1
|
Venkataraman S, Savithri HS, Murthy MRN. Recent advances in the structure and assembly of non-enveloped spherical viruses. Virology 2025; 606:110454. [PMID: 40081202 DOI: 10.1016/j.virol.2025.110454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 03/15/2025]
Abstract
Non-enveloped spherical viruses (NSVs) are characterized by their highly symmetrical capsids that serve to protect and encapsulate the genomes. The stability and functionality of the capsids determine their ability for survival and proliferation in harsh environments. Over four decades of structural studies using X-ray crystallography and NMR have provided static, high-resolution snapshots of several viruses. Recently, advances in cryo-electron microscopy, together with AI-based structure predictions and traditional methods, have aided in elucidating not only the structural details of complex NSVs but also the mechanistic processes underlying their assembly. The knowledge thus generated has been instrumental in critical understanding of the conformational changes and interactions associated with the coat proteins, the genome, and the auxiliary factors that regulate the capsid dynamics. This review seeks to summarize current literature regarding the structure and assembly of the NSVs and discusses how the data has facilitated a deeper understanding of their biology and phylogeny.
Collapse
Affiliation(s)
| | | | - M R N Murthy
- Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
2
|
Valiente L, Riomoros-Barahona V, Gil-Redondo JC, Castón JR, Valbuena A, Mateu MG. A RNA Dodecahedral Cage Inside a Human Virus Plays a Dual Biological Role in Virion Assembly and Genome Release Control. J Mol Biol 2025; 437:168922. [PMID: 39725271 DOI: 10.1016/j.jmb.2024.168922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Human rhinoviruses (RV) are among the most frequent human pathogens. As major causative agents of common colds they originate serious socioeconomic problems and huge expenditure every year, and they also exacerbate severe respiratory diseases. No anti-rhinoviral drugs or vaccines are available so far. Antiviral drug design may benefit from an understanding of the role during the infectious cycle of the interactions in the virion between the capsid and the viral nucleic acid. The genomic RNA inside the human RV virion forms a dodecahedral cage made of 30 double-stranded RNA elements that interact with equivalent sites at the capsid inner wall. RNA dodecahedral cages also occur in distantly related insect and plant viruses. However, the functional role(s) of the interactions between any dodecahedral cage and the capsid remained to be established. Here we describe an extensive structure-function mutational analysis of the capsid-RNA dodecahedral cage interface in the RV virion, to dissect the role of the interactions between the capsid and the cage-forming RNA duplexes in: (i) infection by RV; (ii) virus biological fitness; (iii) virion assembly; (iv) virion stability; and (v) viral RNA uncoating. The results reveal that the capsid-bound dsRNA dodecahedral cage in the human RV virion is a multifunctional structural element. Two structurally overlapping subsets of RNA duplex-capsid interactions promote virus infectivity and biological fitness by respectively facilitating virion assembly or restraining the untimely, unproductive uncoating of the viral RNA genome. These results provide new insights into virion morphogenesis and genome uncoating, and have implications for antiviral drug design.
Collapse
Affiliation(s)
- Luis Valiente
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Valentín Riomoros-Barahona
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José R Castón
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Alejandro Valbuena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Mauricio G Mateu
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
3
|
Kuijpers L, Giannopoulou EA, Feng Y, van den Braak W, Freydoonian A, Ramlal R, Meiring H, Solano B, Roos WH, Jakobi AJ, van der Pol LA, Dekker NH. Enterovirus-like particles encapsidate RNA and exhibit decreased stability due to lack of maturation. PLoS Pathog 2025; 21:e1012873. [PMID: 39903789 PMCID: PMC11793780 DOI: 10.1371/journal.ppat.1012873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
To counteract hand, foot, and mouth disease-causing viruses such as enterovirus A71 and coxsackievirus A6, virus-like particles (VLPs) have emerged as a leading contender for the development of a multivalent vaccine. However, VLPs have shown rapid conversion from a highly immunogenic state to a less immunogenic state and low particle integrity lifetimes compared to inactivated virus vaccines, thus raising concerns about their overall stability. Here, we produce VLPs to investigate capsid stability using cryogenic electron microscopy (cryo-EM), mass spectrometry (MS), biochemical assays, and atomic force microscopy (AFM). In contrast to prior studies and prevailing hypotheses, we show that insect-cell produced enterovirus VLPs include encapsidated RNA fragments with viral protein coding sequences. Our integrated approach reveals that CVA6 VLPs do not undergo viral maturation, in contrast to virions; that they can encapsidate RNA fragments, similarly to virions; and that despite the latter, they are more brittle than virions. Interestingly, this indicates that CVA6 VLP stability is more affected by lack of viral maturation than the presence of RNA. Our study highlights how the development of VLPs as vaccine candidates should encompass probing for unwanted (viral) RNA content and establishing control of their maturation to enhance stability.
Collapse
Affiliation(s)
- Louis Kuijpers
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
- Intravacc B.V., Bilthoven, The Netherlands
| | | | - Yuzhen Feng
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | | | | | | | | | - Belén Solano
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Arjen J. Jakobi
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
| | | | - Nynke H. Dekker
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
- Department of Physics and Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Liu Q, Long JE. Insight into the Life Cycle of Enterovirus-A71. Viruses 2025; 17:181. [PMID: 40006936 PMCID: PMC11861800 DOI: 10.3390/v17020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Human enterovirus 71 (EV-A71), a member of the Picornaviridae family, is predominantly associated with hand, foot, and mouth disease in infants and young children. Additionally, EV-A71 can cause severe neurological complications, including aseptic meningitis, brainstem encephalitis, and fatalities. The molecular mechanisms underlying these symptoms are complex and involve the viral tissue tropism, evasion from the host immune responses, induction of the programmed cell death, and cytokine storms. This review article delves into the EV-A71 life cycle, with a particular emphasis on recent advancements in understanding the virion structure, tissue tropism, and the interplay between the virus and host regulatory networks during replication. The comprehensive review is expected to contribute to our understanding of EV-A71 pathogenesis and inform the development of antiviral therapies and vaccines.
Collapse
Affiliation(s)
- Qi Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Jian-Er Long
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Neil C, Newman J, Stonehouse NJ, Rowlands DJ, Belsham GJ, Tuthill TJ. The pseudoknot region and poly-(C) tract comprise an essential RNA packaging signal for assembly of foot-and-mouth disease virus. PLoS Pathog 2024; 20:e1012283. [PMID: 39715215 PMCID: PMC11734982 DOI: 10.1371/journal.ppat.1012283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/15/2025] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Virus assembly is a crucial step for the completion of the viral replication cycle. In addition to ensuring efficient incorporation of viral genomes into nascent virions, high specificity is required to prevent incorporation of host nucleic acids. For picornaviruses, including FMDV, the mechanisms required to fulfil these requirements are not well understood. However, recent evidence has suggested that specific RNA sequences dispersed throughout picornavirus genomes are involved in packaging. Here, we have shown that such sequences are essential for FMDV RNA packaging and have demonstrated roles for both the pseudoknot (PK) region and the poly-(C) tract in this process, where the length of the poly-(C) tract was found to influence the efficiency of RNA encapsidation. Sub-genomic replicons containing longer poly-(C) tracts were packaged with greater efficiency in trans, and viruses recovered from transcripts containing short poly-(C) tracts were found to have greatly extended poly-(C) tracts after only a single passage in cells, suggesting that maintaining a long poly-(C) tract provides a selective advantage. We also demonstrated a critical role for a packaging signal (PS) located in the pseudoknot (PK) region, adjacent to the poly-(C) tract, as well as several other non-essential but beneficial PSs elsewhere in the genome. Collectively, these PSs greatly enhanced encapsidation efficiency, with the poly-(C) tract possibly facilitating nearby PSs to adopt the correct conformation. Using these data, we have proposed a model where interactions with capsid precursors control a transition between two RNA conformations, directing the fate of nascent genomes to either be packaged or alternatively to act as templates for replication and/or for protein translation.
