1
|
McNitt SA, Dick JK, Hernandez-Castaneda MA, Sangala J, Pierson M, Macchietto M, Burrack KS, Crompton PD, Seydel K, Hamilton SE, Hart GT. Phenotype and function of IL-10-producing NK cells in individuals with malaria experience. JCI Insight 2025; 10:e183076. [PMID: 40337867 DOI: 10.1172/jci.insight.183076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
P.falciparum infection can trigger high levels of inflammation that lead to fever and sometimes severe disease. People living in malaria-endemic areas gradually develop resistance to symptomatic malaria and control both parasite numbers and the inflammatory response. We previously found that adaptive NK cells correlated with reduced parasite load and protection from symptoms. We also found that murine NK cell production of IL-10 protected mice from experimental cerebral malaria. Human NK cells can also secrete IL-10, but it is unknown what NK cell subsets produce IL-10 or if this is affected by malaria experience. We hypothesized that NK cell immunoregulation may lower inflammation and reduce fever induction. Here, we showed that NK cells from participants with malaria experience make significantly more IL-10 than participants with no malaria experience. We then determined the proportions of NK cells that are cytotoxic and produce IFN-γ and/or IL-10 and identified a signature of adaptive and checkpoint molecules on IL-10-producing NK cells. Lastly, we found that coculture with primary monocytes, Plasmodium-infected RBCs, and antibody induced IL-10 production by NK cells. These data suggest that NK cells may contribute to protection from malaria symptoms via IL-10 production.
Collapse
Affiliation(s)
- Sarah A McNitt
- Department of Osteopathic Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Jenna K Dick
- Division of Infectious Disease and Internal Medicine, Department of Medicine
- Center for Immunology
| | | | - Jules Sangala
- Division of Infectious Disease and Internal Medicine, Department of Medicine
- Center for Immunology
| | - Mark Pierson
- Center for Immunology
- Department of Laboratory Medicine and Pathology, and
| | - Marissa Macchietto
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kristina S Burrack
- Center for Immunology
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Division of Intramural Research, National Institute of Allergy and Infectious Disease (NIAID), NIH, Rockville, Maryland, USA
| | - Karl Seydel
- Department of Osteopathic Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sara E Hamilton
- Center for Immunology
- Department of Laboratory Medicine and Pathology, and
| | - Geoffrey T Hart
- Division of Infectious Disease and Internal Medicine, Department of Medicine
- Center for Immunology
| |
Collapse
|
2
|
Berton RR, Heidarian M, Kannan SK, Shah M, Butler NS, Harty JT, Badovinac VP. Accurate enumeration of pathogen-specific and virtual memory CD8 T cells after infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf007. [PMID: 40167212 DOI: 10.1093/jimmun/vkaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/04/2025] [Indexed: 04/02/2025]
Abstract
Establishing the magnitude and kinetics of polyclonal Ag-specific CD8 T-cell responses, in addition to their functional fitness, is critical for evaluating a host's ability to respond to different kinds of infections and/or immunizations. To track CD8 T-cell responses during infection, a surrogate-activation-marker approach (CD8αloCD11ahi) is used to distinguish naïve and Ag-experienced effector/memory CD8 T cells in vivo. However, semidifferentiated virtual memory (Tvm) CD8 T cells have recently been identified in uninfected/unmanipulated mice that display a phenotype similar to Ag-experienced cells. Therefore, magnitude and breadth of CD8 T-cell responses may be overestimated when responses are profiled using only CD8α/CD11a markers. Thus, to precisely define and distinguish Tvm from pathogen-specific CD8 T cells during bacterial, parasitic, and viral infections, pathogen-specific sensor TCR-Tg cells were adoptively transferred prior to challenge. We demonstrate that Tvm CD8 T cells are found in CD8αloCD11ahi-defined Ag-experienced CD8 T cells but can be parsed out in infected host with their CD49d-CD44hiCD122hi expression pattern. However, this approach presents potential limitations as CD49d+ Ag-specific CD8 T cells can lose CD49d expression and adopt a Tvm-like phenotype depending on their Ag-stimulation history, age, and naïve CD8 T-cell precursor frequency before the infection. Importantly, Tvm cells contribute to the breadth of the CD8 T-cell response, and their contribution depends on type of infection, time after infection, and tissue examined. Thus, these data define limitations in our ability to resolve between pathogen/Ag-specific and Tvm CD8 T-cell responses during infection, a notion of direct relevance for experimental murine studies designed to follow CD8 T-cell responses in vivo.
