1
|
Li S, Dan X, Chen H, Li T, Liu B, Ju Y, Li Y, Lei L, Fan X. Developing fibrin-based biomaterials/scaffolds in tissue engineering. Bioact Mater 2024; 40:597-623. [PMID: 39239261 PMCID: PMC11375146 DOI: 10.1016/j.bioactmat.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Tissue engineering technology has advanced rapidly in recent years, offering opportunities to construct biologically active tissues or organ substitutes to repair or even enhance the functions of diseased tissues and organs. Tissue-engineered scaffolds rebuild the extracellular microenvironment by mimicking the extracellular matrix. Fibrin-based scaffolds possess numerous advantages, including hemostasis, high biocompatibility, and good degradability. Fibrin scaffolds provide an initial matrix that facilitates cell migration, differentiation, proliferation, and adhesion, and also play a critical role in cell-matrix interactions. Fibrin scaffolds are now widely recognized as a key component in tissue engineering, where they can facilitate tissue and organ defect repair. This review introduces the properties of fibrin, including its composition, structure, and biology. In addition, the modification and cross-linking modes of fibrin are discussed, along with various forms commonly used in tissue engineering. We also describe the biofunctionalization of fibrin. This review provides a detailed overview of the use and applications of fibrin in skin, bone, and nervous tissues, and provides novel insights into future research directions for clinical treatment.
Collapse
Affiliation(s)
- Songjie Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Dan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tong Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yang Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Xing Fan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
2
|
Siti-Zubaidah MZ, Harafinova HS, Liba AN, Nordin ML, Hambali KA, Siti HN. Exploring bradykinin: A common mediator in the pathophysiology of sepsis and atherosclerotic cardiovascular disease. Vascul Pharmacol 2024; 156:107414. [PMID: 39089528 DOI: 10.1016/j.vph.2024.107414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Sepsis and atherosclerotic cardiovascular disease (ASCVD) are major health challenges involving complex processes like inflammation, renin-angiotensin system (RAS) dysregulation, and thrombosis. Despite distinct clinical symptoms, both conditions share mechanisms mediated by bradykinin. This review explores bradykinin's role in inflammation, RAS modulation, and thrombosis in sepsis and ASCVD. In sepsis, variable kininogen-bradykinin levels may correlate with disease severity and progression, though the effect of bradykinin receptor modulation on inflammation remains uncertain. RAS activation is present in both diseases, with sepsis showing variable or low levels of Ang II, ACE, and ACE2, while ASCVD consistently exhibits elevated levels. Bradykinin may act as a mediator for ACE2 and AT2 receptor effects in RAS regulation. It may influence clotting and fibrinolysis in sepsis-associated coagulopathy, but evidence for an antithrombotic effect in ASCVD is insufficient. Understanding bradykinin's role in these shared pathologies could guide therapeutic and monitoring strategies and inform future research.
Collapse
Affiliation(s)
- Mohd Zahari Siti-Zubaidah
- Department of Anaesthesia and Intensive Care, National Heart Institute, Jalan Tun Razak, 50400 Kuala Lumpur, Malaysia.
| | - Harman-Shah Harafinova
- Department of Internal Medicine, Faculty of Medicine, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia.
| | - Abdullahi Nuradeen Liba
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu, 16100, Kelantan, Malaysia
| | - Muhammad Luqman Nordin
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu, 16100, Kelantan, Malaysia; Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Kamarul Ariffin Hambali
- Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli, 17600, Kelantan, Malaysia; Animal and Wildlife Research Group, Faculty of Earth Science, Jeli Campus, Universiti Malaysia Kelantan, 17600, Kelantan, Malaysia.
| | - Hawa Nordin Siti
- Department of Pharmacology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia.
