1
|
Kruglikov IL, Scherer PE. Regulation of the terminal complement cascade in adipose tissue for control of its volume, cellularity, and fibrosis. Obesity (Silver Spring) 2025; 33:839-850. [PMID: 40134146 PMCID: PMC12015659 DOI: 10.1002/oby.24270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/28/2024] [Accepted: 01/26/2025] [Indexed: 03/27/2025]
Abstract
White adipose tissue (WAT) is a reservoir for various pathogens and their products, such as lipopolysaccharides. Therefore, it must be equipped with a defense mechanism connected with the activation of innate immunity. This explains the phenomenon that adipocytes express components of the classical and alternative complement pathways, which can be activated even in the absence of opportunistic pathogens. Terminal stages of the complement pathway are related to the production of membrane attack complexes and, thus, can cause lysis of pathogens, as well as autolysis of host adipocytes, contributing to the regulation of the cellularity in WAT. Complement-induced autolysis of adipocytes is counteracted by a number of cellular defense mechanisms. This versatility of activation and suppression processes enables a broad range of adaptability to physiological contexts, ranging from the development of hypertrophic WAT to lipodystrophy. Pathogen-induced activation of the complement pathway in WAT also induces a profibrotic phenotype. These processes may also be involved in the regulation of insulin resistance in adipocytes. This explains the dual immune/metabolic role of the complement pathway in WAT: the pathway is an integral part of the immune response but also potently involved in the control of volume and cellularity of WAT under both physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Philipp E. Scherer
- Touchstone Diabetes CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
2
|
Naiditch H, Betts MR, Larman HB, Levi M, Rosenberg AZ. Immunologic and inflammatory consequences of SARS-CoV-2 infection and its implications in renal disease. Front Immunol 2025; 15:1376654. [PMID: 40012912 PMCID: PMC11861071 DOI: 10.3389/fimmu.2024.1376654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/23/2024] [Indexed: 02/28/2025] Open
Abstract
The emergence of the COVID-19 pandemic made it critical to understand the immune and inflammatory responses to the SARS-CoV-2 virus. It became increasingly recognized that the immune response was a key mediator of illness severity and that its mechanisms needed to be better understood. Early infection of both tissue and immune cells, such as macrophages, leading to pyroptosis-mediated inflammasome production in an organ system critical for systemic oxygenation likely plays a central role in the morbidity wrought by SARS-CoV-2. Delayed transcription of Type I and Type III interferons by SARS-CoV-2 may lead to early disinhibition of viral replication. Cytokines such as interleukin-1 (IL-1), IL-6, IL-12, and tumor necrosis factor α (TNFα), some of which may be produced through mechanisms involving nuclear factor kappa B (NF-κB), likely contribute to the hyperinflammatory state in patients with severe COVID-19. Lymphopenia, more apparent among natural killer (NK) cells, CD8+ T-cells, and B-cells, can contribute to disease severity and may reflect direct cytopathic effects of SARS-CoV-2 or end-organ sequestration. Direct infection and immune activation of endothelial cells by SARS-CoV-2 may be a critical mechanism through which end-organ systems are impacted. In this context, endovascular neutrophil extracellular trap (NET) formation and microthrombi development can be seen in the lungs and other critical organs throughout the body, such as the heart, gut, and brain. The kidney may be among the most impacted extrapulmonary organ by SARS-CoV-2 infection owing to a high concentration of ACE2 and exposure to systemic SARS-CoV-2. In the kidney, acute tubular injury, early myofibroblast activation, and collapsing glomerulopathy in select populations likely account for COVID-19-related AKI and CKD development. The development of COVID-19-associated nephropathy (COVAN), in particular, may be mediated through IL-6 and signal transducer and activator of transcription 3 (STAT3) signaling, suggesting a direct connection between the COVID-19-related immune response and the development of chronic disease. Chronic manifestations of COVID-19 also include systemic conditions like Multisystem Inflammatory Syndrome in Children (MIS-C) and Adults (MIS-A) and post-acute sequelae of COVID-19 (PASC), which may reflect a spectrum of clinical presentations of persistent immune dysregulation. The lessons learned and those undergoing continued study likely have broad implications for understanding viral infections' immunologic and inflammatory consequences beyond coronaviruses.
Collapse
Affiliation(s)
- Hiam Naiditch
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael R. Betts
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - H. Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
3
|
Eldien HMS, Almaeen AH, El Fath AA, Taha AE, Ahmed R, Elfadil H, Hetta HF. Unlocking the Potential of RNA Sequencing in COVID-19: Toward Accurate Diagnosis and Personalized Medicine. Diagnostics (Basel) 2025; 15:229. [PMID: 39857114 PMCID: PMC11763845 DOI: 10.3390/diagnostics15020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
COVID-19 has caused widespread morbidity and mortality, with its effects extending to multiple organ systems. Despite known risk factors for severe disease, including advanced age and underlying comorbidities, patient outcomes can vary significantly. This variability complicates efforts to predict disease progression and tailor treatment strategies. While diagnostic and therapeutic approaches are still under debate, RNA sequencing (RNAseq) has emerged as a promising tool to provide deeper insights into the pathophysiology of COVID-19 and guide personalized treatment. A comprehensive literature review was conducted using PubMed, Scopus, Web of Science, and Google Scholar. We employed Medical Subject Headings (MeSH) terms and relevant keywords to identify studies that explored the role of RNAseq in COVID-19 diagnostics, prognostics, and therapeutics. RNAseq has proven instrumental in identifying molecular biomarkers associated with disease severity in patients with COVID-19. It allows for the differentiation between asymptomatic and symptomatic individuals and sheds light on the immune response mechanisms that contribute to disease progression. In critically ill patients, RNAseq has been crucial for identifying key genes that may predict patient outcomes, guiding therapeutic decisions, and assessing the long-term effects of the virus. Additionally, RNAseq has helped in understanding the persistence of viral RNA after recovery, offering new insights into the management of post-acute sequelae, including long COVID. RNA sequencing significantly improves COVID-19 management, particularly for critically ill patients, by enhancing diagnostic accuracy, personalizing treatment, and predicting therapeutic responses. It refines patient stratification, improving outcomes, and holds promise for targeted interventions in both acute and long COVID.
Collapse
Affiliation(s)
- Heba M. Saad Eldien
- Department of Anatomy, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | - Abdulrahman H. Almaeen
- Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Ahmed Abo El Fath
- Tropical Medicine and Gastroenterology Department, Assiut University Hospital, Assiut 71515, Egypt;
| | - Ahmed E. Taha
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Hassabelrasoul Elfadil
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| |
Collapse
|
4
|
Fertitta V, Varano B, Del Cornò M, Fortini P, Aureli A, Conti L. Akkermansia muciniphila- and Pathogenic Bacteria-Derived Endotoxins Differently Regulate Human Dendritic Cell Generation and γδ T Lymphocyte Activation. Biomolecules 2024; 14:1571. [PMID: 39766278 PMCID: PMC11673428 DOI: 10.3390/biom14121571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Lipopolysaccharide (LPS) is a potent endotoxin released at high concentrations in acute infections, causing massive host inflammatory response. Accumulating evidence indicates that dysbiosis-associated chronic low levels of circulating LPS can sustain a prolonged sterile low-grade inflammation that increases the risk of several non-communicable diseases. Interventions aimed at increasing the abundance of beneficial/probiotic bacteria, including Akkermansia muciniphila, result in reduced inflammation, favoring metabolic and immune health. Immunosuppression is a common feature in conditions of chronic inflammation, and dendritic cells (DCs) represent key targets given their ability to shift the balance toward immunity or tolerance. In this study, the effects of low concentrations of LPS from pathogenic (Escherichia coli and Salmonella enterica) and probiotic (Akkermansia muciniphila) bacterial species on human DC generation and functions were compared. We report that monocyte precursor priming with Escherichia coli and Salmonella enterica LPS forces the differentiation of PD-L1-expressing DCs, releasing high levels of IL-6 and IL-10, and impairs their capacity to drive full TCR-Vδ2 T cell activation. Conversely, comparable concentrations of Akkermansia muciniphila promoted the generation of DCs with preserved activating potential and immunostimulatory properties. These results shed light on potential mechanisms underlying the impact of low endotoxemia on disease risk and pathogenesis, and increase our understanding of the immunomodulatory effects of Akkermansia muciniphila.
