1
|
Li XH, Lu HZ, Yao JB, Zhang C, Shi TQ, Huang H. Recent advances in the application of CRISPR/Cas-based gene editing technology in Filamentous Fungi. Biotechnol Adv 2025; 81:108561. [PMID: 40086675 DOI: 10.1016/j.biotechadv.2025.108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Filamentous fungi are essential industrial microorganisms that can serve as sources of enzymes, organic acids, terpenoids, and other bioactive compounds with significant applications in food, medicine, and agriculture. However, the underdevelopment of gene editing tools limits the full exploitation of filamentous fungi, which still present numerous untapped potential applications. In recent years, the CRISPR/Cas (clustered regularly interspaced short palindromic repeats) system, a versatile genome-editing tool, has advanced significantly and been widely applied in filamentous fungi, showcasing considerable research potential. This review examines the development and mechanisms of genome-editing tools in filamentous fungi, and contrasts the CRISPR/Cas9 and CRISPR/Cpf1 systems. The transformation and delivery strategies of the CRISPR/Cas system in filamentous fungi are also examined. Additionally, recent applications of CRISPR/Cas systems in filamentous fungi are summarized, such as gene disruption, base editing, and gene regulation. Strategies to enhance editing efficiency and reduce off-target effects are also highlighted, with the aim of providing insights for the future construction and optimization of CRISPR/Cas systems in filamentous fungi.
Collapse
Affiliation(s)
- Xu-Hong Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Hui-Zhi Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Ji-Bao Yao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Chi Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| |
Collapse
|
2
|
Nie X, Wang Z, Huang B, Gu Q, Xu R, Yu S, Xiong C, Liu Z, Wei W, Bi K, Zhu W. The cell death-inducing protein BcPlp1 from Botrytis cinerea contributes to pathogenicity and modulates plant resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112492. [PMID: 40185245 DOI: 10.1016/j.plantsci.2025.112492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/08/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Botrytis cinerea is a necrotrophic plant pathogen fungus with a broad host range, causing grey mould and rot diseases in many important crops, leading to significant economic losses in agriculture. Cell death-inducing proteins (CDIPs) secreted by necrotrophic phytopathogens promote plant tissue death and play important roles in infection. However, the mechanisms by which CDIPs induce cell death in B. cinerea-plants interactions remain unclear. Here, we demonstrate that the B. cinerea CDIP BcPlp1 is secreted into the plant apoplast where it induces cell death. BcPlp1 is a cysteine-rich protein, and four out of the 8 cysteine residues and a conserved N-terminal α-helix structure are essential for its cell death-inducing activity. A purified GST-tagged BcPlp1 fusion protein triggered cell death in multiple plant species, up-regulated expression of defense-related genes and enhanced plant resistance to B. cinerea. Additionally, the cell death-inducing activity of BcPlp1 was mediated by leucine-rich repeat (LRR) receptor-like kinases BAK1 and SOBIR1. Furthermore, BcPlp1 was not necessary for colony morphology, conidial production, growth rate, and stress tolerance. Although deletion of BcPlp1 did not affect virulence, its overexpression led to larger disease lesion, highlighting its contribution to B. cinerea pathogenicity when upregulated.
Collapse
Affiliation(s)
- Xiaofei Nie
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Ziyao Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Binbin Huang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Qiongnan Gu
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Ran Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Shuang Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Chao Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Zhiguo Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Wei Wei
- Biology Department, Utah State University, Logan, UT 84322-1415, USA
| | - Kai Bi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China.
| | - Wenjun Zhu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China.
| |
Collapse
|
3
|
Khairy A, Elattaapy AM, Yousef SA, Hamada MS, Amin BH, Elsherbiny EA. Effective biocontrol of Botrytis cinerea by antifungal metabolites of Trichoderma reesei T1 for gray mold in postharvest tomato. Int J Food Microbiol 2025; 436:111203. [PMID: 40220701 DOI: 10.1016/j.ijfoodmicro.2025.111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/17/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Botrytis cinerea is a serious fungal pathogen that causes gray mold in postharvest tomatoes, leading to voluminous economic losses during storage and transport. Trichoderma reesei T1 has demonstrated an enormous antagonistic activity against B. cinerea by 69.2 % in a dual culture assay. Both culture filtrates and ethyl acetate extract of T. reesei T1 exhibited strong inhibition on the growth, conidial germination, and germ tube elongation of the pathogen. Di(2-ethylhexyl) phthalate, constituting 74.64 % of the extract, was identified as the main component through GC-MS analysis. Gray mold incidence and severity in tomato fruits treated with the filtrates and extract were significantly reduced at all tested concentrations. For example, the disease severity was 8.6 % at 70 % from the filtrate, and 7.6 % at 10 mg mL-1 from the extract after five days in fruits inoculated with B. cinerea. Furthermore, the content of total phenolic and flavonoid compounds in tomato fruits treated with filtrates and extract of T. reesei was remarkably higher levels compared to the untreated group as well as enhancing antioxidant activity during the whole experiment. The treatment with the filtrates and extract also increased the activities of peroxidase (POD), polyphenoloxidase (PPO), and phenylalanine ammonia-lyase (PAL) in tomato fruits throughout the experiment. In conclusion, both filtrates and extract of T. reesei caused a substantial inhibitory effect on gray mold in postharvest tomato fruits. Thus, T. reesei presents a proper alternative to prevent and control tomato postharvest diseases throughout storage time.
Collapse
Affiliation(s)
- Alaa Khairy
- Plant Pathology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Abdelrahman M Elattaapy
- Agricultural Microbiology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Safaa A Yousef
- Mycology Research and Plant Disease Survey Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Mohamed S Hamada
- Pesticides Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Basma H Amin
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo 11651, Egypt
| | - Elsherbiny A Elsherbiny
- Plant Pathology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
4
|
Crumière M, de Vallée A, Rascle C, Gillet FX, Nahar S, van Kan JAL, Bruel C, Poussereau N, Choquer M. A LysM Effector Mediates Adhesion and Plant Immunity Suppression in the Necrotrophic Fungus Botrytis cinerea. J Basic Microbiol 2025; 65:e2400552. [PMID: 39655398 DOI: 10.1002/jobm.202400552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 05/04/2025]
Abstract
LysM effectors are suppressors of chitin-triggered plant immunity in biotrophic and hemibiotrophic fungi. In necrotrophic fungi, LysM effectors might induce a mechanism to suppress host immunity during the short asymptomatic phase they establish before these fungi activate plant defenses and induce host cell death leading to necrosis. Here, we characterize a secreted LysM protein from a major necrotrophic fungus, Botrytis cinerea, called BcLysM1. Transcriptional induction of BcLysM1 gene was observed in multicellular appressoria, called infection cushions, in unicellular appressoria and in the early phase of infection on bean leaves. We confirmed that BcLysM1 protein binds chitin in the fungus cell wall and protects hyphae against degradation by external chitinases. This effector is also able to suppress the chitin-induced ROS burst in Arabidopsis thaliana, suggesting sequestration of chitooligosaccharides in apoplast during infection. Moreover, contribution of BcLysM1 in infection initiation and in adhesion to bean leaf surfaces were demonstrated. Our data show for the first time that a LysM effector can play a dual role in mycelial adhesion and suppression of chitin-triggered host immunity, both of which occur during the early asymptomatic phase of infection by necrotrophic fungi.
Collapse
Affiliation(s)
- Mélanie Crumière
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Amélie de Vallée
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Christine Rascle
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - François-Xavier Gillet
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Shamsun Nahar
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Christophe Bruel
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Nathalie Poussereau
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Mathias Choquer
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| |
Collapse
|
5
|
Garg S, Kim M, Romero-Suarez D. Current advancements in fungal engineering technologies for Sustainable Development Goals. Trends Microbiol 2025; 33:285-301. [PMID: 39645481 DOI: 10.1016/j.tim.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
Fungi are emerging as key organisms in tackling global challenges related to agricultural and food productivity, environmental sustainability, and climate change. This review delves into the transformative potential of fungal genomics and metabolic engineering, two forefront fields in modern biotechnology. Fungal genomics entails the thorough analysis and manipulation of fungal genetic material to enhance desirable traits, such as pest resistance, nutrient absorption, and stress tolerance. Metabolic engineering focuses on altering the biochemical pathways within fungi to optimize the production of valuable compounds, including biofuels, pharmaceuticals, and industrial enzymes. By artificial intelligence (AI)-driven integration of genetic and metabolic engineering techniques, we can harness the unique capabilities of both filamentous and mycorrhizal fungi to develop sustainable agricultural practices, enhance soil health, and promote ecosystem restoration. This review explores the current state of research, technological advancements, and practical applications, offering insights into scalability challenges on how integrative fungal genomics and metabolic engineering can deliver innovative solutions for a sustainable future.
Collapse
Affiliation(s)
- Shilpa Garg
- Technical University of Denmark, 2800 Kongens Lyngby, Denmark; University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Minji Kim
- Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - David Romero-Suarez
- ARC Center of Excellence in Synthetic Biology, Australian Genome Foundry, and School of Natural Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
6
|
Dong B, Sun Y, Zhang J, Liu Y, Guan Z, Chen S, Chen F, Jiang J, Fang W. A glycosylphosphatidylinositol-anchored protein from Alternaria alternata triggers cell death and negatively modulates immunity responses in chrysanthemum. PLANT CELL REPORTS 2024; 43:283. [PMID: 39557715 DOI: 10.1007/s00299-024-03372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
KEY MESSAGE Glycosylphosphatidylinositol-anchored protein (GPI-AP) Aa049 works as a key pathogenic factor to assist A. alternata in infecting plants, which is associated with the reactive oxygen species (ROS) pathway. Chrysanthemum black spot disease is a common fungal disease caused by A. alternata, which has severely hindered the development of the chrysanthemum industry. However, there are few reports on pathogenic factors in A. alternata, especially regarding GPI-APs. In this study, we identified a GPI-AP, Aa049, from A. alternata. Bioinformatics predictions suggest the presence of GPI-anchored modification sites at the C-terminus of its amino acid sequence, which is relatively conserved among different Alternaria Nees. Transient overexpression of Aa049 in Nicotiana benthamiana can induce programmed cell death (PCD), and the appearance of necrosis depends on its native signal peptide and GPI-anchored sites. Compared with the wild-type strain, the morphology and growth rate of the colony and mycelia of the ΔAa049-deletion mutants do not change. Still the integrity of the cell wall is damaged, and the virulence of the strain is significantly reduced, indicating that Aa049 plays an essential role as a pathogenic factor in the infection process of A. alternata. Furthermore, the results of quantitative real-time PCR (qRT-PCR) and physiological indicators suggested that the virulence of Aa049 may be exerted through the synthesis and clearance pathways of ROS. This study reveals that GPI-APs in A. alternata can act as virulence factors to aid pathogen invasion, providing a potential target for the development of future biopesticides.
Collapse
Affiliation(s)
- Boxiao Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Yanyan Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Jing Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| | - Weimin Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
7
|
Caseys C, Muhich AJ, Vega J, Ahmed M, Hopper A, Kelly D, Kim S, Madrone M, Plaziak T, Wang M, Kliebenstein DJ. Leaf abaxial and adaxial surfaces differentially affect the interaction of Botrytis cinerea across several eudicots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1377-1391. [PMID: 39367581 DOI: 10.1111/tpj.17055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Eudicot plant species have leaves with two surfaces: the lower abaxial and the upper adaxial surface. Each surface varies in a diversity of components and molecular signals, resulting in potentially different degrees of resistance to pathogens. We tested how Botrytis cinerea, a necrotroph fungal pathogen, interacts with the two different leaf surfaces across 16 crop species and 20 Arabidopsis genotypes. This showed that the abaxial surface is generally more susceptible to the pathogen than the adaxial surface. In Arabidopsis, the differential lesion area between leaf surfaces was associated with jasmonic acid (JA) and salicylic acid (SA) signaling and differential induction of defense chemistry across the two surfaces. When infecting the adaxial surface, leaves mounted stronger defenses by producing more glucosinolates and camalexin defense compounds, partially explaining the differential susceptibility across surfaces. Testing a collection of 96 B. cinerea strains showed the genetic heterogeneity of growth patterns, with a few strains preferring the adaxial surface while most are more virulent on the abaxial surface. Overall, we show that leaf-Botrytis interactions are complex with host-specific, surface-specific, and strain-specific patterns.
