1
|
Brotman S, Wild G. Co-evolution of pathogen-host interactions with vertical transmission can produce bistable outcomes. J Theor Biol 2025; 604:112073. [PMID: 40010538 DOI: 10.1016/j.jtbi.2025.112073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Vertical transmission is widely predicted to select for reduced virulence of pathogens. Recent theory cast doubt on this prediction by showing that the evolutionary response of the host to vertical transmission can lead to severe disease outcomes. That theory, however, takes a simplified view of host population dynamics by assuming pathogen-induced mortality alone inhibits host population growth. The assumption limits our ability to uncover benign co-evolutionary outcomes characterized by low levels of pathogen-induced mortality. Here, we revisit the role of vertical transmission using a model that assumes host population growth is self-regulated. Our model tracks the co-evolution of pathogen-induced mortality and host recovery until both have reached an evolutionarily stable level. For any given set of model conditions, we could identify as many as two distinct pairs of stable mortality-recovery traits. Mortality and recovery were higher for one of the pairs (the 'escalated' one) and lower for the other of the pairs (the 'de-escalated' one). As the rate of vertical transmission rose, stable expression of the pathogen-induced mortality trait always decreased, while stable expression of the host-recovery trait increased for 'escalated' pairs and decreased for 'de-escalated' ones. In addition, (i) increasing the intrinsic rate of host population growth, (ii) increasing the cost of host recovery, and (iii) decreasing the efficiency of horizontal disease transmission all led to lower levels of stable trait expression for both pathogen and host. Factors (i)-(iii) also led to lower virulence, more frequent occurrence of the de-escalated (almost commensal) stable outcome, and greater disease prevalence. We conclude that (i)-(iii) promote the co-evolution of more benign interactions in keeping with previous findings. However, our new insight is that the benign nature of the host-pathogen interaction can now be understood as the more frequent occurrence of the de-escalated outcome. We discuss our findings in light of previous theory and experimental work.
Collapse
Affiliation(s)
- Samantha Brotman
- Department of Mathematics, Western University, 1151 Richmond Street, London, Ontario, Canada
| | - Geoff Wild
- Department of Mathematics, Western University, 1151 Richmond Street, London, Ontario, Canada.
| |
Collapse
|
2
|
Takahashi H, Xu N, Kanayama Y, Tabara M, Takeda A, Fukuhara T, Miyashita S. Latent infection of Vigna unguiculata with seed-borne bean common mosaic virus modulates plant growth and may contribute to mutualistic symbiosis between the virus and host plant. Front Microbiol 2025; 16:1524787. [PMID: 40270808 PMCID: PMC12015941 DOI: 10.3389/fmicb.2025.1524787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/03/2025] [Indexed: 04/25/2025] Open
Abstract
In evaluating the germination and growth of the seed resources of 322 cultivars of cowpea (Vigna unguiculata), we found the development of yellow symptoms on ~50% of the cotyledons of 10 cultivars. RNA-Seq analysis of total RNA extracted from symptomatic cotyledons indicated that the 10 cultivars were infected with the bean common mosaic virus (Potyvirus phaseovulgaris, BCMV), which is a member of the family Potyviridae and able to seed-transmit to progeny plants. One of the BCMV isolates identified in the 10 cultivars was BCMV(Vu06), which was infected with cultivar #6. During the growth of BCMV(Vu06)-infected cowpea plants, there were no systemic symptoms in newly developing leaves, but the virus coat protein was detected in both leaves and flowers. Thus, the cowpea cultivar #6 plant was latently infected with BCMV(Vu06). There was no significant difference in the dry matter weight of the above-ground parts of the plant between BCMV(Vu06)-latently infected and non-infected plants. However, BCMV(Vu06)-latently infected plants had late flower and bud formation and longer life but slightly lower seed yield than the non-infected plants. The 1,000-seed weight and germination frequency of the seeds harvested from infected plants were the same as those of non-infected plants. Taken together, latent infection of cultivar #6 with BCMV(Vu6) modulates the balance between vegetative and reproductive plant growth and the longer lifespan of BCMV(Vu06)-latently infected plants may provide an advantage for its survivability over generations. BCMV(Vu06) and cowpea cultivar #6 might have established a mutual symbiotic relationship during their interaction.
Collapse
Affiliation(s)
- Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Nan Xu
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yoshinori Kanayama
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Midori Tabara
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Atsushi Takeda
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Toshiyuki Fukuhara
- Department of Applied Biological Sciences and Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shuhei Miyashita
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Song S, Wang Q, Huo L, Xie L, Chen J, Cui H, Dai Z, Kang J, Li Y, Guo W, Chen J, Kang L, Zhang X. The phytoplasma (Candidatus Phytoplasma arecae) is the crucial pathogen to cause areca palm yellow leaf disease. Sci Bull (Beijing) 2025; 70:847-851. [PMID: 39490329 DOI: 10.1016/j.scib.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/08/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Shuangwei Song
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangxiao Huo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, Hebei University, Baoding 071002, China
| | - Liqiang Xie
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Seed Industry Laboratory, Sanya 572025, China
| | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jinrui Kang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Seed Industry Laboratory, Sanya 572025, China
| | - Jinfeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Hebei University, Baoding 071002, China; Hainan Seed Industry Laboratory, Sanya 572025, China.
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Seed Industry Laboratory, Sanya 572025, China.
| |
Collapse
|
4
|
Wu X, Liu L, Kang S, Yan Y, Zheng Z, Wang F. Aggregation-Induced Emission Luminogens for Plant Photodynamic Seed Sterilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409011. [PMID: 39696875 DOI: 10.1002/smll.202409011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Pathogen-carrying seeds can significantly impact plant growth and development and may lead to serious public health incidents. Modern agriculture heavily relies on synthetic chemical microbicides and physical methods to eradicate pathogens transmitted by plant seeds. To counteract the misuse of microbicides, a class of cationic amphiphilic aggregate-induced emission luminogens (AIEgens) are developed as photodynamic seed sterilization agents. AIEgens function as antimicrobial agents in seed treatment. These materials are engineered to specifically bind to pathogenic microorganisms on seed surfaces. Furthermore, when combined with photodynamic therapy, AIEgens can be activated to produce reactive oxygen species that selectively destroy pathogens. Sterilization experiments with tomato seeds carrying Pseudomonas syringae and mung bean seeds carrying Pseudomonas aeruginosa demonstrate that AIEgens can effectively eliminate both plant and animal pathogens carried by seeds. Therefore, AIEgens offer a promising solution for preventing the spread of seed-borne pathogens.
Collapse
Affiliation(s)
- Xinyue Wu
- School of Food and Biological Engineering, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Lan Liu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Shengmei Kang
- School of Food and Biological Engineering, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yong Yan
- School of Food and Biological Engineering, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Zheng Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Feng Wang
- School of Food and Biological Engineering, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
5
|
Dhadly DK, Kavalappara SR, McAvoy T, Severns PM, Simmons AM, Srinivasan R, Bag S. Cucurbit Leaf Crumple Virus Is Seed Transmitted in Yellow Squash ( Cucurbita pepo). PLANT DISEASE 2025; 109:63-72. [PMID: 39151040 DOI: 10.1094/pdis-06-24-1330-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
The traditional understanding of begomovirus transmission exclusively through the whitefly Bemisia tabaci (Gennadius) has shifted with findings of seed transmission in some begomoviruses over the last decade. We investigated the seed transmissibility of cucurbit leaf crumple virus (CuLCrV), a bipartite begomovirus that has recently emerged as a severe constraint for yellow squash (Cucurbita pepo L.) production in the southeastern United States. We found a high concentration of CuLCrV in the male and female flower tissues of infected squash, including the pollen and ovules. The virus infiltrated the fruit tissues, including the endocarp and funiculus, which are anatomically positioned adjacent to the seeds. In seeds, CuLCrV was detected in the endosperm and embryo, where there are no vascular connections, in addition to the seed coat. The virus was detected in the radicle, plumule, cotyledonary leaves, and true leaves of seedlings grown from seeds collected from infected fruits. In the grow-out test conducted, CuLCrV infections ranged from 17 to 56% of the progeny plants. To ensure that partial viral genome fragments were not being mistaken for replicative forms of the virus, we performed rolling circle amplification PCR and amplified complete DNA-A and DNA-B of CuLCrV from seed tissues, seedlings, and progeny plants of CuLCrV-infected squash. Near-complete DNA-A and DNA-B sequences of CuLCrV were recovered from a progeny plant, further validating our findings. Our results demonstrate that CuLCrV can translocate from vegetative to reproductive tissues of yellow squash, persist within the seeds, and subsequently induce infection in progeny plants, confirming its capacity for seed transmission.