| |
Collapse
|
3
|
Bertoglio F, Ko YP, Thomas S, Giordano L, Scommegna FR, Meier D, Polten S, Becker M, Arora S, Hust M, Höök M, Visai L. Antibodies to coagulase of Staphylococcus aureus crossreact to Efb and reveal different binding of shared fibrinogen binding repeats. Front Immunol 2023; 14:1221108. [PMID: 37828992 PMCID: PMC10565355 DOI: 10.3389/fimmu.2023.1221108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 10/14/2023] Open
Abstract
Staphylococcus aureus pathology is caused by a plethora of virulence factors able to combat multiple host defence mechanisms. Fibrinogen (Fg), a critical component in the host coagulation cascade, plays an important role in the pathogenesis of this bacterium, as it is the target of numerous staphylococcal virulence proteins. Amongst its secreted virulence factors, coagulase (Coa) and Extracellular fibrinogen-binding protein (Efb) share common Fg binding motives and have been described to form a Fg shield around staphylococcal cells, thereby allowing efficient bacterial spreading, phagocytosis escape and evasion of host immune system responses. Targeting these proteins with monoclonal antibodies thus represents a new therapeutic option against S. aureus. To this end, here we report the selection and characterization of fully human, sequence-defined, monoclonal antibodies selected against the C-terminal of coagulase. Given the functional homology between Coa and Efb, we also investigated if the generated antibodies bound the two virulence factors. Thirteen unique antibodies were isolated from naïve antibodies gene libraries by antibody phage display. As anticipated, most of the selected antibodies showed cross-recognition of these two proteins and among them, four were able to block the interaction between Coa/Efb and Fg. Furthermore, our monoclonal antibodies could interact with the two main Fg binding repeats present at the C-terminal of Coa and distinguish them, suggesting the presence of two functionally different Fg-binding epitopes.
Collapse
Affiliation(s)
- Federico Bertoglio
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), Unitá di Ricerca (UdR) Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), University of Pavia, Pavia, Italy
- School of Advanced Studies IUSS Pavia, Pavia, Italy
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ya-Ping Ko
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Sheila Thomas
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Liliana Giordano
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), Unitá di Ricerca (UdR) Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), University of Pavia, Pavia, Italy
| | - Francesca Romana Scommegna
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), Unitá di Ricerca (UdR) Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), University of Pavia, Pavia, Italy
| | - Doris Meier
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Saskia Polten
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marlies Becker
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Michael Hust
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Livia Visai
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), Unitá di Ricerca (UdR) Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), University of Pavia, Pavia, Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, Istituti Clinici Scientifici (ICS) Maugeri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Pavia, Italy
| |
Collapse
|
4
|
Poole LG, Schmitt LR, Schulte A, Groeneveld DJ, Cline HM, Sang Y, Hur WS, Wolberg AS, Flick MJ, Hansen KC, Luyendyk JP. Altered fibrinogen γ-chain cross-linking in mutant fibrinogen-γ Δ5 mice drives acute liver injury. J Thromb Haemost 2023; 21:2175-2188. [PMID: 37062522 PMCID: PMC10524487 DOI: 10.1016/j.jtha.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND Hepatic deposition of cross-linked fibrin(ogen) occurs alongside platelet accumulation as a hallmark of acetaminophen (APAP)-induced liver injury. OBJECTIVES We sought to define the precise role of the fibrinogen γ-chain C-terminal integrin αIIbβ3 binding domain in APAP-induced liver injury. METHODS Mice expressing mutant fibrinogen incapable of engaging integrin αIIbβ3 due to a C-terminal fibrinogen γ-chain truncation (mutant fibrinogen-γΔ5 [FibγΔ5] mice) and wild-type mice were challenged with APAP (300 mg/kg, intraperitoneally). RESULTS We observed an altered pattern of fibrin(ogen) deposition in the livers of APAP-challenged FibγΔ5 mice. This led to the unexpected discovery that fibrinogen γ-chain cross-linking was altered in the livers of APAP-challenged FibγΔ5 mice compared with that in wild-type mice, including absence of γ-γ dimer and accumulation of larger molecular weight cross-linked γ-chain complexes. This finding was not unique to the injured liver because activation of coagulation did not produce γ-γ dimer in plasma from FibγΔ5 mice or purified FibγΔ5 fibrinogen. Sanger sequencing predicted that the fibrinogen-γΔ5 γ-polypeptide would terminate at lysine residue 406, but liquid chromatography tandem mass spectrometry analysis revealed that this critical lysine residue was absent in purified fibrinogen-γΔ5 protein. Interestingly, hepatic deposition of this uniquely aberrantly cross-linked fibrin(ogen) in FibγΔ5 mice was associated with exacerbated hepatic injury, an effect not recapitulated by pharmacologic inhibition of integrin αIIbβ3. CONCLUSION The results indicate that fibrinogen-γΔ5 lacks critical residues essential to form γ-γ dimer in response to thrombin and suggest that hepatic accumulation of abnormally cross-linked fibrin(ogen) can exacerbate hepatic injury.