Collapse
Affiliation(s)
- Veronica Fertitta
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.F.); (P.F.)
| | - Barbara Varano
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.V.); (M.D.C.)
| | - Manuela Del Cornò
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.V.); (M.D.C.)
| | - Paola Fortini
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.F.); (P.F.)
| | - Anna Aureli
- Institute of Translational Pharmacology, National Research Council, 67100 L’Aquila, Italy;
| | - Lucia Conti
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.V.); (M.D.C.)
| |
Collapse
|
5
|
Zein L, Grossmann J, Swoboda H, Borgel C, Wilke B, Awe S, Nist A, Stiewe T, Stehling O, Freibert SA, Adhikary T, Chung HR. Haptoglobin buffers lipopolysaccharides to delay activation of NFκB. Front Immunol 2024; 15:1401527. [PMID: 39416789 PMCID: PMC11479958 DOI: 10.3389/fimmu.2024.1401527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
It has remained yet unclear which soluble factors regulate the anti-inflammatory macrophage phenotype observed in both homeostasis and tumourigenesis. We show here that haptoglobin, a major serum protein with elusive immunoregulatory properties, binds and buffers bacterial lipopolysaccharides to attenuate activation of NFκB in macrophages. Haptoglobin binds different lipopolysaccharides with low micromolar affinities. Given its abundance, haptoglobin constitutes a buffer for serum-borne lipopolysaccharides, shielding them to safeguard against aberrant inflammatory reactions by reducing the amount of free lipopolysaccharides available for binding to TLR4. Concordantly, NFκB activation by haptoglobin-associated lipopolysaccharides was markedly delayed relative to stimulation with pure lipopolysaccharide. Our findings warrant evaluation of therapeutic benefits of haptoglobin for inflammatory conditions and re-evaluation of purification strategies. Finally, they allow to elucidate mechanisms of enhanced immunosuppression by oncofetal haptoglobin.
Collapse
Affiliation(s)
- Laura Zein
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Josina Grossmann
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Helena Swoboda
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Christina Borgel
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Bernhard Wilke
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Stephan Awe
- Institute for Molecular Biology and Tumor Research, Biomedical Research Center, Philipps University Marburg, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Oliver Stehling
- Protein Biochemistry and Spectroscopy Core Facility, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Institute of Cytobiology, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Sven-Andreas Freibert
- Protein Biochemistry and Spectroscopy Core Facility, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Institute of Cytobiology, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Till Adhikary
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Ho-Ryun Chung
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
6
|
Kruglikov IL, Scherer PE. Is the endotoxin-complement cascade the major driver in lipedema? Trends Endocrinol Metab 2024; 35:769-780. [PMID: 38688780 PMCID: PMC11387139 DOI: 10.1016/j.tem.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Lipedema is a poorly understood disorder of adipose tissue characterized by abnormal but symmetrical deposition of subcutaneous white adipose tissue (WAT) in proximal extremities. Here, we propose that the underlying cause for lipedema could be triggered by a selective accumulation of bacterial lipopolysaccharides (LPS; also known as endotoxin) in gluteofemoral WAT. Together with a malfunctioning complement system, this induces low-grade inflammation in the depot and raises its uncontrollable expansion. Correspondingly, more attention should be paid in future research to the endotoxemia prevalent in patients with lipedema. We would like to propose that proper management of endotoxemia can reduce the progression and even improve the state of disease in patients with lipedema.
Collapse
Affiliation(s)
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA.
| |
Collapse
|
7
|
Heimfarth L, Dos Santos KS, Monteiro BS, de Souza Oliveira AK, Coutinho HDM, Menezes IRA, Dos Santos MRV, de Souza Araújo AA, Picot L, de Oliveira Júnior RG, Grougnet R, de Souza Siqueira Quintans J, Quintans-Júnior LJ. The protective effects of naringenin, a citrus flavonoid, non-complexed or complexed with hydroxypropyl-β-cyclodextrin against multiorgan damage caused by neonatal endotoxemia. Int J Biol Macromol 2024; 264:130500. [PMID: 38428770 DOI: 10.1016/j.ijbiomac.2024.130500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Endotoxemia is a severe and dangerous clinical syndrome that results in elevated morbidity, especially in intensive care units. Neonates are particularly susceptible to endotoxemia due to their immature immune systems. There are few effective treatments for neonatal endotoxemia. One group of compounds with potential in the treatment of neonatal inflammatory diseases such as endotoxemia is the flavonoids, mainly due to their antioxidant and anti-inflammatory properties. Among these, naringenin (NGN) is a citrus flavonoid which has already been reported to have anti-inflammatory, antioxidant, anti-nociceptive and anti-cancer effects. Unfortunately, its clinical application is limited by its low solubility and bioavailability. However, cyclodextrins (CDs) have been widely used to improve the solubility of nonpolar drugs and enhance the bioavailability of these natural products. OBJECTIVE We, therefore, aimed to investigate the effects of NGN non-complexed and complexed with hydroxypropyl-β-cyclodextrin (HPβCD) on neonatal endotoxemia injuries in a rodent model and describe the probable molecular mechanisms involved in NGN activities. METHOD We used exposure to a bacterial lipopolysaccharide (LPS) to induce neonatal endotoxemia in the mice. RESULTS It was found that NGN (100 mg/kg i.p.) exposure during the neonatal period reduced leukocyte migration and decreased pro-inflammatory cytokine (TNF-α, IL-1β and IL-6) levels in the lungs, heart, kidneys or cerebral cortex. In addition, NGN upregulated IL-10 production in the lungs and kidneys of neonate mice. The administration of NGN also enhanced antioxidant enzyme catalase and SOD activity, reduced lipid peroxidation and protein carbonylation and increased the reduced sulfhydryl groups in an organ-dependent manner, attenuating the oxidative damage caused by LPS exposure. NGN decreased ERK1/2, p38MAPK and COX-2 activation in the lungs of neonate mice. Moreover, NGN complexed with HPβCD was able to increase the animal survival rate. CONCLUSION NGN attenuated inflammatory and oxidative damage in the lungs, heart and kidneys caused by neonatal endotoxemia through the MAPK signaling pathways regulation. Our results show that NGN has beneficial effects against neonatal endotoxemia and could be useful in the treatment of neonatal inflammatory injuries.