Collapse
Affiliation(s)
- Dalvir Kaur Dhadly
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, U.S.A
| | | | - Theodore McAvoy
- Department of Horticulture, University of Georgia, Tifton, GA 31793, U.S.A
| | - Paul M Severns
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, U.S.A
| | - Alvin M Simmons
- U.S. Vegetable Laboratory, USDA-ARS, Charleston, SC 29414, U.S.A
| | | | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, U.S.A
| |
Collapse
|
6
|
Ogunsola KE, Kumar PL. Variation in seed transmission of cowpea viruses between single and multiple infections. Virusdisease 2024; 35:609-619. [PMID: 39677845 PMCID: PMC11635052 DOI: 10.1007/s13337-024-00899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/02/2024] [Indexed: 12/17/2024] Open
Abstract
Seed transmission (ST) plays an important role in virus dispersion and disease epidemiology. Many viruses infecting cowpea are known to be seed-transmitted. This study evaluated the rate of virus ST in cowpea varieties inoculated under screenhouse conditions (SC) with bean common mosaic virus-blackeye cowpea mosaic strain (BCMV-BlCM), Southern bean mosaic virus (SBMV) and cucumber mosaic virus (CMV) under single and multiple-infections. Up to 50 seeds harvested from the virus-infected plants of each variety per treatment were used for the grow-out test under insect-proof SC. Data were recorded on seed germination (SG), symptoms in seedlings, and virus ST. The leaf samples were tested for viruses by enzyme-linked immunosorbent assay (ELISA) and reverse-transcription polymerase chain reaction (RT-PCR). The SG rate was 78 ± 2.8-100 ± 0% in all treatments. A total of 1.5% of 1,604 seedlings infected singly showed symptoms, whereas in diagnostics testing, viruses were detected in 2.6% of plants, indicating occurrence of asymptomatic ST. The highest rate of transmission observed for single infections was 17% CMV in IT98K-133-1-1, 17.1% BCMV-BlCM in IT98K-503-1, and 2.3% SBMV in IT99K-1060. The highest CMV frequency under coinfection was 22.2% in plants inoculated (PI) with SBMV + CMV, 4.2% for BCMV-BlCM in PI with BCMV-BlCM + CMV and 2.3% for SBMV in PI with BCMV-BlCM + SBMV + CMV. This study indicated high variation in the rates of ST based on cultivar and virus type, and for each virus under mixed-infection conditions. Diagnostic confirmation detected a higher percentage of seed-transmitted viruses compared to visual assessment, warranting the need for diagnostics for the reliable detection of seed-transmitted viruses. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00899-2.
Collapse
Affiliation(s)
- K. E. Ogunsola
- International Institute of Tropical Agriculture (IITA), Ibadan, PMB 5320 Oyo State Nigeria
- Department of Biological Sciences, Bells University of Technology, Ota, Ogun State Nigeria
| | - P. Lava Kumar
- International Institute of Tropical Agriculture (IITA), Ibadan, PMB 5320 Oyo State Nigeria
| |
Collapse
|
7
|
Cavigli L, Gaudioso D, Faraloni C, Agati G, Tegli S. Exploiting Bacterial Pigmentation for Non-Destructive Detection of Seed-Borne Pathogens by Using Photoacoustic Techniques. SENSORS (BASEL, SWITZERLAND) 2024; 24:7616. [PMID: 39686153 DOI: 10.3390/s24237616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Seed-borne pathogens pose a significant threat to global food security. This study focuses on Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff), a quarantine plant pathogen causing bacterial wilt of common beans. Despite its global spread and economic impact, effective control measures are limited. Existing diagnostic methods, such as PCR, are time-consuming, destructive, and challenging for large-scale screening. This study explores the potential of photoacoustic techniques as a non-destructive, rapid, and high-throughput alternative. These techniques leverage the photoacoustic effect to measure optical absorption, offering high sensitivity and accuracy. Cff colonies exhibit distinct pigmentation, suggesting their suitability for photoacoustic detection. We characterised the optical properties of Cff and developed an in vitro model to simulate conditions within Cff-infected bean seeds. The results demonstrate the efficiency of the photoacoustic technique in detecting Cff in a mimicked-bean seed and indicate the potential discrimination of different coloured Cff strains. This study paves the way for a novel, non-invasive approach to the early detection of Cff and other seed-borne pathogens, contributing to improve crop health and food security.
Collapse
Affiliation(s)
- Lucia Cavigli
- Consiglio Nazionale delle Ricerche, Istituto di Fisica Applicata "Nello Carrara", Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Dario Gaudioso
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari Ambientali e Forestali, Laboratorio di Patologia Vegetale Molecolare, Università degli Studi di Firenze, Via della Lastruccia 10, 50019 Sesto Fiorentino, Italy
| | - Cecilia Faraloni
- Consiglio Nazionale delle Ricerche, Istituto per la BioEconomia, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Giovanni Agati
- Consiglio Nazionale delle Ricerche, Istituto di Fisica Applicata "Nello Carrara", Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Stefania Tegli
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari Ambientali e Forestali, Laboratorio di Patologia Vegetale Molecolare, Università degli Studi di Firenze, Via della Lastruccia 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Liu S, Ding SW. Antiviral RNA interference inhibits virus vertical transmission in plants. Cell Host Microbe 2024; 32:1691-1704.e4. [PMID: 39243759 DOI: 10.1016/j.chom.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/14/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
Known for over a century, seed transmission of plant viruses promotes trans-continental virus dissemination and provides the source of infection to trigger devastating disease epidemics in crops. However, it remains unknown whether there is a genetically defined immune pathway to suppress virus vertical transmission in plants. Here, we demonstrate potent immunosuppression of cucumber mosaic virus (CMV) seed transmission in its natural host Arabidopsis thaliana by antiviral RNA interference (RNAi) pathway. Immunofluorescence microscopy reveals predominant embryo infection at four stages of embryo development. We show that antiviral RNAi confers resistance to seed infection with different genetic requirements and drastically enhanced potency compared with the inhibition of systemic infection of whole plants. Moreover, we detect efficient seed transmission of a mutant CMV lacking its RNAi suppressor gene in mutant plants defective in antiviral RNAi, providing further support for the immunosuppression of seed transmission by antiviral RNAi.
Collapse
Affiliation(s)
- Si Liu
- Department of Microbiology & Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Shou-Wei Ding
- Department of Microbiology & Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
9
|
Wang Y, Liu Y. RNAi, a sword of plant seeds to combat viral infections. Cell Host Microbe 2024; 32:1644-1645. [PMID: 39389026 DOI: 10.1016/j.chom.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024]
Abstract
Vertical transmission of plant viruses through seeds has been known for a century, yet the mechanism for seeds to combat viral infection remains unclear. In this issue of Cell Host & Microbe, Liu and Ding demonstrate the genetic requirement of RNA silencing (RNAi) pathway for plants to suppress seed transmission.
Collapse
Affiliation(s)
- Yan Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Science, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Science, Tsinghua University, Beijing 100084, China; Beijing Life Science Academy, Beijing 102206, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
10
|
Wardeh M, Pilgrim J, Hui M, Kotsiri A, Baylis M, Blagrove MSC. Features that matter: Evolutionary signatures can predict viral transmission routes. PLoS Pathog 2024; 20:e1012629. [PMID: 39432551 PMCID: PMC11527288 DOI: 10.1371/journal.ppat.1012629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/31/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Routes of virus transmission between hosts are key to understanding viral epidemiology. Different routes have large effects on viral ecology, and likelihood and rate of transmission; for example, respiratory and vector-borne viruses together encompass the majority of rapid outbreaks and high-consequence animal and plant epidemics. However, determining the specific transmission route(s) can take months to years, delaying mitigation efforts. Here, we identify the viral features and evolutionary signatures which are predictive of viral transmission routes and use them to predict potential routes for fully-sequenced viruses in silico and rapidly, for both viruses with no observed routes, as well as viruses with missing routes. This was achieved by compiling a dataset of 24,953 virus-host associations with 81 defined transmission routes, constructing a hierarchy of virus transmission encompassing those routes and 42 higher-order modes, and engineering 446 predictive features from three complementary perspectives. We integrated those data and features to train 98 independent ensembles of LightGBM classifiers. We found that all features contributed to the prediction for at least one of the routes and/or modes of transmission, demonstrating the utility of our broad multi-perspective approach. Our framework achieved ROC-AUC = 0.991, and F1-score = 0.855 across all included transmission routes and modes, and was able to achieve high levels of predictive performance for high-consequence respiratory (ROC-AUC = 0.990, and F1-score = 0.864) and vector-borne transmission (ROC-AUC = 0.997, and F1-score = 0.921). Our framework ranks the viral features in order of their contribution to prediction, per transmission route, and hence identifies the genomic evolutionary signatures associated with each route. Together with the more matured field of viral host-range prediction, our predictive framework could: provide early insights into the potential for, and pattern of viral spread; facilitate rapid response with appropriate measures; and significantly triage the time-consuming investigations to confirm the likely routes of transmission.
