were done based on the technique of Polymerase Chain Reaction (PCR). Results The results recorded 49/133 (36.84%) E. coli among women suffering UTIs, 28/49 (57.14%) were resistant to SXT drug. imipenem, meropenem, and nitrofurantoin were recorded more effectively. Chemicals substances at the concentration 0.3 (g/ml) recorded percentages of inhibition, reaching 9.143±1.442, 15.36±0.5914, and 21.82±0.8699 for NaHCO3, Ch4c, and Viroxide Super™ respectively. PCR demonstrated that 28/28 (100%) of SXT-resistant E. coli isolates were harbored Sul-2, FeoB and PapC genes, while 14/28 (50%), 15/28 (53.57%), 19/28 (67.85%) and 26/28 (92.85%) in U250 (pet), FumC, Sul-1 and IutA genes, respectively. Sul-3 gene was not observed. Conclusion Observed a high percentage of E. coli that were resistant to SXT drug, and having several virulence genes, poses a real threat, it requires a real pause to create substitutions to limit the spreading of this threat.
Collapse
|
20
|
Sami Z, Kaouthar M, Nadia C, Hedi BM. Effect of sunlight and salinity on the survival of pathogenic and non-pathogenic strains of Vibrio parahaemolyticus in water microcosms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10689. [PMID: 35112431 DOI: 10.1002/wer.10689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The effect of sunlight and salinities (10, 20, 39, and 60 psu) on the survival of Vibrio parahaemolyticus strains carrying either (thermostable direct hemolysin) tdh, the (thermostable related hemolysin) trh, and both or none of them were studied in water microcosms stabilized at 20°C using plate count agar and acridine orange direct viable count. All V. parahaemolyticus strains exposed to sunlight rapidly lose their culturability and evolve into a viable but non-culturable state (VBNC). However, the tdh positive strains remain more culturable than the non-virulent or trh positive strain but statically insignificant. At tested salinities, the survival time was higher at 10, 20, and 60 psu compared with that observed in seawater (39 psu). In seawater under dark condition, Vibrio strains remain culturable for up to 200 days with a significant difference between strains (p < 0.05). Furthermore, the non-pathogenic strain survives longer than the virulent ones. At different salinities, a better adaptation is observed at 10 and 20 psu compared with 39 and 60 psu. Resuscitations essays performed on VBNC bacteria in a nutrient broth at 20°C and 37°C does not show any revivification. PRACTITIONER POINTS: Effect of sunlight and salinities on the survival of V. parahaemolyticus in the marine environment. Resuscitation essay performed on viable but no cultivable bacteria. Microscope motility examines show that all strains exposed to sunlight remain motile after the loss of cultivability.
Collapse
Affiliation(s)
- Zaafrane Sami
- National Institute of Sciences and Seawater Technologies Salammbô, Salammbo, Tunisia
| | - Maatouk Kaouthar
- National Institute of Sciences and Seawater Technologies Salammbô, Salammbo, Tunisia
| | - Cherif Nadia
- National Institute of Sciences and Seawater Technologies Salammbô, Salammbo, Tunisia
| | - Ben Mansour Hedi
- Unité de Recherche Analyses et Procédés Appliqués à l'Environnement-ISSAT, Mahdia, Tunisia
| |
Collapse
|
21
|
Kang W, Suzuki M, Saito T, Miyado K. Emerging Role of TCA Cycle-Related Enzymes in Human Diseases. Int J Mol Sci 2021; 22:13057. [PMID: 34884868 PMCID: PMC8657694 DOI: 10.3390/ijms222313057] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023] Open
Abstract
The tricarboxylic acid (TCA) cycle is the main source of cellular energy and participates in many metabolic pathways in cells. Recent reports indicate that dysfunction of TCA cycle-related enzymes causes human diseases, such as neurometabolic disorders and tumors, have attracted increasing interest in their unexplained roles. The diseases which develop as a consequence of loss or dysfunction of TCA cycle-related enzymes are distinct, suggesting that each enzyme has a unique function. This review aims to provide a comprehensive overview of the relationship between each TCA cycle-related enzyme and human diseases. We also discuss their functions in the context of both mitochondrial and extra-mitochondrial (or cytoplasmic) enzymes.
Collapse
Affiliation(s)
- Woojin Kang
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (M.S.); (K.M.)
| | - Miki Suzuki
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (M.S.); (K.M.)