Collapse
Affiliation(s)
- Chris Neil
- The Pirbright Institute, Ash Road, Pirbright, Surrey, United Kingdom
| | - Joseph Newman
- The Pirbright Institute, Ash Road, Pirbright, Surrey, United Kingdom
| | | | - David J. Rowlands
- The Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, Kalvehave, Denmark
| | - Tobias J. Tuthill
- The Pirbright Institute, Ash Road, Pirbright, Surrey, United Kingdom
| |
Collapse
|
6
|
Wroblewski E, Patel N, Javed A, Mata CP, Chandler-Bostock R, Lekshmi BG, Ulamec SM, Clark S, Phillips SEV, Ranson NA, Twarock R, Stockley PG. Visualizing Viral RNA Packaging Signals in Action. J Mol Biol 2024; 436:168765. [PMID: 39214281 DOI: 10.1016/j.jmb.2024.168765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Here we confirm, using genome-scale RNA fragments in assembly competition assays, that multiple sub-sites (Packaging Signals, PSs) across the 5' two-thirds of the gRNA of Satellite Tobacco Necrosis Virus-1 make sequence-specific contacts to the viral CPs helping to nucleate formation of its T = 1 virus-like particle (VLP). These contacts explain why natural virions only package their positive-sense genomes. Asymmetric cryo-EM reconstructions of these VLPs suggest that interactions occur between amino acid residues in the N-terminal ends of the CP subunits and the gRNA PS loop sequences. The base-paired stems of PSs also act non-sequence-specifically by electrostatically promoting the assembly of CP trimers. Importantly, alterations in PS-CP affinity result in an asymmetric distribution of bound PSs inside VLPs, with fuller occupation of the higher affinity 5' PS RNAs around one vertex, decreasing to an RNA-free opposite vertex within the VLP shell. This distribution suggests that gRNA folding regulates cytoplasmic genome extrusion so that the weakly bound 3' end of the gRNA, containing the RNA polymerase binding site, extrudes first. This probably occurs after cation-loss induced swelling of the CP-shell, weakening contacts between CP subunits. These data reveal for the first time in any virus how differential PS folding propensity and CP affinities support the multiple roles genomes play in virion assembly and infection. The high degree of conservation between the CP fold of STNV-1 and those of the CPs of many other viruses suggests that these aspects of genome function will be widely shared.
Collapse
Affiliation(s)
- Emma Wroblewski
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nikesh Patel
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Abid Javed
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Carlos P Mata
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rebecca Chandler-Bostock
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - B G Lekshmi
- York Centre for Complex Systems Analysis, University of York, YO10 5DD, United Kingdom; Departments of Mathematics and Biology, University of York, YO10 5DD, United Kingdom
| | - Sabine M Ulamec
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sam Clark
- York Centre for Complex Systems Analysis, University of York, YO10 5DD, United Kingdom; Departments of Mathematics and Biology, University of York, YO10 5DD, United Kingdom
| | - Simon E V Phillips
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Reidun Twarock
- York Centre for Complex Systems Analysis, University of York, YO10 5DD, United Kingdom; Departments of Mathematics and Biology, University of York, YO10 5DD, United Kingdom.
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
7
|
Gil-Cantero D, Mata CP, Valiente L, Rodríguez-Huete A, Valbuena A, Twarock R, Stockley PG, Mateu MG, Castón JR. Cryo-EM of human rhinovirus reveals capsid-RNA duplex interactions that provide insights into virus assembly and genome uncoating. Commun Biol 2024; 7:1501. [PMID: 39537894 PMCID: PMC11561273 DOI: 10.1038/s42003-024-07213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
The cryo-EM structure of the human rhinovirus B14 determined in this study reveals 13-bp RNA duplexes symmetrically bound to regions around each of the 30 two-fold axes in the icosahedral viral capsid. The RNA duplexes (~12% of the ssRNA genome) define a quasi-dodecahedral cage that line a substantial part of the capsid interior surface. The RNA duplexes establish a complex network of non-covalent interactions with pockets in the capsid inner wall, including coulombic interactions with a cluster of basic amino acid residues that surround each RNA duplex. A direct comparison was made between the cryo-EM structure of RNA-filled virions and that of RNA-free (empty) capsids that resulted from genome release from a small fraction of viruses. The comparison reveals that some specific residues involved in capsid-duplex RNA interactions in the virion undergo remarkable conformational rearrangements upon RNA release from the capsid. RNA release is also associated with the asynchronous opening of channels at the 30 two-fold axes. The results provide further insights into the molecular mechanisms leading to assembly of rhinovirus particles and their genome uncoating during infection. They may also contribute to development of novel antiviral strategies aimed at interfering with viral capsid-genome interactions during the infectious cycle.
Collapse
Affiliation(s)
- David Gil-Cantero
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Carlos P Mata
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Biocomputing Unit, Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Luis Valiente
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Reidun Twarock
- Department of Mathematics and Department of Biology, University of York, York, UK
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain.
- Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus Cantoblanco, Madrid, Spain.
| |
Collapse
|
8
|
Kingston NJ, Snowden JS, Grehan K, Hall PK, Hietanen EV, Passchier TC, Polyak SJ, Filman DJ, Hogle JM, Rowlands DJ, Stonehouse NJ. Mechanism of enterovirus VP0 maturation cleavage based on the structure of a stabilised assembly intermediate. PLoS Pathog 2024; 20:e1012511. [PMID: 39298524 PMCID: PMC11444389 DOI: 10.1371/journal.ppat.1012511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/01/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
Molecular details of genome packaging are little understood for the majority of viruses. In enteroviruses (EVs), cleavage of the structural protein VP0 into VP4 and VP2 is initiated by the incorporation of RNA into the assembling virion and is essential for infectivity. We have applied a combination of bioinformatic, molecular and structural approaches to generate the first high-resolution structure of an intermediate in the assembly pathway, termed a provirion, which contains RNA and intact VP0. We have demonstrated an essential role of VP0 E096 in VP0 cleavage independent of RNA encapsidation and generated a new model of capsid maturation, supported by bioinformatic analysis. This provides a molecular basis for RNA-dependence, where RNA induces conformational changes required for VP0 maturation, but that RNA packaging itself is not sufficient to induce maturation. These data have implications for understanding production of infectious virions and potential relevance for future vaccine and antiviral drug design.