Collapse
Affiliation(s)
- Roger R Berton
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
| | - Mohammad Heidarian
- Department of Pathology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
- Department of Pathology Graduate Programs, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
| | - Shravan Kumar Kannan
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
| | - Manan Shah
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
- Department of Microbiology and Immunology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
| | - Noah S Butler
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
- Department of Microbiology and Immunology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
| | - John T Harty
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
- Department of Pathology Graduate Programs, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
| | - Vladimir P Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
- Department of Pathology Graduate Programs, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Fusco EM, Bower L, Polidoro R, Minns AM, Lindner SE, Schmidt NW. Microbiome-mediated modulation of immune memory to P. yoelii affects the resistance to secondary cerebral malaria challenge. Immunohorizons 2025; 9:vlaf009. [PMID: 40193560 PMCID: PMC12086675 DOI: 10.1093/immhor/vlaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/29/2025] [Indexed: 04/09/2025] Open
Abstract
Malaria is caused by protozoan parasites in the genus Plasmodium. Over time individuals slowly develop clinical immunity to malaria, but this process occurs at variable rates, and the mechanism of protection is not fully understood. We have recently demonstrated that in genetically identical C57BL/6N mice, gut microbiota composition dramatically impacts the quality of the humoral immune response to Plasmodium yoelii and subsequent protection against a lethal secondary challenge with Plasmodium berghei ANKA in C57BL/6N mice. Here, we utilize this genetically identical, gut microbiome-dependent model to investigate how the gut microbiota modulate immunological memory, hypothesizing that the gut microbiome impacts the formation and functionality of immune memory. In support of this hypothesis, P. yoelii hyperparasitemia-resistant C57BL/6N mice exhibit increased protection against P. berghei ANKA-induced experimental cerebral malaria (ECM) compared to P. yoelii hyperparasitemia-susceptible C57BL/6N mice. Despite differences in protection against ECM, P. yoelii-resistant and -susceptible mice accumulate similar numbers of memory B cells (MBCs) and memory T cells. Following challenge with P. berghei ANKA, P. yoelii-resistant mice generated more rapid germinal center reactions; however, P. yoelii-resistant and -susceptible mice had similar titers of P. yoelii- and P. berghei-specific antibodies. In contrast, P. yoelii-resistant mice had an increased number of regulatory T cells in response to secondary challenge with P. berghei ANKA, which may dampen the immune-mediated breakdown of the blood-brain barrier and susceptibility to P. berghei-induced ECM. These findings demonstrate the ability of the gut microbiome to shape immune memory and the potential to enhance resistance to severe malaria outcomes.
Collapse
Affiliation(s)
- Elizabeth M Fusco
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Layne Bower
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rafael Polidoro
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Allen M Minns
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- The Huck Center for Malaria Research, University Park, PA, United States
| | - Scott E Lindner
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- The Huck Center for Malaria Research, University Park, PA, United States
| | - Nathan W Schmidt
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Acevedo-Monroy SE, Hernández-Chiñas U, Rocha-Ramírez LM, Medina-Contreras O, López-Díaz O, Ahumada-Cota RE, Martínez-Gómez D, Huerta-Yepez S, Tirado-Rodríguez AB, Molina-López J, Castro-Luna R, Martínez-Cristóbal L, Rojas-Castro FE, Chávez-Berrocal ME, Verdugo-Rodríguez A, Eslava-Campos CA. UNAM-HIMFG Bacterial Lysate Activates the Immune Response and Inhibits Colonization of Bladder of Balb/c Mice Infected with the Uropathogenic CFT073 Escherichia coli Strain. Int J Mol Sci 2024; 25:9876. [PMID: 39337365 PMCID: PMC11432767 DOI: 10.3390/ijms25189876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Urinary tract infections (UTIs) represent a clinical and epidemiological problem of worldwide impact that affects the economy and the emotional state of the patient. Control of the condition is complicated due to multidrug resistance of pathogens associated with the disease. Considering the difficulty in carrying out effective treatment with antimicrobials, it is necessary to propose alternatives that improve the clinical status of the patients. With this purpose, in a previous study, the safety and immunostimulant capacity of a polyvalent lysate designated UNAM-HIMFG prepared with different bacteria isolated during a prospective study of chronic urinary tract infection (CUTI) was evaluated. In this work, using an animal model, results are presented on the immunostimulant and protective activity of the polyvalent UNAM-HIMFG lysate to define its potential use in the control and treatment of CUTI. Female Balb/c mice were infected through the urethra with Escherichia coli CFT073 (UPEC O6:K2:H1) strain; urine samples were collected before the infection and every week for up to 60 days. Once the animals were colonized, sublingual doses of UNAM-HIMFG lysate were administrated. The colonization of the bladder and kidneys was evaluated by culture, and their alterations were assessed using histopathological analysis. On the other hand, the immunostimulant activity of the compound was analyzed by qPCR of spleen mRNA. Uninfected animals receiving UNAM-HIMFG lysate and infected animals administered with the physiological saline solution were used as controls. During this study, the clinical status and evolution of the animals were evaluated. At ninety-six hours after infection, the presence of CFT073 was identified in the urine of infected animals, and then, sublingual administration of UNAM-HIMFG lysate was started every week for 60 days. The urine culture of mice treated with UNAM-HIMFG lysate showed the presence of bacteria for three weeks post-treatment; in contrast, in the untreated animals, positive cultures were observed until the 60th day of this study. The histological analysis of bladder samples from untreated animals showed the presence of chronic inflammation and bacteria in the submucosa, while tissues from mice treated with UNAM-HIMFG lysate did not show alterations. The same analysis of kidney samples of the two groups (treated and untreated) did not present alterations. Immunostimulant activity assays of UNAM-HIMFG lysate showed overexpression of TNF-α and IL-10. Results suggest that the lysate activates the expression of cytokines that inhibit the growth of inoculated bacteria and control the inflammation responsible for tissue damage. In conclusion, UNAM-HIMFG lysate is effective for the treatment and control of CUTIs without the use of antimicrobials.