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan;
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (M.S.); (K.M.)
| |
Collapse
|
22
|
Foroogh N, Rezvan M, Ahmad K, Mahmood S. Structural and functional characterization of the FimH adhesin of uropathogenic Escherichia coli and its novel applications. Microb Pathog 2021; 161:105288. [PMID: 34780972 DOI: 10.1016/j.micpath.2021.105288] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/22/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
Type 1 fimbriae are responsible for bacterial pathogenicity and biofilm production, which are important virulence factors in uropathogenic Escherichia coli strains. Many articles are published on fimH, but each examined a specific aspect of this protein. The current review study aimed at focusing on structure and conformational changes and describing efforts to use this protein in novel potential treatments for urinary tract infections, typing methods, and expression systems. The current study was the first review that briefly and effectively examined issues related to fimH adhesin.
Collapse
Affiliation(s)
- Neamati Foroogh
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Qutb Ravandi Boulevard, Kashan, Iran.
| | - Moniri Rezvan
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Khorshidi Ahmad
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Saffari Mahmood
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
23
|
Joshi CS, Mora A, Felder PA, Mysorekar IU. NRF2 promotes urothelial cell response to bacterial infection by regulating reactive oxygen species and RAB27B expression. Cell Rep 2021; 37:109856. [PMID: 34686330 DOI: 10.1016/j.celrep.2021.109856] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 08/16/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) by invading urothelial cells. In response, the host mounts an inflammatory response to expel bacteria. Here, we show that the NF-E2-related factor 2 (NRF2) pathway is activated in response to UPEC-triggered reactive oxygen species (ROS) production. We demonstrate the molecular sequence of events wherein NRF2 activation in urothelial cells reduces ROS production, inflammation, and cell death, promotes UPEC expulsion, and reduces the bacterial load. In contrast, loss of NRF2 leads to increased ROS production, bacterial burden, and inflammation, both in vitro and in vivo. NRF2 promotes UPEC expulsion by regulating transcription of the RAB-GTPase RAB27B. Finally, dimethyl fumarate, a US Food and Administration-approved NRF2 inducer, reduces the inflammatory response, increases RAB27B expression, and lowers bacterial burden in urothelial cells and in a mouse UTI model. Our findings elucidate mechanisms underlying the host response to UPEC and provide a potential strategy to combat UTIs.
Collapse
Affiliation(s)
- Chetanchandra S Joshi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amy Mora
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul A Felder
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Indira U Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Sanches MS, Rodrigues da Silva C, Silva LC, Montini VH, Lopes Barboza MG, Migliorini Guidone GH, Dias de Oliva BH, Nishio EK, Faccin Galhardi LC, Vespero EC, Lelles Nogueira MC, Dejato Rocha SP. Proteus mirabilis from community-acquired urinary tract infections (UTI-CA) shares genetic similarity and virulence factors with isolates from chicken, beef and pork meat. Microb Pathog 2021; 158:105098. [PMID: 34280499 DOI: 10.1016/j.micpath.2021.105098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Proteus mirabilis is an opportunistic pathogen associated with a variety of infections in humans, especially those in the urinary tract. The isolation of this pathogen in foods of animal origin such as meat is poorly documented and should not be neglected, in view of the zoonotic risk that this can pose to human health. Thus, the objective of this study was to evaluate the prevalence, virulence profile, and similarity between P. mirabilis strains isolated from chicken, beef, and pork meat and those causing community-acquired urinary tract infections (UTI-CA), in order to better understand the role of this bacterium as a zoonotic pathogen. P. mirabilis was isolated from the three types of meat and was found to be more prevalent in chicken. All isolates exhibited several genotypic and phenotypic virulence characteristics, such as adhesion capacity in HEp-2 cell culture, biofilm formation, cytotoxicity in Vero cells and genes that express fimbriae (mrpA, pmfA, ucaA, atfA), hemolysin (hpmA), proteases (zapA and ptA) and siderophore receptor (ireA). UTI-CA strains showed a higher prevalence of ucaA and ireA genes, whereas those from the chicken meat had a higher prevalence of the atfA gene compared with the isolates from the beef and pork meat. It was observed that chicken meat and UTI-CA strains mainly formed very strong biofilms, whereas strains isolated from beef and pork formed more weak and moderate biofilms. Several strains from meat showed close genetic similarity to those from UTI-CA and had the same virulence profiles. Thus, meats may be an important source of the dissemination of P. mirabilis responsible for causing UTIs in the community.
