1
|
Armengaud J. The dawn of the revolution that will allow us to precisely describe how microbiomes function. J Proteomics 2025; 316:105430. [PMID: 40081757 DOI: 10.1016/j.jprot.2025.105430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/09/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
The community of microorganisms inhabiting a specific environment, such as the human gut - including bacteria, fungi, archaea, viruses, protozoa, and others - is known as the microbiota. A holobiont, in turn, refers to an integrated ecological unit where microbial communities function and interact with their host, thus is a more integrative concept. To understand the processes involved, the diversity of microorganisms present must be identified and their molecular components quantified, especially proteins. Indeed, proteins - through their roles as catalytic units, structural components, and signaling molecules - are the main drivers of biological processes. Metagenomics has significantly expanded what we know about the genetic material present in microbiota, revealing their functional potential; metabolomics delivers an overall snapshot of the metabolites produced by the community. But metaproteomics offers a complementary approach to explore microbiome and holobiont functionality by focusing on the active proteins and functional pathways from each taxon. Significant recent advances in high-resolution tandem mass spectrometry have greatly expanded the catalog of peptide sequences accessible in each sample, creating the conditions for unprecedented taxonomical profiling, while also providing more accurate biomass quantification, more detailed protein characterization, and a greater capacity to monitor abundance and distinguish host biomarkers. By integrating artificial intelligence into the metaproteomics pipeline, extended datasets can now be efficiently mined to gain a more comprehensive functional view of complex biological systems, paving the way for next-generation metaproteomics. In this perspective, I discuss the transformative potential of this methodology. We are on the cusp of a remarkable omic revolution that promises to uncover the intricate workings of microbiomes by producing a vast array of new knowledge with multiple applications. SIGNIFICANCE: Metaproteomics provides a powerful lens to investigate microbiome and holobiont functionality by identifying and quantifying active proteins and functional pathways within each taxon. Recent breakthroughs in high-resolution tandem mass spectrometry have dramatically expanded the repertoire of peptide sequences detectable per sample. This progress enables unprecedented taxonomic resolution for microbial identification, more precise biomass quantification, comprehensive protein characterization, abundance monitoring, and the unique identification of host biomarkers. In this commentary, I delve into the distinctive features that make metaproteomics a transformative tool. I discuss the recent advancements in tandem mass spectrometry and argue that the primary challenge in analyzing complex samples is shifting from data acquisition to data interpretation. With the integration of artificial intelligence, I believe next-generation metaproteomics is poised to become the next Big Thing in microbiome research, unlocking profound insights into microbial functionality and ecosystem dynamics.
Collapse
Affiliation(s)
- Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France.
| |
Collapse
|
2
|
Mudge MC, Riffle M, Chebli G, Plubell DL, Rynearson TA, Noble WS, Timmins-Schiffman E, Kubanek J, Nunn BL. Harmful algal blooms are preceded by a predictable and quantifiable shift in the oceanic microbiome. Nat Commun 2025; 16:3986. [PMID: 40295559 PMCID: PMC12037917 DOI: 10.1038/s41467-025-59250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Harmful algal blooms (HABs) have become a worldwide environmental and human health problem, stressing the urgent need for a reliable forecasting tool. Dynamic interactions between algae, including harmful algae, and bacteria play a large role regulating water chemistry. Free-living bacteria quickly respond to small physical and/or chemical environmental changes by adjusting their proteome. We hypothesize that this response is detectable at the peptide level and occurs before rapid phytoplankton growth characteristic of harmful bloom events. To characterize the microbiome's physiological changes preceding bloom onset, we collected and analyzed a high-resolution metaproteomic time series of a free-living microbiome in a coastal ecosystem. We confirm that twelve candidate HAB biomarkers are detectable, quantifiable, and correlated across two pre-bloom periods. This study identifies proteomic shifts in bacterial peptides which may be used as predictive biomarkers for forecasting harmful algal bloom initiation, potentially mitigating detrimental algal bloom outcomes in the future.
Collapse
Affiliation(s)
- Miranda C Mudge
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michael Riffle
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gabriella Chebli
- School of Biological Sciences, Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA, USA
| | - Deanna L Plubell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island, Kingston, RI, USA
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Julia Kubanek
- School of Biological Sciences, Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA, USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA, USA
| | - Brook L Nunn
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Bartlett A, Blakeley-Ruiz JA, Richie T, Theriot CM, Kleiner M. Large Quantities of Bacterial DNA and Protein in Common Dietary Protein Source Used in Microbiome Studies. Proteomics 2025:e202400149. [PMID: 39981802 DOI: 10.1002/pmic.202400149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Diet has been shown to greatly impact the intestinal microbiota. To understand the role of individual dietary components, defined diets with purified components are frequently used in diet-microbiota studies. Defined diets frequently use purified casein as the protein source. Previous work indicated that casein contains microbial DNA potentially impacting results of microbiome studies. Other diet-based microbially derived molecules that may impact microbiome measurements, such as proteins detected by metaproteomics, have not been determined for casein. Additionally, other protein sources used in microbiome studies have not been characterized for their microbial content. We used metagenomics and metaproteomics to identify and quantify microbial DNA and protein in a casein-based defined diet to better understand potential impacts on metagenomic and metaproteomic microbiome studies. We further tested six additional defined diets with purified protein sources with an integrated metagenomic-metaproteomic approach and found that contaminating microbial protein is unique to casein within the tested set as microbial protein was not identified in diets with other protein sources. We also illustrate the contribution of diet-derived microbial protein in diet-microbiota studies by metaproteomic analysis of stool samples from germ-free mice (GF) and mice with a conventional microbiota (CV) following consumption of diets with casein and non-casein protein. This study highlights a potentially confounding factor in diet-microbiota studies that must be considered through evaluation of the diet itself within a given study.
Collapse
Affiliation(s)
- Alexandria Bartlett
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - J Alfredo Blakeley-Ruiz
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Tanner Richie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Casey M Theriot
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, North Carolina, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Valdés-Mas R, Leshem A, Zheng D, Cohen Y, Kern L, Zmora N, He Y, Katina C, Eliyahu-Miller S, Yosef-Hevroni T, Richman L, Raykhel B, Allswang S, Better R, Shmueli M, Saftien A, Cullin N, Slamovitz F, Ciocan D, Ouyang KS, Mor U, Dori-Bachash M, Molina S, Levin Y, Atarashi K, Jona G, Puschhof J, Harmelin A, Stettner N, Chen M, Suez J, Honda K, Lieb W, Bang C, Kori M, Maharshak N, Merbl Y, Shibolet O, Halpern Z, Shouval DS, Shamir R, Franke A, Abdeen SK, Shapiro H, Savidor A, Elinav E. Metagenome-informed metaproteomics of the human gut microbiome, host, and dietary exposome uncovers signatures of health and inflammatory bowel disease. Cell 2025; 188:1062-1083.e36. [PMID: 39837331 DOI: 10.1016/j.cell.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/08/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Host-microbiome-dietary interactions play crucial roles in regulating human health, yet their direct functional assessment remains challenging. We adopted metagenome-informed metaproteomics (MIM), in mice and humans, to non-invasively explore species-level microbiome-host interactions during commensal and pathogen colonization, nutritional modification, and antibiotic-induced perturbation. Simultaneously, fecal MIM accurately characterized the nutritional exposure landscape in multiple clinical and dietary contexts. Implementation of MIM in murine auto-inflammation and in human inflammatory bowel disease (IBD) characterized a "compositional dysbiosis" and a concomitant species-specific "functional dysbiosis" driven by suppressed commensal responses to inflammatory host signals. Microbiome transfers unraveled early-onset kinetics of these host-commensal cross-responsive patterns, while predictive analyses identified candidate fecal host-microbiome IBD biomarker protein pairs outperforming S100A8/S100A9 (calprotectin). Importantly, a simultaneous fecal nutritional MIM assessment enabled the determination of IBD-related consumption patterns, dietary treatment compliance, and small intestinal digestive aberrations. Collectively, a parallelized dietary-bacterial-host MIM assessment functionally uncovers trans-kingdom interactomes shaping gastrointestinal ecology while offering personalized diagnostic and therapeutic insights into microbiome-associated disease.
Collapse
Affiliation(s)
- Rafael Valdés-Mas
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Avner Leshem
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Danping Zheng
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yotam Cohen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lara Kern
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Niv Zmora
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; School of Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Yiming He
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Corine Katina
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | | | - Tal Yosef-Hevroni
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Richman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Barbara Raykhel
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Allswang
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Reut Better
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Shmueli
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Nyssa Cullin
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany
| | - Fernando Slamovitz
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Dragos Ciocan
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Uria Mor
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Mally Dori-Bachash
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shahar Molina
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Koji Atarashi
- RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi, Yokohama, Kanagawa, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Ghil Jona
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Jens Puschhof
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Stettner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jotham Suez
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kenya Honda
- RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi, Yokohama, Kanagawa, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank Popgen, University Hospital of Schleswig-Holstein (UKSH), Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany; University Hospital of Schleswig-Holstein (UKSH), Kiel, Germany
| | - Michal Kori
- Pediatric Gastroenterology Unit, Kaplan Medical Center, Rehovot, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitsan Maharshak
- School of Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Gastroenterology and Hepatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Yifat Merbl
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Shibolet
- School of Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Gastroenterology and Hepatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Zamir Halpern
- School of Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Gastroenterology and Hepatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Dror S Shouval
- School of Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Institute of Gastroenterology, Nutrition, and Liver Diseases, Schneider Children's Medical Centre, Petach-Tikva, Israel
| | - Raanan Shamir
- School of Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Institute of Gastroenterology, Nutrition, and Liver Diseases, Schneider Children's Medical Centre, Petach-Tikva, Israel
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany; University Hospital of Schleswig-Holstein (UKSH), Kiel, Germany
| | - Suhaib K Abdeen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Hagit Shapiro
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany.
| |
Collapse
|
5
|
Kumar RKR, Haddad I, Ndiaye MM, Marbouty M, Vinh J, Verdier Y. A single microfluidic device for multi-omics analysis sample preparation. LAB ON A CHIP 2025; 25:590-599. [PMID: 39820672 DOI: 10.1039/d4lc00919c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Combining different "omics" approaches, such as genomics and proteomics, is necessary to generate a detailed and complete insight into microbiome comprehension. Proper sample collection and processing and accurate analytical methods are crucial in generating reliable data. We previously developed the ChipFilter device for proteomic analysis of microbial samples. We have shown that this device coupled to LC-MS/MS can successfully be used to identify microbial proteins. In the present work, we have developed our workflow to analyze concomitantly proteins and nucleic acids from the same sample. We performed lysis and proteolysis in the device using cultures of E. coli, B. subtilis, and S. cerevisiae. After peptide recovery for LC-MS/MS analysis, DNA from the same samples was recovered and successfully amplified by PCR for the 3 species. This workflow was further extended to a complex microbial mixture of known compositions. Protein analysis was carried out, enabling the identification of more than 5000 proteins. The recovered DNA was sequenced, performing comparable to DNA extracted with a commercial kit without proteolysis. Our results show that the ChipFilter device is suited to prepare samples for parallel proteomic and genomic analyses, which is particularly relevant in the case of low-abundant samples and drastically reduces sampling bias.