Collapse
Affiliation(s)
- Lauren G Poole
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA. https://twitter.com/PoolePAR_ty
| | - Lauren R Schmitt
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anthony Schulte
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Dafna J Groeneveld
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Holly M Cline
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Yaqiu Sang
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Woosuk S Hur
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - James P Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
5
|
Negrón O, Weggeman M, Grimbergen J, Clark EG, Abrahams S, Hur WS, Koopman J, Flick MJ. Fibrinogen γ' promotes host survival during Staphylococcus aureus septicemia in mice. J Thromb Haemost 2023; 21:2277-2290. [PMID: 37001817 PMCID: PMC10528022 DOI: 10.1016/j.jtha.2023.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Staphylococcus aureus is a common gram-positive bacterium that is the causative agent for several human diseases, including sepsis. A key virulence mechanism is pathogen binding to host fibrinogen through the C-terminal region of the γ-chain. Previous work demonstrated that FggΔ5 mice expressing mutant fibrinogen γΔ5 lacking a S. aureus binding motif had significantly improved survival following S. aureus septicemia. Fibrinogen γ' is a human splice variant that represents about 10% to 15% of the total fibrinogen in plasma and circulates as a fibrinogen γ'-γ heterodimer (phFibγ'-γ). The fibrinogen γ'-chain is also expected to lack S. aureus binding function. OBJECTIVE Determine if human fibrinogen γ'-γ confers host protection during S. aureus septicemia. METHODS Analyses of survival and the host response following S. aureus septicemia challenge in FggΔ5 mice and mice reconstituted with purified phFibγ'-γ or phFibγ-γ. RESULTS Reconstitution of fibrinogen-deficient or wildtype mice with purified phFibγ'-γ prior to infection provided a significant prolongation in host survival relative to mice reconstituted with purified phFibγ-γ, which was superior to that observed with heterozygous FggΔ5 mice. Improved survival could not be accounted for by quantitative differences in fibrinogen-dependent adhesion or clumping, but phFibγ'-γ-containing mixtures generated notably smaller bacterial aggregates. Importantly, administration of phFibγ'-γ after infection also provided a therapeutic benefit by prolonging host survival relative to administration of phFibγ-γ. CONCLUSION These findings provide the proof-of-concept that changing the ratio of naturally occurring fibrinogen variants in blood could offer significant therapeutic potential against bacterial infection and potentially other diseases.
Collapse
Affiliation(s)
- Oscar Negrón
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Emily G Clark
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sara Abrahams
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Woosuk S Hur
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Matthew J Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
6
|
Satala D, Bednarek A, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. The Recruitment and Activation of Plasminogen by Bacteria-The Involvement in Chronic Infection Development. Int J Mol Sci 2023; 24:10436. [PMID: 37445613 DOI: 10.3390/ijms241310436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
The development of infections caused by pathogenic bacteria is largely related to the specific properties of the bacterial cell surface and extracellular hydrolytic activity. Furthermore, a significant role of hijacking of host proteolytic cascades by pathogens during invasion should not be disregarded during consideration of the mechanisms of bacterial virulence. This is the key factor for the pathogen evasion of the host immune response, tissue damage, and pathogen invasiveness at secondary infection sites after initial penetration through tissue barriers. In this review, the mechanisms of bacterial impact on host plasminogen-the precursor of the important plasma serine proteinase, plasmin-are characterized, principally focusing on cell surface exposition of various proteins, responsible for binding of this host (pro)enzyme and its activators or inhibitors, as well as the fibrinolytic system activation tactics exploited by different bacterial species, not only pathogenic, but also selected harmless residents of the human microbiome. Additionally, the involvement of bacterial factors that modulate the process of plasminogen activation and fibrinolysis during periodontitis is also described, providing a remarkable example of a dual use of this host system in the development of chronic diseases.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
7
|
Kejwal MB, Verboket RD, Sommer K, Dust F, Thomas D, Störmann P, Frank J, Henrich D, Marzi I, Janko MC. Local Gentamicin Fixation with Sprayed Fibrin-An In Vivo Animal Study Reveals New Options to Treat Soft Tissue Infections. J Clin Med 2023; 12:jcm12103390. [PMID: 37240497 DOI: 10.3390/jcm12103390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
For acute and chronic soft tissue infections, radical surgical debridement is required and is considered the gold standard, along with its immediate systemic antibiotic therapy. Treatment with local antibiotics and/or antibiotic-containing materials is commonly used as an additional tool in clinical practice. Spraying with fibrin and antibiotics is a newer technique that has been studied for some antibiotics. However, for gentamicin, data are not yet available on absorption, optimal application, antibiotic fate at the site and transfer of antibiotic into the blood. In an animal study involving 29 Sprague Dawley rats, 116 back wounds were sprayed with gentamicin using either gentamicin alone or one of two possible spray combinations of gentamicin and fibrin. Simultaneous application of gentamicin and fibrin via a spray system to soft tissue wounds resulted in significant antibiotic concentration over a long period of time. The technique is easy and cost-effective. The systemic crossover was significantly minimized in our study, which may have led to fewer side effects in patients. These results could lead to an improvement in local antibiotic therapy.