Collapse
Affiliation(s)
- Maya Wardeh
- Department of Computer Science, University of Liverpool, Liverpool, United Kingdom
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jack Pilgrim
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Melody Hui
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Aurelia Kotsiri
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Marcus S. C. Blagrove
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
11
|
Cham AK, Adams AK, Wadl PA, Ojeda-Zacarías MDC, Rutter WB, Jackson DM, Shoemaker DD, Yencho GC, Olukolu BA. Metagenome-enabled models improve genomic predictive ability and identification of herbivory-limiting genes in sweetpotato. HORTICULTURE RESEARCH 2024; 11:uhae135. [PMID: 38974189 PMCID: PMC11226878 DOI: 10.1093/hr/uhae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/27/2024] [Indexed: 07/09/2024]
Abstract
Plant-insect interactions are often influenced by host- or insect-associated metagenomic community members. The relative abundance of insects and the microbes that modulate their interactions were obtained from sweetpotato (Ipomoea batatas) leaf-associated metagenomes using quantitative reduced representation sequencing and strain/species-level profiling with the Qmatey software. Positive correlations were found between whitefly (Bemisia tabaci) and its endosymbionts (Candidatus Hamiltonella defensa, Candidatus Portiera aleyrodidarum, and Rickettsia spp.) and negative correlations with nitrogen-fixing bacteria that implicate nitric oxide in sweetpotato-whitefly interaction. Genome-wide associations using 252 975 dosage-based markers, and metagenomes as a covariate to reduce false positive rates, implicated ethylene and cell wall modification in sweetpotato-whitefly interaction. The predictive abilities (PA) for whitefly and Ocypus olens abundance were high in both populations (68%-69% and 33.3%-35.8%, respectively) and 69.9% for Frankliniella occidentalis. The metagBLUP (gBLUP) prediction model, which fits the background metagenome-based Cao dissimilarity matrix instead of the marker-based relationship matrix (G-matrix), revealed moderate PA (35.3%-49.1%) except for O. olens (3%-10.1%). A significant gain in PA after modeling the metagenome as a covariate (gGBLUP, ≤11%) confirms quantification accuracy and that the metagenome modulates phenotypic expression and might account for the missing heritability problem. Significant gains in PA were also revealed after fitting allele dosage (≤17.4%) and dominance effects (≤4.6%). Pseudo-diploidized genotype data underperformed for dominance models. Including segregation-distorted loci (SDL) increased PA by 6%-17.1%, suggesting that traits associated with fitness cost might benefit from the inclusion of SDL. Our findings confirm the holobiont theory of host-metagenome co-evolution and underscore its potential for breeding within the context of G × G × E interactions.
Collapse
Affiliation(s)
- Alhagie K Cham
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Alison K Adams
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
- Genome Science and Technology, University of Tennessee, Knoxville, TN 37916, USA
- Department of Plant Pathology, University of Georgia, Griffin, GA 30223, USA
| | - Phillip A Wadl
- US Vegetable Laboratory, United States Department of Agriculture, Agriculture Research Service, Charleston, SC 29414, USA
| | - Ma del Carmen Ojeda-Zacarías
- Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa s/n, Col. Ex Hacienda El Canadá, 66050, General Escobedo, Nuevo León, México
| | - William B Rutter
- US Vegetable Laboratory, United States Department of Agriculture, Agriculture Research Service, Charleston, SC 29414, USA
| | - D Michael Jackson
- US Vegetable Laboratory, United States Department of Agriculture, Agriculture Research Service, Charleston, SC 29414, USA
| | - D Dewayne Shoemaker
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - G Craig Yencho
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Bode A Olukolu
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
- Genome Science and Technology, University of Tennessee, Knoxville, TN 37916, USA
| |
Collapse
|
12
|
Yang C, Nguyen VA, Nulu NPC, Kalaipandian S, Beveridge FC, Biddle J, Young A, Adkins SW. Towards Pathogen-Free Coconut Germplasm Exchange. PLANTS (BASEL, SWITZERLAND) 2024; 13:1809. [PMID: 38999649 PMCID: PMC11244555 DOI: 10.3390/plants13131809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
Coconut (Cocos nucifera L.) is an important palm species that serves as the mainstay of several industries and contributes to the livelihoods of millions of smallholder farmers. International exchange of coconut germplasm has been undertaken for several decades to facilitate the conservation of selected varieties within global genebanks and for the distribution to farmers and scientists. In vitro systems are a convenient and an efficient method for the exchange of coconut germplasm. However, it is possible that these tissue culture systems can transfer lethal pathogens causing a threat to the importing countries. In this review, the following topics are discussed: the major disease-causing agents of concern, the various tissues that could be used for coconut germplasm exchange, and the techniques available for the detection and elimination of disease-causing agents from various transmission systems. Additionally, the lack of clear, science-backed guidelines to facilitate the exchange of in vitro coconut materials is raised, along with recommendations for future studies to ensure the safe movement of coconut germplasm without biosecurity risks.
Collapse
Affiliation(s)
- Chongxi Yang
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia
| | - Van Anh Nguyen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Sundaravelpandian Kalaipandian
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Bioengineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602105, India
| | - Fernanda Caro Beveridge
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia
| | - Julianne Biddle
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia
| | - Anthony Young
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia
| | - Steve W Adkins
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
13
|
Mhlanga NM, Pate AE, Arinaitwe W, Carr JP, Murphy AM. Reduction in vertical transmission rate of bean common mosaic virus in bee-pollinated common bean plants. Virol J 2024; 21:147. [PMID: 38943139 PMCID: PMC11214251 DOI: 10.1186/s12985-024-02407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024] Open
Abstract
Vertical transmission, the transfer of pathogens across generations, is a critical mechanism for the persistence of plant viruses. The transmission mechanisms are diverse, involving direct invasion through the suspensor and virus entry into developing gametes before achieving symplastic isolation. Despite the progress in understanding vertical virus transmission, the environmental factors influencing this process remain largely unexplored. We investigated the complex interplay between vertical transmission of plant viruses and pollination dynamics, focusing on common bean (Phaseolus vulgaris). The intricate relationship between plants and pollinators, especially bees, is essential for global ecosystems and crop productivity. We explored the impact of virus infection on seed transmission rates, with a particular emphasis on bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV), and cucumber mosaic virus (CMV). Under controlled growth conditions, BCMNV exhibited the highest seed transmission rate, followed by BCMV and CMV. Notably, in the field, bee-pollinated BCMV-infected plants showed a reduced transmission rate compared to self-pollinated plants. This highlights the influence of pollinators on virus transmission dynamics. The findings demonstrate the virus-specific nature of seed transmission and underscore the importance of considering environmental factors, such as pollination, in understanding and managing plant virus spread.
Collapse
Affiliation(s)
- Netsai M Mhlanga
- National Institute of Agricultural Botany, New Rd, East Malling, West Malling, ME19 6BJ, UK
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Adrienne E Pate
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Warren Arinaitwe
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
- International Centre for Tropical Agriculture (CIAT), Dong Dok, Ban Nongviengkham, Vientiane, Lao People's Democratic Republic
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| |
Collapse
|
14
|
Iglesias D, Stevens K, Sharma A, Diaz-Lara A. A Novel Cryptic Virus Isolated from Galphimia spp. in Mexico. Pathogens 2024; 13:504. [PMID: 38921801 PMCID: PMC11207071 DOI: 10.3390/pathogens13060504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
Galphimia spp. is a plant employed in traditional medicine in Mexico because of its anxiolytic and sedative effects. Viruses have been associated with different alterations in plants, although asymptomatic agents (i.e., cryptic viruses) are also known. High-throughput sequencing (HTS) allows for the detection of pathogenic and non-pathogenic viral agents in plants, including potential novel viruses. The aim of this study was to investigate the presence of viral agents in two populations of Galphimia spp. by HTS. Sequencing was conducted on an Illumina NextSeq 550 platform, and a putative novel virus was identified. Two contigs showed homology to partitiviruses, and these encoded the RNA-dependent RNA polymerase and coat protein. These proteins showed the highest identities with orthologs in the recently discovered Vitis cryptic virus. A phylogenetic analysis of both RNAs showed that the new virus clusters into the monophyletic genus Deltapartitivirus along with other plant-infecting viruses. The result of the HTS analysis was validated by conventional RT-PCR and Sanger sequencing. A novel virus was discovered in a symptomless Galphimia spp. plant and tentatively named the Galphimia cryptic virus (GCV). This is the first virus discovered in medicinal plants in Mexico.