Collapse
Affiliation(s)
- Ranjith Kumar Ravi Kumar
- Spectrométrie de Masse Biologique et Protéomique SMBP, ESPCI Paris, LPC CNRS UMR 8249, PSL University, 10 Rue Vauquelin, F-75005 Paris, France.
| | - Iman Haddad
- Spectrométrie de Masse Biologique et Protéomique SMBP, ESPCI Paris, LPC CNRS UMR 8249, PSL University, 10 Rue Vauquelin, F-75005 Paris, France.
| | - Massamba Mbacké Ndiaye
- Spectrométrie de Masse Biologique et Protéomique SMBP, ESPCI Paris, LPC CNRS UMR 8249, PSL University, 10 Rue Vauquelin, F-75005 Paris, France.
| | - Martial Marbouty
- Institut Pasteur, Spacial Regulation of Genome Group, Université Paris Cité, CNRS 3525 - 25-28 Rue du Dr Roux, F-75015 Paris, France
| | - Joëlle Vinh
- Spectrométrie de Masse Biologique et Protéomique SMBP, ESPCI Paris, LPC CNRS UMR 8249, PSL University, 10 Rue Vauquelin, F-75005 Paris, France.
| | - Yann Verdier
- Spectrométrie de Masse Biologique et Protéomique SMBP, ESPCI Paris, LPC CNRS UMR 8249, PSL University, 10 Rue Vauquelin, F-75005 Paris, France.
| |
Collapse
|
6
|
Aguirre-Guemez AV, Groah SL. Managing Recurrent Urinary Tract Infections After Spinal Cord Injury: Practical Approaches and Emerging Concepts. Phys Med Rehabil Clin N Am 2025; 36:73-98. [PMID: 39567040 DOI: 10.1016/j.pmr.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The majority of individuals with neurogenic lower urinary tract dysfunction will have complicated urinary tract infections (UTIs) that will qualify as recurrent. Existing inconsistencies and challenges contribute to its subjective diagnosis. Thus, there is a pressing need for a reconceptualization of our understanding of UTI, accompanied by a paradigm shift in diagnosis and treatment approaches.
Collapse
Affiliation(s)
- Ana Valeria Aguirre-Guemez
- MedStar National Rehabilitation Hospital, Washington, DC, USA; Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, USA; MedStar Health Research Institute, Hyattsville, MD, USA.
| | - Suzanne L Groah
- MedStar National Rehabilitation Hospital, Washington, DC, USA; Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
7
|
Awan A, Bartlett A, Blakeley-Ruiz JA, Richie T, Ziegler A, Kleiner M. Source of dietary protein alters the abundance of proteases, intestinal epithelial and immune proteins both directly and via interactions with the gut microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632171. [PMID: 39829768 PMCID: PMC11741435 DOI: 10.1101/2025.01.09.632171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Dietary protein has been shown to impact long-term health outcomes differentially depending on its amount and source. It has been suggested that interactions of the gut microbiota with dietary proteins mediate some of the effects of dietary protein on health outcomes. However, it remains unclear what specific host responses drive the health effects of dietary proteins from different plant and animal sources. Additionally, which specific host responses are mediated by interactions of dietary protein source with the gut microbiota and which host responses are caused by dietary proteins directly is not well understood. We used metaproteomics to quantify dietary, host, and microbial proteins in fecal samples of conventional and germ-free mice fed purified dietary protein from six different plant and animal sources, including casein, egg-white, soy, brown rice, pea, and yeast. We characterized differences in the host fecal proteome across the six dietary protein sources as well as between the conventional and germ-free mice for each source to determine how the host responds to the different dietary protein sources and the role of the gut microbiota in mediating these responses. We found that both the source of dietary protein and the presence or absence of the gut microbiota drive the host response to dietary protein source in the fecal host proteome. Host proteins pertaining to immune response, digestion, and barrier function were differentially abundant in different protein sources with and without the gut microbiota. These changes in the host response correlated with changes in microbial composition and differences in protein digestibility. Our results show how dietary protein sources, through their interactions with the gut microbiota, impact several aspects of host physiology.
Collapse
Affiliation(s)
- Ayesha Awan
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| | - Alexandria Bartlett
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - J. Alfredo Blakeley-Ruiz
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| | - Tanner Richie
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| | - Amanda Ziegler
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Petrone BL, Bartlett A, Jiang S, Korenek A, Vintila S, Tenekjian C, Yancy WS, David LA, Kleiner M. A pilot study of metaproteomics and DNA metabarcoding as tools to assess dietary intake in humans. Food Funct 2025; 16:282-296. [PMID: 39663954 PMCID: PMC11635405 DOI: 10.1039/d4fo02656j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Objective biomarkers of food intake are a sought-after goal in nutrition research. Most biomarker development to date has focused on metabolites detected in blood, urine, skin, or hair, but detection of consumed foods in stool has also been shown to be possible via DNA sequencing. An additional food macromolecule in stool that harbors sequence information is protein. However, the use of protein as an intake biomarker has only been explored to a very limited extent. Here, we evaluate and compare measurement of residual food-derived DNA and protein in stool as potential biomarkers of intake. We performed a pilot study of DNA sequencing-based metabarcoding and mass spectrometry-based metaproteomics in five individuals' stool sampled in short, longitudinal bursts accompanied by detailed diet records (n = 27 total samples). Dietary data provided by stool DNA, stool protein, and written diet record independently identified a strong within-person dietary signature, identified similar food taxa, and had significantly similar global structure in two of the three pairwise comparisons between measurement techniques (DNA-to-protein and DNA-to-diet record). Metaproteomics identified proteins including myosin, ovalbumin, and beta-lactoglobulin that differentiated food tissue types like beef from dairy and chicken from egg, distinctions that were not possible by DNA alone. Overall, our results lay the groundwork for development of targeted metaproteomic assays for dietary assessment and demonstrate that diverse molecular components of food can be leveraged to study food intake using stool samples.
Collapse
Affiliation(s)
- Brianna L Petrone
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC, USA
| | - Alexandria Bartlett
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| | - Sharon Jiang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - Abigail Korenek
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| | | | - William S Yancy
- Duke Lifestyle and Weight Management Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
9
|
Blakeley-Ruiz JA, Bartlett A, McMillan AS, Awan A, Walsh MV, Meyerhoffer AK, Vintila S, Maier JL, Richie TG, Theriot CM, Kleiner M. Dietary protein source alters gut microbiota composition and function. THE ISME JOURNAL 2025; 19:wraf048. [PMID: 40116459 PMCID: PMC12066410 DOI: 10.1093/ismejo/wraf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/12/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
The source of protein in a person's diet affects their total life expectancy. However, the mechanisms by which dietary protein sources differentially impact human health and life expectancy are poorly understood. Dietary choices impact the composition and function of the intestinal microbiota that ultimately modulate host health. This raises the possibility that health outcomes based on dietary protein sources might be driven by interactions between dietary protein and the gut microbiota. In this study, we determined the effects of seven different sources of dietary protein on the gut microbiota of mice using an integrated metagenomics-metaproteomics approach. The protein abundances measured by metaproteomics can provide microbial species abundances, and evidence for the molecular phenotype of microbiota members because measured proteins indicate the metabolic and physiological processes used by a microbial community. We showed that dietary protein source significantly altered the species composition and overall function of the gut microbiota. Different dietary protein sources led to changes in the abundance of microbial proteins involved in the degradation of amino acids and the degradation of glycosylations conjugated to dietary protein. In particular, brown rice and egg white protein increased the abundance of amino acid degrading enzymes. Egg white protein increased the abundance of bacteria and proteins usually associated with the degradation of the intestinal mucus barrier. These results show that dietary protein sources can change the gut microbiota's metabolism, which could have major implications in the context of gut microbiota mediated diseases.
Collapse
Affiliation(s)
- J Alfredo Blakeley-Ruiz
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Alexandria Bartlett
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, United States
| | - Arthur S McMillan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, United States
| | - Ayesha Awan
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, United States
| | - Molly Vanhoy Walsh
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Alissa K Meyerhoffer
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Simina Vintila
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Jessie L Maier
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Tanner G Richie
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Casey M Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, United States
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
10
|
Lozano C, Armengaud J. Sample Preparation and Processing for Quick, Universal, and Insightful Microbial Proteomics. Methods Mol Biol 2025; 2884:57-69. [PMID: 39715997 DOI: 10.1007/978-1-0716-4298-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Next-generation shotgun proteomics is one of the most valuable tools for gaining insight into the function of organisms. By providing a list of peptides and abundance information, proteomics enables the identification of proteins, their quantities, posttranslational modifications, and localization. The most refined shotgun proteomics workflow involves protein extraction, trypsin digestion, ultrahigh-performance liquid chromatography coupled to high-resolution tandem mass spectrometry, and confident assignment of resulting spectra to peptide sequences. In this study, we present a versatile, time- and cost-efficient experimental workflow for protein extraction, digestion, and analysis that can be applied to any type of microorganism. Our experimental procedure exhibits superior sensitivity compared to gel-based protocols and can be used for comparative microbial proteomics to highlight key players that explain phenotypic differences between conditions or for proteotyping new microbial isolates for taxonomic purposes.
Collapse
Affiliation(s)
- Clément Lozano
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, Bagnols-sur-Cèze, France.
| |
Collapse
|
11
|
Chantanaskul T, Patumcharoenpol P, Roytrakul S, Kingkaw A, Vongsangnak W. Exploring Protein Functions of Gut Bacteriome and Mycobiome in Thai Infants Associated with Atopic Dermatitis Through Metaproteomic and Host Interaction Analysis. Int J Mol Sci 2024; 25:13533. [PMID: 39769296 PMCID: PMC11676981 DOI: 10.3390/ijms252413533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Atopic dermatitis (AD), a prevalent allergic skin condition in children, has been closely associated with imbalances in the gut microbiome. To investigate these microbial alterations and their functional implications, we investigated protein expression, functions and interactions of the gut bacteriome and mycobiome as well as the human proteome in Thai infants with AD using integrative metaproteomic and host interaction analysis. As we observed, probiotic species, such as Lactobacillus acidophilus and Bacteroides salyersiae, were reduced in abundance in the AD group while key pathogenic bacteria and fungi, such as Streptococcus constellatus and Penicillium chrysogenum, increased in abundance. Additionally, the functional analysis of expressed proteins was enriched in response to stress and DNA repair in the bacteriome and ribosome biogenesis-related processes in the mycobiome of the AD group, potentially associated to increased reactive oxygen species (ROS), intestinal inflammation, fungal growth and microbial dysbiosis. Further, a protein-protein interactions (PPIs) network analysis incorporating the human proteome revealed 10 signature proteins related to stress and immune system processes associated with AD. Our findings propose the interactions of the key species and signature protein functions between the gut microbes and the human host in response to AD in Thai infants. To our knowledge, this study serves as the first framework for monitoring bacteriome-mycobiome-human gut studies associated with AD and other allergic diseases in infants.
Collapse
Affiliation(s)
- Thanawit Chantanaskul
- Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | | | - Sittirak Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 144 Thailand Science Park, Phaholyothin Road, Pathum Thani 12120, Thailand;
| | - Amornthep Kingkaw
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
12
|
Duong VA, Enkhbayar A, Bhasin N, Senavirathna L, Preisner EC, Hoffman KL, Shukla R, Jenq RR, Cheng K, Bronner MP, Figeys D, Britton RA, Pan S, Chen R. A complementary metaproteomic approach to interrogate microbiome cultivated from clinical colon biopsies. Proteomics 2024; 24:e2400078. [PMID: 38824665 PMCID: PMC11576236 DOI: 10.1002/pmic.202400078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
The human gut microbiome plays a vital role in preserving individual health and is intricately involved in essential functions. Imbalances or dysbiosis within the microbiome can significantly impact human health and are associated with many diseases. Several metaproteomics platforms are currently available to study microbial proteins within complex microbial communities. In this study, we attempted to develop an integrated pipeline to provide deeper insights into both the taxonomic and functional aspects of the cultivated human gut microbiomes derived from clinical colon biopsies. We combined a rapid peptide search by MSFragger against the Unified Human Gastrointestinal Protein database and the taxonomic and functional analyses with Unipept Desktop and MetaLab-MAG. Across seven samples, we identified and matched nearly 36,000 unique peptides to approximately 300 species and 11 phyla. Unipept Desktop provided gene ontology, InterPro entries, and enzyme commission number annotations, facilitating the identification of relevant metabolic pathways. MetaLab-MAG contributed functional annotations through Clusters of Orthologous Genes and Non-supervised Orthologous Groups categories. These results unveiled functional similarities and differences among the samples. This integrated pipeline holds the potential to provide deeper insights into the taxonomy and functions of the human gut microbiome for interrogating the intricate connections between microbiome balance and diseases.