Collapse
Affiliation(s)
- Celine Caseys
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Anna Jo Muhich
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
- Plant Biology Graduate Group, University of California, Davis, Davis, California, USA
| | - Josue Vega
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Maha Ahmed
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Aleshia Hopper
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - David Kelly
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Sydney Kim
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Matisse Madrone
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Taylor Plaziak
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Melissa Wang
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
- Plant Biology Graduate Group, University of California, Davis, Davis, California, USA
| |
Collapse
|
8
|
Müller T, Bronkhorst J, Müller J, Safari N, Hahn M, Sprakel J, Scheuring D. Plant infection by the necrotrophic fungus Botrytis requires actin-dependent generation of high invasive turgor pressure. THE NEW PHYTOLOGIST 2024; 244:192-201. [PMID: 39107894 DOI: 10.1111/nph.20025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/15/2024] [Indexed: 09/17/2024]
Abstract
The devastating pathogen Botrytis cinerea infects a broad spectrum of host plants, causing great socio-economic losses. The necrotrophic fungus rapidly kills plant cells, nourishing their wall and cellular contents. To this end, necrotrophs secrete a cocktail of cell wall degrading enzymes, phytotoxic proteins and metabolites. Additionally, many fungi produce specialized invasion organs that generate high invasive pressures to force their way into the plant cell. However, for most necrotrophs, including Botrytis, the biomechanics of penetration and its contribution to virulence are poorly understood. Here, we use a combination of quantitative micromechanical imaging and CRISPR-Cas-guided mutagenesis to show that Botrytis uses substantial invasive pressure, in combination with strong surface adherence, for penetration. We found that the fungus establishes a unique mechanical geometry of penetration that develops over time during penetration events, and which is actin cytoskeleton dependent. Furthermore, interference of force generation by blocking actin polymerization was found to decrease Botrytis virulence, indicating that also for necrotrophs, mechanical pressure is important in host colonization. Our results demonstrate for the first time mechanistically how a necrotrophic fungus such as Botrytis employs this 'brute force' approach, in addition to the secretion of lytic proteins and phytotoxic metabolites, to overcome plant host resistance.
Collapse
Affiliation(s)
- Tobias Müller
- Plant Pathology, Department of Biology, University of Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| | - Jochem Bronkhorst
- Green Mechanobiology, Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Jonas Müller
- Plant Pathology, Department of Biology, University of Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| | - Nassim Safari
- Plant Pathology, Department of Biology, University of Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| | - Matthias Hahn
- Plant Pathology, Department of Biology, University of Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| | - Joris Sprakel
- Green Mechanobiology, Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - David Scheuring
- Plant Pathology, Department of Biology, University of Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| |
Collapse
|
9
|
Khalifa ME, Ayllón MA, Rodriguez Coy L, Plummer KM, Gendall AR, Chooi KM, van Kan JAL, MacDiarmid RM. Mycologists and Virologists Align: Proposing Botrytis cinerea for Global Mycovirus Studies. Viruses 2024; 16:1483. [PMID: 39339959 PMCID: PMC11437445 DOI: 10.3390/v16091483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Mycoviruses are highly genetically diverse and can significantly change their fungal host's phenotype, yet they are generally under-described in genotypic and biological studies. We propose Botrytis cinerea as a model mycovirus system in which to develop a deeper understanding of mycovirus epidemiology including diversity, impact, and the associated cellular biology of the host and virus interaction. Over 100 mycoviruses have been described in this fungal host. B. cinerea is an ideal model fungus for mycovirology as it has highly tractable characteristics-it is easy to culture, has a worldwide distribution, infects a wide range of host plants, can be transformed and gene-edited, and has an existing depth of biological resources including annotated genomes, transcriptomes, and isolates with gene knockouts. Focusing on a model system for mycoviruses will enable the research community to address deep research questions that cannot be answered in a non-systematic manner. Since B. cinerea is a major plant pathogen, new insights may have immediate utility as well as creating new knowledge that complements and extends the knowledge of mycovirus interactions in other fungi, alone or with their respective plant hosts. In this review, we set out some of the critical steps required to develop B. cinerea as a model mycovirus system and how this may be used in the future.
Collapse
Affiliation(s)
- Mahmoud E Khalifa
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)/Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Lorena Rodriguez Coy
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kim M Plummer
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Anthony R Gendall
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kar Mun Chooi
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
10
|
Rahman MU, Liu X, Wang X, Fan B. Grapevine gray mold disease: infection, defense and management. HORTICULTURE RESEARCH 2024; 11:uhae182. [PMID: 39247883 PMCID: PMC11374537 DOI: 10.1093/hr/uhae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Grapevine (Vitis vinifera L.,) is among the world's leading fruit crops. The production of grapes is severely affected by many diseases including gray mold, caused by the necrotrophic fungus Botrytis cinerea. Although all Vitis species can be hosts for B. cinerea, V. vinifera are particularly susceptible. Accordingly, this disease poses a significant threat to the grape industry and causes substantial economic losses. Development of resistant V. vinifera cultivars has progressed from incidental selection by farmers, to targeted selection through the use of statistics and experimental design, to the employment of genetic and genomic data. Emerging technologies such as marker-assisted selection and genetic engineering have facilitated the development of cultivars that possess resistance to B. cinerea. A promising method involves using the CRISPR/Cas9 system to induce targeted mutagenesis and develop genetically modified non-transgenic crops. Hence, scientists are now engaged in the active pursuit of identifying genes associated with susceptibility and resistance. This review focuses on the known mechanisms of interaction between the B. cinerea pathogen and its grapevine host. It also explores innate immune systems that have evolved in V. vinifera, with the objective of facilitating the rapid development of resistant grapevine cultivars.
Collapse
Affiliation(s)
- Mati Ur Rahman
- Co-Innovation Center for Sustainable Forestry in Southern China, Department of Forest Protection, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210073, China
| | - Xia Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Department of Forest Protection, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210073, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100 Yangling, Xianyang, Shaanxi, China
| | - Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, Department of Forest Protection, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210073, China
| |
Collapse
|
11
|
Singh A, Anwer M, Israr J, Kumar A. Advances in CRISPR-Cas systems for fungal infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:83-107. [PMID: 39266189 DOI: 10.1016/bs.pmbts.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Fungi contain a wide range of bioactive secondary metabolites (SMs) that have numerous applications in various fields, including agriculture, medicine, human health, and more. It is common for genes responsible for the production of secondary metabolites (SMs) to form biosynthetic gene clusters (BGCs). The identification and analysis of numerous unexplored gene clusters (BGCs) and their corresponding substances (SMs) has been significantly facilitated by the recent advancements in genomic and genetic technologies. Nevertheless, the exploration of secondary metabolites with commercial value is impeded by a variety of challenges. The emergence of modern CRISPR/Cas technologies has brought about a paradigm shift in fungal genetic engineering, significantly streamlining the process of discovering new bioactive compounds. This study begins with an examination of fungal biosynthetic gene clusters (BGCs) and their interconnections with the secondary metabolites (SMs) they generate. Following that, a brief summary of the conventional methods employed in fungal genetic engineering is provided. This study explores various sophisticated CRISPR/Cas-based methodologies and their utilization in examining the synthesis of secondary metabolites (SMs) in fungi. The chapter provides an in-depth analysis of the limitations and obstacles encountered in CRISPR/Cas-based systems when applied to fungal genetic engineering. It also proposes promising avenues for future research to optimize the efficiency of these systems.
Collapse
Affiliation(s)
- Avinash Singh
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur, Uttar Pradesh, India
| | - Monisa Anwer
- Department of Biotechnology, Faculty of Engineering and Technology Rama University, Mandhana, Kanpur, Uttar Pradesh, India
| | - Juveriya Israr
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow, Barabanki, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology Rama University, Mandhana, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
12
|
López A, van Kan JAL, Beenen HG, Dolcet-Sanjuan R, Teixidó N, Torres R, Vilanova L. Evaluation of cell death-inducing activity of Monilinia spp. effectors in several plants using a modified TRV expression system. FRONTIERS IN PLANT SCIENCE 2024; 15:1428613. [PMID: 39220017 PMCID: PMC11362074 DOI: 10.3389/fpls.2024.1428613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Introduction Brown rot is the most important fungal disease affecting stone fruit and it is mainly caused by Monilinia fructicola, M. laxa and M. fructigena. Monilinia spp. are necrotrophic plant pathogens with the ability to induce plant cell death by the secretion of different phytotoxic molecules, including proteins or metabolites that are collectively referred to as necrotrophic effectors (NEs). Methods We exploited the genomes of M. fructicola, M. laxa and M. fructigena to identify their common group of secreted effector proteins and tested the ability of a selected set of effectors to induce cell death in Nicotiana benthamiana, Solanum lycopersicum and Prunus spp. leaves. Results Fourteen candidate effector genes of M. fructicola, which displayed high expression during infection, were transiently expressed in plants by agroinfiltration using a modified Tobacco Rattle Virus (TRV)-based expression system. Some, but not all, effectors triggered leaf discoloration or cell death in N. benthamiana and S. lycopersicum, which are non-hosts for Monilinia and in Prunus spp., which are the natural hosts. The effector MFRU_030g00190 induced cell death in almost all Prunus genotypes tested, but not in the Solanaceous plants, while MFRU_014g02060, which is an ortholog to BcNep1, caused necrosis in all plant species tested. Conclusion This method provides opportunities for screening Prunus germplasm with Monilinia effector proteins, to serve as a tool for identifying genetic loci that confer susceptibility to brown rot disease.
Collapse
Affiliation(s)
- Anselmo López
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech Lleida, Lleida, Catalonia, Spain
| | - Jan A. L. van Kan
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Henriek G. Beenen
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Ramon Dolcet-Sanjuan
- IRTA, Plant In Vitro Culture Laboratory, Fruticulture Program, Parc Agrobiotech Lleida, Lleida, Catalonia, Spain
| | - Neus Teixidó
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech Lleida, Lleida, Catalonia, Spain
| | - Rosario Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech Lleida, Lleida, Catalonia, Spain
| | - Laura Vilanova
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech Lleida, Lleida, Catalonia, Spain
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
13
|
You Y, Suraj HM, Matz L, Herrera Valderrama AL, Ruigrok P, Shi-Kunne X, Pieterse FPJ, Oostlander A, Beenen HG, Chavarro-Carrero EA, Qin S, Verstappen FWA, Kappers IF, Fleißner A, van Kan JAL. Botrytis cinerea combines four molecular strategies to tolerate membrane-permeating plant compounds and to increase virulence. Nat Commun 2024; 15:6448. [PMID: 39085234 PMCID: PMC11291775 DOI: 10.1038/s41467-024-50748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Saponins are plant secondary metabolites comprising glycosylated triterpenoids, steroids or steroidal alkaloids with a broad spectrum of toxicity to microbial pathogens and pest organisms that contribute to basal plant defense to biotic attack. Secretion of glycosyl hydrolases that enzymatically convert saponins into less toxic products was thus far the only mechanism reported to enable fungal pathogens to colonize their saponin-containing host plant(s). We studied the mechanisms that the fungus Botrytis cinerea utilizes to be tolerant to well-characterized, structurally related saponins from tomato and Digitalis purpurea. By gene expression studies, comparative genomics, enzyme assays and testing a large panel of fungal (knockout and complemented) mutants, we unraveled four distinct cellular mechanisms that participate in the mitigation of the toxic activity of these saponins and in virulence on saponin-producing host plants. The enzymatic deglycosylation that we identified is novel and unique to this fungus-saponin combination. The other three tolerance mechanisms operate in the fungal membrane and are mediated by protein families that are widely distributed in the fungal kingdom. We present a spatial and temporal model on how these mechanisms jointly confer tolerance to saponins and discuss the repercussions of these findings for other plant pathogenic fungi, as well as human pathogens.