Collapse
Affiliation(s)
- Meike B Kejwal
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe University, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - René D Verboket
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe University, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Katharina Sommer
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe University, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Fabian Dust
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe University, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Philipp Störmann
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe University, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Johannes Frank
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe University, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe University, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe University, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Maren C Janko
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe University, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
8
|
Zhou W, Li Y, Xu X, Rao S, Wen H, Han Y, Deng A, Zhang Z, Yang Z, Zhu G. Whole-genome analysis showed the promotion of genetic diversity and coevolution in Staphylococcus aureus lytic bacteriophages and their hosts mediated by prophages via worldwide recombination events. Front Microbiol 2023; 14:1088125. [PMID: 36970693 PMCID: PMC10036374 DOI: 10.3389/fmicb.2023.1088125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Prophages as a part of Staphylococcus aureus genome contribute to the genetic diversity as well as survival strategies of their host. Some S. aureus prophages also have an imminent risk of host cell lysis and become a lytic phage. Nonetheless, interactions among S. aureus prophages, lytic phages, and their hosts, as well as the genetic diversity of S. aureus prophages, remain unclear. We identified 579 intact and 1,389 incomplete prophages in the genomes of 493 S. aureus isolates obtained from the NCBI database. The structural diversity and gene content of intact and incomplete prophages were investigated and compared with 188 lytic phages. Mosaic structure comparison, ortholog group clustering, phylogenetic analysis, and recombination network analysis were performed to estimate genetic relatedness among S. aureus intact prophages, incomplete prophages, and lytic phages. The intact and incomplete prophages harbored 148 and 522 distinct mosaic structures, respectively. The major difference between lytic phages and prophages was the lack of functional modules and genes. Compared to the lytic phages, both the S. aureus intact and incomplete prophages harbored multiple antimicrobial resistance (AMR) and virulence factor (VF) genes. Several functional modules of lytic phages 3_AJ_2017 and 23MRA shared more than 99% nucleotide sequence identity with S. aureus intact (ST20130943_p1 and UTSW_ MRSA_55_ip3) and incomplete prophages (SA3_LAU_ip3 and MRSA_FKTN_ip4); other modules showed little nucleotide sequence similarity. Ortholog and phylogenetic analyses revealed a common gene pool shared between the prophages and lytic Siphoviridae phages. Moreover, most shared sequences existed within intact (43428/137294, 31.6%) and incomplete prophages (41248/137294, 30.0%). Therefore, the maintenance or loss of functional modules in intact and incomplete prophages is key to balance the costs and benefits of large prophages harboring various AMR and VF genes in the bacterial host. The shared identical functional modules between S. aureus lytic phages and prophages are likely to result in the exchange, acquisition, and loss of functional modules, and therefore contribute to their genetic diversity. Moreover, constant recombination events within prophages globally were responsible for the coevolution of lytic phages and their bacterial hosts.
Collapse
Affiliation(s)
- Wenyuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yajie Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuechao Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hua Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yeiling Han
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Aiping Deng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhenwen Zhang
- Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
- *Correspondence: Zhenquan Yang,
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Guoqiang Zhu,
| |
Collapse
|
9
|
Cho YS, Nam SY, Moon HS, Kim TH, Kim SE, Jung JT. Helicobacter pylori eradication reduces risk for recurrence of gastric hyperplastic polyp after endoscopic resection. Korean J Intern Med 2023; 38:167-175. [PMID: 36437035 PMCID: PMC9993100 DOI: 10.3904/kjim.2022.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/22/2022] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND/AIMS Little is known about the effect of Helicobacter pylori eradication on the recurrence of gastric hyperplastic polyps after endoscopic resection. Thus, we evaluated the recurrence rate of gastric hyperplastic polyps based on H. pylori eradication following endoscopic resection. METHODS We retrospectively reviewed the medical records of 201 patients with H. pylori infection who underwent endoscopic resection for gastric hyperplastic polyps at six medical centers. H. pylori status was assessed by histological analysis and a rapid urease test. A total of 149 patients underwent successful H. pylori eradication (eradication group), whereas 52 patients had persistent H. pylori infections (non-eradication group). The recurrence rate of gastric hyperplastic polyps and the risk factors according to H. pylori status were analyzed. RESULTS During the mean follow-up period of 18.3 months, recurrent gastric polyps developed after endoscopic resection in 10 patients (19.2% [10/52]) in the non-eradication group and 12 patients (8.1% [12/149]) in the eradication group. The cumulative incidence of recurrent gastric hyperplastic polyps was significantly higher in the non-eradication group than in the eradication group (p = 0.041, log-rank test). In the adjusted analysis, H. pylori eradication reduced the recurrence of gastric hyperplastic polyps (hazard ratio [HR], 0.42; 95% confidence interval [CI], 0.18 to 0.99), whereas anticoagulation therapy increased the risk of recurrence of gastric hyperplastic polyps (HR, 4.91; 95% CI, 1.39 to 17.28). CONCLUSION Successful eradication of H. pylori may reduce the recurrence of gastric hyperplastic polyps in patients after endoscopic mucosal resection.