Collapse
Affiliation(s)
- Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | - Katielen Silvana Dos Santos
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | - Brenda Souza Monteiro
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | - Anne Karoline de Souza Oliveira
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | | | - Irwin R A Menezes
- Universidade Regional do Cariri - URCA, Departmento de Química Biológica, Crato, CE, Brazil
| | | | | | - Laurent Picot
- UMR CNRS 7266 LIENSs, La Rochelle Université, 17042 La Rochelle, France
| | - Raimundo Gonçalves de Oliveira Júnior
- Laboratoire de Pharmacognosie-UMR CNRS 8638, Faculté de Pharmacie, Université Paris Cité, Paris, France; CiTCoM UMR 8038 CNRS, Faculté Pharmacie, Université Paris Cité, 75006, Paris, France
| | - Raphaël Grougnet
- Laboratoire de Pharmacognosie-UMR CNRS 8638, Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Jullyana de Souza Siqueira Quintans
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil; Graduate Program of Health Sciences, Federal University of Sergipe, Aracaju, Sergipe CEP 49060-025, Brazil
| | - Lucindo José Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil; Graduate Program of Health Sciences, Federal University of Sergipe, Aracaju, Sergipe CEP 49060-025, Brazil
| |
Collapse
|
8
|
Ferrer MD, Reynés C, Jiménez L, Malagraba G, Monserrat-Mesquida M, Bouzas C, Sureda A, Tur JA, Pons A. Nitrite Attenuates the In Vitro Inflammatory Response of Immune Cells to the SARS-CoV-2 S Protein without Interfering in the Antioxidant Enzyme Activation. Int J Mol Sci 2024; 25:3001. [PMID: 38474248 DOI: 10.3390/ijms25053001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
SARS-CoV-2 induces a hyperinflammatory reaction due to the excessive release of cytokines during the immune response. The bacterial endotoxin lipopolysaccharide (LPS) contributes to the low-grade inflammation associated with the metabolic syndrome, enhancing the hyperinflammatory reaction induced by the SARS-CoV-2 infection. The intake of sodium nitrate, a precursor of nitrite and nitric oxide, influences the antioxidant and pro-inflammatory gene expression profile after immune stimulation with LPS in peripheral blood mononuclear cells from metabolic syndrome patients. We aimed to assess the inflammatory and antioxidant responses of immune cells from metabolic syndrome patients to exposure to the SARS-CoV-2 spike protein (S protein) together with LPS and the effect of nitrite in these responses. Whole blood samples obtained from six metabolic syndrome patients were cultured for 16 h at 37 °C with four different media: control medium, control medium plus LPS (100 ng/mL), control medium plus LPS (100 ng/mL) plus S protein (10 ng/mL), and control medium plus LPS (100 ng/mL) plus S protein (10 ng/mL) plus nitrite (5 µM). Immune stimulation with the LPS/S protein enhanced nitrate biosynthesis from nitrite oxidation and probably from additional organic precursors. In vitro incubations with the LPS/S protein enhanced the expression and/or release of pro-inflammatory TNFα, IL-6, IL-1β, and TLR4, as well as the expression of the anti-inflammatory IL-1ra and IL-10 and antioxidant enzymes. Nitrite attenuated the pro- and anti-inflammatory response induced by the S protein without interfering with the activation of TLR4 and antioxidant enzyme expression, raising the possibility that nitrite could have potential as a coadjutant in the treatment of COVID-19.
Collapse
Affiliation(s)
- Miguel D Ferrer
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Clara Reynés
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
| | - Laura Jiménez
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
| | - Gianluca Malagraba
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
| | - Margalida Monserrat-Mesquida
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Cristina Bouzas
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Josep A Tur
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Antoni Pons
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Zheng A, Huang N, Bean D, Rayapaneni S, Deeney J, Sagar M, Hamilton JA. Resolvin E1 heals injured cardiomyocytes: Therapeutic implications and H-FABP as a readout for cardiovascular disease & systemic inflammation. Prostaglandins Leukot Essent Fatty Acids 2023; 197:102586. [PMID: 37604082 PMCID: PMC11203388 DOI: 10.1016/j.plefa.2023.102586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
The purpose of this study is to investigate heart-fatty acid binding protein (H-FABP) leakage from cardiomyocytes as a quantitative measure of cell membrane damage and to test healing by Resolvin E1 (RVE1) as a potential therapeutic for patients with inflammatory diseases (cardiovascular disease and comorbidities) with high morbidity and mortality. Our quantitative ELISA assays demonstrated H-FABP as a sensitive and reliable biomarker for measuring cardiomyocyte damage induced by lipopolysaccharide (LPS) and healing by RvE1, a specialized pro-resolving mediator (SPM) derived from the Omega-3 fatty acid, eicosapentaenoic acid (EPA), a dietary nutrient that balances inflammation to restore homeostasis. RvE1 reduced leakage of H-FABP by up to 86%, which supports our hypothesis that inflammation as a mechanism of injury can be targeted for therapy. H-FABP as a blood biomarker was tested in 40 patients admitted to Boston Medical Center for respiratory distress, (20 patients with and 20 patients without COVID infection). High levels of H-FABP correlated with clinically diagnosed CVD, diabetes, and end-stage renal disease (ESRD) in both patient groups. The level of H-FABP indicates not only CVD damage but is a valuable measure for patients with increased inflammation disease comorbidities.
Collapse
Affiliation(s)
- A Zheng
- Boston University, United States of America
| | - N Huang
- Boston University School of Medicine, United States of America
| | - D Bean
- Boston University School of Medicine, United States of America
| | | | - Jude Deeney
- Boston University School of Medicine, United States of America
| | - M Sagar
- Boston Medical Center, United States of America
| | | |
Collapse
|
10
|
Fried SK. Adipose 'neighborhoods' collaborate to maintain metabolic health. Curr Opin Genet Dev 2023; 81:102079. [PMID: 37406429 PMCID: PMC10867982 DOI: 10.1016/j.gde.2023.102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
Body fat is stored in anatomically distinct adipose depots that vary in their cell composition and play specialized roles in systemic metabolic homeostasis via secreted products. Their local effects on nearby tissues (e.g. the gut and visceral adipose tissues) are increasingly recognized and this local crosstalk is being elucidated. The major subcutaneous fat depots, abdominal and gluteal-femoral, exert opposite effects on the risk of metabolic disease. The pace of research into developmental, sex, and genetic determinants of human adipose depot growth and function is rapidly accelerating, providing insight into the pathogenesis of metabolic dysfunction in persons with obesity.
Collapse
Affiliation(s)
- Susan K Fried
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1152, New York, NY 10029, USA.
| |
Collapse
|
11
|
Premuzic V, Situm I, Lovric D, Erceg A, Karmelic D, Mogus M, Jurjevic M, Nedeljkovic V, Mazar M, Mihaljevic S, Villa G, Ronco C. Sequential Extracorporeal Blood Purification Is Associated with Prolonged Survival among ICU Patients with COVID-19 and Confirmed Bacterial Superinfection. Blood Purif 2023; 52:642-651. [PMID: 37482053 DOI: 10.1159/000531356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION This study investigates the impact of sequential extracorporeal treatments with oXiris® or CytoSorb® plus Seraph-100® on the clinical and laboratory parameters of critically ill COVID-19 patients with bacterial superinfection. METHODS Patients admitted to the intensive care unit with COVID-19, bacterial superinfection, and undergoing blood purification (BP) were enrolled in this prospective, single-center, observational study. "standard BP" with oXiris® or CytoSorb® were used in 35 COVID-19 patients with bacterial infection. Seraph-100® was added in 33 patients when available serially in the same oXiris® circuit or as sequential treatment with CytoSorb® as a sequential BP. RESULTS A significant reduction in SOFA score 3 days after treatment was observed in patients undergoing sequential BP (11.3 vs. 8.17, p < 0.01) compared to those undergoing "standard BP" (11.0 vs. 10.3, p > 0.05). The difference between the observed and expected mortality rate based on APACHE IV was greater in the sequential BP group (42.4% vs. 81.7%, p < 0.001) than the "standard BP" (74.2% vs. 81.7%, p > 0.05). Patients treated with sequential BP had a longer survival than those treated with "standard BP" (22.4 vs. 18.7 months; p < 0.001). CONCLUSIONS The sequential approach may enhance the positive effect of BP on organ dysfunction among critically ill patients with COVID-19 and bacterial superinfection.