Collapse
Affiliation(s)
- Salvador Eduardo Acevedo-Monroy
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
- Laboratorio de Microbiología Molecular, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad #3000, Colonia, C.U., Coyoacán, Ciudad de México 04510, Mexico;
| | - Ulises Hernández-Chiñas
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública, División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Luz María Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico;
| | - Oscar Medina-Contreras
- Unidad de Investigación Epidemiológica en Endocrinología y Nutrición, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col. Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico;
| | - Osvaldo López-Díaz
- Laboratorio de Histopatología Veterinaria, Universidad Autónoma Metropolitana Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldía Coyoacán, Ciudad de México 04960, Mexico;
| | - Ricardo Ernesto Ahumada-Cota
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
| | - Daniel Martínez-Gómez
- Departamento de Producción Agrícola y Animal, Laboratorio de Microbiología Agropecuaria, Universidad Autónoma Metropolitana Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldía Coyoacán, Ciudad de México 04960, Mexico;
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico; (S.H.-Y.); (A.B.T.-R.)
| | - Ana Belén Tirado-Rodríguez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico; (S.H.-Y.); (A.B.T.-R.)
| | - José Molina-López
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública, División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Raúl Castro-Luna
- Bioterio, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico; (R.C.-L.); (L.M.-C.)
| | - Leonel Martínez-Cristóbal
- Bioterio, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico; (R.C.-L.); (L.M.-C.)
| | - Frida Elena Rojas-Castro
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
| | - María Elena Chávez-Berrocal
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública, División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Antonio Verdugo-Rodríguez
- Laboratorio de Microbiología Molecular, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad #3000, Colonia, C.U., Coyoacán, Ciudad de México 04510, Mexico;
| | - Carlos Alberto Eslava-Campos
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública, División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| |
Collapse
|
5
|
McNitt SA, Dick JK, Hernandez Castaneda M, Sangala JA, Pierson M, Macchietto M, Burrack KS, Crompton PD, Seydel KB, Hamilton SE, Hart GT. Phenotype and function of IL-10 producing NK cells in individuals with malaria experience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593687. [PMID: 38798324 PMCID: PMC11118352 DOI: 10.1101/2024.05.11.593687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Plasmodium falciparum infection can trigger high levels of inflammation that lead to fever and sometimes severe disease. People living in malaria-endemic areas gradually develop resistance to symptomatic malaria and control both parasite numbers and the inflammatory response. We previously found that adaptive natural killer (NK) cells correlate with reduced parasite load and protection from symptoms. We also previously found that murine NK cell production of IL-10 can protect mice from experimental cerebral malaria. Human NK cells can also secrete IL-10, but it was unknown what NK cell subsets produce IL-10 and if this is affected by malaria experience. We hypothesize that NK cell immunoregulation may lower inflammation and reduce fever induction. Here, we show that NK cells from subjects with malaria experience make significantly more IL-10 than subjects with no malaria experience. We then determined the proportions of NK cells that are cytotoxic and produce interferon gamma and/or IL-10 and identified a signature of adaptive and checkpoint molecules on IL-10-producing NK cells. Lastly, we find that co-culture with primary monocytes, Plasmodium -infected RBCs, and antibody induces IL-10 production by NK cells. These data suggest that NK cells may contribute to protection from malaria symptoms via IL-10 production.