Collapse
Affiliation(s)
- Young Sin Cho
- Division of Gastroenterology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan,
Korea
| | - Su Youn Nam
- Center for Gastric Cancer, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Hee Seok Moon
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Tae Ho Kim
- Division of Gastroenterology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon,
Korea
| | - Sung Eun Kim
- Division of Gastroenterology, Department of Internal Medicine, Kosin University College of Medicine, Busan,
Korea
| | - Jin Tae Jung
- Division of Gastroenterology, Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu,
Korea
| |
Collapse
|
10
|
Kangro K, Wolberg AS, Flick MJ. Fibrinogen, Fibrin, and Fibrin Degradation Products in COVID-19. Curr Drug Targets 2022; 23:1593-1602. [PMID: 36029073 DOI: 10.2174/1389450123666220826162900] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the highly pathogenic and highly transmissible human coronavirus that is the causative agent for the worldwide COVID-19 pandemic. COVID-19 manifests predominantly as a respiratory illness with symptoms consistent with viral pneumonia, but other organ systems (e.g., kidney, heart, brain) can also become perturbed in COVID-19 patients. Accumulating data suggest that significant activation of the hemostatic system is a common pathological manifestation of SARS-CoV-2 infection. The clotting protein fibrinogen is one of the most abundant plasma proteins. Following activation of coagulation, the central coagulation protease thrombin converts fibrinogen to fibrin monomers, which selfassemble to form a matrix, the primary structural component of the blood clot. Severe COVID-19 is associated with a profound perturbation of circulating fibrinogen, intra- and extravascular fibrin deposition and persistence, and fibrin degradation. Current findings suggest high levels of fibrinogen and the fibrin degradation product D-dimer are biomarkers of poor prognosis in COVID-19. Moreover, emerging studies with in vitro and animal models indicate fibrin(ogen) as an active player in COVID-19 pathogenesis. Here, we review the current literature regarding fibrin(ogen) and COVID-19, including possible pathogenic mechanisms and treatment strategies centered on clotting and fibrin(ogen) function.
Collapse
Affiliation(s)
- Kadri Kangro
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Meng Q, Watanabe Y, Tatsukawa H, Hashimoto H, Hitomi K. Biochemical characterization of medaka (Oryzias latipes) fibrinogen gamma and its gene disruption resulting in anemia as a model fish. J Biochem 2022; 172:293-302. [PMID: 35997167 DOI: 10.1093/jb/mvac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
At the final stages of blood coagulation, fibrinogen is processed into insoluble fibrin by thrombin resulting in fibril-like structure formation. Via further cross-linking reactions between the fibrin gamma subunit by the catalytic action of blood transglutaminase (Factor XIII), this molecule gains further physical stability. Meanwhile, since fibrinogen is expressed in various cells and tissues, this molecule can exhibit other functions apart from its role in blood coagulation. To create a system studying on aberrant coagulation and investigate the physiological functions, using a model fish medaka (Oryzias latipes), we established gene-deficient mutants of fibrinogen gamma subunit protein in parallel with its biochemical analysis, such as tissue distribution pattern and substrate properties. By genetic deletion via genome-editing, two distinct mutants displayed retardation of blood coagulation. The mutants showed lower hematocrit with aberrant erythrocyte maturation indicating that fibrin deficiency caused severe anemia, and also appeared as a model for investigation of the fibrin function.
Collapse
Affiliation(s)
- Qi Meng
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yuko Watanabe
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hideki Tatsukawa
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hisashi Hashimoto
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Kiyotaka Hitomi
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|