Collapse
Affiliation(s)
- Dianella Iglesias
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Queretaro 76130, Mexico;
| | - Kristian Stevens
- Departments of Computer Science and Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA;
| | - Ashutosh Sharma
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Queretaro 76130, Mexico;
| | - Alfredo Diaz-Lara
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Queretaro 76130, Mexico;
| |
Collapse
|
15
|
Li J, Shang Q, Luo Y, Wei S, Zhao C, Ban L. Transmission from seed to seedling and elimination of alfalfa viruses. FRONTIERS IN PLANT SCIENCE 2024; 15:1330219. [PMID: 38903432 PMCID: PMC11187482 DOI: 10.3389/fpls.2024.1330219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
Introduction Viral diseases have become a vital factor limiting the development of the alfalfa (Medicago sativa) industry. Six viruses infecting alfalfa with a high incidence rate are Alfalfa mosaic virus (AMV), Medicago sativa alphapartitivirus 1 (MsAPV1), Medicago sativa alphapartitivirus 2 (MsAPV2), Medicago sativa deltapartitivirus 1 (MsDPV1), Medicago sativa amalgavirus 1 (MsAV1), and Cnidium vein yellowing virus 1 (CnVYV1). The purpose of this study was to develop preventive measures against these viruses by investigating their transmission through alfalfa seeds. Methods In this study, we investigated the transmission rate of alfalfa viruses from seed to seedling by PCR, determined the location of viruses in seed by dissecting seed embryos and seed coat, tracked the changes of viruses in seedlings, and finally discover effective elimination measures for alfalfa viruses from 16 measures. Results and discussion Our results demonstrated that all these six viruses could be transmitted from alfalfa seeds to seedlings with the transmission rate ranging from 44.44% to 88.89%. For AMV, MsAPV2, and MsAV1, the viral load was significantly higher in the seed coats than in the seed embryos; however, it did not show significant differences between these two parts of the seeds for MsAPV1, MsDPV1, and CnVYV1. Dynamic accumulation analysis of AMV and MsAPV2 indicated that the viral load in plants increased continuously in the early growth stage, making it important to inactivate these viruses prior to their seed-to-seedling transmission. Sixteen treatments including physical, chemical, and combinations of physical and chemical measures were compared in terms of their elimination efficiency on AMV and MsAPV2 and impacts on seed germination. The results showed that soaking alfalfa seeds in sterile distilled water for 2h + 2% NaClO for 1h or 2% NaClO for 1h were more promisingly applicable because it could significantly reduce AMV and MsAPV2 particles in both seeds and seedlings. Our data revealed a route of virus transmission in alfalfa and shed light on the discovery of a highly efficient method for the management of alfalfa viral diseases.
Collapse
Affiliation(s)
- Jin Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- Sanya Institute, China Agricultural University, Sanya, China
| | - Qiaoxia Shang
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, China
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Yingning Luo
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Shuhua Wei
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Chaoyang Zhao
- Center for Medical, Agricultural and Veterinary Entomology, United States Department of Agriculture- Agricultural Research Service (USDA-ARS), Gainesville, FL, United States
| | - Liping Ban
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
García-Ordóñez L, Pagán I. Vertical and horizontal transmission of plant viruses: two extremes of a continuum? NPJ VIRUSES 2024; 2:18. [PMID: 40295758 PMCID: PMC11721382 DOI: 10.1038/s44298-024-00030-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/14/2024] [Indexed: 04/30/2025]
Abstract
Parasites have a variety of mechanisms to be transmitted to new susceptible hosts, which can be largely grouped in two main modes: vertical (i.e., from parents to the offspring) and horizontal (i.e., between hosts regardless of descent). Because between-host dispersal is a key trait for parasite fitness, scientists studying host-parasite interactions have been long interested in understanding the evolution of their transmission mode(s). Most work in this regard has been theoretical, which resulted in the development of the so-called Continuum hypothesis. This theory states that because vertically transmitted parasites require the host to reproduce, the evolution of this mode of transmission will involve reduced virulence (i.e., the effect of infection on host fecundity) in order to allow maximal host viable progeny production. Conversely, the evolution of horizontal transmission does not have this limitation and parasites with this mode of transmission will evolve higher virulence. Therefore, a trade-off between both modes of transmission across a continuum of virulence values is predicted, with each transmission mode located at the extremes of the continuum. Using plant viruses as a focal parasite, here we review existing theory surrounding the Continuum hypothesis and the experimental work testing the predictions of the theory. Finally, we briefly discuss molecular mechanisms that may explain the existence of vertical-to-horizontal transmission trade-offs and potential implications for the management of virus epidemics.
Collapse
Affiliation(s)
- Lucía García-Ordóñez
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain.
| |
Collapse
|
17
|
Sandra N, Mandal B. Emerging evidence of seed transmission of begomoviruses: implications in global circulation and disease outbreak. FRONTIERS IN PLANT SCIENCE 2024; 15:1376284. [PMID: 38807782 PMCID: PMC11130427 DOI: 10.3389/fpls.2024.1376284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024]
Abstract
Begomoviruses (family Geminiviridae) are known for causing devastating diseases in fruit, fibre, pulse, and vegetable crops throughout the world. Begomoviruses are transmitted in the field exclusively through insect vector whitefly (Bemisia tabaci), and the frequent outbreaks of begomoviruses are attributed largely due to the abundance of whitefly in the agri-ecosystem. Begomoviruses being phloem-borne were known not be transmitted through seeds of the infected plants. The recent findings of seed transmission of begomoviruses brought out a new dimension of begomovirus perpetuation and dissemination. The first convincing evidence of seed transmission of begomoviruses was known in 2015 for sweet potato leaf curl virus followed by several begomoviruses, like bhendi yellow vein mosaic virus, bitter gourd yellow mosaic virus, dolichos yellow mosaic virus, mungbean yellow mosaic virus, mungbean yellow mosaic India virus, pepper yellow leaf curl Indonesia virus, tomato leaf curl New Delhi virus, tomato yellow leaf curl virus, tomato yellow leaf curl Sardinia virus, and okra yellow mosaic Mexico virus. These studies brought out two perspectives of seed-borne nature of begomoviruses: (i) the presence of begomovirus in the seed tissues derived from the infected plants but no expression of disease symptoms in the progeny seedlings and (ii) the seed infection successfully transmitted the virus to cause disease to the progeny seedlings. It seems that the seed transmission of begomovirus is a feature of a specific combination of host-genotype and virus strain, rather than a universal phenomenon. This review comprehensively describes the seed transmitted begomoviruses reported in the last 9 years and the possible mechanism of seed transmission. An emphasis is placed on the experimental results that proved the seed transmission of various begomoviruses, factors affecting seed transmission and impact of begomovirus seed transmission on virus circulation, outbreak of the disease, and management strategies.
Collapse
Affiliation(s)
- Nagamani Sandra
- Seed Pathology Laboratory, Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
18
|
Escalante C, Sanz-Saez A, Jacobson A, Otulak-Kozieł K, Kozieł E, Balkcom KS, Zhao C, Conner K. Plant virus transmission during seed development and implications to plant defense system. FRONTIERS IN PLANT SCIENCE 2024; 15:1385456. [PMID: 38779063 PMCID: PMC11109449 DOI: 10.3389/fpls.2024.1385456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Most plants produce large amounts of seeds to disperse their progeny in the environment. Plant viruses have evolved to avoid plant resistance mechanisms and use seeds for their dispersal. The presence of plant pathogenic viruses in seeds and suppression of plant host defenses is a major worldwide concern for producers and seed companies because undetected viruses in the seed can represent a significant threat to yield in many economically important crops. The vertical transmission of plant viruses occurs directly through the embryo or indirectly by getting in pollen grains or ovules. Infection of plant viruses during the early development of the seed embryo can result in morphological or genetic changes that cause poor seed quality and, more importantly, low yields due to the partial or ubiquitous presence of the virus at the earliest stages of seedling development. Understanding transmission of plant viruses and the ability to avoid plant defense mechanisms during seed embryo development will help identify primary inoculum sources, reduce virus spread, decrease severity of negative effects on plant health and productivity, and facilitate the future of plant disease management during seed development in many crops. In this article, we provide an overview of the current knowledge and understanding of plant virus transmission during seed embryo development, including the context of host-virus interaction.