Collapse
Affiliation(s)
- Yaohua You
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Department of Biology, Institute for Molecular Plant Physiology, RWTH University, Aachen, Germany
| | - H M Suraj
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Linda Matz
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Paul Ruigrok
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Xiaoqian Shi-Kunne
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Frank P J Pieterse
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Anne Oostlander
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henriek G Beenen
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | | | - Si Qin
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Department of Plant Pathology, University of California Davis, Davis, USA
| | | | - Iris F Kappers
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
14
|
Giraldo D, Saldarriaga C, García H, López M, González A. Genotypic and phenotypic characterization of resistance to fenhexamid, carboxin, and, prochloraz, in Botrytis cinerea isolates collected from cut roses in Colombia. Front Microbiol 2024; 15:1378597. [PMID: 39144215 PMCID: PMC11323744 DOI: 10.3389/fmicb.2024.1378597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/18/2024] [Indexed: 08/16/2024] Open
Abstract
Gray mold, caused by Botrytis sp., is a significant disease in Colombian rose crops and its control depends primarily on the intensive use of chemically synthesized fungicides. Despite the importance of this pathogen, there is limited information in Colombian floriculture about molecular taxonomy of species, fungicide resistance of populations and their genetic mechanism of resistance. In this study, we analyze 12 isolates of this fungus collected from rose-producing crops in the Department of Cundinamarca and conducted phylogenetic analysis using HSP60, G3PDH, and RPB2 gene sequences. Additionally, we realize phenotypic and genotypic characterization of resistance to the fungicides fenhexamid, carboxin, and prochloraz, evaluating the in vitro EC50 and presence of mutations of target genes of each isolate. All isolates were characterized as Botrytis cinerea in the phylogenetic analysis and presents different levels of resistance to each fungicide. These levels are related to mutations in target genes, with predominancy of L195F and L400F in the ERG27 gene to fenhexamid resistance, H272R/Y in the SDHB gene for carboxin resistance, and Y136F in the CYP51 gene for prochloraz resistance. Finally, these mutations were not related to morphological changes. Collectively, this knowledge, presented for the first time to the Colombian floriculture, contribute to a better understanding of the genetic diversity and population of B. cinerea from rose-producing crops in the department of Cundinamarca, and serve as a valuable tool for making informed decisions regarding disease management, future research, and improving crop management and sustainability in the Colombian floriculture industry.
Collapse
Affiliation(s)
- Diego Giraldo
- Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
| | - Catalina Saldarriaga
- Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
| | | | - Miguel López
- Laboratorios Diagnofruit Colombia, Cajicá, Colombia
| | - Adriana González
- Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
| |
Collapse
|
15
|
Wang H, Wang C, Wang Z, Niu X. Active Discovery of the Allosteric Inhibitor Targeting Botrytis cinerea Chitinase Based on Neural Relational Inference for Food Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16128-16139. [PMID: 39003764 DOI: 10.1021/acs.jafc.4c03023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Currently, allosteric inhibitors have emerged as an effective strategy in the development of preservatives against the drug-resistant Botrytis cinerea (B. cinerea). However, their passively driven development efficiency has proven challenging to meet the practical demands. Here, leveraging the deep learning Neural Relational Inference (NRI) framework, we actively identified an allosteric inhibitor targeting B. cinerea Chitinase, namely, 2-acetonaphthone. 2-Acetonaphthone binds to the crucial domain of Chitinase, forming the strong interaction with the allosteric sites. Throughout the interaction process, 2-acetonaphthone diminished the overall connectivity of the protein, inducing conformational changes. These findings align with the results obtained from Chitinase activity experiments, revealing an IC50 value of 67.6 μg/mL. Moreover, 2-acetonaphthone exhibited outstanding anti-B. cinerea activity by inhibiting Chitinase. In the gray mold infection model, 2-acetonaphthone significantly extended the preservation time of cherry tomatoes, positioning it as a promising preservative for fruit storage.
Collapse
Affiliation(s)
- Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Chenyang Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Ziyou Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| |
Collapse
|
16
|
Bohle F, Klaus A, Ingelfinger J, Tegethof H, Safari N, Schwarzländer M, Hochholdinger F, Hahn M, Meyer AJ, Acosta IF, Müller-Schüssele SJ. Contrasting cytosolic glutathione redox dynamics under abiotic and biotic stress in barley as revealed by the biosensor Grx1-roGFP2. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2299-2312. [PMID: 38301663 DOI: 10.1093/jxb/erae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Barley is a staple crop of major global importance and relatively resilient to a wide range of stress factors in the field. Transgenic reporter lines to investigate physiological parameters during stress treatments remain scarce. We generated and characterized transgenic homozygous barley lines (cv. Golden Promise Fast) expressing the genetically encoded biosensor Grx1-roGFP2, which indicates the redox potential of the major antioxidant glutathione in the cytosol. Our results demonstrated functionality of the sensor in living barley plants. We determined the glutathione redox potential (EGSH) of the cytosol to be in the range of -308 mV to -320 mV. EGSH was robust against a combined NaCl (150 mM) and water deficit treatment (-0.8 MPa) but responded with oxidation to infiltration with the phytotoxic secretome of the necrotrophic fungus Botrytis cinerea. The generated reporter lines are a novel resource to study biotic and abiotic stress resilience in barley, pinpointing that even severe abiotic stress leading to a growth delay does not automatically induce cytosolic EGSH oxidation, while necrotrophic pathogens can undermine this robustness.
Collapse
Affiliation(s)
- Finja Bohle
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633 Kaiserslautern, Germany
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Alina Klaus
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Julian Ingelfinger
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633 Kaiserslautern, Germany
| | - Hendrik Tegethof
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Nassim Safari
- Phytopathology, Department of Biology, RPTU Kaiserslautern-Landau, D-67633 Kaiserslautern, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143 Münster, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Matthias Hahn
- Phytopathology, Department of Biology, RPTU Kaiserslautern-Landau, D-67633 Kaiserslautern, Germany
| | - Andreas J Meyer
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Ivan F Acosta
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | | |
Collapse
|
17
|
Wang P, Wang Y, Hu Y, Chen Z, Han L, Zhu W, Tian B, Fang A, Yang Y, Bi C, Yu Y. Plant hypersensitive induced reaction protein facilitates cell death induced by secreted xylanase associated with the pathogenicity of Sclerotinia sclerotiorum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:90-105. [PMID: 38113332 DOI: 10.1111/tpj.16593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Necrotrophic fungal plant pathogens employ cell death-inducing proteins (CDIPs) to facilitate infection. However, the specific CDIPs and their mechanisms in pathogenic processes of Sclerotinia sclerotiorum, a necrotrophic pathogen that causes disease in many economically important crop species, have not yet been clearly defined. This study found that S. sclerotiorum secretes SsXyl2, a glycosyl hydrolase family 11 xylanase, at the late stage of hyphal infection. SsXyl2 targets the apoplast of host plants to induce cell death independent of xylanase activity. Targeted disruption of SsXyl2 leads to serious impairment of virulence, which can be recovered by a catalytically impaired SsXyl2 variant, thus supporting the critical role of cell death-inducing activity of SsXyl2 in establishing successful colonization of S. sclerotiorum. Remarkably, infection by S. sclerotiorum induces the accumulation of Nicotiana benthamiana hypersensitive-induced reaction protein 2 (NbHIR2). NbHIR2 interacts with SsXyl2 at the plasma membrane and promotes its localization to the cell membrane and cell death-inducing activity. Furthermore, gene-edited mutants of NbHIR2 displayed increased resistance to the wild-type strain of S. sclerotiorum, but not to the SsXyl2-deletion strain. Hence, SsXyl2 acts as a CDIP that manipulates host cell physiology by interacting with hypersensitive induced reaction protein to facilitate colonization by S. sclerotiorum. These findings provide valuable insights into the pathogenic mechanisms of CDIPs in necrotrophic pathogens and lead to a more promising approach for breeding resistant crops against S. sclerotiorum.
Collapse
Affiliation(s)
- Pei Wang
- College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Yabo Wang
- College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Yawen Hu
- College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Ziyang Chen
- College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Lili Han
- College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Wenjun Zhu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing, 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing, 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing, 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing, 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing, 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|
18
|
Zhang X, Zhang Z, Chen T, Chen Y, Li B, Tian S. Characterization of two SGNH family cell death-inducing proteins from the horticulturally important fungal pathogen Botrytis cinerea based on the optimized prokaryotic expression system. MOLECULAR HORTICULTURE 2024; 4:9. [PMID: 38449027 PMCID: PMC10919021 DOI: 10.1186/s43897-024-00086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Botrytis cinerea is one of the most destructive phytopathogenic fungi, causing significant losses to horticultural crops. As a necrotrophic fungus, B. cinerea obtains nutrients by killing host cells. Secreted cell death-inducing proteins (CDIPs) play a crucial role in necrotrophic infection; however, only a limited number have been reported. For high-throughput CDIP screening, we optimized the prokaryotic expression system and compared its efficiency with other commonly used protein expression systems. The optimized prokaryotic expression system showed superior effectiveness and efficiency and was selected for subsequent CDIP screening. The screening system verified fifty-five candidate proteins and identified two novel SGNH family CDIPs: BcRAE and BcFAT. BcRAE and BcFAT exhibited high expression levels throughout the infection process. Site-directed mutagenesis targeting conserved Ser residues abolished the cell death-inducing activity of both BcRAE and BcFAT. Moreover, the transient expression of BcRAE and BcFAT in plants enhanced plant resistance against B. cinerea without inducing cell death, independent of their enzymatic activities. Our results suggest a high-efficiency screening system for high-throughput CDIP screening and provide new targets for further study of B. cinerea-plant interactions.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
de Oliveira Silva A, Fernando Devasahayam BR, Aliyeva-Schnorr L, Glienke C, Deising HB. The serine-threonine protein kinase Snf1 orchestrates the expression of plant cell wall-degrading enzymes and is required for full virulence of the maize pathogen Colletotrichum graminicola. Fungal Genet Biol 2024; 171:103876. [PMID: 38367799 DOI: 10.1016/j.fgb.2024.103876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Colletotrichum graminicola, the causal agent of maize leaf anthracnose and stalk rot, differentiates a pressurized infection cell called an appressorium in order to invade the epidermal cell, and subsequently forms biotrophic and necrotrophic hyphae to colonize the host tissue. While the role of force in appressorial penetration is established (Bechinger et al., 1999), the involvement of cell wall-degrading enzymes (CWDEs) in this process and in tissue colonization is poorly understood, due to the enormous number and functional redundancy of these enzymes. The serine/threonine protein kinase gene SNF1 identified in Sucrose Non-Fermenting yeast mutants mediates de-repression of catabolite-repressed genes, including many genes encoding CWDEs. In this study, we identified and functionally characterized the SNF1 homolog of C. graminicola. Δsnf1 mutants showed reduced vegetative growth and asexual sporulation rates on media containing polymeric carbon sources. Microscopy revealed reduced efficacies in appressorial penetration of cuticle and epidermal cell wall, and formation of unusual medusa-like biotrophic hyphae by Δsnf1 mutants. Severe and moderate virulence reductions were observed on intact and wounded leaves, respectively. Employing RNA-sequencing we show for the first time that more than 2,500 genes are directly or indirectly controlled by Snf1 in necrotrophic hyphae of a plant pathogenic fungus, many of which encode xylan- and cellulose-degrading enzymes. The data presented show that Snf1 is a global regulator of gene expression and is required for full virulence.