Collapse
Affiliation(s)
- Vedran Premuzic
- Department of Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ivan Situm
- Clinic of anesthesiology resuscitation and intensive care, University Hospital Center Zagreb, Zagreb, Croatia
| | - Daniel Lovric
- Cardiology Clinic, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ante Erceg
- Clinic of anesthesiology resuscitation and intensive care, University Hospital Center Zagreb, Zagreb, Croatia
| | - Dora Karmelic
- Clinic of anesthesiology resuscitation and intensive care, University Hospital Center Zagreb, Zagreb, Croatia
| | - Mate Mogus
- Clinic of anesthesiology resuscitation and intensive care, University Hospital Center Zagreb, Zagreb, Croatia
| | - Matija Jurjevic
- Clinic of anesthesiology resuscitation and intensive care, General Hospital Josip Bencevic, Slavonski Brod, Croatia
| | - Vanja Nedeljkovic
- Department of Internal Medicine, Special Hospital for Lung Diseases, Zagreb, Croatia
| | - Mirabel Mazar
- Clinic of anesthesiology resuscitation and intensive care, University Hospital Center Zagreb, Zagreb, Croatia
| | - Slobodan Mihaljevic
- Clinic of anesthesiology resuscitation and intensive care, University Hospital Center Zagreb, Zagreb, Croatia
| | - Gianluca Villa
- Department of Health Sciences, Section of Anaesthesiology, Intensive Care and Pain Medicine, University of Florence, Florence, Italy
- Department of Anaesthesia and Intensive Care, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Claudio Ronco
- Department of Medicine, Università di Padova, Padova, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
| |
Collapse
|
12
|
Araújo JR, Serafim T, Ismael S, Calhau C, Faria A, Teixeira D. Intestinal Alkaline Phosphatase Activity and Efficiency Are Altered in Severe COVID-19 Patients. GASTRO HEP ADVANCES 2023; 2:911-917. [PMID: 39130768 PMCID: PMC11307804 DOI: 10.1016/j.gastha.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims Although gut inflammation and dysbiosis have been implicated in the pathophysiology of severe cases of coronavirus disease 2019 (COVID-19), the role of intestinal anti-inflammatory enzymes, such as alkaline phosphatase, is still underexplored. Therefore, the aim of this study was to compare intestinal alkaline phosphatase (iALP) activity and its proinflammatory substrate - bacterial lipopolysaccharide (LPS) - concentration between mild-to-moderate and severe COVID-19 patients. Methods Stool samples collected from 53 mild-to-moderate and 57 severe adult COVID-19 patients, previously enrolled in a national multicentre cross-sectional study (NCT04355741), were analysed for iALP activity and LPS concentration. Results iALP activity decreased by 40% in severe compared to mild-to-moderate COVID-19 patients (median [interquartile range] of 120.6 [25.2-593.1] nmol pNP/min/g of protein vs 202.8 [102.1-676.1] nmol pNP/min/g of protein; P = .04) after adjustment for clinical and gut microbiota parameters. Regarding fecal LPS, its concentration was found to be decreased in severe patients (mean ± standard error of mean of 18,118 ± 1225 EU/g of feces vs 22,508 ± 1203 EU/g of feces; P = .01), although this parameter did not correlate with plasma levels of C-reactive protein (P = .08), a sensitive biomarker of systemic inflammation. In contrast, fecal ALP activity / LPS concentration ratio, an indicator of iALP efficiency, was found to be increased in severe compared to mild-to-moderate COVID-19 patients (P = .04). Conclusion Changes in iALP kinetic parameters found in severe COVID-19 patients may represent a potential mechanism to counterbalance alterations in gut homeostasis (eg inflammation and dysbiosis) associated with COVID-19 severity.
Collapse
Affiliation(s)
- João R. Araújo
- Nutrition & Metabolism Department, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Thainá Serafim
- Nutrition & Metabolism Department, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Shámila Ismael
- Nutrition & Metabolism Department, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Conceição Calhau
- Nutrition & Metabolism Department, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ana Faria
- Nutrition & Metabolism Department, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Diana Teixeira
- Nutrition & Metabolism Department, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
13
|
Wiesenthal AA, Legroux TM, Richter C, Junker BH, Hecksteden A, Kessler SM, Hoppstädter J, Kiemer AK. Endotoxin Tolerance Acquisition and Altered Hepatic Fatty Acid Profile in Aged Mice. BIOLOGY 2023; 12:biology12040530. [PMID: 37106731 PMCID: PMC10135800 DOI: 10.3390/biology12040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
(1) Background: Aging is linked to an altered immune response and metabolism. Inflammatory conditions, such as sepsis, COVID-19, and steatohepatitis are more prevalent in the elderly and steatosis is linked both to severe COVID-19 and sepsis. We hypothesized that aging is linked to a loss of endotoxin tolerance, which normally protects the host from excessive inflammation, and that this is accompanied by elevated levels of hepatic lipids. (2) Methods: An in vivo lipopolysaccharide (LPS) tolerance model in young and old mice was used and the cytokine serum levels were measured by ELISA. Cytokine and toll-like receptor gene expression was determined by qPCR in the lungs and the liver; hepatic fatty acid composition was assessed by GC–MS. (3) Results: The old mice showed a distinct potential for endotoxin tolerance as suggested by the serum cytokine levels and gene expression in the lung tissue. Endotoxin tolerance was less pronounced in the livers of the aged mice. However, the fatty acid composition strongly differed in the liver tissues of the young and old mice with a distinct change in the ratio of C18 to C16 fatty acids. (4) Conclusions: Endotoxin tolerance is maintained in advanced age, but changes in the metabolic tissue homeostasis may lead to an altered immune response in old individuals.
Collapse
Affiliation(s)
- Amanda A. Wiesenthal
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
- Marine Biology, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany
| | - Thierry M. Legroux
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Chris Richter
- Biosynthesis of Active Substances, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| | - Björn H. Junker
- Biosynthesis of Active Substances, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| | - Anne Hecksteden
- Institute of Sports and Preventive Medicine, Saarland University, D-66123 Saarbrücken, Germany
| | - Sonja M. Kessler
- Experimental Pharmacology for Natural Sciences, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| | - Jessica Hoppstädter
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Alexandra K. Kiemer
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| |
Collapse
|
14
|
Samsudin F, Raghuvamsi P, Petruk G, Puthia M, Petrlova J, MacAry P, Anand GS, Bond PJ, Schmidtchen A. SARS-CoV-2 spike protein as a bacterial lipopolysaccharide delivery system in an overzealous inflammatory cascade. J Mol Cell Biol 2023; 14:6761401. [PMID: 36240490 PMCID: PMC9940780 DOI: 10.1093/jmcb/mjac058] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/11/2022] [Indexed: 11/14/2022] Open
Abstract
Accumulating evidence indicates a potential role for bacterial lipopolysaccharide (LPS) in the overactivation of the immune response during SARS-CoV-2 infection. LPS is recognized by Toll-like receptor 4, mediating proinflammatory effects. We previously reported that LPS directly interacts with SARS-CoV-2 spike (S) protein and enhances proinflammatory activities. Using native gel electrophoresis and hydrogen-deuterium exchange mass spectrometry, we showed that LPS binds to multiple hydrophobic pockets spanning both the S1 and S2 subunits of the S protein. Molecular simulations validated by a microscale thermophoresis binding assay revealed that LPS binds to the S2 pocket with a lower affinity compared to S1, suggesting a role as an intermediate in LPS transfer. Congruently, nuclear factor-kappa B (NF-κB) activation in monocytic THP-1 cells is strongly boosted by S2. Using NF-κB reporter mice followed by bioimaging, a boosting effect was observed for both S1 and S2, with the former potentially facilitated by proteolysis. The Omicron S variant binds to LPS, but with reduced affinity and LPS boosting in vitro and in vivo. Taken together, the data provide a molecular mechanism by which S protein augments LPS-mediated hyperinflammation.
Collapse
Affiliation(s)
- Firdaus Samsudin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Palur Raghuvamsi
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Ganna Petruk
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Manoj Puthia
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Jitka Petrlova
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Paul MacAry
- Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore 117546, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.,Department of Chemistry, The Pennsylvania State University, PA 16801, USA
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden.,Copenhagen Wound Healing Center, Bispebjerg Hospital, Department of Biomedical Sciences, University of Copenhagen, DK-2400 Copenhagen, Denmark
| |
Collapse
|
15
|
Muske J, Knoop K. Contributions of the microbiota to the systemic inflammatory response. MICROBIOTA AND HOST 2023; 1:e230018. [PMID: 38872988 PMCID: PMC11170979 DOI: 10.1530/mah-23-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The health of the intestinal microbiota impacts tolerance at homeostasis and the strength of the inflammation response during acute bloodstream infections. A complete understanding of the feedback loop between systemic inflammation and dysregulation of the gut microbiota is necessary for inflammation management. Here we will review the many ways in which the microbiota can influence the systemic pro-inflammatory response. Short-chain fatty acids, produced through the microbial metabolism of dietary fibers, can suppress inflammation systemically; in the absence of a balanced diet or disruption of the microbiota through antibiotics, there is disrupted metabolite production, leading to systemic inflammation. Dysbiosis or inflammation in the intestines can lead to a breakdown of the sturdy intestinal-epithelial barrier. When this barrier is perturbed, immunogenic lipopolysaccharides or extracellular vesicles enter the bloodstream and induce excessive inflammation. Necessary clinical treatments, such as antifungals or antibacterials, induce microbiota dysregulation and thus increased risk of endotoxemia; though probiotics may aid in improving the microbiota health and have been shown to deflate inflammation during sepsis. Within this complicated relationship: What is in control, the dysbiotic microbiota or the systemic inflammation?