Collapse
Affiliation(s)
- Cesar Escalante
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Alvaro Sanz-Saez
- Department of Crop Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Alana Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Katarzyna Otulak-Kozieł
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences, Warsaw, Poland
| | - Edmund Kozieł
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences, Warsaw, Poland
| | - Kipling S. Balkcom
- The United States Department of Agriculture - Agricultural Research Service (USDA-ARS) National Soil Dynamics Lab, Auburn, AL, United States
| | - Chaoyang Zhao
- The United States Department of Agriculture - Agricultural Research Service (USDA-ARS) National Soil Dynamics Lab, Auburn, AL, United States
| | - Kassie Conner
- Alabama Cooperative Extension, Auburn University, Auburn, AL, United States
| |
Collapse
|
19
|
Sáez C, Pagán I. Plant viruses traveling without passport. PLoS Biol 2024; 22:e3002626. [PMID: 38728373 PMCID: PMC11086899 DOI: 10.1371/journal.pbio.3002626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
All plant viruses were thought to encode in its genome a movement protein that acts as a "passport," allowing active movement within the host. A new study in PLOS Biology characterizes the first plant virus that can colonize its host without encoding this protein.
Collapse
Affiliation(s)
- Cristina Sáez
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
20
|
Moubset O, Filloux D, Fontes H, Julian C, Fernandez E, Galzi S, Blondin L, Chehida SB, Lett JM, Mesléard F, Kraberger S, Custer JM, Salywon A, Makings E, Marais A, Chiroleu F, Lefeuvre P, Martin DP, Candresse T, Varsani A, Ravigné V, Roumagnac P. Virome release of an invasive exotic plant species in southern France. Virus Evol 2024; 10:veae025. [PMID: 38566975 PMCID: PMC10986800 DOI: 10.1093/ve/veae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
The increase in human-mediated introduction of plant species to new regions has resulted in a rise of invasive exotic plant species (IEPS) that has had significant effects on biodiversity and ecosystem processes. One commonly accepted mechanism of invasions is that proposed by the enemy release hypothesis (ERH), which states that IEPS free from their native herbivores and natural enemies in new environments can outcompete indigenous species and become invasive. We here propose the virome release hypothesis (VRH) as a virus-centered variant of the conventional ERH that is only focused on enemies. The VRH predicts that vertically transmitted plant-associated viruses (PAV, encompassing phytoviruses and mycoviruses) should be co-introduced during the dissemination of the IEPS, while horizontally transmitted PAV of IEPS should be left behind or should not be locally transmitted in the introduced area due to a maladaptation of local vectors. To document the VRH, virome richness and composition as well as PAV prevalence, co-infection, host range, and transmission modes were compared between indigenous plant species and an invasive grass, cane bluestem (Bothriochloa barbinodis), in both its introduced range (southern France) and one area of its native range (Sonoran Desert, Arizona, USA). Contrary to the VRH, we show that invasive populations of B. barbinodis in France were not associated with a lower PAV prevalence or richness than native populations of B. barbinodis from the USA. However, comparison of virome compositions and network analyses further revealed more diverse and complex plant-virus interactions in the French ecosystem, with a significant richness of mycoviruses. Setting mycoviruses apart, only one putatively vertically transmitted phytovirus (belonging to the Amalgaviridae family) and one putatively horizontally transmitted phytovirus (belonging to the Geminiviridae family) were identified from B. barbinodis plants in the introduced area. Collectively, these characteristics of the B. barbinodis-associated PAV community in southern France suggest that a virome release phase may have immediately followed the introduction of B. barbinodis to France in the 1960s or 1970s, and that, since then, the invasive populations of this IEPS have already transitioned out of this virome release phase, and have started interacting with several local mycoviruses and a few local plant viruses.
Collapse
Affiliation(s)
- Oumaima Moubset
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Denis Filloux
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Hugo Fontes
- Tour du Valat, Institut de recherche pour la conservation des zones humides méditerranéennes, Le Sambuc, Arles 13200, France
- Institut Méditerranéen de Biodiversité et Ecologie, UMR CNRS-IRD, Avignon Université, Aix-Marseille Université, IUT d’Avignon, Avignon 84911, France
| | - Charlotte Julian
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Emmanuel Fernandez
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Serge Galzi
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Laurence Blondin
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | | | | | - François Mesléard
- Tour du Valat, Institut de recherche pour la conservation des zones humides méditerranéennes, Le Sambuc, Arles 13200, France
- Institut Méditerranéen de Biodiversité et Ecologie, UMR CNRS-IRD, Avignon Université, Aix-Marseille Université, IUT d’Avignon, Avignon 84911, France
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Andrew Salywon
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| | - Elizabeth Makings
- Vascular Plant Herbarium, School of Life Sciences, Arizona State University, 734 West Alameda Drive, Tempe Tempe, AZ 85282, USA
| | - Armelle Marais
- UMR BFP, University Bordeaux, INRAE, Villenave d’Ornon 33140, France
| | | | | | - Darren P Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Rd, Cape Town 7925, South Africa
| | - Thierry Candresse
- UMR BFP, University Bordeaux, INRAE, Villenave d’Ornon 33140, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7700, South Africa
| | - Virginie Ravigné
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Philippe Roumagnac
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| |
Collapse
|
21
|
Vats G, Sharma V, Noorani S, Rani A, Kaushik N, Kaushik A, Kala D, Nagraik R, Srivastava A, Gupta S, Singh B, Kaushal A, Walia Y, Dhir S. Apple stem grooving capillovirus
: pliant pathogen and its potential as a tool in functional genomics and effective disease management. ARCHIVES OF PHYTOPATHOLOGY AND PLANT PROTECTION 2024; 57:261-295. [DOI: 10.1080/03235408.2024.2359948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/21/2024] [Indexed: 01/02/2025]
Affiliation(s)
- Gourav Vats
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Vasudha Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Salik Noorani
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Asha Rani
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Naveen Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Amit Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
- Adjunct faculty, Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Deepak Kala
- NL-11 Centera Tetrahertz Laboratory, Institute of High-Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Rupak Nagraik
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan Himachal Pradesh, India
| | - Ashish Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
- Department of Entomology and Plant Pathology, Division of Agriculture, University of AR System, Fayetteville, Arkansas, USA
| | - Shagun Gupta
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Bharat Singh
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Ankur Kaushal
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Yashika Walia
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Sunny Dhir
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| |
Collapse
|
22
|
Kim DY, Patel SKS, Rasool K, Lone N, Bhatia SK, Seth CS, Ghodake GS. Bioinspired silver nanoparticle-based nanocomposites for effective control of plant pathogens: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168318. [PMID: 37956842 DOI: 10.1016/j.scitotenv.2023.168318] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Plant pathogens, including bacteria, fungi, and viruses, pose significant challenges to the farming community due to their extensive diversity, the rapidly evolving phenomenon of multi-drug resistance (MDR), and the limited availability of effective control measures. Amid mounting global pressure, particularly from the World Health Organization, to limit the use of antibiotics in agriculture and livestock management, there is increasing consideration of engineered nanomaterials (ENMs) as promising alternatives for antimicrobial applications. Studies focusing on the application of ENMs in the fight against MDR pathogens are receiving increasing attention, driven by significant losses in agriculture and critical knowledge gaps in this crucial field. In this review, we explore the potential contributions of silver nanoparticles (AgNPs) and their nanocomposites in combating plant diseases, within the emerging interdisciplinary arena of nano-phytopathology. AgNPs and their nanocomposites are increasingly acknowledged as promising countermeasures against plant pathogens, owing to their unique physicochemical characteristics and inherent antimicrobial properties. This review explores recent advancements in engineered nanocomposites, highlights their diverse mechanisms for pathogen control, and draws attention to their potential in antibacterial, antifungal, and antiviral applications. In the discussion, we briefly address three crucial dimensions of combating plant pathogens: green synthesis approaches, toxicity-environmental concerns, and factors influencing antimicrobial efficacy. Finally, we outline recent advancements, existing challenges, and prospects in scholarly research to facilitate the integration of nanotechnology across interdisciplinary fields for more effective treatment and prevention of plant diseases.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | | | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nasreena Lone
- School of Allied Healthcare and Sciences, JAIN Deemed University, Whitefield, Bangalore 560066, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
23
|
Gil-Valle M, Sáez C, Montes N, Pagán I. Quantification of Plant Virus Seed Transmission Rate in Arabidopsis thaliana. Methods Mol Biol 2024; 2724:181-192. [PMID: 37987906 DOI: 10.1007/978-1-0716-3485-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
More than 25% of all known plant viruses are transmitted through seeds, which makes this mode of dispersal of great importance for plant virus epidemics. Virus detection in seed stocks remains the most frequent approach for seed health testing, but current methods are not always standardized and/or do not allow analyzing large numbers of seeds. Here, we describe a high-throughput method to quantify plant virus seed transmission rate based on classical grow-out tests, which can be applied to widely different viruses and host species.