Collapse
Affiliation(s)
- Natalie J Kingston
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joseph S Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Keith Grehan
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Philippa K Hall
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Eero V Hietanen
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Tim C Passchier
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Stephen J Polyak
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, United States of America
| | - David J Filman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James M Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicola J Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
9
|
Kingston NJ, Snowden JS, Grehan K, Hall PK, Hietanen EV, Passchier TC, Polyak SJ, Filman DJ, Hogle JM, Rowlands DJ, Stonehouse NJ. Mechanism of enterovirus VP0 maturation cleavage based on the structure of a stabilised assembly intermediate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.06.588229. [PMID: 38617325 PMCID: PMC11014595 DOI: 10.1101/2024.04.06.588229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Molecular details of genome packaging are little understood for the majority of viruses. In enteroviruses (EVs), cleavage of the structural protein VP0 into VP4 and VP2 is initiated by the incorporation of RNA into the assembling virion and is essential for infectivity. We have applied a combination of bioinformatic, molecular and structural approaches to generate the first high-resolution structure of an intermediate in the assembly pathway, termed a provirion, which contains RNA and intact VP0. We have demonstrated an essential role of VP0 E096 in VP0 cleavage independent of RNA encapsidation and generated a new model of capsid maturation, supported by bioinformatic analysis. This provides a molecular basis for RNA-dependence, where RNA induces conformational changes required for VP0 maturation, but that RNA packaging itself is not sufficient to induce maturation. These data have implications for understanding production of infectious virions and potential relevance for future vaccine and antiviral drug design.
Collapse
Affiliation(s)
- Natalie J Kingston
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joseph S Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Keith Grehan
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Philippa K Hall
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Eero V Hietanen
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Tim C Passchier
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Stephen J Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA, Department of Global Health, University of Washington, Seattle, Washington, USA
| | - David J Filman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - James M Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicola J Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
10
|
Twarock R, Towers GJ, Stockley PG. Molecular frustration: a hypothesis for regulation of viral infections. Trends Microbiol 2024; 32:17-26. [PMID: 37507296 DOI: 10.1016/j.tim.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
The recent revolution in imaging techniques and results from RNA footprinting in situ reveal how the bacteriophage MS2 genome regulates both particle assembly and genome release. We have proposed a model in which multiple packaging signal (PS) RNA-coat protein (CP) contacts orchestrate different stages of a viral life cycle. Programmed formation and release of specific PS contacts with CP regulates viral particle assembly and genome uncoating during cell entry. We hypothesize that molecular frustration, a concept introduced to understand protein folding, can be used to better rationalize how PSs function in both particle assembly and genome release. More broadly this concept may explain the directionality of viral life cycles, for example, the roles of host cofactors in HIV infection. We propose that this is a universal principle in virology that explains mechanisms of host-virus interaction and suggests diverse therapeutic interventions.
Collapse
Affiliation(s)
- Reidun Twarock
- Departments of Mathematics and Biology & York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
11
|
López-Bueno A, Gil-Ranedo J, Almendral JM. Assembly of Structurally Simple Icosahedral Viruses. Subcell Biochem 2024; 105:403-430. [PMID: 39738953 DOI: 10.1007/978-3-031-65187-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Icosahedral viruses exhibit elegant pathways of capsid assembly and maturation regulated by symmetry principles. Assembly is a dynamic process driven by consecutive and genetically programmed morphogenetic interactions between protein subunits. The non-symmetric capsid subunits are gathered by non-covalent contacts and interactions in assembly intermediates, which serve as blocks to build a symmetric capsid. In some virus examples, the assembly of the protein shell further requires non-symmetric interactions among intermediates to fold into specific conformations. In this chapter, the morphogenesis of some small and structurally simple icosahedral viruses, including representative members of the parvoviruses, picornaviruses, and polyomaviruses as paradigms, is described in some detail. Despite their small size, the assembly of these icosahedral viruses may follow rather complex pathways, as they may occur in different subcellular compartments, involve a panoply of cellular and viral factors, and regulatory protein post-translational modifications that challenge its comprehensive understanding. Mechanisms of viral genome encapsidation may imply direct interactions between the genome and the assembly intermediates, or active packaging into a preformed empty capsid. Further, membranes and factors at specific subcellular compartments may also be critically required for virus maturation. The high stability of intermediates and the process of viral maturation contribute to the overall irreversible character of the assembly process. These and other small, structurally less complex icosahedral viruses were pioneer models to understand basic principles of virus assembly, continue to be leading subjects of morphogenetic analyses, and have inspired ongoing studies on the assembly of larger, structurally more complex viruses as well as cellular and synthetic macromolecular complexes.
Collapse
Affiliation(s)
- Alberto López-Bueno
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jon Gil-Ranedo
- Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - José M Almendral
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
12
|
Cong W, Pike A, Gonçalves K, Shisler JL, Mariñas BJ. Inactivation Kinetics and Replication Cycle Inhibition of Coxsackievirus B5 by Free Chlorine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18690-18699. [PMID: 36946773 DOI: 10.1021/acs.est.2c09269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The kinetics of coxsackievirus serotype B5 (CVB5) inactivation with free chlorine is characterized over a range of pH and temperature relevant to drinking water treatment with the primary goal of selecting experimental conditions used for assessing inactivation mechanisms. The inactivation kinetics identified in our study is similar to or slower than experimental data reported in the literature and thus provides a conservative representation of the kinetics of CVB5 inactivation for free chlorine that could be useful in developing future regulations for waterborne viral pathogens including adequate disinfection treatment for CVB5. Untreated and free chlorine-treated viruses, and host cells synchronized-infected with these viruses, are analyzed by a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method with the goal of quantitatively investigating the effect of free chlorine exposure on viral genome integrity, attachment to host cell, and viral genome replication. The inactivation kinetics observed results from a combination of hindering virus attachment to the host cell, inhibition of one or more subsequent steps of the replication cycle, and possibly genome damage.
Collapse
|
13
|
Pei J, Liu RL, Yang ZH, Du YX, Qian SS, Meng SL, Guo J, Zhang B, Shen S. Identification of Critical Amino Acids of Coxsackievirus A10 Associated with Cell Tropism and Viral RNA Release during Uncoating. Viruses 2023; 15:2114. [PMID: 37896891 PMCID: PMC10611408 DOI: 10.3390/v15102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Coxsackievirus A10 (CV-A10) is a prevailing causative agent of hand-foot-mouth disease, necessitating the isolation and adaptation of appropriate strains in cells allowed for human vaccine development. In this study, amino acid sequences of CV-A10 strains with different cell tropism on RD and Vero cells were compared. Various amino acids on the structural and non-structural proteins related to cell tropism were identified. The reverse genetic systems of several CV-A10 strains with RD+/Vero- and RD+/Vero+ cell tropism were developed, and a set of CV-A10 recombinants were produced. The binding, entry, uncoating, and proliferation steps in the life cycle of these viruses were evaluated. P1 replacement of CV-A10 strains with different cell tropism revealed the pivotal role of the structural proteins in cell tropism. Further, seven amino acid substitutions in VP2 and VP1 were introduced to further investigate their roles played in cell tropism. These mutations cooperated in the growth of CV-A10 in Vero cells. Particularly, the valine to isoleucine mutation at the position VP1-236 (V1236I) was found to significantly restrict viral uncoating in Vero cells. Co-immunoprecipitation assays showed that the release of viral RNA from the KREMEN1 receptor-binding virions was restricted in r0195-V1236I compared with the parental strain r0195 (a RD+/Vero+ strain). Overall, this study highlights the dominant effect of structural proteins in CV-A10 adaption in Vero cells and the importance of V1236 in viral uncoating, providing a foundation for the mechanism study of CV-A10 cell tropism, and facilitating the development of vaccine candidates.