Collapse
|
6
|
Johnson JT, Surette FA, Ausdahl GR, Shah M, Minns AM, Lindner SE, Zander RA, Butler NS. CD4 T Cell-Derived IL-21 Is Critical for Sustaining Plasmodium Infection-Induced Germinal Center Responses and Promoting the Selection of Memory B Cells with Recall Potential. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1467-1478. [PMID: 38477614 PMCID: PMC11018477 DOI: 10.4049/jimmunol.2300683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/25/2024] [Indexed: 03/14/2024]
Abstract
Development of Plasmodium-specific humoral immunity is critically dependent on CD4 Th cell responses and germinal center (GC) reactions during blood-stage Plasmodium infection. IL-21, a cytokine primarily produced by CD4 T cells, is an essential regulator of affinity maturation, isotype class-switching, B cell differentiation, and maintenance of GC reactions in response to many infection and immunization models. In models of experimental malaria, mice deficient in IL-21 or its receptor IL-21R fail to develop memory B cell populations and are not protected against secondary infection. However, whether sustained IL-21 signaling in ongoing GCs is required for maintaining GC magnitude, organization, and output is unclear. In this study, we report that CD4+ Th cells maintain IL-21 expression after resolution of primary Plasmodium yoelii infection. We generated an inducible knockout mouse model that enabled cell type-specific and timed deletion of IL-21 in peripheral, mature CD4 T cells. We found that persistence of IL-21 signaling in active GCs had no impact on the magnitude of GC reactions or their capacity to produce memory B cell populations. However, the memory B cells generated in the absence of IL-21 exhibited reduced recall function upon challenge. Our data support that IL-21 prevents premature cellular dissolution within the GC and promotes stringency of selective pressures during B cell fate determination required to produce high-quality Plasmodium-specific memory B cells. These data are additionally consistent with a temporal requirement for IL-21 in fine-tuning humoral immune memory responses during experimental malaria.
Collapse
Affiliation(s)
- Jordan T. Johnson
- Graduate Program in Immunology, University of Iowa, Iowa City, Iowa USA
- These authors contributed equally
| | - Fionna A. Surette
- Graduate Program in Immunology, University of Iowa, Iowa City, Iowa USA
- These authors contributed equally
| | - Graham R. Ausdahl
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa USA
| | - Manan Shah
- Graduate Program in Immunology, University of Iowa, Iowa City, Iowa USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa USA
| | - Allen M. Minns
- Department of Biochemistry & Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania USA
| | - Scott E. Lindner
- Department of Biochemistry & Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania USA
| | - Ryan A. Zander
- Graduate Program in Immunology, University of Iowa, Iowa City, Iowa USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa USA
| | - Noah S. Butler
- Graduate Program in Immunology, University of Iowa, Iowa City, Iowa USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa USA
| |
Collapse
|
7
|
Bravo M, Dileepan T, Dolan M, Hildebrand J, Wolford J, Hanson ID, Hamilton SE, Frosch AE, Burrack KS. IL-15 Complex-Induced IL-10 Enhances Plasmodium-specific CD4+ T Follicular Helper Differentiation and Antibody Production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:992-1001. [PMID: 38305633 PMCID: PMC10932862 DOI: 10.4049/jimmunol.2300525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Malaria, which results from infection with Plasmodium parasites, remains a major public health problem. Although humans do not develop long-lived, sterilizing immunity, protection against symptomatic disease develops after repeated exposure to Plasmodium parasites and correlates with the acquisition of humoral immunity. Despite the established role Abs play in protection from malaria disease, dysregulated inflammation is thought to contribute to the suboptimal immune response to Plasmodium infection. Plasmodium berghei ANKA (PbA) infection results in a fatal severe malaria disease in mice. We previously demonstrated that treatment of mice with IL-15 complex (IL-15C; IL-15 bound to an IL-15Rα-Fc fusion protein) induces IL-10 expression in NK cells, which protects mice from PbA-induced death. Using a novel MHC class II tetramer to identify PbA-specific CD4+ T cells, in this study we demonstrate that IL-15C treatment enhances T follicular helper (Tfh) differentiation and modulates cytokine production by CD4+ T cells. Moreover, genetic deletion of NK cell-derived IL-10 or IL-10R expression on T cells prevents IL-15C-induced Tfh differentiation. Additionally, IL-15C treatment results in increased anti-PbA IgG Ab levels and improves survival following reinfection. Overall, these data demonstrate that IL-15C treatment, via its induction of IL-10 from NK cells, modulates the dysregulated inflammation during Plasmodium infection to promote Tfh differentiation and Ab generation, correlating with improved survival from reinfection. These findings will facilitate improved control of malaria infection and protection from disease by informing therapeutic strategies and vaccine design.