Collapse
Affiliation(s)
- Miriam Gil-Valle
- Centro de Biotecnología y Genómica de Plantas UPM-INIA/CSIC and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Cristina Sáez
- Centro de Biotecnología y Genómica de Plantas UPM-INIA/CSIC and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Nuria Montes
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU-Universities, Boadilla del Monte, Madrid, Spain
- Unidad de Metodología, Instituto de Investigación Sanitaria La Princesa (IIS-IP) and Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA/CSIC and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
24
|
Saracchi M, Valenti I, Cortesi P, Bulgari D, Kunova A, Pasquali M. Molecular Characterization of Ciborinia camelliae Kohn Shows Intraspecific Variability and Suggests Transcontinental Movement of the Pathogen. Microorganisms 2023; 11:2727. [PMID: 38004739 PMCID: PMC10673376 DOI: 10.3390/microorganisms11112727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Ciborinia camelliae Kohn is the causal agent of camellia flower blight. The fungus infects only the flowers of camellias. C. camelliae isolates obtained from symptomatic samples, collected in 13 different localities worldwide, were characterized by Multi-Locus Sequence Typing (MLST) using the following: (i) a nuclear ribosomal DNA internal transcribed spacer; (ii) subunit 2 of β-tubulin (β-TUB II), (iii) elongation factor 1-α (EF1α); and (iv) glycerol-3-phosphate dehydrogenase (GPDH). The variability of the strains was assessed using a universally primed-polymerase chain reaction (UP-PCR) with six universal primers. Gene sequence comparison showed high similarity among all the European strains and highlighted the diversity of the New Zealand and Chinese representative strains. The profiles obtained by UP-PCR confirmed the significant diversity of extra-European strains and identified subgroups within the European population. The presence of shared genetic profiles obtained from strains isolated in different countries (New Zealand and France) suggests the movement of strains from one location to another, which is probably due to the exchange of infected plant material. Moreover, our study shows the overall high intraspecific variability of C. camelliae, which is likely due to the sexual reproduction of the fungus, suggesting the risk of emergence of new pathotypes adapting to novel camellia varieties.
Collapse
Affiliation(s)
| | | | | | - Daniela Bulgari
- Department of Food, Environmental, and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (M.S.); (I.V.); (P.C.); (A.K.); (M.P.)
| | | | | |
Collapse
|
25
|
Sáez C, Kheireddine A, García A, Sifres A, Moreno A, Font-San-Ambrosio MI, Picó B, López C. Further Molecular Diagnosis Determines Lack of Evidence for Real Seed Transmission of Tomato Leaf Curl New Delhi Virus in Cucurbits. PLANTS (BASEL, SWITZERLAND) 2023; 12:3773. [PMID: 37960129 PMCID: PMC10650430 DOI: 10.3390/plants12213773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Begomoviruses (family Geminiviridae) cause serious diseases in many crop families. Since 2013, the Spanish isolate of tomato leaf curl New Delhi virus (ToLCNDV) has been a limiting factor for cucurbits production in the Mediterranean basin, forcing farmers to adapt new management and control techniques. Although it is well-known that begomoviruses are naturally transmitted by the whitefly Bemisia tabaci, the capacity of these viruses to be vertically transmitted through seeds remains controversial. Clarifying the potential ToLCNDV seed transmission is essential to understand the epidemiology of this threating-for-cucurbits virus and to design appropriate control strategies. We assessed ToLCNDV distribution in the leaves, flowers and seeds of the infected plants of susceptible Cucumis melo accessions and toleration to the infected genotypes of Cucurbita moschata by conventional and quantitative PCR. We analyzed whether the viral particle was transmitted to offspring. We also evaluated ToLCNDV presence in commercial seeds of cucurbits (zucchini (Cucurbita pepo), melon (C. melo), cucumber (Cucumis sativus) and watermelon (Citrullus lanatus)) and in their progenies. As the assayed seedlings remained symptomless, we increased the reliability and accuracy of detection in these samples by searching for replicative forms of ToLCNDV by combining Southern blot hybridization and rolling-circle amplification (RCA). However, integral genomic DNA was not identified in the plants of offspring. Although the seedborne nature of ToLCNDV was confirmed, our results do not support the transmission of this virus from contaminated seeds to progeny.
Collapse
Affiliation(s)
- Cristina Sáez
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28031 Madrid, Spain
| | - Amina Kheireddine
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| | - Arcadio García
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas—Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Alicia Sifres
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| | | | - María Isabel Font-San-Ambrosio
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València (IAM-UPV), Camino de Vera s/n, 46022 Valencia, Spain;
| | - Belén Picó
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| | - Carmelo López
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| |
Collapse
|
26
|
Hirsch J, Szadkowski M, Wipf-Scheibel C, Lepage E, Dumeaux P, Nguyen E, Verdin E, Moury B, Rimbaud L. Absence of Seed-Mediated Transmission of Cucumber Mosaic Virus in Espelette Pepper Crops despite Widespread and Recurrent Epidemics. Viruses 2023; 15:2159. [PMID: 38005837 PMCID: PMC10674872 DOI: 10.3390/v15112159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
In the past decade, severe epidemics of cucumber mosaic virus (CMV) have caused significant damage to Espelette pepper crops. This virus threatens the production of Espelette pepper, which plays a significant role in the local economy and touristic attractiveness of the French Basque Country, located in southwestern France. In 2021 and 2022, CMV was detected via double-antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) in Gorria pepper seed lots harvested from naturally infected fields scattered throughout the entire Espelette pepper production area. These seed lots were used in greenhouse grow-out tests to determine whether CMV could be transmitted to seedlings from contaminated seeds, using visual symptom assessment, DAS-ELISAs, and reverse transcription-polymerase chain reaction (RT-PCR). Despite the widespread occurrence of CMV in seeds of field samples, the grow-out experiments on a total of over 5000 seedlings yielded no evidence of seed transmission of local CMV isolates in Gorria pepper. Therefore, rather than seeds from infected pepper plants, sources of CMV inoculum in Espelette are more likely to be alternative hosts present in and around pepper fields that can allow for the survival of CMV during the off-season. These results have important epidemiological implications and will guide the choice of effective measures to control current epidemics.
Collapse
Affiliation(s)
- Judith Hirsch
- INRAE, Pathologie Végétale, 84140 Avignon, France; (M.S.); (C.W.-S.); (E.L.); (E.V.); (B.M.)
| | - Marion Szadkowski
- INRAE, Pathologie Végétale, 84140 Avignon, France; (M.S.); (C.W.-S.); (E.L.); (E.V.); (B.M.)
| | - Catherine Wipf-Scheibel
- INRAE, Pathologie Végétale, 84140 Avignon, France; (M.S.); (C.W.-S.); (E.L.); (E.V.); (B.M.)
| | - Elise Lepage
- INRAE, Pathologie Végétale, 84140 Avignon, France; (M.S.); (C.W.-S.); (E.L.); (E.V.); (B.M.)
- AgroParisTech, 91123 Palaiseau, France
- INRAE, BioSP, 84140 Avignon, France
| | - Paul Dumeaux
- Syndicat du Piment d’Espelette AOP, 64250 Espelette, France; (P.D.); (E.N.)
| | - Elodie Nguyen
- Syndicat du Piment d’Espelette AOP, 64250 Espelette, France; (P.D.); (E.N.)
| | - Eric Verdin
- INRAE, Pathologie Végétale, 84140 Avignon, France; (M.S.); (C.W.-S.); (E.L.); (E.V.); (B.M.)
| | - Benoît Moury
- INRAE, Pathologie Végétale, 84140 Avignon, France; (M.S.); (C.W.-S.); (E.L.); (E.V.); (B.M.)
| | - Loup Rimbaud
- INRAE, Pathologie Végétale, 84140 Avignon, France; (M.S.); (C.W.-S.); (E.L.); (E.V.); (B.M.)
| |
Collapse
|
27
|
Mäkinen K, Aspelin W, Pollari M, Wang L. How do they do it? The infection biology of potyviruses. Adv Virus Res 2023; 117:1-79. [PMID: 37832990 DOI: 10.1016/bs.aivir.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Affiliation(s)
- Kristiina Mäkinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - William Aspelin
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Maija Pollari
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Linping Wang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Choi H, Jo Y, Chung H, Choi SY, Kim SM, Hong JS, Lee BC, Cho WK. Investigating Variability in Viral Presence and Abundance across Soybean Seed Development Stages Using Transcriptome Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3257. [PMID: 37765420 PMCID: PMC10535271 DOI: 10.3390/plants12183257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Plant transcriptomes offer a valuable resource for studying viral communities (viromes). In this study, we explore how plant transcriptome data can be applied to virome research. We analyzed 40 soybean transcriptomes across different growth stages and identified six viruses: broad bean wilt virus 2 (BBWV2), brassica yellow virus (BrYV), beet western yellow virus (BWYV), cucumber mosaic virus (CMV), milk vetch dwarf virus (MDV), and soybean mosaic virus (SMV). SMV was the predominant virus in both Glycine max (GM) and Glycine soja (GS) cultivars. Our analysis confirmed its abundance in both, while BBWV2 and CMV were more prevalent in GS than GM. The viral proportions varied across developmental stages, peaking in open flowers. Comparing viral abundance measured by viral reads and fragments per kilobase of transcript per million (FPKM) values revealed insights. SMV showed similar FPKM values in GM and GS, but BBWV2 and CMV displayed higher FPKM proportions in GS. Notably, the differences in viral abundance between GM and GS were generally insignificant based on the FPKM values across developmental stages, except for the apical bud stage in four GM cultivars. We also detected MDV, a multi-segmented virus, in two GM samples, with variable proportions of its segments. In conclusion, our study demonstrates the potential of plant transcriptomes for virome research, highlighting their strengths and limitations.