Collapse
Affiliation(s)
- Jie Pei
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Rui-Lun Liu
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Zhi-Hui Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Ya-Xin Du
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Sha-Sha Qian
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Sheng-Li Meng
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Jing Guo
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Bo Zhang
- Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Shuo Shen
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| |
Collapse
|
14
|
Jin WP, Wang C, Wu J, Guo J, Meng SL, Wang ZJ, Yu DG, Shen S. Reporter Coxsackievirus A5 Expressing iLOV Fluorescent Protein or Luciferase Used for Rapid Neutralizing Assay in Cells and Living Imaging in Mice. Viruses 2023; 15:1868. [PMID: 37766275 PMCID: PMC10535187 DOI: 10.3390/v15091868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Coxsackievirus A5 (CV-A5) is a re-emerging enterovirus that causes hand, foot, and mouth disease in children under five years of age. CV-A5-M14-611 is a mouse-adapted strain that can infect orally and lead to the death of 14-day-old mice. Here, recombinants based on CV-A5-M14-611 were constructed carrying three reporter genes in different lengths. Smaller fluorescent marker proteins, light, oxygen, voltage sensing (iLOV), and nano luciferase (Nluc) were proven to be able to express efficiently in vitro. However, the recombinant with the largest insertion of the red fluorescence protein gene (DsRed) was not rescued. The construction strategy of reporter viruses was to insert the foreign genes between the C-terminus of VP1 and the N-terminus of 2A genes and to add a 2A protease cleavage domain at both ends of the insertions. The iLOV-tagged or Nluc-tagged recombinants, CV-A5-iLOV or CV-A5-Nluc, exhibited a high capacity for viral replication, genetic stability in cells and pathogenicity in mice. They were used to establish a rapid, inexpensive and convenient neutralizing antibody assay and greatly facilitated virus neutralizing antibody titration. Living imaging was performed on mice with CV-A5-Nluc, which exhibited specific bioluminescence in virus-disseminated organs, while fluorescence induced by CV-A5-iLOV was weakly detected. The reporter-gene-tagged CV-A5 can be used to study the infection and mechanisms of CV-A5 pathogenicity in a mouse model. They can also be used to establish rapid and sensitive assays for detecting neutralizing antibodies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuo Shen
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (W.-P.J.); (C.W.); (J.W.); (J.G.); (S.-L.M.); (Z.-J.W.); (D.-G.Y.)
| |
Collapse
|
15
|
Abstract
The mechanism and the evolution of DNA replication and transcription, the key elements of the central dogma of biology, are fundamentally well explained by the physicochemical complementarity between strands of nucleic acids. However, the determinants that have shaped the third part of the dogma-the process of biological translation and the universal genetic code-remain unclear. We review and seek parallels between different proposals that view the evolution of translation through the prism of weak, noncovalent interactions between biological macromolecules. In particular, we focus on a recent proposal that there exists a hitherto unrecognized complementarity at the heart of biology, that between messenger RNA coding regions and the proteins that they encode, especially if the two are unstructured. Reflecting the idea that the genetic code evolved from intrinsic binding propensities between nucleotides and amino acids, this proposal promises to forge a link between the distant past and the present of biological systems.
Collapse
Affiliation(s)
- Bojan Zagrovic
- Department of Structural and Computational Biology, Max Perutz Labs & University of Vienna, Vienna, Austria;
| | - Marlene Adlhart
- Department of Structural and Computational Biology, Max Perutz Labs & University of Vienna, Vienna, Austria;
| | - Thomas H Kapral
- Department of Structural and Computational Biology, Max Perutz Labs & University of Vienna, Vienna, Austria;
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Real-Hohn A, Groznica M, Kontaxis G, Zhu R, Chaves OA, Vazquez L, Hinterdorfer P, Kowalski H, Blaas D. Stabilization of the Quadruplex-Forming G-Rich Sequences in the Rhinovirus Genome Inhibits Uncoating-Role of Na + and K . Viruses 2023; 15:1003. [PMID: 37112983 PMCID: PMC10141139 DOI: 10.3390/v15041003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Rhinoviruses (RVs) are the major cause of common cold, a respiratory disease that generally takes a mild course. However, occasionally, RV infection can lead to serious complications in patients debilitated by other ailments, e.g., asthma. Colds are a huge socioeconomic burden as neither vaccines nor other treatments are available. The many existing drug candidates either stabilize the capsid or inhibit the viral RNA polymerase, the viral proteinases, or the functions of other non-structural viral proteins; however, none has been approved by the FDA. Focusing on the genomic RNA as a possible target for antivirals, we asked whether stabilizing RNA secondary structures might inhibit the viral replication cycle. These secondary structures include G-quadruplexes (GQs), which are guanine-rich sequence stretches forming planar guanine tetrads via Hoogsteen base pairing with two or more of them stacking on top of each other; a number of small molecular drug candidates increase the energy required for their unfolding. The propensity of G-quadruplex formation can be predicted with bioinformatics tools and is expressed as a GQ score. Synthetic RNA oligonucleotides derived from the RV-A2 genome with sequences corresponding to the highest and lowest GQ scores indeed exhibited characteristics of GQs. In vivo, the GQ-stabilizing compounds, pyridostatin and PhenDC3, interfered with viral uncoating in Na+ but not in K+-containing phosphate buffers. The thermostability studies and ultrastructural imaging of protein-free viral RNA cores suggest that Na+ keeps the encapsulated genome more open, allowing PDS and PhenDC3 to diffuse into the quasi-crystalline RNA and promote the formation and/or stabilization of GQs; the resulting conformational changes impair RNA unraveling and release from the virion. Preliminary reports have been published.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Center of Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, 1030 Vienna, Austria; (M.G.)
| | - Martin Groznica
- Center of Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, 1030 Vienna, Austria; (M.G.)
- Institut Pasteur, CEDEX 15, 75724 Paris, France
| | - Georg Kontaxis
- Vienna Biocenter, Max Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna BioCenter 5, 1030 Vienna, Austria;
| | - Rong Zhu
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria; (R.Z.)
| | - Otávio Augusto Chaves
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC/Fiocruz), Av. Brasil, 4365, Rio de Janeiro 21040-360, Brazil
| | - Leonardo Vazquez
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC/Fiocruz), Av. Brasil, 4365, Rio de Janeiro 21040-360, Brazil
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria; (R.Z.)
| | - Heinrich Kowalski
- Center of Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, 1030 Vienna, Austria; (M.G.)
| | - Dieter Blaas
- Center of Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, 1030 Vienna, Austria; (M.G.)
| |
Collapse
|
17
|
Castello A, Iselin L. Viral RNA Is a Hub for Critical Host-Virus Interactions. Subcell Biochem 2023; 106:365-385. [PMID: 38159234 DOI: 10.1007/978-3-031-40086-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
RNA is a central molecule in the life cycle of viruses, acting not only as messenger (m)RNA but also as a genome. Given these critical roles, it is not surprising that viral RNA is a hub for host-virus interactions. However, the interactome of viral RNAs remains largely unknown. This chapter discusses the importance of cellular RNA-binding proteins in virus infection and the emergent approaches developed to uncover and characterise them.