Collapse
Affiliation(s)
- Van-An Duong
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School/ The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Altai Enkhbayar
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Nobel Bhasin
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA Baylor College of Medicine, Houston, TX 77030
| | - Lakmini Senavirathna
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School/ The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Eva C Preisner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kristi L Hoffman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richa Shukla
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA Baylor College of Medicine, Houston, TX 77030
| | - Robert R Jenq
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kai Cheng
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mary P Bronner
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School/ The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Ru Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
13
|
Adnane M, Chapwanya A. Microbial Gatekeepers of Fertility in the Female Reproductive Microbiome of Cattle. Int J Mol Sci 2024; 25:10923. [PMID: 39456706 PMCID: PMC11507627 DOI: 10.3390/ijms252010923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This review paper delves into the intricate relationship between the genital microbiome and fertility outcomes in livestock, with a specific focus on cattle. Drawing upon insights derived from culture-independent metagenomics studies, the paper meticulously examines the composition and dynamics of the genital microbiome. Through advanced techniques such as high-throughput sequencing, the review illuminates the temporal shifts in microbial communities and their profound implications for reproductive health. The analysis underscores the association between dysbiosis-an imbalance in microbial communities-and the development of reproductive diseases, shedding light on the pivotal role of microbial gatekeepers in livestock fertility. Furthermore, the paper emphasizes the need for continued exploration of uncharted dimensions of the female reproductive microbiome to unlock new insights into its impact on fertility. By elucidating the complex interplay between microbial communities and reproductive health, this review underscores the importance of innovative strategies aimed at enhancing fertility and mitigating reproductive diseases in livestock populations.
Collapse
Affiliation(s)
- Mounir Adnane
- Department of Biomedicine, Institute of Veterinary Sciences, University of Tiaret, Tiaret 14000, Algeria;
| | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre 00265, Saint Kitts and Nevis
| |
Collapse
|
14
|
Pan H, Wattiez R, Gillan D. Soil Metaproteomics for Microbial Community Profiling: Methodologies and Challenges. Curr Microbiol 2024; 81:257. [PMID: 38955825 DOI: 10.1007/s00284-024-03781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Soil represents a complex and dynamic ecosystem, hosting a myriad of microorganisms that coexist and play vital roles in nutrient cycling and organic matter transformation. Among these microorganisms, bacteria and fungi are key members of the microbial community, profoundly influencing the fate of nitrogen, sulfur, and carbon in terrestrial environments. Understanding the intricacies of soil ecosystems and the biological processes orchestrated by microbial communities necessitates a deep dive into their composition and metabolic activities. The advent of next-generation sequencing and 'omics' techniques, such as metagenomics and metaproteomics, has revolutionized our understanding of microbial ecology and the functional dynamics of soil microbial communities. Metagenomics enables the identification of microbial community composition in soil, while metaproteomics sheds light on the current biological functions performed by these communities. However, metaproteomics presents several challenges, both technical and computational. Factors such as the presence of humic acids and variations in extraction methods can influence protein yield, while the absence of high-resolution mass spectrometry and comprehensive protein databases limits the depth of protein identification. Notwithstanding these limitations, metaproteomics remains a potent tool for unraveling the intricate biological processes and functions of soil microbial communities. In this review, we delve into the methodologies and challenges of metaproteomics in soil research, covering aspects such as protein extraction, identification, and bioinformatics analysis. Furthermore, we explore the applications of metaproteomics in soil bioremediation, highlighting its potential in addressing environmental challenges.
Collapse
Affiliation(s)
- Haixia Pan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology (Panjin Campus), Panjin, China.
- Proteomics and Microbiology Department, University of Mons, Avenue du champ de Mars 6, 7000, Mons, Belgium.
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Avenue du champ de Mars 6, 7000, Mons, Belgium
| | - David Gillan
- Proteomics and Microbiology Department, University of Mons, Avenue du champ de Mars 6, 7000, Mons, Belgium
| |
Collapse
|
15
|
Lange E, Kranert L, Krüger J, Benndorf D, Heyer R. Microbiome modeling: a beginner's guide. Front Microbiol 2024; 15:1368377. [PMID: 38962127 PMCID: PMC11220171 DOI: 10.3389/fmicb.2024.1368377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Microbiomes, comprised of diverse microbial species and viruses, play pivotal roles in human health, environmental processes, and biotechnological applications and interact with each other, their environment, and hosts via ecological interactions. Our understanding of microbiomes is still limited and hampered by their complexity. A concept improving this understanding is systems biology, which focuses on the holistic description of biological systems utilizing experimental and computational methods. An important set of such experimental methods are metaomics methods which analyze microbiomes and output lists of molecular features. These lists of data are integrated, interpreted, and compiled into computational microbiome models, to predict, optimize, and control microbiome behavior. There exists a gap in understanding between microbiologists and modelers/bioinformaticians, stemming from a lack of interdisciplinary knowledge. This knowledge gap hinders the establishment of computational models in microbiome analysis. This review aims to bridge this gap and is tailored for microbiologists, researchers new to microbiome modeling, and bioinformaticians. To achieve this goal, it provides an interdisciplinary overview of microbiome modeling, starting with fundamental knowledge of microbiomes, metaomics methods, common modeling formalisms, and how models facilitate microbiome control. It concludes with guidelines and repositories for modeling. Each section provides entry-level information, example applications, and important references, serving as a valuable resource for comprehending and navigating the complex landscape of microbiome research and modeling.
Collapse
Affiliation(s)
- Emanuel Lange
- Multidimensional Omics Data Analysis, Department for Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Graduate School Digital Infrastructure for the Life Sciences, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Lena Kranert
- Institute for Automation Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Jacob Krüger
- Engineering of Software-Intensive Systems, Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Dirk Benndorf
- Applied Biosciences and Bioprocess Engineering, Anhalt University of Applied Sciences, Köthen, Germany
| | - Robert Heyer
- Multidimensional Omics Data Analysis, Department for Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Graduate School Digital Infrastructure for the Life Sciences, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Multidimensional Omics Data Analysis, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
16
|
Bogale AT, Braun M, Bernhardt J, Zühlke D, Schiefelbein U, Bog M, Scheidegger C, Zengerer V, Becher D, Grube M, Riedel K, Bengtsson MM. The microbiome of the lichen Lobaria pulmonaria varies according to climate on a subcontinental scale. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13289. [PMID: 38923181 PMCID: PMC11194104 DOI: 10.1111/1758-2229.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/03/2024] [Indexed: 06/28/2024]
Abstract
The Lobaria pulmonaria holobiont comprises algal, fungal, cyanobacterial and bacterial components. We investigated L. pulmonaria's bacterial microbiome in the adaptation of this ecologically sensitive lichen species to diverse climatic conditions. Our central hypothesis posited that microbiome composition and functionality aligns with subcontinental-scale (a stretch of ~1100 km) climatic parameters related to temperature and precipitation. We also tested the impact of short-term weather dynamics, sampling season and algal/fungal genotypes on microbiome variation. Metaproteomics provided insights into compositional and functional changes within the microbiome. Climatic variables explained 41.64% of microbiome variation, surpassing the combined influence of local weather and sampling season at 31.63%. Notably, annual mean temperature and temperature seasonality emerged as significant climatic drivers. Microbiome composition correlated with algal, not fungal genotype, suggesting similar environmental recruitment for the algal partner and microbiome. Differential abundance analyses revealed distinct protein compositions in Sub-Atlantic Lowland and Alpine regions, indicating differential microbiome responses to contrasting environmental/climatic conditions. Proteins involved in oxidative and cellular stress were notably different. Our findings highlight microbiome plasticity in adapting to stable climates, with limited responsiveness to short-term fluctuations, offering new insights into climate adaptation in lichen symbiosis.
Collapse
Affiliation(s)
| | - Maria Braun
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Jörg Bernhardt
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Daniela Zühlke
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Ulf Schiefelbein
- Landscape EcologyUniversity of Rostock, Botanical GardenRostockGermany
| | - Manuela Bog
- Institute of Botany and Landscape EcologyUniversity of GreifswaldGreifswaldGermany
| | - Christoph Scheidegger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Veronika Zengerer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Dörte Becher
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Martin Grube
- Karl‐Franzens‐Universität Graz, Institut für BiologieGrazAustria
| | - Katharina Riedel
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Mia M. Bengtsson
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| |
Collapse
|
17
|
Nganou-Makamdop K, Douek DC. The Gut and the Translocated Microbiomes in HIV Infection: Current Concepts and Future Avenues. Pathog Immun 2024; 9:168-194. [PMID: 38807656 PMCID: PMC11132393 DOI: 10.20411/pai.v9i1.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
It is widely acknowledged that HIV infection results in disruption of the gut's mucosal integrity partly due a profound loss of gastrointestinal CD4+ T cells that are targets of the virus. In addition, systemic inflammation and immune activation that drive disease pathogenesis are reduced but not normalized by antiretroviral therapy (ART). It has long been postulated that through the process of microbial translocation, the gut microbiome acts as a key driver of systemic inflammation and immune recovery in HIV infection. As such, many studies have aimed at characterizing the gut microbiota in order to unravel its influence in people with HIV and have reported an association between various bacterial taxa and inflammation. This review assesses both contra-dictory and consistent findings among several studies in order to clarify the overall mechanisms by which the gut microbiota in adults may influence immune recovery in HIV infection. Independently of the gut microbiome, observations made from analysis of microbial products in the blood provide direct insight into how the translocated microbiome may drive immune recovery. To help better understand strengths and limitations of the findings reported, this review also highlights the numerous factors that can influence microbiome studies, be they experimental methodologies, and host-intrinsic or host-extrinsic factors. Altogether, a fuller understanding of the interplay between the gut microbiome and immunity in HIV infection may contribute to preventive and therapeutic approaches.
Collapse
Affiliation(s)
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
18
|
Sun Z, Ning Z, Figeys D. The Landscape and Perspectives of the Human Gut Metaproteomics. Mol Cell Proteomics 2024; 23:100763. [PMID: 38608842 PMCID: PMC11098955 DOI: 10.1016/j.mcpro.2024.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/26/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
The human gut microbiome is closely associated with human health and diseases. Metaproteomics has emerged as a valuable tool for studying the functionality of the gut microbiome by analyzing the entire proteins present in microbial communities. Recent advancements in liquid chromatography and tandem mass spectrometry (LC-MS/MS) techniques have expanded the detection range of metaproteomics. However, the overall coverage of the proteome in metaproteomics is still limited. While metagenomics studies have revealed substantial microbial diversity and functional potential of the human gut microbiome, few studies have summarized and studied the human gut microbiome landscape revealed with metaproteomics. In this article, we present the current landscape of human gut metaproteomics studies by re-analyzing the identification results from 15 published studies. We quantified the limited proteome coverage in metaproteomics and revealed a high proportion of annotation coverage of metaproteomics-identified proteins. We conducted a preliminary comparison between the metaproteomics view and the metagenomics view of the human gut microbiome, identifying key areas of consistency and divergence. Based on the current landscape of human gut metaproteomics, we discuss the feasibility of using metaproteomics to study functionally unknown proteins and propose a whole workflow peptide-centric analysis. Additionally, we suggest enhancing metaproteomics analysis by refining taxonomic classification and calculating confidence scores, as well as developing tools for analyzing the interaction between taxonomy and function.