Collapse
Affiliation(s)
- Alan de Oliveira Silva
- Chair of Phytopathology and Plant Protection, Institute for Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Germany; Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Bennet Rohan Fernando Devasahayam
- Chair of Phytopathology and Plant Protection, Institute for Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany
| | - Lala Aliyeva-Schnorr
- Chair of Phytopathology and Plant Protection, Institute for Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Germany
| | - Chirlei Glienke
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Holger B Deising
- Chair of Phytopathology and Plant Protection, Institute for Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany.
| |
Collapse
|
20
|
Tsalgatidou PC, Boutsika A, Papageorgiou AG, Dalianis A, Michaliou M, Chatzidimopoulos M, Delis C, Tsitsigiannis DI, Paplomatas E, Zambounis A. Global Transcriptome Analysis of the Peach ( Prunus persica) in the Interaction System of Fruit-Chitosan- Monilinia fructicola. PLANTS (BASEL, SWITZERLAND) 2024; 13:567. [PMID: 38475414 DOI: 10.3390/plants13050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
The peach (Prunus persica L.) is one of the most important stone-fruit crops worldwide. Nevertheless, successful peach fruit production is seriously reduced by losses due to Monilinia fructicola the causal agent of brown rot. Chitosan has a broad spectrum of antimicrobial properties and may also act as an elicitor that activate defense responses in plants. As little is known about the elicitation potential of chitosan in peach fruits and its impact at their transcriptional-level profiles, the aim of this study was to uncover using RNA-seq the induced responses regulated by the action of chitosan in fruit-chitosan-M. fructicola interaction. Samples were obtained from fruits treated with chitosan or inoculated with M. fructicola, as well from fruits pre-treated with chitosan and thereafter inoculated with the fungus. Chitosan was found to delay the postharvest decay of fruits, and expression profiles showed that its defense-priming effects were mainly evident after the pathogen challenge, driven particularly by modulations of differentially expressed genes (DEGs) related to cell-wall modifications, pathogen perception, and signal transduction, preventing the spread of fungus. In contrast, as the compatible interaction of fruits with M. fructicola was challenged, a shift towards defense responses was triggered with a delay, which was insufficient to limit fungal expansion, whereas DEGs involved in particular processes have facilitated early pathogen colonization. Physiological indicators of peach fruits were also measured. Additionally, expression profiles of particular M. fructicola genes highlight the direct antimicrobial activity of chitosan against the fungus. Overall, the results clarify the possible mechanisms of chitosan-mediated tolerance to M. fructicola and set new foundations for the potential employment of chitosan in the control of brown rot in peaches.
Collapse
Affiliation(s)
- Polina C Tsalgatidou
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Anastasia Boutsika
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, 57001 Thessaloniki, Greece
| | - Anastasia G Papageorgiou
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Andreas Dalianis
- Laboratory of Vegetable Crops, Institute of Olive Tree, Subtropical Crops and Viticulture, ELGO-DEMETER, 71307 Heraklion, Greece
| | - Maria Michaliou
- Laboratory of Vegetable Crops, Institute of Olive Tree, Subtropical Crops and Viticulture, ELGO-DEMETER, 71307 Heraklion, Greece
| | | | - Costas Delis
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Dimitrios I Tsitsigiannis
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Epaminondas Paplomatas
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Antonios Zambounis
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, 57001 Thessaloniki, Greece
| |
Collapse
|
21
|
Singh R, Caseys C, Kliebenstein DJ. Genetic and molecular landscapes of the generalist phytopathogen Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2024; 25:e13404. [PMID: 38037862 PMCID: PMC10788480 DOI: 10.1111/mpp.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Botrytis cinerea Pers. Fr. (teleomorph: Botryotinia fuckeliana) is a necrotrophic fungal pathogen that attacks a wide range of plants. This updated pathogen profile explores the extensive genetic diversity of B. cinerea, highlights the progress in genome sequencing, and provides current knowledge of genetic and molecular mechanisms employed by the fungus to attack its hosts. In addition, we also discuss recent innovative strategies to combat B. cinerea. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, subphylum: Pezizomycotina, class: Leotiomycetes, order: Helotiales, family: Sclerotiniaceae, genus: Botrytis, species: cinerea. HOST RANGE B. cinerea infects almost all of the plant groups (angiosperms, gymnosperms, pteridophytes, and bryophytes). To date, 1606 plant species have been identified as hosts of B. cinerea. GENETIC DIVERSITY This polyphagous necrotroph has extensive genetic diversity at all population levels shaped by climate, geography, and plant host variation. PATHOGENICITY Genetic architecture of virulence and host specificity is polygenic using multiple weapons to target hosts, including secretory proteins, complex signal transduction pathways, metabolites, and mobile small RNA. DISEASE CONTROL STRATEGIES Efforts to control B. cinerea, being a high-diversity generalist pathogen, are complicated. However, integrated disease management strategies that combine cultural practices, chemical and biological controls, and the use of appropriate crop varieties will lessen yield losses. Recently, studies conducted worldwide have explored the potential of small RNA as an efficient and environmentally friendly approach for combating grey mould. However, additional research is necessary, especially on risk assessment and regulatory frameworks, to fully harness the potential of this technology.
Collapse
Affiliation(s)
- Ritu Singh
- Department of Plant ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | - Celine Caseys
- Department of Plant ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | | |
Collapse
|
22
|
Liang Y, Bi K, Sharon A. The Botrytis cinerea transglycosylase BcCrh4 is a cell death-inducing protein with cell death-promoting and -suppressing domains. PLANT, CELL & ENVIRONMENT 2024; 47:354-371. [PMID: 37846876 DOI: 10.1111/pce.14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Botrytis cinerea is a necrotrophic fungal plant pathogen that causes grey mould and rot diseases in many crops. Here, we show that the B. cinerea BcCrh4 transglycosylase is secreted during plant infection and induces plant cell death and pattern-triggered immunity (PTI), fulfilling the characteristics of a cell death-inducing protein (CDIP). The CDIP activity of BcCrh4 is independent of the transglycosylase enzymatic activity, it takes place in the apoplast and does not involve the receptor-like kinases BAK1 and SOBIR1. During saprophytic growth, BcCrh4 is localized in the endoplasmic reticulum and in vacuoles, but during plant infection, it accumulates in infection cushions (ICs) and is then secreted to the apoplast. Two domains within the BcCrh4 protein determine the CDIP activities: a 20aa domain at the N' end activates intense cell death and PTI, while a stretch of 52aa in the middle of the protein induces a weaker response and suppresses the activity of the 20aa N' domain. Deletion of bccrh4 affected fungal development and IC formation in particular, resulting in reduced virulence. Collectively, our findings demonstrate that BcCrh4 is required for fungal development and pathogenicity, and hint at a dual mechanism that balances the virulence activity of this, and potentially other CDIPs.
Collapse
Affiliation(s)
- Yong Liang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Kai Bi
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan City, Hubei Province, China
| | - Amir Sharon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
Cheng AP, Lederer B, Oberkofler L, Huang L, Johnson NR, Platten F, Dunker F, Tisserant C, Weiberg A. A fungal RNA-dependent RNA polymerase is a novel player in plant infection and cross-kingdom RNA interference. PLoS Pathog 2023; 19:e1011885. [PMID: 38117848 PMCID: PMC10766185 DOI: 10.1371/journal.ppat.1011885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/04/2024] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
Small RNAs act as fungal pathogen effectors that silence host target genes to promote infection, a virulence mechanism termed cross-kingdom RNA interference (RNAi). The essential pathogen factors of cross-kingdom small RNA production are largely unknown. We here characterized the RNA-dependent RNA polymerase (RDR)1 in the fungal plant pathogen Botrytis cinerea that is required for pathogenicity and cross-kingdom RNAi. B. cinerea bcrdr1 knockout (ko) mutants exhibited reduced pathogenicity and loss of cross-kingdom small RNAs. We developed a "switch-on" GFP reporter to study cross-kingdom RNAi in real-time within the living plant tissue which highlighted that bcrdr1 ko mutants were compromised in cross-kingdom RNAi. Moreover, blocking seven pathogen cross-kingdom small RNAs by expressing a short-tandem target mimic RNA in transgenic Arabidopsis thaliana led to reduced infection levels of the fungal pathogen B. cinerea and the oomycete pathogen Hyaloperonospora arabidopsidis. These results demonstrate that cross-kingdom RNAi is significant to promote host infection and making pathogen small RNAs an effective target for crop protection.
Collapse
Affiliation(s)
- An-Po Cheng
- Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Bernhard Lederer
- Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Lorenz Oberkofler
- Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Lihong Huang
- Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Nathan R. Johnson
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Fabian Platten
- Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Florian Dunker
- Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Constance Tisserant
- Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Arne Weiberg
- Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Martinsried, Germany
| |
Collapse
|
24
|
Derbyshire MC, Raffaele S. Till death do us pair: Co-evolution of plant-necrotroph interactions. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102457. [PMID: 37852141 DOI: 10.1016/j.pbi.2023.102457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 10/20/2023]
Abstract
Plants use programmed cell death as a potent defense response against biotrophic pathogens that require living host cells to thrive. However, cell death can promote infection by necrotrophic pathogens. This discrepancy creates specific co-evolutionary dynamics in the interaction between plants and necrotrophs. Necrotrophic pathogens produce diverse cell death-inducing effectors that act redundantly on several plant targets and sometimes suppress plant immune responses as an additional function. Plants use surface receptors that recognize necrotrophic effectors to increase quantitative disease resistance, some of which evolved independently in several plant lineages. Co-evolution has shaped molecular mechanisms involved in plant-necrotroph interactions into robust systems, relying on degenerate and multifunctional modules, general-purpose components, and compartmentalized functioning.
Collapse
Affiliation(s)
- Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Sylvain Raffaele
- Université de Toulouse, INRAE, CNRS, Laboratoire des Interactions Plantes Micro-organismes Environnement (LIPME), 31326, Castanet-Tolosan, France.
| |
Collapse
|
25
|
Ji D, Liu W, Cui X, Liu K, Liu Y, Huang X, Li B, Qin G, Chen T, Tian S. A receptor-like kinase SlFERL mediates immune responses of tomato to Botrytis cinerea by recognizing BcPG1 and fine-tuning MAPK signaling. THE NEW PHYTOLOGIST 2023; 240:1189-1201. [PMID: 37596704 DOI: 10.1111/nph.19210] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/26/2023] [Indexed: 08/20/2023]
Abstract
FERONIA (FER) is a receptor-like kinase showing versatile functions during plant growth, development, and responses to environmental stimuli. However, its functions during the interaction between fruit and necrotrophic fungal pathogens are still unclear. Combining reverse genetic approaches, physiological assays, co-immunoprecipitation, protein phosphorylation identification, and site-directed mutagenesis, we reported a tomato FER homolog SlFERL (Solanum lycopersicum FERONIA Like) involved in the immune responses to Botrytis cinerea invasion. The results indicated that SlFERL extracellular domain recognized and interacted with the secreted virulence protein BcPG1 from B. cinerea, further revealed that SlFERL triggered downstream signaling by phosphorylating SlMAP3K18 at Thr45, Ser49, Ser76, and Ser135. Moreover, we verified that SlMAP2K2 and SlMAP2K4 synergistically contributed to immune response of tomato to B. cinerea, in which SlFERL-SlMAP3K18 module substantially modulated protein level and/or kinase activity of SlMAP2K2/SlMAP2K4. These findings reveal a new pattern-triggered immune pathway, indicating that SlFERL participates in the immune responses to B. cinerea invasion via recognizing BcPG1 and fine-tuning MAPK signaling.