Collapse
Affiliation(s)
- Hoseong Choi
- Plant Health Center, Seoul National University, Seoul 08826, Republic of Korea;
| | - Yeonhwa Jo
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Hyunjung Chung
- Crop Foundation Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea; (H.C.); (S.Y.C.); (S.-M.K.)
| | - Soo Yeon Choi
- Crop Foundation Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea; (H.C.); (S.Y.C.); (S.-M.K.)
| | - Sang-Min Kim
- Crop Foundation Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea; (H.C.); (S.Y.C.); (S.-M.K.)
| | - Jin-Sung Hong
- Department of Applied Biology, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Bong Choon Lee
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
29
|
Gutiérrez-Sánchez Á, Cobos A, López-Herranz M, Canto T, Pagán I. Environmental Conditions Modulate Plant Virus Vertical Transmission and Survival of Infected Seeds. PHYTOPATHOLOGY 2023; 113:1773-1787. [PMID: 36880795 DOI: 10.1094/phyto-11-22-0448-v] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Seed transmission is a major mode for plant virus persistence and dispersal, as it allows for virus survival within the seed in unfavorable conditions and facilitates spread when they become more favorable. To access these benefits, viruses require infected seeds to remain viable and germinate in altered environmental conditions, which may also be advantageous for the plant. However, how environmental conditions and virus infection affect seed viability, and whether these effects modulate seed transmission rate and plant fitness, is unknown. To address these questions, we utilized turnip mosaic virus, cucumber mosaic virus, and Arabidopsis thaliana as model systems. Using seeds from plants infected by these viruses, we analyzed seed germination rates, as a proxy of seed viability, and virus seed transmission rate under standard and altered temperature, CO2, and light intensity. With these data, we developed and parameterized a mathematical epidemiological model to explore the consequences of the observed alterations on virus prevalence and persistence. Altered conditions generally reduced overall seed viability and increased virus transmission rate compared with standard conditions, which indicated that under environmental stress, infected seeds are more viable. Hence, virus presence may be beneficial for the host. Subsequent simulations predicted that enhanced viability of infected seeds and higher virus transmission rate may increase virus prevalence and persistence in the host population under altered conditions. This work provides novel information on the influence of the environment in plant virus epidemics. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Álvaro Gutiérrez-Sánchez
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Alberto Cobos
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Marisa López-Herranz
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Tomás Canto
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| |
Collapse
|
30
|
Gautam S, Chinnaiah S, Herron B, Workneh F, Rush CM, Gadhave KR. Seed Transmission of Wheat Streak Mosaic Virus and Triticum Mosaic Virus in Differentially Resistant Wheat Cultivars. Viruses 2023; 15:1774. [PMID: 37632116 PMCID: PMC10459636 DOI: 10.3390/v15081774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are important viral pathogens of wheat in the Great Plains. These viruses individually or in mixed infections with High Plains wheat mosaic virus cause a devastating wheat streak mosaic (WSM) disease. Although seed transmission of WSMV has been studied, no information is currently available on that of TriMV. Furthermore, no study has explored the implications of mixed infections of WSMV and TriMV on seed transmission of one or both viruses. To study both aspects, seeds from differentially resistant field-grown wheat plants (cv. TAM 304 (susceptible), Joe (WSMV resistant, Wsm2 gene), and Breakthrough (BT) (WSMV and TriMV resistant, Wsm1 gene)) showing characteristic WSM symptoms were collected and analyzed to quantify both viruses using qRT-PCR. The percentage of seeds tested positive for WSMV or TriMV individually and in mixed infection varied with cultivar and virus combinations; 13% of TAM 304 seeds tested positive for WSMV, followed by 8% of BT and 4% of Joe seeds. Similarly, TriMV was detected in 12% of BT seeds, followed by 11% of TAM 304 and 8% of Joe seeds. Lastly, mixed infection was detected in 7% of TAM 304 seeds, followed by 4% in BT, and 2% in Joe. Dissection of field-collected seeds into three parts, embryo, endosperm, and seed coat, revealed both WSMV and TriMV accumulated only in the seed coat. Consistent with seeds, percent infection of WSMV or TriMV in the plants that emerged from infected seeds in each treatment varied with cultivar and virus combinations (WSMV: BT 3%; Joe 2%; TAM 304 9%; TriMV: BT 7%; Joe 8%; and TAM 304 10%). Plants infected with mixed viruses showed more pronounced WSM symptoms compared to individual infections. However, both viruses were present only in a few plants (BT: 2%, Joe: 1%, and TAM 304: 4%). Taken together, this study showed that TriMV was transmitted vertically at a higher frequency than WSMV in resistant cultivars, and the seed transmission of TriMV with WSMV increased the virulence of both pathogens (measured via WSM symptom severity) in the emerged plants. Furthermore, Wsm1 and Wsm2 genes considerably reduced WSMV transmission via infected seeds. However, no such effects were observed on TriMV, especially in progeny plants. These results reiterated the importance of planting clean seeds and highlighted the immediate need to identify/develop new sources of TriMV resistance to effectively manage the recurring WSM epidemic.
Collapse
Affiliation(s)
- Saurabh Gautam
- Texas A & M AgriLife Research, 6500 W Amarillo Blvd, Amarillo, TX 79106, USA; (S.G.); (S.C.); (B.H.); (F.W.); (C.M.R.)
- Department of Entomology, Texas A & M University, College Station, TX 77843, USA
| | - Senthilraja Chinnaiah
- Texas A & M AgriLife Research, 6500 W Amarillo Blvd, Amarillo, TX 79106, USA; (S.G.); (S.C.); (B.H.); (F.W.); (C.M.R.)
- Department of Entomology, Texas A & M University, College Station, TX 77843, USA
| | - Benjamin Herron
- Texas A & M AgriLife Research, 6500 W Amarillo Blvd, Amarillo, TX 79106, USA; (S.G.); (S.C.); (B.H.); (F.W.); (C.M.R.)
- Department of Entomology, Texas A & M University, College Station, TX 77843, USA
| | - Fekede Workneh
- Texas A & M AgriLife Research, 6500 W Amarillo Blvd, Amarillo, TX 79106, USA; (S.G.); (S.C.); (B.H.); (F.W.); (C.M.R.)
- Department of Plant Pathology, Texas A & M University, College Station, TX 77840, USA
| | - Charles M. Rush
- Texas A & M AgriLife Research, 6500 W Amarillo Blvd, Amarillo, TX 79106, USA; (S.G.); (S.C.); (B.H.); (F.W.); (C.M.R.)
- Department of Plant Pathology, Texas A & M University, College Station, TX 77840, USA
| | - Kiran R. Gadhave
- Texas A & M AgriLife Research, 6500 W Amarillo Blvd, Amarillo, TX 79106, USA; (S.G.); (S.C.); (B.H.); (F.W.); (C.M.R.)