Collapse
Affiliation(s)
- Zhongzhi Sun
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Zhibin Ning
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
19
|
Petrone BL, Bartlett A, Jiang S, Korenek A, Vintila S, Tenekjian C, Yancy WS, David LA, Kleiner M. Metaproteomics and DNA metabarcoding as tools to assess dietary intake in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588275. [PMID: 38645092 PMCID: PMC11030321 DOI: 10.1101/2024.04.09.588275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Objective biomarkers of food intake are a sought-after goal in nutrition research. Most biomarker development to date has focused on metabolites detected in blood, urine, skin or hair, but detection of consumed foods in stool has also been shown to be possible via DNA sequencing. An additional food macromolecule in stool that harbors sequence information is protein. However, the use of protein as an intake biomarker has only been explored to a very limited extent. Here, we evaluate and compare measurement of residual food-derived DNA and protein in stool as potential biomarkers of intake. We performed a pilot study of DNA sequencing-based metabarcoding (FoodSeq) and mass spectrometry-based metaproteomics in five individuals' stool sampled in short, longitudinal bursts accompanied by detailed diet records (n=27 total samples). Dietary data provided by stool DNA, stool protein, and written diet record independently identified a strong within-person dietary signature, identified similar food taxa, and had significantly similar global structure in two of the three pairwise comparisons between measurement techniques (DNA-to-protein and DNA-to-diet record). Metaproteomics identified proteins including myosin, ovalbumin, and beta-lactoglobulin that differentiated food tissue types like beef from dairy and chicken from egg, distinctions that were not possible by DNA alone. Overall, our results lay the groundwork for development of targeted metaproteomic assays for dietary assessment and demonstrate that diverse molecular components of food can be leveraged to study food intake using stool samples.
Collapse
Affiliation(s)
- Brianna L Petrone
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC, United States
| | - Alexandria Bartlett
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Sharon Jiang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Abigail Korenek
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | | | - William S Yancy
- Duke Lifestyle and Weight Management Center, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
20
|
Chakraborty N. Metabolites: a converging node of host and microbe to explain meta-organism. Front Microbiol 2024; 15:1337368. [PMID: 38505556 PMCID: PMC10949987 DOI: 10.3389/fmicb.2024.1337368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/21/2024] Open
Abstract
Meta-organisms encompassing the host and resident microbiota play a significant role in combatting diseases and responding to stress. Hence, there is growing traction to build a knowledge base about this ecosystem, particularly to characterize the bidirectional relationship between the host and microbiota. In this context, metabolomics has emerged as the major converging node of this entire ecosystem. Systematic comprehension of this resourceful omics component can elucidate the organism-specific response trajectory and the communication grid across the ecosystem embodying meta-organisms. Translating this knowledge into designing nutraceuticals and next-generation therapy are ongoing. Its major hindrance is a significant knowledge gap about the underlying mechanisms maintaining a delicate balance within this ecosystem. To bridge this knowledge gap, a holistic picture of the available information has been presented with a primary focus on the microbiota-metabolite relationship dynamics. The central theme of this article is the gut-brain axis and the participating microbial metabolites that impact cerebral functions.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, United States
| |
Collapse
|
21
|
Kotimoole CN, Ramya VK, Kaur P, Reiling N, Shandil RK, Narayanan S, Flo TH, Prasad TSK. Discovery of Species-Specific Proteotypic Peptides To Establish a Spectral Library Platform for Identification of Nontuberculosis Mycobacteria from Mass Spectrometry-Based Proteomics. J Proteome Res 2024; 23:1102-1117. [PMID: 38358903 DOI: 10.1021/acs.jproteome.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Nontuberculous mycobacteria are opportunistic bacteria pulmonary and extra-pulmonary infections in humans that closely resemble Mycobacterium tuberculosis. Although genome sequencing strategies helped determine NTMs, a common assay for the detection of coinfection by multiple NTMs with M. tuberculosis in the primary attempt of diagnosis is still elusive. Such a lack of efficiency leads to delayed therapy, an inappropriate choice of drugs, drug resistance, disease complications, morbidity, and mortality. Although a high-resolution LC-MS/MS-based multiprotein panel assay can be developed due to its specificity and sensitivity, it needs a library of species-specific peptides as a platform. Toward this, we performed an analysis of proteomes of 9 NTM species with more than 20 million peptide spectrum matches gathered from 26 proteome data sets. Our metaproteomic analyses determined 48,172 species-specific proteotypic peptides across 9 NTMs. Notably, M. smegmatis (26,008), M. abscessus (12,442), M. vaccae (6487), M. fortuitum (1623), M. avium subsp. paratuberculosis (844), M. avium subsp. hominissuis (580), and M. marinum (112) displayed >100 species-specific proteotypic peptides. Finally, these peptides and corresponding spectra have been compiled into a spectral library, FASTA, and JSON formats for future reference and validation in clinical cohorts by the biomedical community for further translation.
Collapse
Affiliation(s)
- Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Vadageri Krishnamurthy Ramya
- Foundation for Neglected Disease Research, 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru 561203, India
| | - Parvinder Kaur
- Foundation for Neglected Disease Research, 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru 561203, India
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Parkallee 22, D-23845 Borstel, Germany
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
| | - Radha Krishan Shandil
- Foundation for Neglected Disease Research, 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru 561203, India
| | - Shridhar Narayanan
- Foundation for Neglected Disease Research, 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru 561203, India
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Kunnskapssenteret, Øya 424.04.035, Norway
| | | |
Collapse
|
22
|
Bihani S, Gupta A, Mehta S, Rajczewski A, Griffin T, Jagtap P, Srivastava S. Metaproteomics for Coinfections in the Upper Respiratory Tract: The Case of COVID-19. Methods Mol Biol 2024; 2820:165-185. [PMID: 38941023 DOI: 10.1007/978-1-0716-3910-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The upper respiratory tract (URT) is home to a diverse range of microbial species. Respiratory infections disturb the microbial flora in the URT, putting people at risk of secondary infections. The potential dangers and clinical effects of bacterial and fungal coinfections with SARS-CoV-2 support the need to investigate the microbiome of the URT using clinical samples. Mass spectrometry (MS)-based metaproteomics analysis of microbial proteins is a novel approach to comprehensively assess the clinical specimens with complex microbial makeup. The coronavirus that causes severe acute respiratory syndrome (SARS-CoV-2) is responsible for the COVID-19 pandemic resulting in a plethora of microbial coinfections impeding therapy, prognosis, and overall disease management. In this chapter, the corresponding workflows for MS-based shotgun proteomics and metaproteomic analysis are illustrated.
Collapse
Affiliation(s)
- Surbhi Bihani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Aryan Gupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Andrew Rajczewski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Timothy Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Pratik Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
23
|
Salvato F, Kleiner M. A Complete Metaproteomic Workflow for Arabidopsis Roots Inoculated by Synthetic Bacteria. Methods Mol Biol 2024; 2820:57-65. [PMID: 38941015 DOI: 10.1007/978-1-0716-3910-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Root metaproteome analysis can reveal the functions that govern plant-microbe and microbe-microbe interactions under specific environmental conditions. Efficient protein extraction method from microbes associated with plant roots is crucial for the comprehensive analysis of the metaproteome. In this chapter, a straightforward protein extraction method for roots of Arabidopsis inoculated with a microbial community that uses only milligrams of tissue is outlined. In addition, the plant inoculation using a synthetic community (SynCom) and the methods for a nanoflow liquid chromatography coupled to a high-resolution/high-accuracy mass spectrometer (LC-MS/MS) are described.
Collapse
Affiliation(s)
- Fernanda Salvato
- North Carolina State University, Plant and Microbial Biology Department, Raleigh, NC, USA
- Thermo Fisher Scientific, San Jose, CA, USA
| | - Manuel Kleiner
- North Carolina State University, Plant and Microbial Biology Department, Raleigh, NC, USA
| |
Collapse
|
24
|
Marzano V, Mortera SL, Marangelo C, Piazzesi A, Rapisarda F, Pane S, Del Chierico F, Vernocchi P, Romani L, Campana A, Palma P, Putignani L, the CACTUS Study Team. The metaproteome of the gut microbiota in pediatric patients affected by COVID-19. Front Cell Infect Microbiol 2023; 13:1327889. [PMID: 38188629 PMCID: PMC10766818 DOI: 10.3389/fcimb.2023.1327889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction The gut microbiota (GM) play a significant role in the infectivity and severity of COVID-19 infection. However, the available literature primarily focuses on adult patients and it is known that the microbiota undergoes changes throughout the lifespan, with significant alterations occurring during infancy and subsequently stabilizing during adulthood. Moreover, children have exhibited milder symptoms of COVID-19 disease, which has been associated with the abundance of certain protective bacteria. Here, we examine the metaproteome of pediatric patients to uncover the biological mechanisms that underlie this protective effect of the GM. Methods We performed nanoliquid chromatography coupled with tandem mass spectrometry on a high resolution analytical platform, resulting in label free quantification of bacterial protein groups (PGs), along with functional annotations via COG and KEGG databases by MetaLab-MAG. Additionally, taxonomic assignment was possible through the use of the lowest common ancestor algorithm provided by Unipept software. Results A COVID-19 GM functional dissimilarity respect to healthy subjects was identified by univariate analysis. The alteration in COVID-19 GM function is primarily based on bacterial pathways that predominantly involve metabolic processes, such as those related to tryptophan, butanoate, fatty acid, and bile acid biosynthesis, as well as antibiotic resistance and virulence. Discussion These findings highlight the mechanisms by which the pediatric GM could contribute to protection against the more severe manifestations of the disease in children. Uncovering these mechanisms can, therefore, have important implications in the discovery of novel adjuvant therapies for severe COVID-19.
Collapse
Affiliation(s)
- Valeria Marzano
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Chiara Marangelo
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonia Piazzesi
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Federica Rapisarda
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefania Pane
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Federica Del Chierico
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Pamela Vernocchi
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Romani
- Unit of Infectious Disease, Bambino Gesu’ Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Campana
- Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | |
Collapse
|
25
|
Bartlett A, Blakeley-Ruiz JA, Richie T, Theriot CM, Kleiner M. Large Quantities of Bacterial DNA and Protein in Common Dietary Protein Source Used in Microbiome Studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570621. [PMID: 39764025 PMCID: PMC11703282 DOI: 10.1101/2023.12.07.570621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Diet has been shown to greatly impact the intestinal microbiota. To understand the role of individual dietary components, defined diets with purified components are frequently used in diet-microbiota studies. Many of the frequently used defined diets use purified casein as the protein source. Previous work indicated that this casein contains microbial DNA potentially impacting results of microbiome studies. Other diet-based microbially derived molecules that may impact microbiome measurements, such as proteins detected by metaproteomics, have not been determined for casein. Additionally, other protein sources used in microbiome studies have not been characterized for their microbial content. We used metagenomics and metaproteomics to identify and quantify microbial DNA and protein in a casein-based defined diet to better understand potential impacts on metagenomic and metaproteomic microbiome studies. We further tested six additional defined diets with purified protein sources with an integrated metagenomic-metaproteomic approach and show that contaminating microbial protein is unique to casein within the tested set as microbial protein was not identified in diets with other protein sources. We also illustrate the contribution of diet-derived microbial protein in diet-microbiota studies by metaproteomic analysis of stool samples from germ-free mice (GF) and mice with a conventional microbiota (CV) following consumption of diets with casein and non-casein protein. This study highlights a potentially confounding factor in diet-microbiota studies that must be considered through evaluation of the diet itself within a given study.