Collapse
Affiliation(s)
| | | | | | - Jacob Hildebrand
- Center for Immunology, University of Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota
| | | | | | - Sara E. Hamilton
- Center for Immunology, University of Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota
| | - Anne E. Frosch
- Hennepin Healthcare Research Institute
- Center for Immunology, University of Minnesota
| | - Kristina S. Burrack
- Hennepin Healthcare Research Institute
- Center for Immunology, University of Minnesota
| |
Collapse
|
8
|
Céspedes N, Donnelly EL, Hansten G, Fellows AM, Dobson M, Kaylor HL, Coles TA, Schauer J, Van de Water J, Luckhart S. Mast cell-derived IL-10 protects intestinal barrier integrity during malaria in mice and regulates parasite transmission to Anopheles stephensi with a female-biased immune response. Infect Immun 2024; 92:e0036023. [PMID: 38299826 PMCID: PMC10929420 DOI: 10.1128/iai.00360-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Malaria is strongly predisposed to bacteremia, which is associated with increased gastrointestinal permeability and a poor clinical prognosis. We previously identified mast cells (MCs) as mediators of intestinal permeability in malaria and described multiple cytokines that rise with parasitemia, including interleukin (IL)-10, which could protect the host from an inflammatory response and alter parasite transmission to Anopheles mosquitoes. Here, we used the Cre-loxP system and non-lethal Plasmodium yoelii yoelii 17XNL to study the roles of MC-derived IL-10 in malaria immunity and transmission. Our data suggest a sex-biased and local inflammatory response mediated by MC-derived IL-10, supported by early increased number and activation of MCs in females relative to males. Increased parasitemia in female MC IL-10 (-) mice was associated with increased ileal levels of chemokines and plasma myeloperoxidase (MPO). We also observed increased intestinal permeability in female and male MC IL-10 (-) mice relative to MC IL-10 (+) mice but no differences in blood bacterial 16S DNA levels. Transmission success of P. yoelii to A. stephensi was higher in female relative to male mice and from female and male MC IL-10 (-) mice relative to MC IL-10 (+) mice. These patterns were associated with increased plasma levels of pro-inflammatory cytokines in female MC IL-10 (-) mice and increased plasma levels of chemokines and markers of neutrophil activation in male MC IL-10 (-) mice. Overall, these data suggest that MC-derived IL-10 protects intestinal barrier integrity, regulates parasite transmission, and controls local and systemic host immune responses during malaria, with a female bias.
Collapse
Affiliation(s)
- Nora Céspedes
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho, USA
| | - Erinn L. Donnelly
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Gretchen Hansten
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho, USA
| | - Abigail M. Fellows
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho, USA
| | - Megan Dobson
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho, USA
| | - Hannah L. Kaylor
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho, USA
| | - Taylor A. Coles
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho, USA
| | - Joseph Schauer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, California, USA
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, California, USA
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
9
|
O'Neal KA, Zeltner SL, Foscue CL, Stumhofer JS. Bhlhe40 limits early IL-10 production from CD4 + T cells during Plasmodium yoelii 17X infection. Infect Immun 2023; 91:e0036723. [PMID: 37843306 PMCID: PMC10652903 DOI: 10.1128/iai.00367-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The cytokine IL-10 suppresses T-cell-mediated immunity, which is required to control infection with Plasmodium yoelii. Consequently, IL-10 can delay the time needed to resolve this infection, leading to a higher parasite burden. While the pathways that lead to IL-10 production by CD4+ T cells are well defined, much less is known about the mediators that suppress the expression of this potent anti-inflammatory cytokine. Here, we show that the transcription factor basic helix-loop-helix family member e40 (Bhlhe40) contributes to controlling parasite burden in response to P. yoelii infection in mice. Loss of Bhlhe40 expression in mice results in higher Il10 expression, higher peak parasitemia, and a delay in parasite clearance. The observed phenotype was not due to defects in T-cell activation and proliferation or the humoral response. Nor was it due to changes in regulatory T-cell numbers. However, blocking IL-10 signaling reversed the outcome in Bhlhe40-/ - mice, suggesting that excess IL-10 production limits their ability to control the infection properly. In addition to suppressing Il10 expression in CD4+ T cells, Bhlhe40 can promote Ifng expression. Indeed, IFN-γ production by CD4+ T cells isolated from the liver was significantly affected by the loss of Bhlhe40. Lastly, Bhlhe40 deletion in T cells resulted in a phenotype similar to that observed in the Bhlhe40-/ - mice, indicating that Bhlhe40 expression in T cells contributes to the ability of mice to control infection with P. yoelii.