Collapse
Affiliation(s)
- Josey Muske
- Mayo Graduate School of Biomedical Sciences
- Department of Immunology, Mayo Clinic Rochester, MN USA
| | - Kathryn Knoop
- Department of Immunology, Mayo Clinic Rochester, MN USA
- Department of Pediatrics, Mayo Clinic Rochester, MN USA
| |
Collapse
|
16
|
Fallah A, Sedighian H, Behzadi E, Havaei SA, Kachuei R, Imani Fooladi AA. The role of serum circulating microbial toxins in severity and cytokine storm of COVID positive patients. Microb Pathog 2023; 174:105888. [PMID: 36402345 PMCID: PMC9671676 DOI: 10.1016/j.micpath.2022.105888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The emergence of Coronavirus disease 2019 (Covid-19) is a global problem nowadays, causing health difficulty with increasing mortality rates, which doesn't have a verified treatment. SARS-CoV-2 infection has various pathological and epidemiological characteristics, one of them is increased amounts of cytokine production, which in order activate an abnormal unrestricted response called "cytokine storm". This event contributes to severe acute respiratory distress syndrome (ARDS), which results in respiratory failure and pneumonia and is the great cause of death associated with Covid-19. Endotoxemia and the release of bacterial lipopolysaccharides (endotoxins) from the lumen into the bloodstream enhance proinflammatory cytokines. SARS-CoV-2 can straightly interplay with endotoxins via its S protein, leading to the extremely elevating release of cytokines and consequently increase the harshness of Covid-19. In this review, we will discuss the possible role of viral-bacterial interaction that occurs through the transfer of bacterial products such as lipopolysaccharide (LPS) from the intestine into the bloodstream, exacerbating the severity of Covid-19 and cytokine storms.
Collapse
Affiliation(s)
- Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Seyed Asghar Havaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding author. 14359-44711, Tehran, Iran
| |
Collapse
|
17
|
Dela Cruz PT, Davison D, Yamane DP, Chu E, Seneff M. Increased Endotoxin Activity in COVID-19 Patients Admitted to the Intensive Care Unit. J Intensive Care Med 2023; 38:27-31. [PMID: 36066033 PMCID: PMC9676678 DOI: 10.1177/08850666221121734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Endotoxin is a component of Gram-negative bacteria and can be measured in blood using the endotoxin activity assay (EAA). Endotoxin exposure initiates an inflammatory cascade that may contribute to organ dysfunction. Endotoxemia has been reported in previous viral pandemics and we investigated the extent of endotoxemia and its relationship to outcomes in critically ill patients with COVID-19. MATERIALS AND METHODS We conducted a Prospective Cohort Study of 96 critically-ill COVID-19 patients admitted to the George Washington University Hospital ICU from 25 Mar-6 Jun 2020. EAA and inflammatory markers (ferritin, d dimer, IL-6, CRP) were measured on ICU admission and at the discretion of the clinical team. Clinical outcomes (mortality, LOS, need for renal replacement therapy (RRT), intubation) were measured. Statistical analysis was conducted using descriptive statistics and effect estimates with 95% confidence intervals. Comparisons were made using chi-square tests for categorical variables, and T-tests for continuous variables. RESULTS A majority of patients (68.8%) had high EAA [≥ 0.60], levels seen in septic shock. Only 3 patients had positive bacterial cultures. EAA levels did not correlate with mortality, higher levels were associated with greater organ failure (cardiovascular, renal) and longer ICU LOS. Among 14 patients receiving RRT for severe AKI, one had EAA < 0.6 (p = 0.043). EAA levels did not directly correlate with other inflammatory markers. CONCLUSIONS High levels of endotoxin activity were found in a majority of critically-ill COVID-19 patients admitted to the ICU and were associated with greater risk for cardiovascular and renal failure. Further investigation is needed to determine if endotoxin reducing strategies are useful in treating severe COVID-19 infection.
Collapse
Affiliation(s)
- Philip T.H. Dela Cruz
- Department of Anesthesia and Critical
Care, George Washington University
Hospital, Washington, DC, USA,Philip T.H. Dela Cruz, Department of
Anesthesia and Critical Care, George Washington University Hospital, 2300 Eye St
NW, 2300 M St. NW 7 Floor, Washington, DC, 20037.
| | - Danielle Davison
- Department of Anesthesia and Critical
Care, George Washington University
Hospital, Washington, DC, USA
| | - David P. Yamane
- Department of Anesthesia and Critical
Care, George Washington University
Hospital, Washington, DC, USA,Department of Emergency Medicine, George Washington University
Hospital, Washington, DC, USA
| | - Everett Chu
- Department of Anesthesia and Critical
Care, George Washington University
Hospital, Washington, DC, USA
| | - Michael Seneff
- Department of Anesthesia and Critical
Care, George Washington University
Hospital, Washington, DC, USA
| |
Collapse
|
18
|
Kruglikov IL, Scherer PE. Pathophysiology of cellulite: Possible involvement of selective endotoxemia. Obes Rev 2023; 24:e13517. [PMID: 36285892 PMCID: PMC9772045 DOI: 10.1111/obr.13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 12/27/2022]
Abstract
The most relevant hallmarks of cellulite include a massive protrusion of superficial adipose tissue into the dermis, reduced expression of the extracellular glycoprotein fibulin-3, and an unusually high presence of MUSE cells in gluteofemoral white adipose tissue (gfWAT) that displays cellulite. Also typical for this condition is the hypertrophic nature of the underlying adipose tissue, the interaction of adipocytes with sweat glands, and dysfunctional lymph and blood circulation as well as a low-grade inflammation in the areas of gfWAT affected by cellulite. Here, we propose a new pathophysiology of cellulite, which connects this skin condition with selective accumulation of endogenous lipopolysaccharides (LPS) in gfWAT. The accumulation of LPS within a specific WAT depot has so far not been considered as a possible pathophysiological mechanism triggering localized WAT modifications, but may very well be involved in conditions such as cellulite and, secondary to that, lipedema.
Collapse
Affiliation(s)
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-8549, USA
| |
Collapse
|
19
|
Heine H, Zamyatina A. Therapeutic Targeting of TLR4 for Inflammation, Infection, and Cancer: A Perspective for Disaccharide Lipid A Mimetics. Pharmaceuticals (Basel) 2022; 16:23. [PMID: 36678520 PMCID: PMC9864529 DOI: 10.3390/ph16010023] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
The Toll-like receptor 4 (TLR4) signaling pathway plays a central role in the prompt defense against infectious challenge and provides immediate response to Gram-negative bacterial infection. The TLR4/MD-2 complex can sense and respond to various pathogen-associated molecular patterns (PAMPs) with bacterial lipopolysaccharide (LPS) being the most potent and the most frequently occurring activator of the TLR4-mediated inflammation. TLR4 is believed to be both a friend and foe since improperly regulated TLR4 signaling can result in the overactivation of immune responses leading to sepsis, acute lung injury, or pathologic chronic inflammation involved in cancer and autoimmune disease. TLR4 is also considered a legitimate target for vaccine adjuvant development since its activation can boost the adaptive immune responses. The dual action of the TLR4 complex justifies the efforts in the development of both TLR4 antagonists as antisepsis drug candidates or remedies for chronic inflammatory diseases and TLR4 agonists as vaccine adjuvants or immunotherapeutics. In this review, we provide a brief overview of the biochemical evidences for possible pharmacologic applications of TLR4 ligands as therapeutics and report our systematic studies on the design, synthesis, and immunobiological evaluation of carbohydrate-based TLR4 antagonists with nanomolar affinity for MD-2 as well as disaccharide-based TLR4 agonists with picomolar affinity for the TLR4/MD-2 complex.