Collapse
Affiliation(s)
- Alexandria Bartlett
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC
| | | | - Tanner Richie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC
| |
Collapse
|
26
|
Sasi R, Suchithra TV. Wastewater microbial diversity versus molecular analysis at a glance: a mini-review. Braz J Microbiol 2023; 54:3033-3039. [PMID: 37723328 PMCID: PMC10689596 DOI: 10.1007/s42770-023-01130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023] Open
Abstract
Microorganisms play a vital role in biological wastewater treatment by converting organic and toxic materials into harmless substances. Understanding microbial communities' structure, taxonomy, phylogeny, and metabolic activities is essential to improve these processes. Molecular microbial ecology employs molecular techniques to study community profiles and phylogenetic information since culture-dependent approaches have limitations in providing a comprehensive understanding of microbial diversity in a system. Genomic advancements such as DNA hybridization, microarray analysis, sequencing, and reverse sample genome probing have enabled the detailed characterization of microbial communities in wastewater treatment facilities. This mini-review summarizes the current state of knowledge on the diversity of microorganisms in wastewater treatment plants, emphasizing critical microbial processes such as nitrogen and phosphorus removal.
Collapse
Affiliation(s)
- R Sasi
- School of Biotechnology, National Institute of Technology Calicut, Kozhikode, Kerala, India, 673601
| | - T V Suchithra
- School of Biotechnology, National Institute of Technology Calicut, Kozhikode, Kerala, India, 673601.
| |
Collapse
|
27
|
Kleikamp HBC, Grouzdev D, Schaasberg P, van Valderen R, van der Zwaan R, Wijgaart RVD, Lin Y, Abbas B, Pronk M, van Loosdrecht MCM, Pabst M. Metaproteomics, metagenomics and 16S rRNA sequencing provide different perspectives on the aerobic granular sludge microbiome. WATER RESEARCH 2023; 246:120700. [PMID: 37866247 DOI: 10.1016/j.watres.2023.120700] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
The tremendous progress in sequencing technologies has made DNA sequencing routine for microbiome studies. Additionally, advances in mass spectrometric techniques have extended conventional proteomics into the field of microbial ecology. However, systematic studies that provide a better understanding of the complementary nature of these 'omics' approaches, particularly for complex environments such as wastewater treatment sludge, are urgently needed. Here, we describe a comparative metaomics study on aerobic granular sludge from three different wastewater treatment plants. For this, we employed metaproteomics, whole metagenome, and 16S rRNA amplicon sequencing to study the same granule material with uniform size. We furthermore compare the taxonomic profiles using the Genome Taxonomy Database (GTDB) to enhance the comparability between the different approaches. Though the major taxonomies were consistently identified in the different aerobic granular sludge samples, the taxonomic composition obtained by the different omics techniques varied significantly at the lower taxonomic levels, which impacts the interpretation of the nutrient removal processes. Nevertheless, as demonstrated by metaproteomics, the genera that were consistently identified in all techniques cover the majority of the protein biomass. The established metaomics data and the contig classification pipeline are publicly available, which provides a valuable resource for further studies on metabolic processes in aerobic granular sludge.
Collapse
Affiliation(s)
- Hugo B C Kleikamp
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands.
| | | | - Pim Schaasberg
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ramon van Valderen
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ramon van der Zwaan
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Roel van de Wijgaart
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ben Abbas
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | | | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
28
|
Bihani S, Gupta A, Mehta S, Rajczewski AT, Johnson J, Borishetty D, Griffin TJ, Srivastava S, Jagtap PD. Metaproteomic Analysis of Nasopharyngeal Swab Samples to Identify Microbial Peptides in COVID-19 Patients. J Proteome Res 2023; 22:2608-2619. [PMID: 37450889 DOI: 10.1021/acs.jproteome.3c00040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
During the COVID-19 pandemic, impaired immunity and medical interventions resulted in cases of secondary infections. The clinical difficulties and dangers associated with secondary infections in patients necessitate the exploration of their microbiome. Metaproteomics is a powerful approach to study the taxonomic composition and functional status of the microbiome under study. In this study, the mass spectrometry (MS)-based data of nasopharyngeal swab samples from COVID-19 patients was used to investigate the metaproteome. We have established a robust bioinformatics workflow within the Galaxy platform, which includes (a) generation of a tailored database of the common respiratory tract pathogens, (b) database search using multiple search algorithms, and (c) verification of the detected microbial peptides. The microbial peptides detected in this study, belong to several opportunistic pathogens such as Streptococcus pneumoniae, Klebsiella pneumoniae, Rhizopus microsporus, and Syncephalastrum racemosum. Microbial proteins with a role in stress response, gene expression, and DNA repair were found to be upregulated in severe patients compared to negative patients. Using parallel reaction monitoring (PRM), we confirmed some of the microbial peptides in fresh clinical samples. MS-based clinical metaproteomics can serve as a powerful tool for detection and characterization of potential pathogens, which can significantly impact the diagnosis and treatment of patients.
Collapse
Affiliation(s)
- Surbhi Bihani
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Aryan Gupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 7-129 MCB, 420 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| | - Andrew T Rajczewski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 7-129 MCB, 420 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| | - James Johnson
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Dhanush Borishetty
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 7-129 MCB, 420 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| | - Sanjeeva Srivastava
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Pratik D Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 7-129 MCB, 420 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
29
|
Masson L, Wilson J, Amir Hamzah AS, Tachedjian G, Payne M. Advances in mass spectrometry technologies to characterize cervicovaginal microbiome functions that impact spontaneous preterm birth. Am J Reprod Immunol 2023; 90:e13750. [PMID: 37491925 DOI: 10.1111/aji.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/27/2023] Open
Abstract
Preterm birth (PTB) is a leading cause of morbidity and mortality in young children. Infection is a major cause of this adverse outcome, particularly in PTBs characterised by spontaneous rupture of membranes, referred to as spontaneous (s)PTB. However, the aetiology of sPTB is not well defined and specific bacteria associated with sPTB differ between studies and at the individual level. This may be due to many factors including a lack of understanding of strain-level differences in bacteria that influence how they function and interact with each other and the host. Metaproteomics and metabolomics are mass spectrometry-based methods that enable the collection of detailed microbial and host functional information. Technological advances in this field have dramatically increased the resolution of these approaches, enabling the simultaneous detection of thousands of proteins or metabolites. These data can be used for taxonomic analysis of vaginal bacteria and other microbes, to understand microbiome-host interactions, and identify diagnostic biomarkers or therapeutic targets. Although these methods have been used to assess host proteins and metabolites, few have characterized the microbial compartment in the context of pregnancy. The utilisation of metaproteomic and metabolomic-based approaches has the potential to vastly improve our understanding of the mechanisms leading to sPTB.
Collapse
Affiliation(s)
- Lindi Masson
- Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, Australia
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Central Clinical School, Monash University, Melbourne, Australia
| | - Jenna Wilson
- Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, Australia
| | - Aleya Sarah Amir Hamzah
- Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, Australia
| | - Gilda Tachedjian
- Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, Australia
- Department of Microbiology, Monash University, Clayton, Australia
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Matthew Payne
- Division of Obstetrics and Gynaecology, School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
30
|
Chen Y, Gin JW, Wang Y, de Raad M, Tan S, Hillson NJ, Northen TR, Adams PD, Petzold CJ. Alkaline-SDS cell lysis of microbes with acetone protein precipitation for proteomic sample preparation in 96-well plate format. PLoS One 2023; 18:e0288102. [PMID: 37418444 DOI: 10.1371/journal.pone.0288102] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Plate-based proteomic sample preparation offers a solution to the large sample throughput demands in the biotechnology field where hundreds or thousands of engineered microbes are constructed for testing is routine. Meanwhile, sample preparation methods that work efficiently on broader microbial groups are desirable for new applications of proteomics in other fields, such as microbial communities. Here, we detail a step-by-step protocol that consists of cell lysis in an alkaline chemical buffer (NaOH/SDS) followed by protein precipitation with high-ionic strength acetone in 96-well format. The protocol works for a broad range of microbes (e.g., Gram-negative bacteria, Gram-positive bacteria, non-filamentous fungi) and the resulting proteins are ready for tryptic digestion for bottom-up quantitative proteomic analysis without the need for desalting column cleanup. The yield of protein using this protocol increases linearly with respect to the amount of starting biomass from 0.5-2.0 OD*mL of cells. By using a bench-top automated liquid dispenser, a cost-effective and environmentally-friendly option to eliminating pipette tips and reducing reagent waste, the protocol takes approximately 30 minutes to extract protein from 96 samples. Tests on mock mixtures showed expected results that the biomass composition structure is in close agreement with the experimental design. Lastly, we applied the protocol for the composition analysis of a synthetic community of environmental isolates grown on two different media. This protocol has been developed to facilitate rapid, low-variance sample preparation of hundreds of samples and allow flexibility for future protocol development.
Collapse
Affiliation(s)
- Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- DOE Joint BioEnergy Institute, Emeryville, California, United States of America
- DOE Agile BioFoundry, Emeryville, California, United States of America
| | - Jennifer W Gin
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- DOE Joint BioEnergy Institute, Emeryville, California, United States of America
- DOE Agile BioFoundry, Emeryville, California, United States of America
| | - Ying Wang
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Markus de Raad
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Stephen Tan
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- DOE Joint BioEnergy Institute, Emeryville, California, United States of America
- DOE Agile BioFoundry, Emeryville, California, United States of America
| | - Nathan J Hillson
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- DOE Joint BioEnergy Institute, Emeryville, California, United States of America
- DOE Agile BioFoundry, Emeryville, California, United States of America
| | - Trent R Northen
- DOE Joint BioEnergy Institute, Emeryville, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Paul D Adams
- DOE Joint BioEnergy Institute, Emeryville, California, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, California, United States of America
- Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- DOE Joint BioEnergy Institute, Emeryville, California, United States of America
- DOE Agile BioFoundry, Emeryville, California, United States of America
| |
Collapse
|
31
|
Ascandari A, Aminu S, Safdi NEH, El Allali A, Daoud R. A bibliometric analysis of the global impact of metaproteomics research. Front Microbiol 2023; 14:1217727. [PMID: 37476667 PMCID: PMC10354264 DOI: 10.3389/fmicb.2023.1217727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Background Metaproteomics is a subfield in meta-omics that is used to characterize the proteome of a microbial community. Despite its importance and the plethora of publications in different research area, scientists struggle to fully comprehend its functional impact on the study of microbiomes. In this study, bibliometric analyses are used to evaluate the current state of metaproteomic research globally as well as evaluate the specific contribution of Africa to this burgeoning research area. In this study, we use bibliometric analyses to evaluate the current state of metaproteomic research globally, identify research frontiers and hotspots, and further predict future trends in metaproteomics. The specific contribution of Africa to this research area was evaluated. Methods Relevant documents from 2004 to 2022 were extracted from the Scopus database. The documents were subjected to bibliometric analyses and visualization using VOS viewer and Biblioshiny package in R. Factors such as the trends in publication, country and institutional cooperation networks, leading scientific journals, author's productivity, and keywords analyses were conducted. The African publications were ranked using Field-Weighted Citation Impact (FWCI) scores. Results A total of 1,138 documents were included and the number of publications increased drastically from 2004 to 2022 with more publications (170) reported in 2021. In terms of publishers, Frontiers in Microbiology had the highest number of total publications (62). The United States of America (USA), Germany, China, and Canada, together with other European countries were the most productive. Institution-wise, the Helmholtz Zentrum für Umweltforschung, Germany had more publications while Max Plank Institute had the highest total collaborative link strength. Jehmlich N. was the most productive author whereas Hettich RL had the highest h-index of 63. Regarding Africa, only 2.2% of the overall publications were from the continent with more publication outputs from South Africa. More than half of the publications from the continent had an FWCI score ≥ 1. Conclusion The scientific outputs of metaproteomics are rapidly evolving with developed countries leading the way. Although Africa showed prospects for future progress, this could only be accelerated by providing funding, increased collaborations, and mentorship programs.