Collapse
Affiliation(s)
- Alfredo Castello
- MRC University of Glasgow Centre for Virus Research, Glasgow, UK.
| | - Louisa Iselin
- MRC University of Glasgow Centre for Virus Research, Glasgow, UK
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Molecular Determinants of Human Rhinovirus Infection, Assembly, and Conformational Stability at Capsid Protein Interfaces. J Virol 2022; 96:e0084022. [PMID: 36374110 PMCID: PMC9749468 DOI: 10.1128/jvi.00840-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Human rhinovirus (HRV), one of the most frequent human pathogens, is the major causative agent of common colds. HRVs also cause or exacerbate severe respiratory diseases, such as asthma or chronic obstructive pulmonary disease. Despite the biomedical and socioeconomic importance of this virus, no anti-HRV vaccines or drugs are available yet. Protein-protein interfaces in virus capsids have increasingly been recognized as promising virus-specific targets for the development of antiviral drugs. However, the specific structural elements and residues responsible for the biological functions of these extended capsid regions are largely unknown. In this study, we performed a thorough mutational analysis to determine which particular residues along the capsid interpentamer interfaces are relevant to HRV infection as well as the stage(s) in the viral cycle in which they are involved. The effect on the virion infectivity of the individual mutation to alanine of 32 interfacial residues that, together, removed most of the interpentamer interactions was analyzed. Then, a representative sample that included many of those 32 single mutants were tested for capsid and virion assembly as well as virion conformational stability. The results indicate that most of the interfacial residues, and the interactions they establish, are biologically relevant, largely because of their important roles in virion assembly and/or stability. The HRV interpentamer interface is revealed as an atypical protein-protein interface, in which infectivity-determining residues are distributed at a high density along the entire interface. Implications for a better understanding of the relationship between the molecular structure and function of HRV and the development of novel capsid interface-binding anti-HRV agents are discussed. IMPORTANCE The rising concern about the serious medical and socioeconomic consequences of respiratory infections by HRV has elicited a renewed interest in the development of anti-HRV drugs. The conversion into effective drugs of compounds identified via screening, as well as antiviral drug design, rely on the acquisition of fundamental knowledge about the targeted viral elements and their roles during specific steps of the infectious cycle. The results of this study provide a detailed view on structure-function relationships in a viral capsid protein-protein interface, a promising specific target for antiviral intervention. The high density and scattering of the interfacial residues found to be involved in HRV assembly and/or stability support the possibility that any compound designed to bind any particular site at the interface will inhibit infection by interfering with virion morphogenesis or stabilization of the functional virion conformation.
Collapse
|
19
|
Chandler-Bostock R, Bingham RJ, Clark S, Scott AJP, Wroblewski E, Barker A, White SJ, Dykeman EC, Mata CP, Bohon J, Farquhar E, Twarock R, Stockley PG. Genome-regulated Assembly of a ssRNA Virus May Also Prepare It for Infection. J Mol Biol 2022; 434:167797. [PMID: 35998704 DOI: 10.1016/j.jmb.2022.167797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
Many single-stranded, positive-sense RNA viruses regulate assembly of their infectious virions by forming multiple, cognate coat protein (CP)-genome contacts at sites termed Packaging Signals (PSs). We have determined the secondary structures of the bacteriophage MS2 ssRNA genome (gRNA) frozen in defined states using constraints from X-ray synchrotron footprinting (XRF). Comparison of the footprints from phage and transcript confirms the presence of multiple PSs in contact with CP dimers in the former. This is also true for a virus-like particle (VLP) assembled around the gRNA in vitro in the absence of the single-copy Maturation Protein (MP) found in phage. Since PS folds are present at many sites across gRNA transcripts, it appears that this genome has evolved to facilitate this mechanism of assembly regulation. There are striking differences between the gRNA-CP contacts seen in phage and the VLP, suggesting that the latter are inappropriate surrogates for aspects of phage structure/function. Roughly 50% of potential PS sites in the gRNA are not in contact with the protein shell of phage. However, many of these sit adjacent to, albeit not in contact with, PS-binding sites on CP dimers. We hypothesize that these act as PSs transiently during assembly but subsequently dissociate. Combining the XRF data with PS locations from an asymmetric cryo-EM reconstruction suggests that the genome positions of such dissociations are non-random and may facilitate infection. The loss of many PS-CP interactions towards the 3' end of the gRNA would allow this part of the genome to transit more easily through the narrow basal body of the pilus extruding machinery. This is the known first step in phage infection. In addition, each PS-CP dissociation event leaves the protein partner trapped in a non-lowest free-energy conformation. This destabilizes the protein shell which must disassemble during infection, further facilitating this stage of the life-cycle.
Collapse
Affiliation(s)
| | - Richard J Bingham
- Departments of Mathematics and Biology & York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK
| | - Sam Clark
- Departments of Mathematics and Biology & York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK
| | - Andrew J P Scott
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Emma Wroblewski
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Amy Barker
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Simon J White
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Eric C Dykeman
- Departments of Mathematics and Biology & York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK
| | - Carlos P Mata
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jen Bohon
- CWRU Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Erik Farquhar
- CWRU Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Reidun Twarock
- Departments of Mathematics and Biology & York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK.
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
20
|
Wang H, Munke A, Li S, Tomaru Y, Okamoto K. Structural Insights into Common and Host-Specific Receptor-Binding Mechanisms in Algal Picorna-like Viruses. Viruses 2022; 14:2369. [PMID: 36366467 PMCID: PMC9697754 DOI: 10.3390/v14112369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 01/31/2023] Open
Abstract
Marnaviridae viruses are abundant algal viruses that regulate the dynamics of algal blooms in aquatic environments. They employ a narrow host range because they merely lyse their algal host species. This host-specific lysis is thought to correspond to the unique receptor-binding mechanism of the Marnaviridae viruses. Here, we present the atomic structures of the full and empty capsids of Chaetoceros socialis forma radians RNA virus 1 built-in 3.0 Å and 3.1 Å cryo-electron microscopy maps. The empty capsid structure and the structural variability provide insights into its assembly and uncoating intermediates. In conjunction with the previously reported atomic model of the Chaetoceros tenuissimus RNA virus type II capsid, we have identified the common and diverse structural features of the VP1 surface between the Marnaviridae viruses. We have also tested the potential usage of AlphaFold2 for structural prediction of the VP1s and a subsequent structural phylogeny for classifying Marnaviridae viruses by their hosts. These findings will be crucial for inferring the host-specific receptor-binding mechanism in Marnaviridae viruses.
Collapse
Affiliation(s)
- Han Wang
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | - Anna Munke
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Siqi Li
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | - Yuji Tomaru
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Hatsukaichi 739-0452, Hiroshima, Japan
| | - Kenta Okamoto
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| |
Collapse
|
21
|
Dahmane S, Kerviel A, Morado DR, Shankar K, Ahlman B, Lazarou M, Altan-Bonnet N, Carlson LA. Membrane-assisted assembly and selective secretory autophagy of enteroviruses. Nat Commun 2022; 13:5986. [PMID: 36216808 PMCID: PMC9550805 DOI: 10.1038/s41467-022-33483-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
Enteroviruses are non-enveloped positive-sense RNA viruses that cause diverse diseases in humans. Their rapid multiplication depends on remodeling of cytoplasmic membranes for viral genome replication. It is unknown how virions assemble around these newly synthesized genomes and how they are then loaded into autophagic membranes for release through secretory autophagy. Here, we use cryo-electron tomography of infected cells to show that poliovirus assembles directly on replication membranes. Pharmacological untethering of capsids from membranes abrogates RNA encapsidation. Our data directly visualize a membrane-bound half-capsid as a prominent virion assembly intermediate. Assembly progression past this intermediate depends on the class III phosphatidylinositol 3-kinase VPS34, a key host-cell autophagy factor. On the other hand, the canonical autophagy initiator ULK1 is shown to restrict virion production since its inhibition leads to increased accumulation of virions in vast intracellular arrays, followed by an increased vesicular release at later time points. Finally, we identify multiple layers of selectivity in virus-induced autophagy, with a strong selection for RNA-loaded virions over empty capsids and the segregation of virions from other types of autophagosome contents. These findings provide an integrated structural framework for multiple stages of the poliovirus life cycle.