Collapse
Affiliation(s)
- Matheus Silva Sanches
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Caroline Rodrigues da Silva
- Microorganism Research Center, Department of Dermatological, Infectious and Parasitic Diseases, Health Sciences Center, Medical School of São José Do Rio Preto, São José Do Rio Preto, São Paulo, Brazil
| | - Luana Carvalho Silva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Victor Hugo Montini
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Mario Gabriel Lopes Barboza
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | | | - Bruno Henrique Dias de Oliva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Erick Kenji Nishio
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Ligia Carla Faccin Galhardi
- Virology Laboratory, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Eliana Carolina Vespero
- Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, University Hospital of Londrina, State University of Londrina, Paraná, Brazil
| | - Mara Corrêa Lelles Nogueira
- Microorganism Research Center, Department of Dermatological, Infectious and Parasitic Diseases, Health Sciences Center, Medical School of São José Do Rio Preto, São José Do Rio Preto, São Paulo, Brazil
| | - Sergio Paulo Dejato Rocha
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil.
| |
Collapse
|
25
|
Serafini A. Interplay between central carbon metabolism and metal homeostasis in mycobacteria and other human pathogens. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34080971 DOI: 10.1099/mic.0.001060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial nutrition is a fundamental aspect of pathogenesis. While the host environment is in principle nutrient-rich, hosts have evolved strategies to interfere with nutrient acquisition by pathogens. In turn, pathogens have developed mechanisms to circumvent these restrictions. Changing the availability of bioavailable metal ions is a common strategy used by hosts to limit bacterial replication. Macrophages and neutrophils withhold iron, manganese, and zinc ions to starve bacteria. Alternatively, they can release manganese, zinc, and copper ions to intoxicate microorganisms. Metals are essential micronutrients and participate in catalysis, macromolecular structure, and signalling. This review summarises our current understanding of how central carbon metabolism in pathogens adapts to local fluctuations in free metal ion concentrations. We focus on the transcriptomics and proteomics data produced in studies of the iron-sparing response in Mycobacterium tuberculosis, the etiological agent of tuberculosis, and consequently generate a hypothetical model linking trehalose accumulation, succinate secretion and substrate-level phosphorylation in iron-starved M. tuberculosis. This review also aims to highlight a large gap in our knowledge of pathogen physiology: the interplay between metal homeostasis and central carbon metabolism, two cellular processes which are usually studied separately. Integrating metabolism and metal biology would allow the discovery of new weaknesses in bacterial physiology, leading to the development of novel and improved antibacterial therapies.
Collapse
Affiliation(s)
- Agnese Serafini
- Independent researcher 00012 Guidonia Montecelio, Rome, Italy
| |
Collapse
|
26
|
Adaptation of Arginine Synthesis among Uropathogenic Branches of the Escherichia coli Phylogeny Reveals Adjustment to the Urinary Tract Habitat. mBio 2020; 11:mBio.02318-20. [PMID: 32994329 PMCID: PMC7527732 DOI: 10.1128/mbio.02318-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the most common cause of human urinary tract infection (UTI). Population bottlenecks during early stages of UTI make high-throughput screens impractical for understanding clinically important later stages of UTI, such as persistence and recurrence. As UPEC is hypothesized to be adapted to these later pathogenic stages, we previously identified 29 genes evolving under positive selection in UPEC. Here, we found that 8 of these genes, including argI (which is involved in arginine biosynthesis), are important for persistence in a mouse model of UTI. Deletion of argI and other arginine synthesis genes resulted in (i) arginine auxotrophy and (ii) defects in persistent UTI. Replacement of a B2 clade argI with a non-B2 clade argI complemented arginine auxotrophy, but the resulting strain remained attenuated in its ability to cause persistent bacteriuria. Thus, argI may have a second function during UTI that is not related to simple arginine synthesis. This study demonstrates how variation in metabolic genes can impact virulence and provides insight into the mechanisms and evolution of bacterial virulence. Urinary tract infections (UTIs) are predominantly caused by uropathogenic Escherichia coli (UPEC). UPEC pathogenesis requires passage through a severe population bottleneck involving intracellular bacterial communities (IBCs) that are clonal expansions of a single invading UPEC bacterium in a urothelial superficial facet cell. IBCs occur only during acute pathogenesis. The bacteria in IBCs form the founder population that develops into persistent extracellular infections. Only a small fraction of UPEC organisms proceed through the IBC cycle, regardless of the inoculum size. This dramatic reduction in population size precludes the utility of genomic mutagenesis technologies for identifying genes important for persistence. To circumvent this bottleneck, we previously identified 29 positively selected genes (PSGs) within UPEC and hypothesized that they contribute to virulence. Here, we show that 8 of these 29 PSGs are required for fitness during persistent bacteriuria. Conversely, 7/8 of these PSG mutants showed essentially no phenotype in acute UTI. Deletion of the PSG argI leads to arginine auxotrophy. Relative to the other arg genes, argI in the B2 clade (which comprises most UPEC strains) of E. coli has diverged from argI in other E. coli clades. Replacement of argI in a UPEC strain with a non-UPEC argI allele complemented the arginine auxotrophy but not the persistent bacteriuria defect, showing that the UPEC argI allele contributes to persistent infection. These results highlight the complex roles of metabolic pathways during infection and demonstrate that evolutionary approaches can identify infection-specific gene functions downstream of population bottlenecks, shedding light on virulence and the genetic evolution of pathogenesis.
Collapse
|