Collapse
Affiliation(s)
- Dongchao Ji
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wei Liu
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xiaomin Cui
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kui Liu
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yuhan Liu
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xinhua Huang
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| |
Collapse
|
26
|
Koenig M, Moser D, Leusner J, Depotter JRL, Doehlemann G, Misas Villamil J. Maize Phytocytokines Modulate Pro-Survival Host Responses and Pathogen Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:592-604. [PMID: 37102770 DOI: 10.1094/mpmi-01-23-0005-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Phytocytokines are signaling peptides that alert plant cells of danger. However, the downstream responses triggered by phytocytokines and their effect on plant survival are still largely unknown. Here, we have identified three biologically active maize orthologues of phytocytokines previously described in other plants. The maize phytocytokines show common features with microbe-associated molecular patterns (MAMPs), including the induction of immune-related genes and activation of papain-like cysteine proteases. In contrast to MAMPs, phytocytokines do not promote cell death in the presence of wounding. In infection assays with two fungal pathogens, we found that phytocytokines affect the development of disease symptoms, likely due to the activation of phytohormonal pathways. Collectively, our results show that phytocytokines and MAMPs trigger unique and antagonistic features of immunity. We propose a model in which phytocytokines activate immune responses partially similar to MAMPs but, in contrast to microbial signals, they act as danger and survival molecules to the surrounding cells. Future studies will focus on the components determining the divergence of signaling outputs upon phytocytokine activation. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Maurice Koenig
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Daniel Moser
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Julian Leusner
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | | | - Gunther Doehlemann
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Johana Misas Villamil
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
27
|
Zhang M, Trushina NK, Lang T, Hahn M, Pasmanik-Chor M, Sharon A. Serine peptidases and increased amounts of soluble proteins contribute to heat priming of the plant pathogenic fungus Botrytis cinerea. mBio 2023; 14:e0107723. [PMID: 37409814 PMCID: PMC10470532 DOI: 10.1128/mbio.01077-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 07/07/2023] Open
Abstract
Botrytis cinerea causes gray mold disease in leading crop plants. The disease develops only at cool temperatures, but the fungus remains viable in warm climates and can survive periods of extreme heat. We discovered a strong heat priming effect in which the exposure of B. cinerea to moderately high temperatures greatly improves its ability to cope with subsequent, potentially lethal temperature conditions. We showed that priming promotes protein solubility during heat stress and discovered a group of priming-induced serine-type peptidases. Several lines of evidence, including transcriptomics, proteomics, pharmacology, and mutagenesis data, link these peptidases to the B. cinerea priming response, highlighting their important roles in regulating priming-mediated heat adaptation. By imposing a series of sub-lethal temperature pulses that subverted the priming effect, we managed to eliminate the fungus and prevent disease development, demonstrating the potential for developing temperature-based plant protection methods by targeting the fungal heat priming response. IMPORTANCE Priming is a general and important stress adaptation mechanism. Our work highlights the importance of priming in fungal heat adaptation, reveals novel regulators and aspects of heat adaptation mechanisms, and demonstrates the potential of affecting microorganisms, including pathogens through manipulations of the heat adaptation response.
Collapse
Affiliation(s)
- Mingzhe Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Naomi Kagan Trushina
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Tabea Lang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Department of Biology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Matthias Hahn
- Department of Biology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Amir Sharon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
28
|
Derbyshire MC, Raffaele S. Surface frustration re-patterning underlies the structural landscape and evolvability of fungal orphan candidate effectors. Nat Commun 2023; 14:5244. [PMID: 37640704 PMCID: PMC10462633 DOI: 10.1038/s41467-023-40949-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Pathogens secrete effector proteins to subvert host physiology and cause disease. Effectors are engaged in a molecular arms race with the host resulting in conflicting evolutionary constraints to manipulate host cells without triggering immune responses. The molecular mechanisms allowing effectors to be at the same time robust and evolvable remain largely enigmatic. Here, we show that 62 conserved structure-related families encompass the majority of fungal orphan effector candidates in the Pezizomycotina subphylum. These effectors diversified through changes in patterns of thermodynamic frustration at surface residues. The underlying mutations tended to increase the robustness of the overall effector protein structure while switching potential binding interfaces. This mechanism could explain how conserved effector families maintained biological activity over long evolutionary timespans in different host environments and provides a model for the emergence of sequence-unrelated effector families with conserved structures.
Collapse
Affiliation(s)
- Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes Micro-organismes Environnement (LIPME), INRAE, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France.
| |
Collapse
|
29
|
Krishnan P, Caseys C, Soltis N, Zhang W, Burow M, Kliebenstein DJ. Polygenic pathogen networks influence transcriptional plasticity in the Arabidopsis-Botrytis pathosystem. Genetics 2023; 224:iyad099. [PMID: 37216906 PMCID: PMC10789313 DOI: 10.1093/genetics/iyad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Bidirectional flow of information shapes the outcome of the host-pathogen interactions and depends on the genetics of each organism. Recent work has begun to use co-transcriptomic studies to shed light on this bidirectional flow, but it is unclear how plastic the co-transcriptome is in response to genetic variation in both the host and pathogen. To study co-transcriptome plasticity, we conducted transcriptomics using natural genetic variation in the pathogen, Botrytis cinerea, and large-effect genetic variation abolishing defense signaling pathways within the host, Arabidopsis thaliana. We show that genetic variation in the pathogen has a greater influence on the co-transcriptome than mutations that abolish defense signaling pathways in the host. Genome-wide association mapping using the pathogens' genetic variation and both organisms' transcriptomes allowed an assessment of how the pathogen modulates plasticity in response to the host. This showed that the differences in both organism's responses were linked to trans-expression quantitative trait loci (eQTL) hotspots within the pathogen's genome. These hotspots control gene sets in either the host or pathogen and show differential allele sensitivity to the host's genetic variation rather than qualitative host specificity. Interestingly, nearly all the trans-eQTL hotspots were unique to the host or pathogen transcriptomes. In this system of differential plasticity, the pathogen mediates the shift in the co-transcriptome more than the host.
Collapse
Affiliation(s)
- Parvathy Krishnan
- DynaMo Center of Excellence, University of Copenhagen, Copenhagen DL-1165Denmark
| | - Celine Caseys
- Department of Plant Sciences, University of California Davis, Davis, CA 95616USA
| | - Nik Soltis
- Department of Plant Sciences, University of California Davis, Davis, CA 95616USA
| | - Wei Zhang
- Department of Botany & Plant Sciences, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Meike Burow
- DynaMo Center of Excellence, University of Copenhagen, Copenhagen DL-1165Denmark
| | - Daniel J Kliebenstein
- DynaMo Center of Excellence, University of Copenhagen, Copenhagen DL-1165Denmark
- Department of Plant Sciences, University of California Davis, Davis, CA 95616USA
| |
Collapse
|
30
|
Yang Y, Steidele CE, Rössner C, Löffelhardt B, Kolb D, Leisen T, Zhang W, Ludwig C, Felix G, Seidl MF, Becker A, Nürnberger T, Hahn M, Gust B, Gross H, Hückelhoven R, Gust AA. Convergent evolution of plant pattern recognition receptors sensing cysteine-rich patterns from three microbial kingdoms. Nat Commun 2023; 14:3621. [PMID: 37336953 DOI: 10.1038/s41467-023-39208-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
The Arabidopsis thaliana Receptor-Like Protein RLP30 contributes to immunity against the fungal pathogen Sclerotinia sclerotiorum. Here we identify the RLP30-ligand as a small cysteine-rich protein (SCP) that occurs in many fungi and oomycetes and is also recognized by the Nicotiana benthamiana RLP RE02. However, RLP30 and RE02 share little sequence similarity and respond to different parts of the native/folded protein. Moreover, some Brassicaceae other than Arabidopsis also respond to a linear SCP peptide instead of the folded protein, suggesting that SCP is an eminent immune target that led to the convergent evolution of distinct immune receptors in plants. Surprisingly, RLP30 shows a second ligand specificity for a SCP-nonhomologous protein secreted by bacterial Pseudomonads. RLP30 expression in N. tabacum results in quantitatively lower susceptibility to bacterial, fungal and oomycete pathogens, thus demonstrating that detection of immunogenic patterns by Arabidopsis RLP30 is involved in defense against pathogens from three microbial kingdoms.
Collapse
Affiliation(s)
- Yuankun Yang
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany.
| | - Christina E Steidele
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
- Chair of Phytopathology, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Clemens Rössner
- Institute of Botany, Developmental Biology of Plants, Justus-Liebig-University Gießen, Gießen, Germany
| | - Birgit Löffelhardt
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Dagmar Kolb
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Thomas Leisen
- Department of Biology, Phytopathology group, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Weiguo Zhang
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
- Faculty of Life Science, Northwest University, Xi'an, China
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Georg Felix
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
| | - Annette Becker
- Institute of Botany, Developmental Biology of Plants, Justus-Liebig-University Gießen, Gießen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Matthias Hahn
- Department of Biology, Phytopathology group, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Bertolt Gust
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Andrea A Gust
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany.
| |
Collapse
|
31
|
Hu Y, Gong H, Lu Z, Zhang P, Zheng S, Wang J, Tian B, Fang A, Yang Y, Bi C, Cheng J, Yu Y. Variable Tandem Glycine-Rich Repeats Contribute to Cell Death-Inducing Activity of a Glycosylphosphatidylinositol-Anchored Cell Wall Protein That Is Associated with the Pathogenicity of Sclerotinia sclerotiorum. Microbiol Spectr 2023; 11:e0098623. [PMID: 37140432 PMCID: PMC10269696 DOI: 10.1128/spectrum.00986-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in eukaryotes. GPI-anchored proteins are widely distributed in fungal plant pathogens, but the specific roles of the GPI-anchored proteins in the pathogenicity of Sclerotinia sclerotiorum, a devastating necrotrophic plant pathogen with a worldwide distribution, remain largely unknown. This research addresses SsGSR1, which encodes an S. sclerotiorum glycine- and serine-rich protein named SsGsr1 with an N-terminal secretory signal and a C-terminal GPI-anchor signal. SsGsr1 is located at the cell wall of hyphae, and deletion of SsGSR1 leads to abnormal cell wall architecture and impaired cell wall integrity of hyphae. The transcription levels of SsGSR1 were maximal in the initial stage of infection, and SsGSR1-deletion strains showed impaired virulence in multiple hosts, indicating that SsGSR1 is critical for the pathogenicity. Interestingly, SsGsr1 targeted the apoplast of host plants to induce cell death that relies on the glycine-rich 11-amino-acid repeats arranged in tandem. The homologs of SsGsr1 in Sclerotinia, Botrytis, and Monilinia species contain fewer repeat units and have lost their cell death activity. Moreover, allelic variants of SsGSR1 exist in field isolates of S. sclerotiorum from rapeseed, and one of the variants lacking one repeat unit results in a protein that exhibits loss of function relative to the cell death-inducing activity and the virulence of S. sclerotiorum. Taken together, our results demonstrate that a variation in tandem repeats provides the functional diversity of GPI-anchored cell wall protein that, in S. sclerotiorum and other necrotrophic pathogens, allows successful colonization of the host plants. IMPORTANCE Sclerotinia sclerotiorum is an economically important necrotrophic plant pathogen and mainly applies cell wall-degrading enzymes and oxalic acid to kill plant cells before colonization. In this research, we characterized a glycosylphosphatidylinositol (GPI)-anchored cell wall protein named SsGsr1, which is critical for the cell wall architecture and the pathogenicity of S. sclerotiorum. Additionally, SsGsr1 induces rapid cell death of host plants that is dependent on glycine-rich tandem repeats. Interestingly, the number of repeat units varies among homologs and alleles of SsGsr1, and such a variation creates alterations in the cell death-inducing activity and the role in pathogenicity. This work advances our understanding of the variation of tandem repeats in accelerating the evolution of a GPI-anchored cell wall protein associated with the pathogenicity of necrotrophic fungal pathogens and prepares the way toward a fuller understanding of the interaction between S. sclerotiorum and host plants.