Collapse
Affiliation(s)
- Kara A. O'Neal
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sheldon L. Zeltner
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Camille L. Foscue
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jason S. Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
10
|
Wilhelm CR, Upadhye MA, Eschbacher KL, Karandikar NJ, Boyden AW. Proteolipid Protein-Induced Mouse Model of Multiple Sclerosis Requires B Cell-Mediated Antigen Presentation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:944-953. [PMID: 37548478 PMCID: PMC10528642 DOI: 10.4049/jimmunol.2200721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/18/2023] [Indexed: 08/08/2023]
Abstract
The pathogenic role B cells play in multiple sclerosis is underscored by the success of B cell depletion therapies. Yet, it remains unclear how B cells contribute to disease, although it is increasingly accepted that mechanisms beyond Ab production are involved. Better understanding of pathogenic interactions between B cells and autoreactive CD4 T cells will be critical for novel therapeutics. To focus the investigation on B cell:CD4 T cell interactions in vivo and in vitro, we previously developed a B cell-dependent, Ab-independent experimental autoimmune encephalomyelitis (EAE) mouse model driven by a peptide encompassing the extracellular domains of myelin proteolipid protein (PLPECD). In this study, we demonstrate that B cell depletion significantly inhibited PLPECD-induced EAE disease, blunted PLPECD-elicited delayed-type hypersensitivity reactions in vivo, and reduced CD4 T cell activation, proliferation, and proinflammatory cytokine production. Further, PLPECD-reactive CD4 T cells sourced from B cell-depleted donor mice failed to transfer EAE to naive recipients. Importantly, we identified B cell-mediated Ag presentation as the critical mechanism explaining B cell dependence in PLPECD-induced EAE, where bone marrow chimeric mice harboring a B cell-restricted MHC class II deficiency failed to develop EAE. B cells were ultimately observed to restimulate significantly higher Ag-specific proliferation from PLP178-191-reactive CD4 T cells compared with dendritic cells when provided PLPECD peptide in head-to-head cultures. We therefore conclude that PLPECD-induced EAE features a required pathogenic B cell-mediated Ag presentation function, providing for investigable B cell:CD4 T cell interactions in the context of autoimmune demyelinating disease.
Collapse
Affiliation(s)
- Connor R. Wilhelm
- Iowa City Veterans Affairs Medical Center
- Department of Pathology Graduate Program, University of Iowa, Iowa City, IA USA
| | - Mohit A. Upadhye
- Iowa City Veterans Affairs Medical Center
- Department of Pathology Graduate Program, University of Iowa, Iowa City, IA USA
| | | | - Nitin J. Karandikar
- Department of Pathology, University of Iowa Carver College of Medicine
- Iowa City Veterans Affairs Medical Center
- Department of Pathology Graduate Program, University of Iowa, Iowa City, IA USA
| | - Alexander W. Boyden
- Department of Pathology, University of Iowa Carver College of Medicine
- Iowa City Veterans Affairs Medical Center
| |
Collapse
|
11
|
Islam MR, Patel J, Back PI, Shmeeda H, Kallem RR, Shudde C, Markiewski M, Putnam WC, Gabizon AA, La-Beck NM. Pegylated Liposomal Alendronate Biodistribution, Immune Modulation, and Tumor Growth Inhibition in a Murine Melanoma Model. Biomolecules 2023; 13:1309. [PMID: 37759709 PMCID: PMC10527549 DOI: 10.3390/biom13091309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
While tumor-associated macrophages (TAM) have pro-tumoral activity, the ablation of macrophages in cancer may be undesirable since they also have anti-tumoral functions, including T cell priming and activation against tumor antigens. Alendronate is a potent amino-bisphosphonate that modulates the function of macrophages in vitro, with potential as an immunotherapy if its low systemic bioavailability can be addressed. We repurposed alendronate in a non-leaky and long-circulating liposomal carrier similar to that of the clinically approved pegylated liposomal doxorubicin to facilitate rapid clinical translation. Here, we tested liposomal alendronate (PLA) as an immunotherapeutic agent for cancer in comparison with a standard of care immunotherapy, a PD-1 immune checkpoint inhibitor. We showed that the PLA induced bone marrow-derived murine non-activated macrophages and M2-macrophages to polarize towards an M1-functionality, as evidenced by gene expression, cytokine secretion, and lipidomic profiles. Free alendronate had negligible effects, indicating that liposome encapsulation is necessary for the modulation of macrophage activity. In vivo, the PLA showed significant accumulation in tumor and tumor-draining lymph nodes, sites of tumor immunosuppression that are targets of immunotherapy. The PLA remodeled the tumor microenvironment towards a less immunosuppressive milieu, as indicated by a decrease in TAM and helper T cells, and inhibited the growth of established tumors in the B16-OVA melanoma model. The improved bioavailability and the beneficial effects of PLA on macrophages suggest its potential application as immunotherapy that could synergize with T-cell-targeted therapies and chemotherapies to induce immunogenic cell death. PLA warrants further clinical development, and these clinical trials should incorporate tumor and blood biomarkers or immunophenotyping studies to verify the anti-immunosuppressive effect of PLA in humans.