Collapse
Affiliation(s)
- Selma Dahmane
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Adeline Kerviel
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dustin R Morado
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Kasturika Shankar
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Björn Ahlman
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Michael Lazarou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lars-Anders Carlson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden. .,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden. .,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.
| |
Collapse
|
22
|
Cryo-electron microscopy and image classification reveal the existence and structure of the coxsackievirus A6 virion. Commun Biol 2022; 5:898. [PMID: 36056184 PMCID: PMC9438360 DOI: 10.1038/s42003-022-03863-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/18/2022] [Indexed: 12/18/2022] Open
Abstract
Coxsackievirus A6 (CV-A6) has recently overtaken enterovirus A71 and CV-A16 as the primary causative agent of hand, foot, and mouth disease worldwide. Virions of CV-A6 were not identified in previous structural studies, and it was speculated that the virus is unique among enteroviruses in using altered particles with expanded capsids to infect cells. In contrast, the virions of other enteroviruses are required for infection. Here we used cryo-electron microscopy (cryo-EM) to determine the structures of the CV-A6 virion, altered particle, and empty capsid. We show that the CV-A6 virion has features characteristic of virions of other enteroviruses, including a compact capsid, VP4 attached to the inner capsid surface, and fatty acid-like molecules occupying the hydrophobic pockets in VP1 subunits. Furthermore, we found that in a purified sample of CV-A6, the ratio of infectious units to virions is 1 to 500. Therefore, it is likely that virions of CV-A6 initiate infection, like those of other enteroviruses. Our results provide evidence that future vaccines against CV-A6 should target its virions instead of the antigenically distinct altered particles. Furthermore, the structure of the virion provides the basis for the rational development of capsid-binding inhibitors that block the genome release of CV-A6. A cryo-EM structure for the three conformers of coxsackievirus A6 provides insight into the infection process of this enterovirus, which is responsible for numerous cases of hand, foot, and mouth disease.
Collapse
|
23
|
Hu B, Chik KKH, Chan JFW, Cai JP, Cao H, Tsang JOL, Zou Z, Hung YP, Tang K, Jia L, Luo C, Yin F, Ye ZW, Chu H, Yeung ML, Yuan S. Vemurafenib Inhibits Enterovirus A71 Genome Replication and Virus Assembly. Pharmaceuticals (Basel) 2022; 15:1067. [PMID: 36145288 PMCID: PMC9500672 DOI: 10.3390/ph15091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
Enterovirus A71 (EV-A71) infection is a major cause of hand, foot, and mouth disease (HFMD), which may be occasionally associated with severe neurological complications. There is currently a lack of treatment options for EV-A71 infection. The Raf-MEK-ERK signaling pathway, in addition to its critical importance in the regulation of cell growth, differentiation, and survival, has been shown to be essential for virus replication. In this study, we investigated the anti-EV-A71 activity of vemurafenib, a clinically approved B-Raf inhibitor used in the treatment of late-stage melanoma. Vemurafenib exhibits potent anti-EV-A71 effect in cytopathic effect inhibition and viral load reduction assays, with half maximal effective concentration (EC50) at nanomolar concentrations. Mechanistically, vemurafenib interrupts both EV-A71 genome replication and assembly. These findings expand the list of potential antiviral candidates of anti-EV-A71 therapeutics.
Collapse
Affiliation(s)
- Bodan Hu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenn Ka-Heng Chik
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou 571199, China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hehe Cao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jessica Oi-Ling Tsang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Zijiao Zou
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yin-Po Hung
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lilong Jia
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Cuiting Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Zi-Wei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Man-Lung Yeung
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| |
Collapse
|
24
|
Jose J, Hafenstein SL. Asymmetry in icosahedral viruses. Curr Opin Virol 2022; 54:101230. [DOI: 10.1016/j.coviro.2022.101230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 01/24/2023]
|
25
|
Patel N, Abulwerdi F, Fatehi F, Manfield IW, Le Grice S, Schneekloth JS, Twarock R, Stockley PG. Dysregulation of Hepatitis B Virus Nucleocapsid Assembly in vitro by RNA-binding Small Ligands. J Mol Biol 2022; 434:167557. [PMID: 35341740 PMCID: PMC7612645 DOI: 10.1016/j.jmb.2022.167557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 12/12/2022]
Abstract
RNA sequences/motifs dispersed across the genome of Hepatitis B Virus regulate formation of nucleocapsid-like particles (NCPs) by core protein (Cp) in vitro, in an epsilon/polymerase-independent fashion. These multiple RNA Packaging Signals (PSs) can each form stem-loops encompassing a Cp-recognition motif, -RGAG-, in their loops. Drug-like molecules that bind the most important of these PS sites for NCP assembly regulation with nanomolar affinities, were identified by screening an immobilized ligand library with a fluorescently-labelled, RNA oligonucleotide encompassing this sequence. Sixty-six of these "hits", with affinities ranging from low nanomolar to high micromolar, were purchased as non-immobilized versions. Their affinities for PSs and effects on NCP assembly were determined in vitro by Surface Plasmon Resonance. High-affinity ligand binding is dependent on the presence of an -RGAG- motif within the loop of the PS, consistent with ligand cross-binding between PS sites. Simple structure-activity relationships show that it is also dependent on the presence of specific functional groups in these ligands. Some compounds are potent inhibitors of in vitro NCP assembly at nanomolar concentrations. Despite appropriate logP values, these ligands do not inhibit HBV replication in cell culture. However, modelling confirms the potential of using PS-binding ligands to target NCP assembly as a novel anti-viral strategy. This also allows for computational exploration of potential synergic effects between anti-viral ligands directed at distinct molecular targets in vivo. HBV PS-regulated assembly can be dysregulated by novel small molecule RNA-binding ligands opening a novel target for developing directly-acting anti-virals against this major pathogen.
Collapse
Affiliation(s)
- Nikesh Patel
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK. https://twitter.com/FBSResearch
| | - Fardokht Abulwerdi
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, United States
| | - Farzad Fatehi
- Department of Mathematics, University of York, York, YO10 5DD, UK; York Cross-disciplinary Centre for Systems Analysis, University of York, York, YO10 5GE, UK
| | - Iain W Manfield
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Stuart Le Grice
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, United States
| | - John S Schneekloth
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, United States
| | - Reidun Twarock
- Department of Mathematics, University of York, York, YO10 5DD, UK; York Cross-disciplinary Centre for Systems Analysis, University of York, York, YO10 5GE, UK; Department of Biology, University of York, York, YO10 5DD, UK
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK. https://twitter.com/AstburyCentre
| |
Collapse
|
26
|
Persistent Enterovirus Infection: Little Deletions, Long Infections. Vaccines (Basel) 2022; 10:vaccines10050770. [PMID: 35632526 PMCID: PMC9143164 DOI: 10.3390/vaccines10050770] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
Enteroviruses have now been shown to persist in cell cultures and in vivo by a novel mechanism involving the deletion of varying amounts of the 5′ terminal genomic region termed domain I (also known as the cloverleaf). Molecular clones of coxsackievirus B3 (CVB3) genomes with 5′ terminal deletions (TD) of varying length allow the study of these mutant populations, which are able to replicate in the complete absence of wildtype virus genomes. The study of TD enteroviruses has revealed numerous significant differences from canonical enteroviral biology. The deletions appear and become the dominant population when an enterovirus replicates in quiescent cell populations, but can also occur if one of the cis-acting replication elements of the genome (CRE-2C) is artificially mutated in the element’s stem and loop structures. This review discusses how the TD genomes arise, how they interact with the host, and their effects on host biology.