Collapse
Affiliation(s)
- Yawen Hu
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Hang Gong
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Ziyang Lu
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Pengpeng Zhang
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Sinian Zheng
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Jing Wang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan City, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| |
Collapse
|
32
|
Bulasag AS, Camagna M, Kuroyanagi T, Ashida A, Ito K, Tanaka A, Sato I, Chiba S, Ojika M, Takemoto D. Botrytis cinerea tolerates phytoalexins produced by Solanaceae and Fabaceae plants through an efflux transporter BcatrB and metabolizing enzymes. FRONTIERS IN PLANT SCIENCE 2023; 14:1177060. [PMID: 37332725 PMCID: PMC10273015 DOI: 10.3389/fpls.2023.1177060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
Botrytis cinerea, a plant pathogenic fungus with a wide host range, has reduced sensitivity to fungicides as well as phytoalexins, threatening cultivation of economically important fruits and vegetable crops worldwide. B. cinerea tolerates a wide array of phytoalexins, through efflux and/or enzymatic detoxification. Previously, we provided evidence that a distinctive set of genes were induced in B. cinerea when treated with different phytoalexins such as rishitin (produced by tomato and potato), capsidiol (tobacco and bell pepper) and resveratrol (grape and blueberry). In this study, we focused on the functional analyses of B. cinerea genes implicated in rishitin tolerance. LC/MS profiling revealed that B. cinerea can metabolize/detoxify rishitin into at least 4 oxidized forms. Heterologous expression of Bcin08g04910 and Bcin16g01490, two B. cinerea oxidoreductases upregulated by rishitin, in a plant symbiotic fungus Epichloë festucae revealed that these rishitin-induced enzymes are involved in the oxidation of rishitin. Expression of BcatrB, encoding an exporter of structurally unrelated phytoalexins and fungicides, was significantly upregulated by rishitin but not by capsidiol and was thus expected to be involved in the rishitin tolerance. Conidia of BcatrB KO (ΔbcatrB) showed enhanced sensitivity to rishitin, but not to capsidiol, despite their structural similarity. ΔbcatrB showed reduced virulence on tomato, but maintained full virulence on bell pepper, indicating that B. cinerea activates BcatrB by recognizing appropriate phytoalexins to utilize it in tolerance. Surveying 26 plant species across 13 families revealed that the BcatrB promoter is mainly activated during the infection of B. cinerea in plants belonging to the Solanaceae, Fabaceae and Brassicaceae. The BcatrB promoter was also activated by in vitro treatments of phytoalexins produced by members of these plant families, namely rishitin (Solanaceae), medicarpin and glyceollin (Fabaceae), as well as camalexin and brassinin (Brassicaceae). Consistently, ΔbcatrB showed reduced virulence on red clover, which produces medicarpin. These results suggest that B. cinerea distinguishes phytoalexins and induces differential expression of appropriate genes during the infection. Likewise, BcatrB plays a critical role in the strategy employed by B. cinerea to bypass the plant innate immune responses in a wide variety of important crops belonging to the Solanaceae, Brassicaceae and Fabaceae.
Collapse
Affiliation(s)
- Abriel Salaria Bulasag
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- College of Arts and Sciences, University of the Philippines Los Baños, Los Baños, Laguna, Philippines
| | - Maurizio Camagna
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Teruhiko Kuroyanagi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Akira Ashida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kento Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ikuo Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Makoto Ojika
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
33
|
Zhu C, Tang Y, Ren D, Ren W, Xue Y, Suthaparan A, Li J, Wang Y, Xu L, Zhu P. Propionate poses antivirulence activity against Botrytis cinerea via regulating its metabolism, infection cushion development and overall pathogenic factors. Food Chem 2023; 410:135443. [PMID: 36680882 DOI: 10.1016/j.foodchem.2023.135443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/10/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Botrytis cinerea is a devastating pathogen causing gray mold in fruits and vegetables if not properly managed. Although the mechanisms remain unclear, we previously revealed that the safe food additive calcium propionate (CP) could suppress gray mold development on grapes. The present study reports that sub-lethal dose of CP (0.2 % w/v) could allow growth with substantial reprograming the genome-wide transcripts of B. cinerea. Upon CP treatment, the genes related to fungal methylcitrate cycle (responsible for catabolizing propionate) were upregulated. Meanwhile, CP treatment broadly downregulated the transcript levels of the virulence factors. Further comparative analysis of multiple transcriptomes confirmed that the CP treatment largely suppressed the expression of genes related to development and function of infection cushion. Collectively, these findings indicate that CP can not only reduce fungal growth, but also abrogate fungal virulence factors. Thus, CP has significant potential for the control of gray mold in fruit crops.
Collapse
Affiliation(s)
- Chuanxi Zhu
- School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Yan Tang
- School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Dandan Ren
- School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Weiheng Ren
- School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Yongjun Xue
- School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Aruppillai Suthaparan
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Jufen Li
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, 201106 Shanghai, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Ling Xu
- School of Life Sciences, East China Normal University, 200241 Shanghai, China.
| | - Pinkuan Zhu
- School of Life Sciences, East China Normal University, 200241 Shanghai, China.
| |
Collapse
|
34
|
Liu D, Lun Z, Liu N, Yuan G, Wang X, Li S, Peng YL, Lu X. Identification and Characterization of Novel Candidate Effector Proteins from Magnaporthe oryzae. J Fungi (Basel) 2023; 9:jof9050574. [PMID: 37233285 DOI: 10.3390/jof9050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
The fungal pathogen Magnaporthe oryzae secretes a large number of effector proteins to facilitate infection, most of which are not functionally characterized. We selected potential candidate effector genes from the genome of M. oryzae, field isolate P131, and cloned 69 putative effector genes for functional screening. Utilizing a rice protoplast transient expression system, we identified that four candidate effector genes, GAS1, BAS2, MoCEP1 and MoCEP2 induced cell death in rice. In particular, MoCEP2 also induced cell death in Nicotiana benthamiana leaves through Agrobacteria-mediated transient gene expression. We further identified that six candidate effector genes, MoCEP3 to MoCEP8, suppress flg22-induced ROS burst in N. benthamiana leaves upon transient expression. These effector genes were highly expressed at a different stage after M. oryzae infection. We successfully knocked out five genes in M. oryzae, MoCEP1, MoCEP2, MoCEP3, MoCEP5 and MoCEP7. The virulence tests suggested that the deletion mutants of MoCEP2, MoCEP3 and MoCEP5 showed reduced virulence on rice and barley plants. Therefore, those genes play an important role in pathogenicity.
Collapse
Affiliation(s)
- Di Liu
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Zhiqin Lun
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Ning Liu
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Guixin Yuan
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Xingbin Wang
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Shanshan Li
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - You-Liang Peng
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Xunli Lu
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| |
Collapse
|
35
|
Pérez-Lara G, Olivares-Yañez C, van Bakel H, Larrondo LF, Canessa P. Genome-Wide Characterization of Light-Regulated Gene Expression in Botrytis cinerea Reveals Underlying Complex Photobiology. Int J Mol Sci 2023; 24:8705. [PMID: 37240051 PMCID: PMC10218500 DOI: 10.3390/ijms24108705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Botrytis cinerea is a necrotrophic fungus characterized mainly by its wide host range of infected plants. The deletion of the white-collar-1 gene (bcwcl1), which encodes for a blue-light receptor/transcription factor, causes a decrease in virulence, particularly when assays are conducted in the presence of light or photocycles. However, despite ample characterization, the extent of the light-modulated transcriptional responses regulated by BcWCL1 remains unknown. In this study, pathogen and pathogen:host RNA-seq analyses, conducted during non-infective in vitro plate growth and when infecting Arabidopsis thaliana leaves, respectively, informed on the global gene expression patterns after a 60 min light pulse on the wild-type B05.10 or ∆bcwcl1 B. cinerea strains. The results revealed a complex fungal photobiology, where the mutant did not react to the light pulse during its interaction with the plant. Indeed, when infecting Arabidopsis, no photoreceptor-encoding genes were upregulated upon the light pulse in the ∆bcwcl1 mutant. Differentially expressed genes (DEGs) in B. cinerea under non-infecting conditions were predominantly related to decreased energy production in response to the light pulse. In contrast, DEGs during infection significantly differ in the B05.10 strain and the ∆bcwcl1 mutant. Upon illumination at 24 h post-infection in planta, a decrease in the B. cinerea virulence-associated transcripts was observed. Accordingly, after a light pulse, biological functions associated with plant defense appear enriched among light-repressed genes in fungus-infected plants. Taken together, our results show the main transcriptomic differences between wild-type B. cinerea B05.10 and ∆bcwcl1 after a 60 min light pulse when growing saprophytically on a Petri dish and necrotrophically over A. thaliana.
Collapse
Affiliation(s)
- Gabriel Pérez-Lara
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
| | - Consuelo Olivares-Yañez
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Luis F. Larrondo
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
- Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago 8331150, Chile
| | - Paulo Canessa
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
| |
Collapse
|
36
|
Zhu W, Dong H, Xu R, You J, Yan DZ, Xiong C, Wu J, Bi K. Botrytis cinerea BcCDI1 protein triggers both plant cell death and immune response. FRONTIERS IN PLANT SCIENCE 2023; 14:1136463. [PMID: 37180384 PMCID: PMC10167277 DOI: 10.3389/fpls.2023.1136463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
Cell death-inducing proteins (CDIPs) play important roles in the infection of Botrytis cinerea, a broad host-range necrotrophic phytopathogen. Here, we show that the secreted protein BcCDI1 (Cell Death Inducing 1) can cause necrosis in tobacco leaves and at the same time elicit plant defense. The transcription of Bccdi1 was induced at the infection stage. Deletion or overexpression of Bccdi1 resulted in no notable change in disease lesion on bean, tobacco, and Arabidopsis leaves, indicating that Bccdi1 has no effect on the final outcome of B. cinerea infection. Furthermore, the plant receptor-like kinases BAK1 and SOBIR1 are required to transduce the cell death-promoting signal induced by BcCDI1. These findings suggest that BcCDI1 is possibly recognized by plant receptors and then induces plant cell death.
Collapse
Affiliation(s)
- Wenjun Zhu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Huange Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Ran Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Jingmao You
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Enshi, China
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Da-zhong Yan
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Chao Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Jing Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Kai Bi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
37
|
De Vallée A, Dupuy JW, Moriscot C, Gallet B, Vanderperre S, Guignard G, Rascle C, Calvar G, Malbert B, Gillet FX, Dieryckx C, Choquer M, Girard V, Poussereau N, Bruel C. Extracellular Vesicles of the Plant Pathogen Botrytis cinerea. J Fungi (Basel) 2023; 9:jof9040495. [PMID: 37108947 PMCID: PMC10146736 DOI: 10.3390/jof9040495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Fungal secretomes are known to contain a multitude of components involved in nutrition, cell growth or biotic interactions. Recently, extra-cellular vesicles have been identified in a few fungal species. Here, we used a multidisciplinary approach to identify and characterize extracellular vesicles produced by the plant necrotroph Botrytis cinerea. Transmission electron microscopy of infectious hyphae and hyphae grown in vitro revealed extracellular vesicles of various sizes and densities. Electron tomography showed the co-existence of ovoid and tubular vesicles and pointed to their release via the fusion of multi-vesicular bodies with the cell plasma membrane. The isolation of these vesicles and exploration of their protein content using mass spectrometry led to the identification of soluble and membrane proteins involved in transport, metabolism, cell wall synthesis and remodeling, proteostasis, oxidoreduction and traffic. Confocal microscopy highlighted the capacity of fluorescently labeled vesicles to target cells of B. cinerea, cells of the fungus Fusarium graminearum, and onion epidermal cells but not yeast cells. In addition, a specific positive effect of these vesicles on the growth of B. cinerea was quantified. Altogether, this study broadens our view on the secretion capacity of B. cinerea and its cell-to-cell communication.