Collapse
Affiliation(s)
- Md. Rakibul Islam
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (M.R.I.); (J.P.); (P.I.B.); (C.S.); (M.M.)
| | - Jalpa Patel
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (M.R.I.); (J.P.); (P.I.B.); (C.S.); (M.M.)
| | - Patricia Ines Back
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (M.R.I.); (J.P.); (P.I.B.); (C.S.); (M.M.)
| | - Hilary Shmeeda
- Nano-Oncology Research Center, Oncology Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel;
| | - Raja Reddy Kallem
- Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (R.R.K.); (W.C.P.)
- Clinical Pharmacology and Experimental Therapeutics Center, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX 75235, USA
| | - Claire Shudde
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (M.R.I.); (J.P.); (P.I.B.); (C.S.); (M.M.)
| | - Maciej Markiewski
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (M.R.I.); (J.P.); (P.I.B.); (C.S.); (M.M.)
| | - William C. Putnam
- Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (R.R.K.); (W.C.P.)
- Clinical Pharmacology and Experimental Therapeutics Center, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX 75235, USA
- Department of Pharmaceutical Science, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX 75235, USA
| | - Alberto A. Gabizon
- Nano-Oncology Research Center, Oncology Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel;
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ninh M. La-Beck
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (M.R.I.); (J.P.); (P.I.B.); (C.S.); (M.M.)
- Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (R.R.K.); (W.C.P.)
| |
Collapse
|
12
|
Drewry LL, Pewe LL, Hancox LS, Van de Wall S, Harty JT. CD4 T Cell-Dependent and -Independent Roles for IFN-γ in Blood-Stage Malaria. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1305-1313. [PMID: 36939394 PMCID: PMC10121907 DOI: 10.4049/jimmunol.2200899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2023]
Abstract
Production of IFN-γ by CD4 T cells is widely theorized to control Plasmodium parasite burden during blood-stage malaria. Surprisingly, the specific and crucial mechanisms through which this highly pleiotropic cytokine acts to confer protection against malarial disease remain largely untested in vivo. Here we used a CD4 T cell-restricted Cre-Lox IFN-γ excision mouse model to test whether and how CD4 T cell-derived IFN-γ controls blood-stage malaria. Although complete absence of IFN-γ compromised control of the acute and the chronic, recrudescent blood-stage infections with P. c. chabaudi, we identified a specific, albeit modest, role for CD4 T cell-derived IFN-γ in limiting parasite burden only during the chronic stages of P. c. chabaudi malaria. CD4 T cell IFN-γ promoted IgG Ab class switching to the IgG2c isotype during P. c. chabaudi malaria in C57BL/6 mice. Unexpectedly, our data do not support gross defects in phagocytic activity in IFN-γ-deficient hosts infected with blood-stage malaria. Together, our data confirm CD4 T cell-dependent roles for IFN-γ but suggest CD4 T cell-independent roles for IFN-γ in immune responses to blood-stage malaria.
Collapse
|
13
|
Cytokine response in asymptomatic and symptomatic Plasmodium falciparum infections in children in a rural area of south-eastern Gabon. PLoS One 2023; 18:e0280818. [PMID: 36787308 PMCID: PMC9928122 DOI: 10.1371/journal.pone.0280818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023] Open
Abstract
Plasmodium falciparum is a parasite that causes asymptomatic or symptomatic malaria infections in humans depending on various factors. These infections are also a major cause of anemia in intertropical countries such as Gabon. Past studies have clearly demonstrated that inflammatory markers such as cytokines play a key role in the pathogenesis of malaria disease. However, the clinical manifestations of severe malaria vary according to the level of transmission and more information is needed to gain a better understanding of the factors involved. As such, the objective of this study was to investigate the circulating levels of nine cytokines in asymptomatic and symptomatic P. falciparum infections in Gabonese children and their roles in the pathogenesis of anemia. Blood samples were collected from 241 children aged 3 to 180 months in Lastourville, south-eastern Gabon. Diagnosis of P. falciparum infection was performed using Rapid Diagnosis Tests, microscopy and nested PCR. Levels in the plasma of the Th1 (IFN-γ, TNF-α, IL-6 and IL-12p70), Th17 (IL-17A and IL-22) and Th2 (IL-10, IL-4 and IL-13) cytokines were measured by ELISA. Data showed that IL-6, IFN-γ, IL-12p70, IL-10, and IL-13 levels were significantly higher in children with symptomatic P. falciparum infection compared to uninfected children. IL-10 levels were significantly higher in symptomatic children than in asymptomatic children, who had moderately increased levels compared to uninfected controls. Moreover, only IL-10 and IL-6 levels were significantly higher in children with severe malarial anemia compared to children with uncomplicated malaria who had significantly lower IL-10 levels than children with moderate malarial anemia. These data indicate that the progression of P. falciparum infection towards an advanced stage in children is accompanied by a significant increase in type Th1 and/or Th2 cytokines. These inflammatory mediators could serve as potential predictors of anemia for malaria patients.