Collapse
|
27
|
Adlhart M, Poetsch F, Hlevnjak M, Hoogmoed M, Polyansky A, Zagrovic B. Compositional complementarity between genomic RNA and coat proteins in positive-sense single-stranded RNA viruses. Nucleic Acids Res 2022; 50:4054-4067. [PMID: 35357492 PMCID: PMC9023274 DOI: 10.1093/nar/gkac202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 02/02/2023] Open
Abstract
During packaging in positive-sense single-stranded RNA (+ssRNA) viruses, coat proteins (CPs) interact directly with multiple regions in genomic RNA (gRNA), but the underlying physicochemical principles remain unclear. Here we analyze the high-resolution cryo-EM structure of bacteriophage MS2 and show that the gRNA/CP binding sites, including the known packaging signal, overlap significantly with regions where gRNA nucleobase-density profiles match the corresponding CP nucleobase-affinity profiles. Moreover, we show that the MS2 packaging signal corresponds to the global minimum in gRNA/CP interaction energy in the unstructured state as derived using a linearly additive model and knowledge-based nucleobase/amino-acid affinities. Motivated by this, we predict gRNA/CP interaction sites for a comprehensive set of 1082 +ssRNA viruses. We validate our predictions by comparing them with site-resolved information on gRNA/CP interactions derived in SELEX and CLIP experiments for 10 different viruses. Finally, we show that in experimentally studied systems CPs frequently interact with autologous coding regions in gRNA, in agreement with both predicted interaction energies and a recent proposal that proteins in general tend to interact with own mRNAs, if unstructured. Our results define a self-consistent framework for understanding packaging in +ssRNA viruses and implicate interactions between unstructured gRNA and CPs in the process.
Collapse
Affiliation(s)
- Marlene Adlhart
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030, Vienna, Austria
| | - Florian Poetsch
- Institute for Physiology and Pathophysiology, Center for Medical Research, Johannes Kepler University of Linz, Huemerstraße 3-5, 4020 Linz, Austria
| | - Mario Hlevnjak
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Megan Hoogmoed
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030, Vienna, Austria
| | - Anton A Polyansky
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030, Vienna, Austria
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030, Vienna, Austria
| |
Collapse
|
28
|
Wang I, Gupta SK, Ems G, Jayawardena N, Strauss M, Bostina M. Cryo-EM Structure of a Possum Enterovirus. Viruses 2022; 14:v14020318. [PMID: 35215909 PMCID: PMC8879876 DOI: 10.3390/v14020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023] Open
Abstract
Enteroviruses (EVs) represent a substantial concern to global health. Here, we present the cryo-EM structure of a non-human enterovirus, EV-F4, isolated from the Australian brushtail possum to assess the structural diversity of these picornaviruses. The capsid structure, determined to ~3 Å resolution by single particle analysis, exhibits a largely smooth surface, similar to EV-F3 (formerly BEV-2). Although the cellular receptor is not known, the absence of charged residues on the outer surface of the canyon suggest a different receptor type than for EV-F3. Density for the pocket factor is clear, with the entrance to the pocket being smaller than for other enteroviruses.
Collapse
Affiliation(s)
- Ivy Wang
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada;
| | | | - Guillaume Ems
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (G.E.); (N.J.)
- Faculté des Sciences, Université de Namur, 5000 Namur, Belgium
| | - Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (G.E.); (N.J.)
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Mike Strauss
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada;
- Correspondence: (M.S.); (M.B.)
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (G.E.); (N.J.)
- Otago Micro and Nano Imaging, University of Otago, Dunedin 9016, New Zealand
- Correspondence: (M.S.); (M.B.)
| |
Collapse
|
29
|
Fang CY, Liu CC. Novel strategies for the development of hand, foot, and mouth disease vaccines and antiviral therapies. Expert Opin Drug Discov 2022; 17:27-39. [PMID: 34382876 DOI: 10.1080/17460441.2021.1965987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/05/2021] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Hand, foot, and mouth disease (HFMD) poses a great threat to young children in the Asia-Pacific region. HFMD is usually caused by enterovirus A, and infection with enterovirus A71 (EV-A71) is particularly associated with severe complications. However, coxsackievirus CV-A16, CV-A6, and CV-A10 pandemics have been observed in recent HFMD outbreaks. Inactivated monovalent EV-A71 vaccines are available to prevent EV-A71 infection; however, they cannot prevent infections by non-EV-A71 enteroviruses. Anti-enteroviral drugs are still in the developmental stage. Application of novel strategies will facilitate the development of new therapies against these emerging HFMD-associated enteroviruses. AREAS COVERED The authors highlight the current approaches for anti-enterovirus therapeutic development and discuss the application of these novel strategies for the discovery of vaccines and antiviral drugs for enteroviruses. EXPERT OPINION The maturation of DNA/RNA vaccine technology could be applied for rapid and robust development of multivalent enterovirus vaccines. Structure biology and neutralization antibody studies decipher the immunodominant sites of enteroviruses for vaccine design. Nucleotide aptamer library screening is a novel, fast, and cost-effective strategy for the development of antiviral agents. Animal models carrying viral receptors and attachment factors are required for enterovirus study and vaccine/antiviral development. Currently developed antivirals require effectiveness evaluation in clinical trials.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
30
|
Fatehi F, Bingham RJ, Dechant PP, Stockley PG, Twarock R. Therapeutic interfering particles exploiting viral replication and assembly mechanisms show promising performance: a modelling study. Sci Rep 2021; 11:23847. [PMID: 34903795 PMCID: PMC8668974 DOI: 10.1038/s41598-021-03168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
Defective interfering particles arise spontaneously during a viral infection as mutants lacking essential parts of the viral genome. Their ability to replicate in the presence of the wild-type (WT) virus (at the expense of viable viral particles) is mimicked and exploited by therapeutic interfering particles. We propose a strategy for the design of therapeutic interfering RNAs (tiRNAs) against positive-sense single-stranded RNA viruses that assemble via packaging signal-mediated assembly. These tiRNAs contain both an optimised version of the virus assembly manual that is encoded by multiple dispersed RNA packaging signals and a replication signal for viral polymerase, but lack any protein coding information. We use an intracellular model for hepatitis C viral (HCV) infection that captures key aspects of the competition dynamics between tiRNAs and viral genomes for virally produced capsid protein and polymerase. We show that only a small increase in the assembly and replication efficiency of the tiRNAs compared with WT virus is required in order to achieve a treatment efficacy greater than 99%. This demonstrates that the proposed tiRNA design could be a promising treatment option for RNA viral infections.
Collapse
Affiliation(s)
- Farzad Fatehi
- York Cross-disciplinary Centre for Systems Analysis, University of York, York, YO10 5GE, UK
- Department of Mathematics, University of York, York, YO10 5DD, UK
| | - Richard J Bingham
- York Cross-disciplinary Centre for Systems Analysis, University of York, York, YO10 5GE, UK
- Department of Mathematics, University of York, York, YO10 5DD, UK
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Pierre-Philippe Dechant
- York Cross-disciplinary Centre for Systems Analysis, University of York, York, YO10 5GE, UK
- Department of Mathematics, University of York, York, YO10 5DD, UK
- School of Science, Technology and Health, York St John University, York, YO31 7EX, UK
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Reidun Twarock
- York Cross-disciplinary Centre for Systems Analysis, University of York, York, YO10 5GE, UK.
- Department of Mathematics, University of York, York, YO10 5DD, UK.
- Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
31
|
RNA Structures and Their Role in Selective Genome Packaging. Viruses 2021; 13:v13091788. [PMID: 34578369 PMCID: PMC8472981 DOI: 10.3390/v13091788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
To generate infectious viral particles, viruses must specifically select their genomic RNA from milieu that contains a complex mixture of cellular or non-genomic viral RNAs. In this review, we focus on the role of viral encoded RNA structures in genome packaging. We first discuss how packaging signals are constructed from local and long-range base pairings within viral genomes, as well as inter-molecular interactions between viral and host RNAs. Then, how genome packaging is regulated by the biophysical properties of RNA. Finally, we examine the impact of RNA packaging signals on viral evolution.
Collapse
|
32
|
Real-Hohn A, Blaas D. Rhinovirus Inhibitors: Including a New Target, the Viral RNA. Viruses 2021; 13:1784. [PMID: 34578365 PMCID: PMC8473194 DOI: 10.3390/v13091784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Rhinoviruses (RVs) are the main cause of recurrent infections with rather mild symptoms characteristic of the common cold. Nevertheless, RVs give rise to enormous numbers of absences from work and school and may become life-threatening in particular settings. Vaccination is jeopardised by the large number of serotypes eliciting only poorly cross-neutralising antibodies. Conversely, antivirals developed over the years failed FDA approval because of a low efficacy and/or side effects. RV species A, B, and C are now included in the fifteen species of the genus Enteroviruses based upon the high similarity of their genome sequences. As a result of their comparably low pathogenicity, RVs have become a handy model for other, more dangerous members of this genus, e.g., poliovirus and enterovirus 71. We provide a short overview of viral proteins that are considered potential drug targets and their corresponding drug candidates. We briefly mention more recently identified cellular enzymes whose inhibition impacts on RVs and comment novel approaches to interfere with infection via aggregation, virus trapping, or preventing viral access to the cell receptor. Finally, we devote a large part of this article to adding the viral RNA genome to the list of potential drug targets by dwelling on its structure, folding, and the still debated way of its exit from the capsid. Finally, we discuss the recent finding that G-quadruplex stabilising compounds impact on RNA egress possibly via obfuscating the unravelling of stable secondary structural elements.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| | - Dieter Blaas
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| |
Collapse
|
33
|
Domanska A, Guryanov S, Butcher SJ. A comparative analysis of parechovirus protein structures with other picornaviruses. Open Biol 2021; 11:210008. [PMID: 34315275 PMCID: PMC8316810 DOI: 10.1098/rsob.210008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/01/2021] [Indexed: 12/26/2022] Open
Abstract
Parechoviruses belong to the genus Parechovirus within the family Picornaviridae and are non-enveloped icosahedral viruses with a single-stranded RNA genome. Parechoviruses include human and animal pathogens classified into six species. Those that infect humans belong to the Parechovirus A species and can cause infections ranging from mild gastrointestinal or respiratory illness to severe neonatal sepsis. There are no approved antivirals available to treat parechovirus (nor any other picornavirus) infections. In this parechovirus review, we focus on the cleaved protein products resulting from the polyprotein processing after translation comparing and contrasting their known or predicted structures and functions to those of other picornaviruses. The review also includes our original analysis from sequence and structure prediction. This review highlights significant structural differences between parechoviral and other picornaviral proteins, suggesting that parechovirus drug development should specifically be directed to parechoviral targets.
Collapse
Affiliation(s)
- Aušra Domanska
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, and Helsinki Institute of Life Sciences–Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sergey Guryanov
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, and Helsinki Institute of Life Sciences–Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sarah J. Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, and Helsinki Institute of Life Sciences–Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
34
|
SAMHD1 Inhibits Multiple Enteroviruses by Interfering with the Interaction between VP1 and VP2 Proteins. J Virol 2021; 95:e0062021. [PMID: 33883225 DOI: 10.1128/jvi.00620-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1) possesses multiple biological activities such as virus restriction, innate immunity regulation, and autoimmunity. Our previous study demonstrated that SAMHD1 potently inhibits the replication of enterovirus 71 (EV71). In this study, we observed that SAMHD1 also restricts multiple enteroviruses (EVs), including coxsackievirus A16 (CA16) and enterovirus D68 (EVD68), but not coxsackievirus A6 (CA6). Mechanistically, SAMHD1 competitively interacted with the same domain in VP1 that binds to VP2 of EV71 and EVD68, thereby interfering with the interaction between VP1 and VP2 , and therefore viral assembly. Moreover, we showed that the SAMHD1 T592A mutant maintained the EV71 inhibitory effect by attenuating the interaction between VP1 and VP2, whereas the T592D mutant failed to. We also demonstrated that SAMHD1 could not inhibit CA6 because a different binding site is required for the SAMHD1 and VP1 interaction. Our findings reveal the mechanism of SAMHD1 inhibition of multiple EVs, and this could potentially be important for developing drugs against a broad range of EVs. IMPORTANCE Enterovirus causes a wide variety of diseases, such as hand, foot, and mouth disease (HFMD), which is a severe public problem threatening children under 5 years. Therefore, identifying essential genes which restrict EV infection and exploring the underlying mechanisms are necessary to develop an effective strategy to inhibit EV infection. In this study, we report that host restrictive factor SAMHD1 has broad-spectrum antiviral activity against EV71, CA16, and EVD68 independent of its well-known deoxynucleoside triphosphate triphosphohydrolase (dNTPase) or RNase activity. Mechanistically, SAMHD1 restricts EVs by competitively interacting with the same domain in VP1 that binds to VP2 of EVs, thereby interfering with the interaction between VP1 and VP2, and therefore viral assembly. In contrast, we also demonstrated that SAMHD1 could not inhibit CA6 because a different binding site is required for the SAMHD1 and CA6 VP1 interaction. Our study reveals a novel mechanism for the SAMHD1 anti-EV replication activity.
Collapse
|
35
|
Liu F, Wang N, Huang Y, Wang Q, Shan H. Stem II-disrupting pseudoknot does not abolish ability of Senecavirus A IRES to initiate protein expression, but inhibits recovery of virus from cDNA clone. Vet Microbiol 2021; 255:109024. [PMID: 33713975 DOI: 10.1016/j.vetmic.2021.109024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Senecavirus A (SVA) is classified into the genus Senecavirus in the family Picornaviridae. Its genome is a positive-sense, single-stranded and nonsegmented RNA, approximately 7300 nucleotides in length. A picornaviral genome is essentially an mRNA, which, albeit unmodified with 5' cap structure, can still initiate protein expression by the internal ribosome entry site (IRES). The SVA genome contains a hepatitis C virus-like IRES, in which a pseudoknot structure plays an important role in initiating protein expression. In this study, we constructed a set of SVA (CH-LX-01-2016 strain) minigenomes with all combinations of point mutations in its pseudoknot stem II (PKS-II). The results showed that any combination of point mutations could not significantly interfere with the IRES to initiate protein expression. Further, we constructed a full-length SVA cDNA clone, in which the PKS-II-forming cDNA motif was subjected to site-directed mutagenesis for totally disrupting the PKS-II formation in IRES. Such a modified SVA cDNA clone was transfected into BSR-T7/5 cells, consequently demonstrating that the PKS-II-disrupting IRES interfered neither with protein expression nor with antigenome replication, whereas a competent SVA could not be rescued from the cDNA clone. It was speculated that the mutated motif possibly disrupted a packaging signal for virion assembly, therefore causing the failure of SVA rescue.
Collapse
Affiliation(s)
- Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ning Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yilan Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|