Collapse
Affiliation(s)
- Holger Heine
- Research Group Innate Immunity, Research Center Borstel—Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 22, 23845 Borstel, Germany
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
20
|
Martínez-Colón GJ, Ratnasiri K, Chen H, Jiang S, Zanley E, Rustagi A, Verma R, Chen H, Andrews JR, Mertz KD, Tzankov A, Azagury D, Boyd J, Nolan GP, Schürch CM, Matter MS, Blish CA, McLaughlin TL. SARS-CoV-2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophages. Sci Transl Med 2022; 14:eabm9151. [PMID: 36137009 PMCID: PMC9529056 DOI: 10.1126/scitranslmed.abm9151] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 09/09/2022] [Indexed: 01/11/2023]
Abstract
Obesity, characterized by chronic low-grade inflammation of the adipose tissue, is associated with adverse coronavirus disease 2019 (COVID-19) outcomes, yet the underlying mechanism is unknown. To explore whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of adipose tissue contributes to pathogenesis, we evaluated COVID-19 autopsy cases and deeply profiled the response of adipose tissue to SARS-CoV-2 infection in vitro. In COVID-19 autopsy cases, we identified SARS-CoV-2 RNA in adipocytes with an associated inflammatory infiltrate. We identified two distinct cellular targets of infection: adipocytes and a subset of inflammatory adipose tissue-resident macrophages. Mature adipocytes were permissive to SARS-CoV-2 infection; although macrophages were abortively infected, SARS-CoV-2 initiated inflammatory responses within both the infected macrophages and bystander preadipocytes. These data suggest that SARS-CoV-2 infection of adipose tissue could contribute to COVID-19 severity through replication of virus within adipocytes and through induction of local and systemic inflammation driven by infection of adipose tissue-resident macrophages.
Collapse
Affiliation(s)
| | - Kalani Ratnasiri
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Heping Chen
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Elizabeth Zanley
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Renu Verma
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Han Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jason R. Andrews
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kirsten D. Mertz
- Institute of Pathology, Cantonal Hospital Baselland, 4410, Liestal, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital of Basel, University of Basel, 4056, Basel, Switzerland
| | - Dan Azagury
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jack Boyd
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Garry P. Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Christian M. Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72070, Tübingen, Germany
| | - Matthias S. Matter
- Institute of Medical Genetics and Pathology, University Hospital of Basel, University of Basel, 4056, Basel, Switzerland
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Tracey L. McLaughlin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
21
|
Merenstein C, Bushman FD, Collman RG. Alterations in the respiratory tract microbiome in COVID-19: current observations and potential significance. MICROBIOME 2022; 10:165. [PMID: 36195943 PMCID: PMC9532226 DOI: 10.1186/s40168-022-01342-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
SARS-CoV-2 infection causes COVID-19 disease, which can result in consequences ranging from undetectable to fatal, focusing attention on the modulators of outcomes. The respiratory tract microbiome is thought to modulate the outcomes of infections such as influenza as well as acute lung injury, raising the question to what degree does the airway microbiome influence COVID-19? Here, we review the results of 56 studies examining COVID-19 and the respiratory tract microbiome, summarize the main generalizations, and point to useful avenues for further research. Although the results vary among studies, a few consistent findings stand out. The diversity of bacterial communities in the oropharynx typically declined with increasing disease severity. The relative abundance of Haemophilus and Neisseria also declined with severity. Multiple microbiome measures tracked with measures of systemic immune responses and COVID outcomes. For many of the conclusions drawn in these studies, the direction of causality is unknown-did an alteration in the microbiome result in increased COVID severity, did COVID severity alter the microbiome, or was some third factor the primary driver, such as medication use. Follow-up mechanistic studies can help answer these questions. Video Abstract.
Collapse
Affiliation(s)
- Carter Merenstein
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Ronald G. Collman
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
22
|
Zeinali T, Faraji N, Joukar F, Khan Mirzaei M, Kafshdar Jalali H, Shenagari M, Mansour-Ghanaei F. Gut bacteria, bacteriophages, and probiotics: Tripartite mutualism to quench the SARS-CoV2 storm. Microb Pathog 2022; 170:105704. [PMID: 35948266 PMCID: PMC9357283 DOI: 10.1016/j.micpath.2022.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Patients with SARS-CoV-2 infection, exhibit various clinical manifestations and severity including respiratory and enteric involvements. One of the main reasons for death among covid-19 patients is excessive immune responses directed toward cytokine storm with a low chance of recovery. Since the balanced gut microbiota could prepare health benefits by protecting against pathogens and regulating immune homeostasis, dysbiosis or disruption of gut microbiota could promote severe complications including autoimmune disorders; we surveyed the association between the imbalanced gut bacteria and the development of cytokine storm among COVID-19 patients, also the impact of probiotics and bacteriophages on the gut bacteria community to alleviate cytokine storm in COVID-19 patients. In present review, we will scrutinize the mechanism of immunological signaling pathways which may trigger a cytokine storm in SARS-CoV2 infections. Moreover, we are explaining in detail the possible immunological signaling pathway-directing by the gut bacterial community. Consequently, the specific manipulation of gut bacteria by using probiotics and bacteriophages for alleviation of the cytokine storm will be investigated. The tripartite mutualistic cooperation of gut bacteria, probiotics, and phages as a candidate prophylactic or therapeutic approach in SARS-CoV-2 cytokine storm episodes will be discussed at last.
Collapse
Affiliation(s)
- Tahereh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Faraji
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Center Munich and Technical University of Munich, 85764, Neuherberg, Germany
| | - Hossnieh Kafshdar Jalali
- Department of Microbiology, Faculty of Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Mohammad Shenagari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Caspian Digestive Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
23
|
Khaleel A, Zakariya AB, Niazi M, Qinna NA, Dayyih WA, Tarkhan AH. Pathway Analysis of Patients with Severe Acute Respiratory Syndrome. Drug Res (Stuttg) 2022; 72:466-472. [PMID: 35952682 DOI: 10.1055/a-1886-2094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
BACKGROUND Coronaviruses are emerging threats for human health, as demonstrated by the ongoing coronavirus disease 2019 (COVID-19) pandemic that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is closely related to SARS-CoV-1, which was the cause of the 2002-2004 SARS outbreak, but SARS-CoV-1 has been the subject of a relatively limited number of studies. Understanding the potential pathways and molecular targets of SARS-CoV-1 will contribute to current drug repurposing strategies by helping to predict potential drug-disease associations. METHODS A microarray dataset, GSE1739, of 10 SARS patients and 4 healthy controls was downloaded from NCBI's GEO repository, and differential expression was identified using NCBI's GEO2R software. Pathway and enrichment analysis of the differentially expressed genes was carried out using Ingenuity Pathway Analysis and Gene Set Enrichment Analysis, respectively. RESULTS Our findings show that the drugs dexamethasone, filgrastim, interferon alfacon-1, and levodopa were among the most significant upstream regulators of differential gene expression in SARS patients, while neutrophil degranulation was the most significantly enriched pathway. CONCLUSION An enhanced understanding of the pathways and molecular targets of SARS-CoV-1 in humans will contribute to current and future drug repurposing strategies, which are an essential tool to combat rapidly emerging health threats.