Collapse
Affiliation(s)
- Amelie De Vallée
- Univ. Lyon, UCBL, INSA Lyon, CNRS, MAP, UMR5240, 69622 Villeurbanne, France
| | | | | | - Benoit Gallet
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Solène Vanderperre
- Centre Technologique des Microstructures, Université Lyon 1, 69622 Villeurbanne, France
| | - Gaëtan Guignard
- Univ. Lyon, Université Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69622 Villeurbanne, France
| | - Christine Rascle
- Univ. Lyon, UCBL, INSA Lyon, CNRS, MAP, UMR5240, 69622 Villeurbanne, France
| | - Glen Calvar
- Univ. Lyon, UCBL, INSA Lyon, CNRS, MAP, UMR5240, 69622 Villeurbanne, France
| | - Bastien Malbert
- Bayer SAS, Crop Science Division Centre de Recherche La Dargoire, 69009 Lyon, France
| | | | - Cindy Dieryckx
- Univ. Lyon, UCBL, INSA Lyon, CNRS, MAP, UMR5240, 69622 Villeurbanne, France
| | - Mathias Choquer
- Univ. Lyon, UCBL, INSA Lyon, CNRS, MAP, UMR5240, 69622 Villeurbanne, France
| | - Vincent Girard
- Univ. Lyon, UCBL, INSA Lyon, CNRS, MAP, UMR5240, 69622 Villeurbanne, France
| | | | - Christophe Bruel
- Univ. Lyon, UCBL, INSA Lyon, CNRS, MAP, UMR5240, 69622 Villeurbanne, France
| |
Collapse
|
38
|
Dreischhoff S, Das IS, Häffner F, Wolf AM, Polle A, Kasper KH. Fast and easy bioassay for the necrotizing fungus Botrytis cinerea on poplar leaves. PLANT METHODS 2023; 19:32. [PMID: 36991511 PMCID: PMC10061990 DOI: 10.1186/s13007-023-01011-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Necrotizing pathogens pose an immense economic and ecological threat to trees and forests, but the molecular analysis of these pathogens is still in its infancy because of lacking model systems. To close this gap, we developed a reliable bioassay for the widespread necrotic pathogen Botrytis cinerea on poplars (Populus sp.), which are established model organisms to study tree molecular biology. RESULTS Botrytis cinerea was isolated from Populus x canescens leaves. We developed an infection system using fungal agar plugs, which are easy to handle. The method does not require costly machinery and results in very high infection success and significant fungal proliferation within four days. We successfully tested the fungal plug infection on 18 poplar species from five different sections. Emerging necroses were phenotypically and anatomically examined in Populus x canescens leaves. We adapted methods for image analyses of necrotic areas. We calibrated B. cinerea DNA against Ct-values obtained by quantitative real-time polymerase chain reaction and measured the amounts of fungal DNA in infected leaves. Increases in necrotic area and fungal DNA were strictly correlated within the first four days after inoculation. Methyl jasmonate pretreatment of poplar leaves decreased the spreading of the infection. CONCLUSIONS We provide a simple and rapid protocol to study the effects of a necrotizing pathogen on poplar leaves. The bioassay and fungal DNA quantification for Botrytis cinerea set the stage for in-depth molecular studies of immunity and resistance to a generalist necrotic pathogen in trees.
Collapse
Affiliation(s)
- Steven Dreischhoff
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| | - Ishani Shankar Das
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| | - Felix Häffner
- Department Aquatic Ecosystem Analysis, Helmholtz Center for Environmental Research-UFZ, Magdeburg, Germany
| | | | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| | - Karl Henrik Kasper
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany.
| |
Collapse
|
39
|
Roth MG, Westrick NM, Baldwin TT. Fungal biotechnology: From yesterday to tomorrow. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1135263. [PMID: 37746125 PMCID: PMC10512358 DOI: 10.3389/ffunb.2023.1135263] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 09/26/2023]
Abstract
Fungi have been used to better the lives of everyday people and unravel the mysteries of higher eukaryotic organisms for decades. However, comparing progress and development stemming from fungal research to that of human, plant, and bacterial research, fungi remain largely understudied and underutilized. Recent commercial ventures have begun to gain popularity in society, providing a new surge of interest in fungi, mycelia, and potential new applications of these organisms to various aspects of research. Biotechnological advancements in fungal research cannot occur without intensive amounts of time, investments, and research tool development. In this review, we highlight past breakthroughs in fungal biotechnology, discuss requirements to advance fungal biotechnology even further, and touch on the horizon of new breakthroughs with the highest potential to positively impact both research and society.
Collapse
Affiliation(s)
- Mitchell G. Roth
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
| | - Nathaniel M. Westrick
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas T. Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
40
|
Advances and Challenges in CRISPR/Cas-Based Fungal Genome Engineering for Secondary Metabolite Production: A Review. J Fungi (Basel) 2023; 9:jof9030362. [PMID: 36983530 PMCID: PMC10058990 DOI: 10.3390/jof9030362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Fungi represent an important source of bioactive secondary metabolites (SMs), which have wide applications in many fields, including medicine, agriculture, human health, and many other industries. The genes involved in SM biosynthesis are usually clustered adjacent to each other into a region known as a biosynthetic gene cluster (BGC). The recent advent of a diversity of genetic and genomic technologies has facilitated the identification of many cryptic or uncharacterized BGCs and their associated SMs. However, there are still many challenges that hamper the broader exploration of industrially important secondary metabolites. The recent advanced CRISPR/Cas system has revolutionized fungal genetic engineering and enabled the discovery of novel bioactive compounds. In this review, we firstly introduce fungal BGCs and their relationships with associated SMs, followed by a brief summary of the conventional strategies for fungal genetic engineering. Next, we introduce a range of state-of-the-art CRISPR/Cas-based tools that have been developed and review recent applications of these methods in fungi for research on the biosynthesis of SMs. Finally, the challenges and limitations of these CRISPR/Cas-based systems are discussed and directions for future research are proposed in order to expand their applications and improve efficiency for fungal genetic engineering.
Collapse
|
41
|
Pirc K, Albert I, Nürnberger T, Anderluh G. Disruption of plant plasma membrane by Nep1-like proteins in pathogen-plant interactions. THE NEW PHYTOLOGIST 2023; 237:746-750. [PMID: 36210522 PMCID: PMC10100409 DOI: 10.1111/nph.18524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Lipid membrane destruction by microbial pore-forming toxins (PFTs) is a ubiquitous mechanism of damage to animal cells, but is less prominent in plants. Nep1-like proteins (NLPs) secreted by phytopathogens that cause devastating crop diseases, such as potato late blight, represent the only family of microbial PFTs that effectively damage plant cells by disrupting the integrity of the plant plasma membrane. Recent research has elucidated the molecular mechanism of NLP-mediated membrane damage, which is unique among microbial PFTs and highly adapted to the plant membrane environment. In this review, we cover recent insight into how NLP cytolysins damage plant membranes and cause cell death.
Collapse
Affiliation(s)
- Katja Pirc
- Department of Molecular Biology and NanobiotechnologyNational Institute of ChemistryHajdrihova 191000LjubljanaSlovenia
| | - Isabell Albert
- Molecular Plant PhysiologyFAU Erlangen‐Nüremberg91058ErlangenGermany
| | - Thorsten Nürnberger
- Center of Plant Molecular Biology (ZMBP)Eberhard‐Karls‐University Tübingen72076TübingenGermany
- Department of BiochemistryUniversity of JohannesburgAuckland Park2006JohannesburgSouth Africa
| | - Gregor Anderluh
- Department of Molecular Biology and NanobiotechnologyNational Institute of ChemistryHajdrihova 191000LjubljanaSlovenia
| |
Collapse
|
42
|
Bi K, Liang Y, Mengiste T, Sharon A. Killing softly: a roadmap of Botrytis cinerea pathogenicity. TRENDS IN PLANT SCIENCE 2023; 28:211-222. [PMID: 36184487 DOI: 10.1016/j.tplants.2022.08.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Botrytis cinerea, a widespread plant pathogen with a necrotrophic lifestyle, causes gray mold disease in many crops. Massive secretion of enzymes and toxins was long considered to be the main driver of infection, but recent studies have uncovered a rich toolbox for B. cinerea pathogenicity. The emerging picture is of a multilayered infection process governed by the exchange of factors that collectively contribute to disease development. No plant shows complete resistance against B. cinerea, but pattern-triggered plant immune responses have the potential to significantly reduce disease progression, opening new possibilities for producing B. cinerea-tolerant plants. We examine current B. cinerea infection models, highlight knowledge gaps, and suggest directions for future studies.
Collapse
Affiliation(s)
- Kai Bi
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan City, Hubei Province, China
| | - Yong Liang
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Amir Sharon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
43
|
da Silva Ripardo-Filho H, Coca Ruíz V, Suárez I, Moraga J, Aleu J, Collado IG. From Genes to Molecules, Secondary Metabolism in Botrytis cinerea: New Insights into Anamorphic and Teleomorphic Stages. PLANTS (BASEL, SWITZERLAND) 2023; 12:553. [PMID: 36771642 PMCID: PMC9920419 DOI: 10.3390/plants12030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The ascomycete Botrytis cinerea Pers. Fr., classified within the family Sclerotiniaceae, is the agent that causes grey mould disease which infects at least 1400 plant species, including crops of economic importance such as grapes and strawberries. The life cycle of B. cinerea consists of two phases: asexual (anamorph, Botrytis cinerea Pers. Fr.) and sexual (teleomorph, Botryotinia fuckeliana (de Bary) Wetzel). During the XVI International Symposium dedicated to the Botrytis fungus, which was held in Bari in June 2013, the scientific community unanimously decided to assign the most widely used name of the asexual form, Botrytis, to this genus of fungi. However, in the literature, we continue to find articles referring to both morphic stages. In this review, we take stock of the genes and metabolites reported for both morphic forms of B. cinerea between January 2015 and October 2022.
Collapse
Affiliation(s)
| | - Víctor Coca Ruíz
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Ivonne Suárez
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Javier Moraga
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Isidro G. Collado
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
44
|
Jeblick T, Leisen T, Steidele CE, Albert I, Müller J, Kaiser S, Mahler F, Sommer F, Keller S, Hückelhoven R, Hahn M, Scheuring D. Botrytis hypersensitive response inducing protein 1 triggers noncanonical PTI to induce plant cell death. PLANT PHYSIOLOGY 2023; 191:125-141. [PMID: 36222581 PMCID: PMC9806589 DOI: 10.1093/plphys/kiac476] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 05/28/2023]
Abstract
According to their lifestyle, plant pathogens are divided into biotrophic and necrotrophic organisms. Biotrophic pathogens exclusively nourish living host cells, whereas necrotrophic pathogens rapidly kill host cells and nourish cell walls and cell contents. To this end, the necrotrophic fungus Botrytis cinerea secretes large amounts of phytotoxic proteins and cell wall-degrading enzymes. However, the precise role of these proteins during infection is unknown. Here, we report on the identification and characterization of the previously unknown toxic protein hypersensitive response-inducing protein 1 (Hip1), which induces plant cell death. We found the adoption of a structurally conserved folded Alternaria alternata Alt a 1 protein structure to be a prerequisite for Hip1 to exert its necrosis-inducing activity in a host-specific manner. Localization and the induction of typical plant defense responses by Hip1 indicate recognition as a pathogen-associated molecular pattern at the plant plasma membrane. In contrast to other secreted toxic Botrytis proteins, the activity of Hip1 does not depend on the presence of the receptor-associated kinases BRI1-associated kinase 1 and suppressor of BIR1-1. Our results demonstrate that recognition of Hip1, even in the absence of obvious enzymatic or pore-forming activity, induces strong plant defense reactions eventually leading to plant cell death. Botrytis hip1 overexpression strains generated by CRISPR/Cas9 displayed enhanced infection, indicating the virulence-promoting potential of Hip1. Taken together, Hip1 induces a noncanonical defense response which might be a common feature of structurally conserved fungal proteins from the Alt a 1 family.