Collapse
Affiliation(s)
- AbdulAziz Ascandari
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Suleiman Aminu
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Nour El Houda Safdi
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
32
|
Li L, Wang T, Ning Z, Zhang X, Butcher J, Serrana JM, Simopoulos CMA, Mayne J, Stintzi A, Mack DR, Liu YY, Figeys D. Revealing proteome-level functional redundancy in the human gut microbiome using ultra-deep metaproteomics. Nat Commun 2023; 14:3428. [PMID: 37301875 PMCID: PMC10257714 DOI: 10.1038/s41467-023-39149-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Functional redundancy is a key ecosystem property representing the fact that different taxa contribute to an ecosystem in similar ways through the expression of redundant functions. The redundancy of potential functions (or genome-level functional redundancy [Formula: see text]) of human microbiomes has been recently quantified using metagenomics data. Yet, the redundancy of expressed functions in the human microbiome has never been quantitatively explored. Here, we present an approach to quantify the proteome-level functional redundancy [Formula: see text] in the human gut microbiome using metaproteomics. Ultra-deep metaproteomics reveals high proteome-level functional redundancy and high nestedness in the human gut proteomic content networks (i.e., the bipartite graphs connecting taxa to functions). We find that the nested topology of proteomic content networks and relatively small functional distances between proteomes of certain pairs of taxa together contribute to high [Formula: see text] in the human gut microbiome. As a metric comprehensively incorporating the factors of presence/absence of each function, protein abundances of each function and biomass of each taxon, [Formula: see text] outcompetes diversity indices in detecting significant microbiome responses to environmental factors, including individuality, biogeography, xenobiotics, and disease. We show that gut inflammation and exposure to specific xenobiotics can significantly diminish the [Formula: see text] with no significant change in taxonomic diversity.
Collapse
Affiliation(s)
- Leyuan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Tong Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Zhibin Ning
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Xu Zhang
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - James Butcher
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Joeselle M Serrana
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Caitlin M A Simopoulos
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Janice Mayne
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - David R Mack
- Department of Paediatrics, Faculty of Medicine, University of Ottawa and Children's Hospital of Eastern Ontario Inflammatory Bowel Disease Centre and Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Daniel Figeys
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
33
|
Correia GD, Marchesi JR, MacIntyre DA. Moving beyond DNA: towards functional analysis of the vaginal microbiome by non-sequencing-based methods. Curr Opin Microbiol 2023; 73:102292. [PMID: 36931094 DOI: 10.1016/j.mib.2023.102292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
Over the last two decades, sequencing-based methods have revolutionised our understanding of niche-specific microbial complexity. In the lower female reproductive tract, these approaches have enabled identification of bacterial compositional structures associated with health and disease. Application of metagenomics and metatranscriptomics strategies have provided insight into the putative function of these communities but it is increasingly clear that direct measures of microbial and host cell function are required to understand the contribution of microbe-host interactions to pathophysiology. Here we explore and discuss current methods and approaches, many of which rely upon mass-spectrometry, being used to capture functional insight into the vaginal mucosal interface. In addition to improving mechanistic understanding, these methods offer innovative solutions for the development of diagnostic and therapeutic strategies designed to improve women's health.
Collapse
Affiliation(s)
- Gonçalo Ds Correia
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - Julian R Marchesi
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK; Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, Imperial College London, London W2 1NY, UK
| | - David A MacIntyre
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK.
| |
Collapse
|
34
|
Porcheddu M, Abbondio M, De Diego L, Uzzau S, Tanca A. Meta4P: A User-Friendly Tool to Parse Label-Free Quantitative Metaproteomic Data and Taxonomic/Functional Annotations. J Proteome Res 2023. [PMID: 37116187 DOI: 10.1021/acs.jproteome.2c00803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
We present Meta4P (MetaProteins-Peptides-PSMs Parser), an easy-to-use bioinformatic application designed to integrate label-free quantitative metaproteomic data with taxonomic and functional annotations. Meta4P can retrieve, filter, and process identification and quantification data from three levels of inputs (proteins, peptides, PSMs) in different file formats. Abundance data can be combined with taxonomic and functional information and aggregated at different and customizable levels, including taxon-specific functions and pathways. Meta4P output tables, available in various formats, are ready to be used as inputs for downstream statistical analyses. This user-friendly tool is expected to provide a useful contribution to the field of metaproteomic data analysis, helping make it more manageable and straightforward.
Collapse
Affiliation(s)
- Massimo Porcheddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Laura De Diego
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Sergio Uzzau
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Alessandro Tanca
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| |
Collapse
|
35
|
Tran NTD, Chaidee A, Surapinit A, Yingklang M, Roytrakul S, Charoenlappanit S, Pinlaor P, Hongsrichan N, Anutrakulchai S, Cha'on U, Pinlaor S. Chronic Strongyloides stercoralis infection increases presence of the Ruminococcus torques group in the gut and alters the microbial proteome. Sci Rep 2023; 13:4216. [PMID: 36918707 PMCID: PMC10012286 DOI: 10.1038/s41598-023-31118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
We explored the impact of chronic Strongyloides stercoralis infection on the gut microbiome and microbial activity in a longitudinal study. At baseline (time-point T0), 42 fecal samples from matched individuals (21 positive for strongyloidiasis and 21 negative) were subjected to microbiome 16S-rRNA sequencing. Those positive at T0 (untreated then because of COVID19 lockdowns) were retested one year later (T1). Persistent infection in these individuals indicated chronic strongyloidiasis: they were treated with ivermectin and retested four months later (T2). Fecal samples at T1 and T2 were subjected to 16S-rRNA sequencing and LC-MS/MS to determine microbial diversity and proteomes. No significant alteration of indices of gut microbial diversity was found in chronic strongyloidiasis. However, the Ruminococcus torques group was highly over-represented in chronic infection. Metaproteome data revealed enrichment of Ruminococcus torques mucin-degrader enzymes in infection, possibly influencing the ability of the host to expel parasites. Metaproteomics indicated an increase in carbohydrate metabolism and Bacteroidaceae accounted for this change in chronic infection. STITCH interaction networks explored highly expressed microbial proteins before treatment and short-chain fatty acids involved in the synthesis of acetate. In conclusion, our data indicate that chronic S. stercoralis infection increases Ruminococcus torques group and alters the microbial proteome.
Collapse
Affiliation(s)
- Na T D Tran
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apisit Chaidee
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Achirawit Surapinit
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Sitiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Porntip Pinlaor
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.,Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nuttanan Hongsrichan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sirirat Anutrakulchai
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ubon Cha'on
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
36
|
Sidebottom AM. A Brief History of Microbial Study and Techniques for Exploring the Gastrointestinal Microbiome. Clin Colon Rectal Surg 2023; 36:98-104. [PMID: 36844714 PMCID: PMC9946713 DOI: 10.1055/s-0042-1760678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Over the past 20 years, the study of microbial communities has benefited from simultaneous advancements across several fields resulting in a high-resolution view of human consortia. Although the first bacterium was described in the mid-1600s, the interest in community membership and function has not been a focus or feasible until recent decades. With strategies such as shotgun sequencing, microbes can be taxonomically profiled without culturing and their unique variants defined and compared across phenotypes. Approaches such as metatranscriptomics, metaproteomics, and metabolomics can define the current functional state of a population through the identification of bioactive compounds and significant pathways. Prior to sample collection in microbiome-based studies it is critical to evaluate the requirements of downstream analyses to ensure accurate processing and storage for generation of high data quality. A common pipeline for the analysis of human samples includes approval of collection protocols and method finalization, patient sample collection, sample processing, data analysis, and visualization. Human-based microbiome studies are inherently challenging but with the application of complementary multi-omic strategies there is an unbounded potential for discovery.
Collapse
|
37
|
Kleiner M, Kouris A, Violette M, D'Angelo G, Liu Y, Korenek A, Tolić N, Sachsenberg T, McCalder J, Lipton MS, Strous M. Ultra-sensitive isotope probing to quantify activity and substrate assimilation in microbiomes. MICROBIOME 2023; 11:24. [PMID: 36755313 PMCID: PMC9909930 DOI: 10.1186/s40168-022-01454-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Stable isotope probing (SIP) approaches are a critical tool in microbiome research to determine associations between species and substrates, as well as the activity of species. The application of these approaches ranges from studying microbial communities important for global biogeochemical cycling to host-microbiota interactions in the intestinal tract. Current SIP approaches, such as DNA-SIP or nanoSIMS allow to analyze incorporation of stable isotopes with high coverage of taxa in a community and at the single cell level, respectively, however they are limited in terms of sensitivity, resolution or throughput. RESULTS Here, we present an ultra-sensitive, high-throughput protein-based stable isotope probing approach (Protein-SIP), which cuts cost for labeled substrates by 50-99% as compared to other SIP and Protein-SIP approaches and thus enables isotope labeling experiments on much larger scales and with higher replication. The approach allows for the determination of isotope incorporation into microbiome members with species level resolution using standard metaproteomics liquid chromatography-tandem mass spectrometry (LC-MS/MS) measurements. At the core of the approach are new algorithms to analyze the data, which have been implemented in an open-source software ( https://sourceforge.net/projects/calis-p/ ). We demonstrate sensitivity, precision and accuracy using bacterial cultures and mock communities with different labeling schemes. Furthermore, we benchmark our approach against two existing Protein-SIP approaches and show that in the low labeling range used our approach is the most sensitive and accurate. Finally, we measure translational activity using 18O heavy water labeling in a 63-species community derived from human fecal samples grown on media simulating two different diets. Activity could be quantified on average for 27 species per sample, with 9 species showing significantly higher activity on a high protein diet, as compared to a high fiber diet. Surprisingly, among the species with increased activity on high protein were several Bacteroides species known as fiber consumers. Apparently, protein supply is a critical consideration when assessing growth of intestinal microbes on fiber, including fiber-based prebiotics. CONCLUSIONS We demonstrate that our Protein-SIP approach allows for the ultra-sensitive (0.01 to 10% label) detection of stable isotopes of elements found in proteins, using standard metaproteomics data.
Collapse
Affiliation(s)
- Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| | - Angela Kouris
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Marlene Violette
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Grace D'Angelo
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Yihua Liu
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
- Max Planck Institute for Biology, Tübingen, Germany
| | - Abigail Korenek
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Nikola Tolić
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Timo Sachsenberg
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Janine McCalder
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Mary S Lipton
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
38
|
Miura N, Okuda S. Current progress and critical challenges to overcome in the bioinformatics of mass spectrometry-based metaproteomics. Comput Struct Biotechnol J 2023; 21:1140-1150. [PMID: 36817962 PMCID: PMC9925844 DOI: 10.1016/j.csbj.2023.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Metaproteomics is a relatively young field that has only been studied for approximately 15 years. Nevertheless, it has the potential to play a key role in disease research by elucidating the mechanisms of communication between the human host and the microbiome. Although it has been useful in developing an understanding of various diseases, its analytical strategies remain limited to the extended application of proteomics. The sequence databases in metaproteomics must be large because of the presence of thousands of species in a typical sample, which causes problems unique to large databases. In this review, we demonstrate the usefulness of metaproteomics in disease research through examples from several studies. Additionally, we discuss the challenges of applying metaproteomics to conventional proteomics analysis methods and introduce studies that may provide clues to the solutions. We also discuss the need for a standard false discovery rate control method for metaproteomics to replace common target-decoy search approaches in proteomics and a method to ensure the reliability of peptide spectrum match.