Collapse
|
14
|
Olatunde AC, Cornwall DH, Roedel M, Lamb TJ. Mouse Models for Unravelling Immunology of Blood Stage Malaria. Vaccines (Basel) 2022; 10:1525. [PMID: 36146602 PMCID: PMC9501382 DOI: 10.3390/vaccines10091525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria comprises a spectrum of disease syndromes and the immune system is a major participant in malarial disease. This is particularly true in relation to the immune responses elicited against blood stages of Plasmodium-parasites that are responsible for the pathogenesis of infection. Mouse models of malaria are commonly used to dissect the immune mechanisms underlying disease. While no single mouse model of Plasmodium infection completely recapitulates all the features of malaria in humans, collectively the existing models are invaluable for defining the events that lead to the immunopathogenesis of malaria. Here we review the different mouse models of Plasmodium infection that are available, and highlight some of the main contributions these models have made with regards to identifying immune mechanisms of parasite control and the immunopathogenesis of malaria.
Collapse
Affiliation(s)
| | | | | | - Tracey J. Lamb
- Department of Pathology, University of Utah, Emma Eccles Jones Medical Research Building, 15 N Medical Drive E, Room 1420A, Salt Lake City, UT 84112, USA
| |
Collapse
|
15
|
Biswas S, Bieber K, Manz RA. IL-10 revisited in systemic lupus erythematosus. Front Immunol 2022; 13:970906. [PMID: 35979356 PMCID: PMC9376366 DOI: 10.3389/fimmu.2022.970906] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
IL-10 is a cytokine with pleiotropic functions, particularly known for its suppressive effects on various immune cells. Consequently, it can limit the pathogenesis of inflammatory diseases, such as multiple sclerosis (MS), inflammatory bowel disease, Crohn’s disease, and Epidermolysis bullosa acquisita, among others. Recent evidence however indicates that it plays dual roles in Systemic lupus Erythematosus (SLE) where it may inhibit pro-inflammatory effector functions but seems to be also a main driver of the extrafollicular antibody response, outside of germinal centers (GC). In line, IL-10 promotes direct differentiation of activated B cells into plasma cells rather than stimulating a GC response. IL-10 is produced by B cells, myeloid cells, and certain T cell subsets, including extrafollicular T helper cells, which are phenotypically distinct from follicular helper T cells that are relevant for GC formation. In SLE patients and murine lupus models extrafollicular T helper cells have been reported to support ongoing extrafollicular formation of autoreactive plasma cells, despite the presence of GCs. Here, we discuss the role of IL-10 as driver of B cell responses, its impact on B cell proliferation, class switch, and plasma cells.
Collapse
Affiliation(s)
- Swayanka Biswas
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- *Correspondence: Swayanka Biswas,
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
16
|
T cell dysregulation in SLE. Clin Immunol 2022; 239:109031. [DOI: 10.1016/j.clim.2022.109031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 01/05/2023]
|
17
|
Surette FA, Butler NS. Temporally Evolving and Context-Dependent Functions of Cytokines That Regulate Murine Anti-Plasmodium Humoral Immunity. Pathogens 2022; 11:pathogens11050523. [PMID: 35631044 PMCID: PMC9144513 DOI: 10.3390/pathogens11050523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Protective immunity against blood-stage Plasmodium infection and the disease malaria depends on antibodies secreted from high-affinity B cells selected during the germinal center (GC) response. The induction and stability of the GC response require the activation and direct cell–cell communication between parasite-specific CD4 helper T cells and B cells. However, cytokines secreted by helper T cells, B cells, and multiple other innate and adaptive immune cells also contribute to regulating the magnitude and protective functions of GC-dependent humoral immune responses. Here, we briefly review emerging data supporting the finding that specific cytokines can exhibit temporally distinct and context-dependent influences on the induction and maintenance of antimalarial humoral immunity.
Collapse
|