Collapse
Affiliation(s)
- Tanja Jeblick
- Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Thomas Leisen
- Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Christina E Steidele
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Isabell Albert
- Molecular Plant Physiology, FAU Erlangen, Erlangen 91058, Germany
| | - Jonas Müller
- Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Sabrina Kaiser
- Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Florian Mahler
- Molecular Biophysics, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Frederik Sommer
- Molecular Biotechnology & Systems Biology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Sandro Keller
- Molecular Biophysics, University of Kaiserslautern, Kaiserslautern 67663, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Matthias Hahn
- Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | | |
Collapse
|
45
|
Vanegas KG, Rendsvig JKH, Jarczynska ZD, Cortes MVDCB, van Esch AP, Morera-Gómez M, Contesini FJ, Mortensen UH. A Mad7 System for Genetic Engineering of Filamentous Fungi. J Fungi (Basel) 2022; 9:jof9010016. [PMID: 36675838 PMCID: PMC9865164 DOI: 10.3390/jof9010016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The introduction of CRISPR technologies has revolutionized strain engineering in filamentous fungi. However, its use in commercial applications has been hampered by concerns over intellectual property (IP) ownership, and there is a need for implementing Cas nucleases that are not limited by complex IP constraints. One promising candidate in this context is the Mad7 enzyme, and we here present a versatile Mad7-CRISPR vector-set that can be efficiently used for the genetic engineering of four different Aspergillus species: Aspergillus nidulans, A. niger, A. oryzae and A. campestris, the latter being a species that has never previously been genetically engineered. We successfully used Mad7 to introduce unspecific as well as specific template-directed mutations including gene disruptions, gene insertions and gene deletions. Moreover, we demonstrate that both single-stranded oligonucleotides and PCR fragments equipped with short and long targeting sequences can be used for efficient marker-free gene editing. Importantly, our CRISPR/Mad7 system was functional in both non-homologous end-joining (NHEJ) proficient and deficient strains. Therefore, the newly implemented CRISPR/Mad7 was efficient to promote gene deletions and integrations using different types of DNA repair in four different Aspergillus species, resulting in the expansion of CRISPR toolboxes in fungal cell factories.
Collapse
Affiliation(s)
- Katherina Garcia Vanegas
- Eukaryotic Molecular Cell Biology, Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Jakob Kræmmer Haar Rendsvig
- Eukaryotic Molecular Cell Biology, Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Zofia Dorota Jarczynska
- Eukaryotic Molecular Cell Biology, Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | | | - Abel Peter van Esch
- Eukaryotic Molecular Cell Biology, Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Martí Morera-Gómez
- Eukaryotic Molecular Cell Biology, Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Fabiano Jares Contesini
- Eukaryotic Molecular Cell Biology, Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Uffe Hasbro Mortensen
- Eukaryotic Molecular Cell Biology, Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Correspondence:
| |
Collapse
|
46
|
Botrytis cinerea Transcription Factor BcXyr1 Regulates (Hemi-)Cellulase Production and Fungal Virulence. mSystems 2022; 7:e0104222. [PMID: 36468854 PMCID: PMC9765177 DOI: 10.1128/msystems.01042-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Botrytis cinerea is an agriculturally notorious plant-pathogenic fungus with a broad host range. During plant colonization, B. cinerea secretes a wide range of plant-cell-wall-degrading enzymes (PCWDEs) that help in macerating the plant tissue, but their role in pathogenicity has been unclear. Here, we report on the identification of a transcription factor, BcXyr1, that regulates the production of (hemi-)cellulases and is necessary for fungal virulence. Deletion of the bcxyr1 gene led to impaired spore germination and reduced fungal virulence and reactive oxygen species (ROS) production in planta. Secreted proteins collected from the bcxyr1 deletion strain displayed a weaker cell-death-inducing effect than the wild-type secretome when infiltrated to Nicotiana benthamiana leaves. Transcriptome sequencing (RNA-seq) analysis revealed 41 genes with reduced expression in the Δbcxyr1 mutant compared with those in the wild-type strain, of which half encode secreted proteins that are particularly enriched in carbohydrate-active enzyme (CAZyme)-encoding genes. Among them, we identified a novel putative expansin-like protein that was necessary for fungal virulence, supporting the involvement of BcXyr1 in the regulation of extracellular virulence factors. IMPORTANCE PCWDEs are considered important components of the virulence arsenal of necrotrophic plant pathogens. However, despite intensive research, the role of PCWDEs in the pathogenicity of necrotrophic phytopathogenic fungi remains ambiguous. Here, we demonstrate that the transcription factor BcXyr1 regulates the expression of a specific set of secreted PCWDE-encoding genes and that it is essential for fungal virulence. Furthermore, we identified a BcXyr1-regulated expansin-like gene that is required for fungal virulence. Our findings provide strong evidence for the importance of PCWDEs in the pathogenicity of B. cinerea and highlight specific PCWDEs that might be more important than others.
Collapse
|
47
|
Identification of candidate genes associated with resistance against race 0 of Colletotrichum lentis in Lens ervoides. Sci Rep 2022; 12:18447. [PMID: 36323877 PMCID: PMC9630317 DOI: 10.1038/s41598-022-23175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Resistance to anthracnose caused by the fungal pathogen Colletotrichum lentis was explored through transcriptome sequencing over a period of 24 to 96 h post-inoculation (hpi) of the partially resistant recombinant inbred lines (RIL) LR-66-528 and susceptible LR-66-524 of the crop wild relative Lens ervoides population LR-66. The development of infection vesicles and primary hyphae by C. lentis were significantly higher on susceptible RIL LR-66-524 compared to partially resistant LR-66-528 at 24 and 48 hpi, but exponential trends in fungal growth were observed between 24 to 96 hpi in both RILs. Comparison of inoculated with mock-inoculated samples revealed 3091 disease responsive genes, among which 477 were differentially expressed between the two RILs. These were clustered into six expression clusters with genes that had either high or low expression in one of the RILs. Differentially expressed genes (DEGs) were functionally annotated and included genes coding LRR and NB-ARC domain disease resistance proteins, protein detoxification, LRR receptor-like kinase family proteins, and wall-associated Ser/Thr Kinases. DEGs were compared to genes in previously published anthracnose resistance QTLs mapped in LR-66 and revealed 22 DEGs located in 3 QTLs. Expression of 21 DEGs was validated using RT-qPCR confirming expression trends in RNA-seq.
Collapse
|
48
|
Malvestiti MC, Steentjes MBF, Beenen HG, Boeren S, van Kan JAL, Shi-Kunne X. Analysis of plant cell death-inducing proteins of the necrotrophic fungal pathogens Botrytis squamosa and Botrytis elliptica. FRONTIERS IN PLANT SCIENCE 2022; 13:993325. [PMID: 36304392 PMCID: PMC9593002 DOI: 10.3389/fpls.2022.993325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Fungal plant pathogens secrete proteins that manipulate the host in order to facilitate colonization. Necrotrophs have evolved specialized proteins that actively induce plant cell death by co-opting the programmed cell death machinery of the host. Besides the broad host range pathogen Botrytis cinerea, most other species within the genus Botrytis are restricted to a single host species or a group of closely related hosts. Here, we focused on Botrytis squamosa and B. elliptica, host specific pathogens of onion (Allium cepa) and lily (Lilium spp.), respectively. Despite their occurrence on different hosts, the two fungal species are each other's closest relatives. Therefore, we hypothesize that they share a considerable number of proteins to induce cell death on their respective hosts. In this study, we first confirmed the host-specificity of B. squamosa and B. elliptica. Then we sequenced and assembled high quality genomes. The alignment of these two genomes revealed a high level of synteny with few balanced structural chromosomal arrangements. To assess the cell death-inducing capacity of their secreted proteins, we produced culture filtrates of B. squamosa and B. elliptica that induced cell death responses upon infiltration in host leaves. Protein composition of the culture filtrate was analysed by mass spectrometry, and we identified orthologous proteins that were present in both samples. Subsequently, the expression of the corresponding genes during host infection was compared. RNAseq analysis showed that the majority of the orthogroups of the two sister species display similar expression patterns during infection of their respective host. The analysis of cell death-inducing proteins of B. squamosa and B. elliptica provides insights in the mechanisms used by these two Botrytis species to infect their respective hosts.
Collapse
Affiliation(s)
| | | | - Henriek G. Beenen
- Wageningen University, Laboratory of Phytopathology, Wageningen, Netherlands
| | - Sjef Boeren
- Wageningen University, Laboratory of Biochemistry, Wageningen, Netherlands
| | - Jan A. L. van Kan
- Wageningen University, Laboratory of Phytopathology, Wageningen, Netherlands
| | - Xiaoqian Shi-Kunne
- Wageningen University, Laboratory of Phytopathology, Wageningen, Netherlands
| |
Collapse
|
49
|
Steentjes MBF, Herrera Valderrama AL, Fouillen L, Bahammou D, Leisen T, Albert I, Nürnberger T, Hahn M, Mongrand S, Scholten OE, van Kan JAL. Cytotoxic activity of Nep1-like proteins on monocots. THE NEW PHYTOLOGIST 2022; 235:690-700. [PMID: 35383933 PMCID: PMC9320973 DOI: 10.1111/nph.18146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are found throughout several plant-associated microbial taxa and are typically considered to possess cytolytic activity exclusively on dicot plant species. However, cytolytic NLPs are also produced by pathogens of monocot plants such as the onion (Allium cepa) pathogen Botrytis squamosa. We determined the cytotoxic activity of B. squamosa BsNep1, as well as other previously characterized NLPs, on various monocot plant species and assessed the plant plasma membrane components required for NLP sensitivity. Leaf infiltration of NLPs showed that onion cultivars are differentially sensitive to NLPs, and analysis of their sphingolipid content revealed that the GIPC series A : series B ratio did not correlate to NLP sensitivity. A tri-hybrid population derived from a cross between onion and two wild relatives showed variation in NLP sensitivity within the population. We identified a quantitative trait locus (QTL) for NLP insensitivity that colocalized with a previously identified QTL for B. squamosa resistance and the segregating trait of NLP insensitivity correlated with the sphingolipid content. Our results demonstrate the cytotoxic activity of NLPs on several monocot plant species and legitimize their presence in monocot-specific plant pathogens.
Collapse
Affiliation(s)
| | | | - Laetitia Fouillen
- Laboratoire de Biogènese MembranaireUMR 5200CNRSUniversity of BordeauxF‐33140Villenave d’OrnonFrance
| | - Delphine Bahammou
- Laboratoire de Biogènese MembranaireUMR 5200CNRSUniversity of BordeauxF‐33140Villenave d’OrnonFrance
| | - Thomas Leisen
- Department of Biology, Plant PathologyUniversity of KaiserslauternKaiserslautern67663Germany
| | - Isabell Albert
- Molecular Plant PhysiologyFAU Erlangen‐NürnbergErlangen91058Germany
| | | | - Matthias Hahn
- Department of Biology, Plant PathologyUniversity of KaiserslauternKaiserslautern67663Germany
| | - Sébastien Mongrand
- Laboratoire de Biogènese MembranaireUMR 5200CNRSUniversity of BordeauxF‐33140Villenave d’OrnonFrance
| | - Olga E. Scholten
- Plant BreedingWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Jan A. L. van Kan
- Laboratory of PhytopathologyWageningen UniversityWageningen6708 PBthe Netherlands
| |
Collapse
|