Collapse
Affiliation(s)
- Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
- Medical AI Center, Niigata University School of Medicine, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| |
Collapse
|
39
|
Armengaud J. Metaproteomics to understand how microbiota function: The crystal ball predicts a promising future. Environ Microbiol 2023; 25:115-125. [PMID: 36209500 PMCID: PMC10091800 DOI: 10.1111/1462-2920.16238] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 01/21/2023]
Abstract
In the medical, environmental, and biotechnological fields, microbial communities have attracted much attention due to their roles and numerous possible applications. The study of these communities is challenging due to their diversity and complexity. Innovative methods are needed to identify the taxonomic components of individual microbiota, their changes over time, and to determine how microoorganisms interact and function. Metaproteomics is based on the identification and quantification of proteins, and can potentially provide this full picture. Due to the wide molecular panorama and functional insights it provides, metaproteomics is gaining momentum in microbiome and holobiont research. Its full potential should be unleashed in the coming years with progress in speed and cost of analyses. In this exploratory crystal ball exercise, I discuss the technical and conceptual advances in metaproteomics that I expect to drive innovative research over the next few years in microbiology. I also debate the concepts of 'microbial dark matter' and 'Metaproteomics-Assembled Proteomes (MAPs)' and present some long-term prospects for metaproteomics in clinical diagnostics and personalized medicine, environmental monitoring, agriculture, and biotechnology.
Collapse
Affiliation(s)
- Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| |
Collapse
|
40
|
Krohn C, Khudur L, Dias DA, van den Akker B, Rees CA, Crosbie ND, Surapaneni A, O'Carroll DM, Stuetz RM, Batstone DJ, Ball AS. The role of microbial ecology in improving the performance of anaerobic digestion of sewage sludge. Front Microbiol 2022; 13:1079136. [PMID: 36590430 PMCID: PMC9801413 DOI: 10.3389/fmicb.2022.1079136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
The use of next-generation diagnostic tools to optimise the anaerobic digestion of municipal sewage sludge has the potential to increase renewable natural gas recovery, improve the reuse of biosolid fertilisers and help operators expand circular economies globally. This review aims to provide perspectives on the role of microbial ecology in improving digester performance in wastewater treatment plants, highlighting that a systems biology approach is fundamental for monitoring mesophilic anaerobic sewage sludge in continuously stirred reactor tanks. We further highlight the potential applications arising from investigations into sludge ecology. The principal limitation for improvements in methane recoveries or in process stability of anaerobic digestion, especially after pre-treatment or during co-digestion, are ecological knowledge gaps related to the front-end metabolism (hydrolysis and fermentation). Operational problems such as stable biological foaming are a key problem, for which ecological markers are a suitable approach. However, no biomarkers exist yet to assist in monitoring and management of clade-specific foaming potentials along with other risks, such as pollutants and pathogens. Fundamental ecological principles apply to anaerobic digestion, which presents opportunities to predict and manipulate reactor functions. The path ahead for mapping ecological markers on process endpoints and risk factors of anaerobic digestion will involve numerical ecology, an expanding field that employs metrics derived from alpha, beta, phylogenetic, taxonomic, and functional diversity, as well as from phenotypes or life strategies derived from genetic potentials. In contrast to addressing operational issues (as noted above), which are effectively addressed by whole population or individual biomarkers, broad improvement and optimisation of function will require enhancement of hydrolysis and acidogenic processes. This will require a discovery-based approach, which will involve integrative research involving the proteome and metabolome. This will utilise, but overcome current limitations of DNA-centric approaches, and likely have broad application outside the specific field of anaerobic digestion.
Collapse
Affiliation(s)
- Christian Krohn
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia,*Correspondence: Christian Krohn,
| | - Leadin Khudur
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| | - Daniel Anthony Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, STEM College, RMIT University, Bundoora, VIC, Australia
| | | | | | | | - Aravind Surapaneni
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| | - Denis M. O'Carroll
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Richard M. Stuetz
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Damien J. Batstone
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia,Australian Centre for Water and Environmental Biotechnology, Gehrmann Building, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew S. Ball
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
41
|
Abstract
Diet has a profound impact on the microbial community in the gastrointestinal tract, the intestinal microbiota, to the benefit or detriment of human health. To understand the influence of diet on the intestinal microbiota, research has focused on individual macronutrients. Some macronutrients (e.g. fiber) have been studied in great detail and have been found to strongly influence the intestinal microbiota. The relationship between dietary protein, a vital macronutrient, and the intestinal microbiota has gone largely unexplored. Emerging evidence suggests that dietary protein strongly impacts intestinal microbiota composition and function and that protein-microbiota interactions can have critical impacts on host health. In this review, we focus on recent studies investigating the impact of dietary protein quantity and source on the intestinal microbiota and resulting host health consequences. We highlight major open questions critical to understanding health outcomes mediated by interactions between dietary protein and the microbiota.
Collapse
Affiliation(s)
- Alexandria Bartlett
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham NC, USA
- Corresponding author
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC, USA
- Corresponding author
| |
Collapse
|
42
|
Salvato F, Vintila S, Finkel OM, Dangl JL, Kleiner M. Evaluation of Protein Extraction Methods for Metaproteomic Analyses of Root-Associated Microbes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:977-988. [PMID: 35876747 DOI: 10.1094/mpmi-05-22-0116-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metaproteomics is a powerful tool for the characterization of metabolism, physiology, and functional interactions in microbial communities, including plant-associated microbiota. However, the metaproteomic methods that have been used to study plant-associated microbiota are very laborious and require large amounts of plant tissue, hindering wider application of these methods. We optimized and evaluated different protein extraction methods for metaproteomics of plant-associated microbiota in two different plant species (Arabidopsis and maize). Our main goal was to identify a method that would work with low amounts of input material (40 to 70 mg) and that would maximize the number of identified microbial proteins. We tested eight protocols, each comprising a different combination of physical lysis method, extraction buffer, and cell-enrichment method on roots from plants grown with synthetic microbial communities. We assessed the performance of the extraction protocols by liquid chromatography-tandem mass spectrometry-based metaproteomics and found that the optimal extraction method differed between the two species. For Arabidopsis roots, protein extraction by beating whole roots with small beads provided the greatest number of identified microbial proteins and improved the identification of proteins from gram-positive bacteria. For maize, vortexing root pieces in the presence of large glass beads yielded the greatest number of microbial proteins identified. Based on these data, we recommend the use of these two methods for metaproteomics with Arabidopsis and maize. Furthermore, detailed descriptions of the eight tested protocols will enable future optimization of protein extraction for metaproteomics in other dicot and monocot plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Fernanda Salvato
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, U.S.A
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, U.S.A
| | - Omri M Finkel
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - Jeffery L Dangl
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, U.S.A
| |
Collapse
|
43
|
Diwan D, Rashid MM, Vaishnav A. Current understanding of plant-microbe interaction through the lenses of multi-omics approaches and their benefits in sustainable agriculture. Microbiol Res 2022; 265:127180. [PMID: 36126490 DOI: 10.1016/j.micres.2022.127180] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/28/2022]
Abstract
The success of sustainable agricultural practices has now become heavily dependent on the interactions between crop plants and their associated microbiome. Continuous advancement in high throughput sequencing platforms, omics-based approaches, and gene editing technologies has remarkably accelerated this area of research. It has enabled us to characterize the interactions of plants with associated microbial communities more comprehensively and accurately. Furthermore, the genomic and post-genomic era has significantly refined our perspective toward the complex mechanisms involved in those interactions, opening new avenues for efficiently deploying the knowledge in developing sustainable agricultural practices. This review focuses on our fundamental understanding of plant-microbe interactions and the contribution of existing multi-omics approaches, including those under active development and their tremendous success in unraveling different aspects of the complex network between plant hosts and microbes. In addition, we have also discussed the importance of sustainable and eco-friendly agriculture and the associated outstanding challenges ahead.
Collapse
Affiliation(s)
- Deepti Diwan
- Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Md Mahtab Rashid
- Department of Plant Pathology, Bihar Agricultural University, Sabour, Bhagalpur, Bihar 813210, India; Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Anukool Vaishnav
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh 281121, India; Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland; Plant-Soil Interaction Group, Agroscope (Reckenholz), Reckenholzstrasse 191, Zürich 8046, Switzerland
| |
Collapse
|
44
|
Metaproteome plasticity sheds light on the ecology of the rumen microbiome and its connection to host traits. THE ISME JOURNAL 2022; 16:2610-2621. [PMID: 35974086 PMCID: PMC9563048 DOI: 10.1038/s41396-022-01295-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/08/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
The arsenal of genes that microbes express reflect the way in which they sense their environment. We have previously reported that the rumen microbiome composition and its coding capacity are different in animals having distinct feed efficiency states, even when fed an identical diet. Here, we reveal that many microbial populations belonging to the bacteria and archaea domains show divergent proteome production in function of the feed efficiency state. Thus, proteomic data serve as a strong indicator of host feed efficiency state phenotype, overpowering predictions based on genomic and taxonomic information. We highlight protein production of specific phylogenies associated with each of the feed efficiency states. We also find remarkable plasticity of the proteome both in the individual population and at the community level, driven by niche partitioning and competition. These mechanisms result in protein production patterns that exhibit functional redundancy and checkerboard distribution that are tightly linked to the host feed efficiency phenotype. By linking microbial protein production and the ecological mechanisms that act within the microbiome feed efficiency states, our present work reveals a layer of complexity that bears immense importance to the current global challenges of food security and sustainability.
Collapse
|
45
|
Alves G, Ogurtsov A, Karlsson R, Jaén-Luchoro D, Piñeiro-Iglesias B, Salvà-Serra F, Andersson B, Moore ERB, Yu YK. Identification of Antibiotic Resistance Proteins via MiCId's Augmented Workflow. A Mass Spectrometry-Based Proteomics Approach. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:917-931. [PMID: 35500907 PMCID: PMC9164240 DOI: 10.1021/jasms.1c00347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 06/01/2023]
Abstract
Fast and accurate identifications of pathogenic bacteria along with their associated antibiotic resistance proteins are of paramount importance for patient treatments and public health. To meet this goal from the mass spectrometry aspect, we have augmented the previously published Microorganism Classification and Identification (MiCId) workflow for this capability. To evaluate the performance of this augmented workflow, we have used MS/MS datafiles from samples of 10 antibiotic resistance bacterial strains belonging to three different species: Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The evaluation shows that MiCId's workflow has a sensitivity value around 85% (with a lower bound at about 72%) and a precision greater than 95% in identifying antibiotic resistance proteins. In addition to having high sensitivity and precision, MiCId's workflow is fast and portable, making it a valuable tool for rapid identifications of bacteria as well as detection of their antibiotic resistance proteins. It performs microorganismal identifications, protein identifications, sample biomass estimates, and antibiotic resistance protein identifications in 6-17 min per MS/MS sample using computing resources that are available in most desktop and laptop computers. We have also demonstrated other use of MiCId's workflow. Using MS/MS data sets from samples of two bacterial clonal isolates, one being antibiotic-sensitive while the other being multidrug-resistant, we applied MiCId's workflow to investigate possible mechanisms of antibiotic resistance in these pathogenic bacteria; the results showed that MiCId's conclusions agree with the published study. The new version of MiCId (v.07.01.2021) is freely available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.