Collapse
Affiliation(s)
- Anas Khaleel
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | | | - Mohammad Niazi
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | | | | |
Collapse
|
24
|
SARS CoV-2-Induced Viral Sepsis: The Role of Gut Barrier Dysfunction. Microorganisms 2022; 10:microorganisms10051050. [PMID: 35630492 PMCID: PMC9143860 DOI: 10.3390/microorganisms10051050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
A considerable proportion of patients with severe COVID-19 meet Sepsis-3 criteria and share common pathophysiological mechanisms of multiorgan injury with bacterial sepsis, in absence of secondary bacterial infections, a process characterized as “viral sepsis”. The intestinal barrier exerts a central role in the pathophysiological sequence of events that lead from SARS-CoV-2 infection to severe systemic complications. Accumulating evidence suggests that SARS-CoV-2 disrupts the integrity of the biological, mechanical and immunological gut barrier. Specifically, microbiota diversity and beneficial bacteria population are reduced, concurrently with overgrowth of pathogenic bacteria (dysbiosis). Enterocytes’ tight junctions (TJs) are disrupted, and the apoptotic death of intestinal epithelial cells is increased leading to increased gut permeability. In addition, mucosal CD4(+) and CD8(+) T cells, Th17 cells, neutrophils, dendritic cells and macrophages are activated, and T-regulatory cells are decreased, thus promoting an overactivated immune response, which further injures the intestinal epithelium. This dysfunctional gut barrier in SARS-CoV-2 infection permits the escape of luminal bacteria, fungi and endotoxin to normally sterile extraintestinal sites and the systemic circulation. Pre-existing gut barrier dysfunction and endotoxemia in patients with comorbidities including cardiovascular disease, obesity, diabetes and immunosuppression predisposes to aggravated endotoxemia. Bacterial and endotoxin translocation promote the systemic inflammation and immune activation, which characterize the SARS-CoV-2 induced “viral sepsis” syndrome associated with multisystemic complications of severe COVID-19.
Collapse
|
25
|
Vitkov L, Knopf J, Krunić J, Schauer C, Schoen J, Minnich B, Hannig M, Herrmann M. Periodontitis-Derived Dark-NETs in Severe Covid-19. Front Immunol 2022; 13:872695. [PMID: 35493525 PMCID: PMC9039207 DOI: 10.3389/fimmu.2022.872695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022] Open
Abstract
The frequent severe COVID-19 course in patients with periodontitis suggests a link of the aetiopathogenesis of both diseases. The formation of intravascular neutrophil extracellular traps (NETs) is crucial to the pathogenesis of severe COVID-19. Periodontitis is characterised by an increased level of circulating NETs, a propensity for increased NET formation, delayed NET clearance and low-grade endotoxemia (LGE). The latter has an enormous impact on innate immunity and susceptibility to infection with SARS-CoV-2. LPS binds the SARS-CoV-2 spike protein and this complex, which is more active than unbound LPS, precipitates massive NET formation. Thus, circulating NET formation is the common denominator in both COVID-19 and periodontitis and other diseases with low-grade endotoxemia like diabetes, obesity and cardiovascular diseases (CVD) also increase the risk to develop severe COVID-19. Here we discuss the role of propensity for increased NET formation, DNase I deficiency and low-grade endotoxaemia in periodontitis as aggravating factors for the severe course of COVID-19 and possible strategies for the diminution of increased levels of circulating periodontitis-derived NETs in COVID-19 with periodontitis comorbidity.
Collapse
Affiliation(s)
- Ljubomir Vitkov
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany.,Department of Environment & Biodiversity, University of Salzburg, Salzburg, Austria.,Department of Dental Pathology, University of East Sarajevo, East Sarajevo, Bosnia and Herzegovina
| | - Jasmin Knopf
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jelena Krunić
- Department of Dental Pathology, University of East Sarajevo, East Sarajevo, Bosnia and Herzegovina
| | - Christine Schauer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bernd Minnich
- Department of Environment & Biodiversity, University of Salzburg, Salzburg, Austria
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
26
|
Neutrophil Extracellular Traps in Severe SARS-CoV-2 Infection: A Possible Impact of LPS and (1→3)-β-D-glucan in Blood from Gut Translocation. Cells 2022; 11:cells11071103. [PMID: 35406667 PMCID: PMC8997739 DOI: 10.3390/cells11071103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Due to limited data on the link between gut barrier defects (leaky gut) and neutrophil extracellular traps (NETs) in coronavirus disease 2019 (COVID-19), blood samples of COVID-19 cases—mild (upper respiratory tract symptoms without pneumonia; n = 27), moderate (pneumonia without hypoxia; n = 28), and severe (pneumonia with hypoxia; n = 20)—versus healthy control (n = 15) were evaluated, together with in vitro experiments. Accordingly, neutrophil counts, serum cytokines (IL-6 and IL-8), lipopolysaccharide (LPS), bacteria-free DNA, and NETs parameters (fluorescent-stained nuclear morphology, dsDNA, neutrophil elastase, histone–DNA complex, and myeloperoxidase–DNA complex) were found to differentiate COVID-19 severity, whereas serum (1→3)-β-D-glucan (BG) was different between the control and COVID-19 cases. Despite non-detectable bacteria-free DNA in the blood of healthy volunteers, using blood bacteriome analysis, proteobacterial DNA was similarly predominant in both control and COVID-19 cases (all severities). In parallel, only COVID-19 samples from moderate and severe cases, but not mild cases, were activated in vitro NETs, as determined by supernatant dsDNA, Peptidyl Arginine Deiminase 4, and nuclear morphology. With neutrophil experiments, LPS plus BG (LPS + BG) more prominently induced NETs, cytokines, NFκB, and reactive oxygen species, when compared with the activation by each molecule alone. In conclusion, pathogen molecules (LPS and BG) from gut translocation along with neutrophilia and cytokinemia in COVID-19-activated, NETs-induced hyperinflammation.
Collapse
|
27
|
Puthia M, Tanner L, Petruk G, Schmidtchen A. Experimental Model of Pulmonary Inflammation Induced by SARS-CoV-2 Spike Protein and Endotoxin. ACS Pharmacol Transl Sci 2022; 5:141-148. [PMID: 35774232 PMCID: PMC9239546 DOI: 10.1021/acsptsci.1c00219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Indexed: 01/27/2023]
Abstract
COVID-19 is characterized by a dysregulated and excessive inflammatory response and, in severe cases, acute respiratory distress syndrome. We have recently demonstrated a previously unknown high-affinity interaction between the SARS-CoV-2 spike (S) protein and bacterial lipopolysaccharide (LPS), leading to the boosting of inflammation. Here we present a mouse inflammation model employing the coadministration of aerosolized S protein together with LPS to the lungs. Using NF-κB-RE-Luc reporter and C57BL/6 mice followed by combinations of bioimaging, cytokine, chemokine, fluorescence-activated cell sorting, and histochemistry analyses, we show that the model yields severe pulmonary inflammation and a cytokine profile similar to that observed in COVID-19. Therefore, the model offers utility for analyses of the pathophysiological features of COVID-19 and the development of new treatments.
Collapse
Affiliation(s)
- Manoj Puthia
- Division
of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden,
| | - Lloyd Tanner
- Division
of Respiratory Medicine and Allergology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Ganna Petruk
- Division
of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Artur Schmidtchen
- Division
of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden,Bispebjerg
Hospital, Department of Biomedical Sciences, University of Copenhagen, DK-2400 Copenhagen, Denmark
| |
Collapse
|
28
|
Westheim AJF, Bitorina AV, Theys J, Shiri‐Sverdlov R. COVID-19 infection, progression, and vaccination: Focus on obesity and related metabolic disturbances. Obes Rev 2021; 22:e13313. [PMID: 34269511 PMCID: PMC8420274 DOI: 10.1111/obr.13313] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023]
Abstract
Coronaviruses are constantly circulating in humans, causing common colds and mild respiratory infections. In contrast, infection with the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for coronavirus disease-2019 (COVID-19), can cause additional severe complications, particularly in patients with obesity and associated metabolic disturbances. Obesity is a principal causative factor in the development of the metabolic syndrome; a series of physiological, biochemical, clinical, and metabolic factors that increase the risk of obesity-associated diseases. "Metabolically unhealthy" obesity is, in addition to metabolic disturbances, also associated with immunological disturbances. As such, patients with obesity are more prone to develop serious complications from infections, including those from SARS-CoV-2. In this review, we first describe how obesity and related metabolic disturbances increase the risk of SARS-CoV-2 infection. Then, mechanisms contributing to COVID-19 complications and poor prognosis in these patients are discussed. Finally, we discuss how obesity potentially reduces long-term COVID-19 vaccination efficacy. Despite encouraging COVID-19 vaccination results in patients with obesity and related metabolic disturbances in the short-term, it is becoming increasingly evident that long-term COVID-19 vaccination efficacy should be closely monitored in this vulnerable group.