- Department of Entomology, Texas A & M University, College Station, TX 77843, USA
| |
Collapse
|
31
|
Schwartz DA, Shoemaker WR, Măgălie A, Weitz JS, Lennon JT. Bacteria-phage coevolution with a seed bank. THE ISME JOURNAL 2023:10.1038/s41396-023-01449-2. [PMID: 37286738 DOI: 10.1038/s41396-023-01449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Dormancy is an adaptation to living in fluctuating environments. It allows individuals to enter a reversible state of reduced metabolic activity when challenged by unfavorable conditions. Dormancy can also influence species interactions by providing organisms with a refuge from predators and parasites. Here we test the hypothesis that, by generating a seed bank of protected individuals, dormancy can modify the patterns and processes of antagonistic coevolution. We conducted a factorially designed experiment where we passaged a bacterial host (Bacillus subtilis) and its phage (SPO1) in the presence versus absence of a seed bank consisting of dormant endospores. Owing in part to the inability of phages to attach to spores, seed banks stabilized population dynamics and resulted in minimum host densities that were 30-fold higher compared to bacteria that were unable to engage in dormancy. By supplying a refuge to phage-sensitive strains, we show that seed banks retained phenotypic diversity that was otherwise lost to selection. Dormancy also stored genetic diversity. After characterizing allelic variation with pooled population sequencing, we found that seed banks retained twice as many host genes with mutations, whether phages were present or not. Based on mutational trajectories over the course of the experiment, we demonstrate that seed banks can dampen bacteria-phage coevolution. Not only does dormancy create structure and memory that buffers populations against environmental fluctuations, it also modifies species interactions in ways that can feed back onto the eco-evolutionary dynamics of microbial communities.
Collapse
Affiliation(s)
- Daniel A Schwartz
- Department of Biology, Indiana University, Bloomington, Indiana, IN, USA
| | - William R Shoemaker
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
| | - Andreea Măgălie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Institut de Biologie, École Normale Supérieure, Paris, France
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, IN, USA.
| |
Collapse
|
32
|
Nemchinov LG, Irish BM, Grinstead S, Postnikova OA. Characterization of the seed virome of alfalfa (Medicago sativa L). Virol J 2023; 20:96. [PMID: 37208777 DOI: 10.1186/s12985-023-02063-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Seed transmission of plant viruses can be important due to the role it plays in their dissemination to new areas and subsequent epidemics. Seed transmission largely depends on the ability of a virus to replicate in reproductive tissues and survive during the seed maturation process. It occurs through the infected embryo or mechanically through the contaminated seed coat. Alfalfa (Medicago sativa L.) is an important legume forage crop worldwide, and except for a few individual seedborne viruses infecting the crop, its seed virome is poorly known. The goal of this research was to perform initial seed screenings on alfalfa germplasm accessions maintained by the USDA ARS National Plant Germplasm System in order to identify pathogenic viruses and understand their potential for dissemination. METHODS For the detection of viruses, we used high throughput sequencing combined with bioinformatic tools and reverse transcription-polymerase chain reactions. RESULTS Our results suggest that, in addition to common viruses, alfalfa seeds are infected by other potentially pathogenic viral species that could be vertically transmitted to offspring. CONCLUSIONS To the best of our knowledge, this is the first study of the alfalfa seed virome carried out by HTS technology. This initial screening of alfalfa germplasm accessions maintained by the NPGS showed that the crop's mature seeds contain a broad range of viruses, some of which were not previously considered to be seed-transmitted. The information gathered will be used to update germplasm distribution policies and to make decisions on the safety of distributing germplasm based on viral presence.
Collapse
Affiliation(s)
- Lev G Nemchinov
- Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD, 20705, USA.
| | - Brian M Irish
- Plant Germplasm Introduction and Testing Research, USDA-ARS, Prosser, WA, 99352, USA
| | - Sam Grinstead
- Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Olga A Postnikova
- Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD, 20705, US
| |
Collapse
|
33
|
Leeks A, Young PG, Turner PE, Wild G, West SA. Cheating leads to the evolution of multipartite viruses. PLoS Biol 2023; 21:e3002092. [PMID: 37093882 PMCID: PMC10159356 DOI: 10.1371/journal.pbio.3002092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/04/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
In multipartite viruses, the genome is split into multiple segments, each of which is transmitted via a separate capsid. The existence of multipartite viruses poses a problem, because replication is only possible when all segments are present within the same host. Given this clear cost, why is multipartitism so common in viruses? Most previous hypotheses try to explain how multipartitism could provide an advantage. In so doing, they require scenarios that are unrealistic and that cannot explain viruses with more than 2 multipartite segments. We show theoretically that selection for cheats, which avoid producing a shared gene product, but still benefit from gene products produced by other genomes, can drive the evolution of both multipartite and segmented viruses. We find that multipartitism can evolve via cheating under realistic conditions and does not require unreasonably high coinfection rates or any group-level benefit. Furthermore, the cheating hypothesis is consistent with empirical patterns of cheating and multipartitism across viruses. More broadly, our results show how evolutionary conflict can drive new patterns of genome organisation in viruses and elsewhere.
Collapse
Affiliation(s)
- Asher Leeks
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | | | - Paul Eugene Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
| | - Geoff Wild
- Department of Mathematics, The University of Western Ontario, London, Canada
| | | |
Collapse
|
34
|
Gomathi Devi R, Jothika C, Sankari A, Lakshmi S, Malathi VG, Renukadevi P. Seed Transmission of Begomoviruses: A Potential Threat for Bitter Gourd Cultivation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1396. [PMID: 36987084 PMCID: PMC10057619 DOI: 10.3390/plants12061396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Bitter gourd (Momordica charantia L.), one of the valued vegetable crops in India, is severely affected by yellow mosaic disease caused by two begomoviruses, tomato leaf curl New Delhi virus (ToLCNDV) and bitter gourd yellow mosaic virus (BgYMV). The symptoms are yellowing, distortion of leaf, puckering, and malformed fruits. Increased incidence of the disease and appearance of symptoms even in young emerging seedling stage were suggestive of seed transmission of the viruses, which was examined in detail. To study the seed transmission, two sources-seeds of elite hybrids H1, H2, H3, H4, and Co1 procured from a seed market; and seeds from infected plants in the farmer's field were tested. Detection of the virus by DAS-ELISA using polyclonal antibody indicated embryo infection up to 63%, 26%, 20%, and 10% in hybrids H1, H2, H3, and H4, respectively, for market-procured seeds. In PCR analysis with primers specific for ToLCNDV and BgYMV, infection by ToLCNDV was as high as 76% and mixed infection was 24%. In contrast, in seeds derived from field-infected plants, the percentage detection was less. Grow-out tests with market-procured seeds revealed no transmission for BgYMV compared with 5% transmission for ToLCNDV. Whether seed-borne inocula could serve as an inoculum for new infection in a field and further progress of the disease was investigated in a microplot study. The study clearly revealed variation in seed transmission between different sources, lots, cultivars, and viruses. The virus present in symptomatic and asymptomatic plants was easily transmitted by whitefly. In another microplot experiment, the potential of seed-borne virus as inoculum was proved. There was 43.3% initial seed transmission in the microplot, increasing to 70% after release of 60 whiteflies.
Collapse
Affiliation(s)
- Ravisankar Gomathi Devi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - Chinnaraj Jothika
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - Arjunan Sankari
- Department of Vegetable Science, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - Sethuraman Lakshmi
- Department of Seed Science and Technology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - Varagur Ganesan Malathi
- Retired Scientist, ICAR-IARI, GI, Sree Kumaran Hill Crest Apartment, Coimbatore 641046, Tamil Nadu, India
| | - Perumal Renukadevi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| |
Collapse
|
35
|
Abstract
This article is a Commentary on Verhoeven et al . (2023), pp. 1146–1153.
Collapse
Affiliation(s)
- Cristina Sáez
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de MadridMadrid28223Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de MadridMadrid28223Spain
| |
Collapse
|
36
|
Jeger MJ. Tolerance of plant virus disease: Its genetic, physiological, and epidemiological significance. Food Energy Secur 2022. [DOI: 10.1002/fes3.440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Michael John Jeger
- Department of Life Sciences, Silwood Park Imperial College London Ascot UK
| |
Collapse
|
37
|
Montes N, Pagán I. Challenges and opportunities for plant viruses under a climate change scenario. Adv Virus Res 2022; 114:1-66. [PMID: 39492212 DOI: 10.1016/bs.aivir.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is an increasing societal awareness on the enormous threat that climate change may pose for human, animal and plant welfare. Although direct effects due to exposure to heat, drought or elevated greenhouse gasses seem to be progressively more obvious, indirect effects remain debatable. A relevant aspect to be clarified relates to the relationship between altered environmental conditions and pathogen-induced diseases. In the particular case of plant viruses, it is still unclear whether climate change will primarily represent an opportunity for the emergence of new infections in previously uncolonized areas and hosts, or if it will mostly be a strong constrain reducing the impact of plant virus diseases and challenging the pathogen's adaptive capacity. This review focuses on current knowledge on the relationship between climate change and the outcome plant-virus interactions. We summarize work done on how this relationship modulates plant virus pathogenicity, between-host transmission (which include the triple interaction plant-virus-vector), ecology, evolution and management of the epidemics they cause. Considering these studies, we propose avenues for future research on this subject.
Collapse
Affiliation(s)
- Nuria Montes
- Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Madrid, Spain; Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|