Collapse
Affiliation(s)
- Gelio Alves
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Aleksey Ogurtsov
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Roger Karlsson
- Department
of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Department
of Clinical Microbiology, Sahlgrenska University
Hospital, 40234 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
- Nanoxis
Consulting AB, 40234 Gothenburg, Sweden
| | - Daniel Jaén-Luchoro
- Department
of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
- Culture Collection
University of Gothenburg (CCUG), Sahlgrenska
Academy of the University of Gothenburg, 40234 Gothenburg, Sweden
| | - Beatriz Piñeiro-Iglesias
- Department
of Clinical Microbiology, Sahlgrenska University
Hospital, 40234 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
| | - Francisco Salvà-Serra
- Department
of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Department
of Clinical Microbiology, Sahlgrenska University
Hospital, 40234 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
- Culture Collection
University of Gothenburg (CCUG), Sahlgrenska
Academy of the University of Gothenburg, 40234 Gothenburg, Sweden
- Microbiology,
Department of Biology, University of the
Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Björn Andersson
- Bioinformatics
Core Facility at Sahlgrenska Academy, University
of Gothenburg, Box 413, 40530 Gothenburg, Sweden
| | - Edward R. B. Moore
- Department
of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Department
of Clinical Microbiology, Sahlgrenska University
Hospital, 40234 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research (CARe), University of Gothenburg, 40016 Gothenburg, Sweden
- Culture Collection
University of Gothenburg (CCUG), Sahlgrenska
Academy of the University of Gothenburg, 40234 Gothenburg, Sweden
| | - Yi-Kuo Yu
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| |
Collapse
|
46
|
Morgan EW, Perdew GH, Patterson AD. Multi-Omics Strategies for Investigating the Microbiome in Toxicology Research. Toxicol Sci 2022; 187:189-213. [PMID: 35285497 PMCID: PMC9154275 DOI: 10.1093/toxsci/kfac029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Microbial communities on and within the host contact environmental pollutants, toxic compounds, and other xenobiotic compounds. These communities of bacteria, fungi, viruses, and archaea possess diverse metabolic potential to catabolize compounds and produce new metabolites. Microbes alter chemical disposition thus making the microbiome a natural subject of interest for toxicology. Sequencing and metabolomics technologies permit the study of microbiomes altered by acute or long-term exposure to xenobiotics. These investigations have already contributed to and are helping to re-interpret traditional understandings of toxicology. The purpose of this review is to provide a survey of the current methods used to characterize microbes within the context of toxicology. This will include discussion of commonly used techniques for conducting omic-based experiments, their respective strengths and deficiencies, and how forward-looking techniques may address present shortcomings. Finally, a perspective will be provided regarding common assumptions that currently impede microbiome studies from producing causal explanations of toxicologic mechanisms.
Collapse
Affiliation(s)
- Ethan W Morgan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrew D Patterson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
47
|
Brink AJ, Centner CM, Opperman S. Microbiology Assessments in Critically Ill Patients. Semin Respir Crit Care Med 2022; 43:75-96. [PMID: 35172360 DOI: 10.1055/s-0041-1741018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The prevalence of suspected or proven infections in critically ill patients is high, with a substantial attributable risk to in-hospital mortality. Coordinated guidance and interventions to improve the appropriate microbiological assessment for diagnostic and therapeutic decisions are therefore pivotal. Conventional microbiology follows the paradigm of "best practice" of specimen selection and collection, governed by laboratory processing and standard operating procedures, and informed by the latest developments and trends. In this regard, the preanalytical phase of a microbiological diagnosis is crucial since inadequate sampling may result in the incorrect diagnosis and inappropriate management. In addition, the isolation and detection of contaminants interfere with multiple intensive care unit (ICU) processes, which confound the therapeutic approach to critically ill patients. To facilitate bedside enablement, the microbiology laboratory should provide expedited feedback, reporting, and interpretation of results. Compared with conventional microbiology, novel rapid and panel-based diagnostic strategies have the clear advantages of a rapid turnaround time, the detection of many microorganisms including antimicrobial resistant determinants and thus promise substantial improvements in health care. However, robust data on the clinical evaluation of rapid diagnostic tests in presumed sepsis, sepsis and shock are extremely limited and more rigorous intervention studies, focusing on direct benefits for critically ill patients, are pivotal before widespread adoption of their use through the continuum of ICU stay. Advocating the use of these diagnostics without firmly establishing which patients would benefit most, how to interpret the results, and how to treat according to the results obtained, could in fact be counterproductive with regards to diagnostic "best practice" and antimicrobial stewardship. Thus, for the present, they may supplement but not yet supplant conventional microbiological assessments.
Collapse
Affiliation(s)
- Adrian John Brink
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Chad M Centner
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Stefan Opperman
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Green Point, Cape Town, South Africa
| |
Collapse
|
48
|
Nalpas N, Hoyles L, Anselm V, Ganief T, Martinez-Gili L, Grau C, Droste-Borel I, Davidovic L, Altafaj X, Dumas ME, Macek B. An integrated workflow for enhanced taxonomic and functional coverage of the mouse fecal metaproteome. Gut Microbes 2022; 13:1994836. [PMID: 34763597 PMCID: PMC8726736 DOI: 10.1080/19490976.2021.1994836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Intestinal microbiota plays a key role in shaping host homeostasis by regulating metabolism, immune responses and behavior. Its dysregulation has been associated with metabolic, immune and neuropsychiatric disorders and is accompanied by changes in bacterial metabolic regulation. Although proteomics is well suited for analysis of individual microbes, metaproteomics of fecal samples is challenging due to the physical structure of the sample, presence of contaminating host proteins and coexistence of hundreds of taxa. Furthermore, there is a lack of consensus regarding preparation of fecal samples, as well as downstream bioinformatic analyses following metaproteomics data acquisition. Here we assess sample preparation and data analysis strategies applied to mouse feces in a typical mass spectrometry-based metaproteomic experiment. We show that subtle changes in sample preparation protocols may influence interpretation of biological findings. Two-step database search strategies led to significant underestimation of false positive protein identifications. Unipept software provided the highest sensitivity and specificity in taxonomic annotation of the identified peptides of unknown origin. Comparison of matching metaproteome and metagenome data revealed a positive correlation between protein and gene abundances. Notably, nearly all functional categories of detected protein groups were differentially abundant in the metaproteome compared to what would be expected from the metagenome, highlighting the need to perform metaproteomics when studying complex microbiome samples.
Collapse
Affiliation(s)
- Nicolas Nalpas
- Proteome Center Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Lesley Hoyles
- Biomolecular Medicine Section, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK,Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Viktoria Anselm
- Proteome Center Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Tariq Ganief
- Proteome Center Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Laura Martinez-Gili
- Biomolecular Medicine Section, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Cristina Grau
- Pharmacology unit, Bellvitge Biomedical Research Institute, University of Barcelona, Barcelona, Spain
| | | | | | - Xavier Altafaj
- Pharmacology unit, Bellvitge Biomedical Research Institute, University of Barcelona, Barcelona, Spain,Neurophysiology Unit, University of Barcelona – Idibaps, Barcelona, Spain
| | - Marc-Emmanuel Dumas
- Biomolecular Medicine Section, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK,Genomic and Environmental Medicine, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London, UK,European Genomic Institute for Diabetes, Inserm Umr 1283, Cnrs Umr 8199, Institut Pasteur De Lille, Lille University Hospital, University of Lille, Lille, France
| | - Boris Macek
- Proteome Center Tuebingen, University of Tuebingen, Tuebingen, Germany,CONTACT Boris Macek Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, Auf Der Morgenstelle 15, Tuebingen72076, Germany
| |
Collapse
|
49
|
Beck AE, Kleiner M, Garrell AK. Elucidating Plant-Microbe-Environment Interactions Through Omics-Enabled Metabolic Modelling Using Synthetic Communities. FRONTIERS IN PLANT SCIENCE 2022; 13:910377. [PMID: 35795346 PMCID: PMC9251461 DOI: 10.3389/fpls.2022.910377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 05/10/2023]
Abstract
With a growing world population and increasing frequency of climate disturbance events, we are in dire need of methods to improve plant productivity, resilience, and resistance to both abiotic and biotic stressors, both for agriculture and conservation efforts. Microorganisms play an essential role in supporting plant growth, environmental response, and susceptibility to disease. However, understanding the specific mechanisms by which microbes interact with each other and with plants to influence plant phenotypes is a major challenge due to the complexity of natural communities, simultaneous competition and cooperation effects, signalling interactions, and environmental impacts. Synthetic communities are a major asset in reducing the complexity of these systems by simplifying to dominant components and isolating specific variables for controlled experiments, yet there still remains a large gap in our understanding of plant microbiome interactions. This perspectives article presents a brief review discussing ways in which metabolic modelling can be used in combination with synthetic communities to continue progress toward understanding the complexity of plant-microbe-environment interactions. We highlight the utility of metabolic models as applied to a community setting, identify different applications for both flux balance and elementary flux mode simulation approaches, emphasize the importance of ecological theory in guiding data interpretation, and provide ideas for how the integration of metabolic modelling techniques with big data may bridge the gap between simplified synthetic communities and the complexity of natural plant-microbe systems.
Collapse
Affiliation(s)
- Ashley E. Beck
- Department of Biological and Environmental Sciences, Carroll College, Helena, MT, United States
- *Correspondence: Ashley E. Beck,
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Anna-Katharina Garrell
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
50
|
Mordant A, Kleiner M. Evaluation of Sample Preservation and Storage Methods for Metaproteomics Analysis of Intestinal Microbiomes. Microbiol Spectr 2021; 9:e0187721. [PMID: 34908431 PMCID: PMC8672883 DOI: 10.1128/spectrum.01877-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/31/2021] [Indexed: 12/20/2022] Open
Abstract
A critical step in studies of the intestinal microbiome using meta-omics approaches is the preservation of samples before analysis. Preservation is essential for approaches that measure gene expression, such as metaproteomics, which is used to identify and quantify proteins in microbiomes. Intestinal microbiome samples are typically stored by flash-freezing and storage at -80°C, but some experimental setups do not allow for immediate freezing of samples. In this study, we evaluated methods to preserve fecal microbiome samples for metaproteomics analyses when flash-freezing is not possible. We collected fecal samples from C57BL/6 mice and stored them for 1 and 4 weeks using the following methods: flash-freezing in liquid nitrogen, immersion in RNAlater, immersion in 95% ethanol, immersion in a RNAlater-like buffer, and combinations of these methods. After storage, we extracted protein and prepared peptides for liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis to identify and quantify peptides and proteins. All samples produced highly similar metaproteomes, except for ethanol-preserved samples that were distinct from all other samples in terms of protein identifications and protein abundance profiles. Flash-freezing and RNAlater (or RNAlater-like treatments) produced metaproteomes that differed only slightly, with less than 0.7% of identified proteins differing in abundance. In contrast, ethanol preservation resulted in an average of 9.5% of the identified proteins differing in abundance between ethanol and the other treatments. Our results suggest that preservation at room temperature in RNAlater or an RNAlater-like solution performs as well as freezing for the preservation of intestinal microbiome samples before metaproteomics analyses. IMPORTANCE Metaproteomics is a powerful tool to study the intestinal microbiome. By identifying and quantifying a large number of microbial, dietary, and host proteins in microbiome samples, metaproteomics provides direct evidence of the activities and functions of microbial community members. A critical step for metaproteomics workflows is preserving samples before analysis because protein profiles are susceptible to fast changes in response to changes in environmental conditions (air exposure, temperature changes, etc.). This study evaluated the effects of different preservation treatments on the metaproteomes of intestinal microbiome samples. In contrast to prior work on preservation of fecal samples for metaproteomics analyses, we ensured that all steps of sample preservation were identical so that all differences could be attributed to the preservation method.
Collapse
Affiliation(s)
- Angie Mordant
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|