Collapse
Affiliation(s)
- Annemarie J. F. Westheim
- Department of Precision Medicine, GROW‐Research School for Oncology and ReproductionMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Albert V. Bitorina
- Department of Molecular Genetics, NUTRIM‐School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW‐Research School for Oncology and ReproductionMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Ronit Shiri‐Sverdlov
- Department of Molecular Genetics, NUTRIM‐School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| |
Collapse
|
29
|
Rodríguez de la Concepción ML, Ainsua-Enrich E, Reynaga E, Ávila-Nieto C, Santos JR, Roure S, Mateu L, Paredes R, Puig J, Jimenez JM, Izquierdo-Useros N, Clotet B, Pedro-Botet ML, Carrillo J. High-dose intravenous immunoglobulins might modulate inflammation in COVID-19 patients. Life Sci Alliance 2021; 4:e202001009. [PMID: 34321327 PMCID: PMC8321664 DOI: 10.26508/lsa.202001009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
The use of high-dose of intravenous immunoglobulins (IVIGs) as immunomodulators for the treatment of COVID-19-affected individuals has shown promising results. IVIG reduced inflammation in these patients, who progressively restored respiratory function. However, little is known about how they may modulate immune responses in COVID-19 individuals. Here, we have analyzed the levels of 41 inflammatory biomarkers in plasma samples obtained at day 0 (pretreatment initiation), 3, 7, and 14 from five hospitalized COVID-19 patients treated with a 5-d course of 400 mg/kg/d of IVIG. The plasmatic levels of several cytokines (Tumor Necrosis Factor, IL-10, IL-5, and IL-7), chemokines (macrophage inflammatory protein-1α), growth/tissue repairing factors (hepatic growth factor), complement activation (C5a), and intestinal damage such as Fatty acid-binding protein 2 and LPS-binding protein showed a progressive decreasing trend during the next 2 wk after treatment initiation. This trend was not observed in IVIG-untreated COVID-19 patients. Thus, the administration of high-dose IVIG to hospitalized COVID-19 patients may improve their clinical evolution by modulating their hyperinflammatory and immunosuppressive status.
Collapse
Affiliation(s)
| | - Erola Ainsua-Enrich
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Esteban Reynaga
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, Badalona, Spain
| | - Carlos Ávila-Nieto
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Jose Ramón Santos
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, Badalona, Spain
| | - Silvia Roure
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, Badalona, Spain
| | - Lourdes Mateu
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, Badalona, Spain
- Universitat Autonoma de Barcelona, Cerdanyola Del Vallès, Spain
- CIBERes: Centro de investigaciones en Red de Enfermedades Respiratorias Del Instituto Carlos III, Madrid, Spain
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, Badalona, Spain
| | - Jordi Puig
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, Badalona, Spain
| | - Juan Manuel Jimenez
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, Badalona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, Badalona, Spain
- Chair in Infectious Diseases and Immunity, Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic–Central University of Catalonia (UVic–UCC), Vic, Spain
- Universitat Autonoma de Barcelona, Cerdanyola Del Vallès, Spain
- CIBERes: Centro de investigaciones en Red de Enfermedades Respiratorias Del Instituto Carlos III, Madrid, Spain
| | - María Luisa Pedro-Botet
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, Badalona, Spain
- Universitat Autonoma de Barcelona, Cerdanyola Del Vallès, Spain
- CIBERes: Centro de investigaciones en Red de Enfermedades Respiratorias Del Instituto Carlos III, Madrid, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| |
Collapse
|
30
|
Boosted Pro-Inflammatory Activity in Human PBMCs by Lipopolysaccharide and SARS-CoV-2 Spike Protein Is Regulated by α-1 Antitrypsin. Int J Mol Sci 2021; 22:ijms22157941. [PMID: 34360706 PMCID: PMC8347018 DOI: 10.3390/ijms22157941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
For the treatment of severe COVID-19, supplementation with human plasma-purified α-1 antitrypsin (AAT) to patients is currently considered. AAT inhibits host proteases that facilitate viral entry and possesses broad anti-inflammatory and immunomodulatory activities. Researchers have demonstrated that an interaction between SARS-CoV-2 spike protein (S) and lipopolysaccharides (LPS) enhances pro-inflammatory responses in vitro and in vivo. Hence, we wanted to understand the potential anti-inflammatory activities of plasma-derived and recombinant AAT (recAAT) in a model of human total peripheral blood mononuclear cells (PBMCs) exposed to a combination of CHO expressed trimeric spike protein and LPS, ex vivo. We confirmed that cytokine production was enhanced in PBMCs within six hours when low levels of LPS were combined with purified spike proteins (“spike”). In the presence of 0.5 mg/mL recAAT, however, LPS/spike-induced TNF-α and IL-1β mRNA expression and protein release were significantly inhibited (by about 46–50%) relative to LPS/spike alone. Although without statistical significance, recAAT also reduced production of IL-6 and IL-8. Notably, under the same experimental conditions, the plasma-derived AAT preparation Respreeza (used in native and oxidized forms) did not show significant effects. Our findings imply that an early pro-inflammatory activation of human PBMCs is better controlled by the recombinant version of AAT than the human plasma-derived AAT used here. Considering the increasing clinical interest in AAT therapy as useful to ameliorate the hyper-inflammation seen during COVID-19 infection, different AAT preparations require careful evaluation.
Collapse
|
31
|
Sfera A, Osorio C, Zapata Martín del Campo CM, Pereida S, Maurer S, Maldonado JC, Kozlakidis Z. Endothelial Senescence and Chronic Fatigue Syndrome, a COVID-19 Based Hypothesis. Front Cell Neurosci 2021; 15:673217. [PMID: 34248502 PMCID: PMC8267916 DOI: 10.3389/fncel.2021.673217] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome is a serious illness of unknown etiology, characterized by debilitating exhaustion, memory impairment, pain and sleep abnormalities. Viral infections are believed to initiate the pathogenesis of this syndrome although the definite proof remains elusive. With the unfolding of COVID-19 pandemic, the interest in this condition has resurfaced as excessive tiredness, a major complaint of patients infected with the SARS-CoV-2 virus, often lingers for a long time, resulting in disability, and poor life quality. In a previous article, we hypothesized that COVID-19-upregulated angiotensin II triggered premature endothelial cell senescence, disrupting the intestinal and blood brain barriers. Here, we hypothesize further that post-viral sequelae, including myalgic encephalomyelitis/chronic fatigue syndrome, are promoted by the gut microbes or toxin translocation from the gastrointestinal tract into other tissues, including the brain. This model is supported by the SARS-CoV-2 interaction with host proteins and bacterial lipopolysaccharide. Conversely, targeting microbial translocation and cellular senescence may ameliorate the symptoms of this disabling illness.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | | | | | | | - Steve Maurer
- Patton State Hospital, San Bernardino, CA, United States
| | - Jose Campo Maldonado
- Department of Internal Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
32
|
Alpers DH. Is the Intestine a Portal of Entry for the Serious COVID-19 Complications of Endotoxemia and Thrombosis? Clin Transl Gastroenterol 2021; 12:e00367. [PMID: 34092778 PMCID: PMC8183696 DOI: 10.14309/ctg.0000000000000367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/28/2021] [Indexed: 01/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 infection has been associated with both endotoxemia and thrombosis of small and large vessels, but the relationship between these 2 phenomena has not been pursued. Oliva et al. in this issue of Clinical and Translational Gastroenterology demonstrate an association between the 2 findings and suggest that increased intestinal permeability is a possible mechanism to explain the endotoxemia. Although the evidence to support this hypothesis is only suggestive, the role of the small intestine in the illness produced by the virus needs to be further explored.
Collapse
Affiliation(s)
- David H Alpers
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|