1
|
Fernandes AI, Pinto AJ, Silvério D, Zedler U, Ferreira C, Duarte IF, Silvestre R, Dorhoi A, Saraiva M. Genetically Diverse Mycobacterium tuberculosis Isolates Manipulate Inflammasome and Interleukin 1β Secretion Independently of Macrophage Metabolic Rewiring. J Infect Dis 2025; 231:e671-e684. [PMID: 39570738 PMCID: PMC11998582 DOI: 10.1093/infdis/jiae583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/19/2024] [Indexed: 04/17/2025] Open
Abstract
The diversity of Mycobacterium tuberculosis impacts the outcome of tuberculosis. We previously showed that M. tuberculosis isolates obtained from patients with severe disease induced low inflammasome activation and interleukin 1β (IL-1β) production by infected macrophages. Here we questioned whether this differential modulation of macrophages by M. tuberculosis isolates depended on distinct metabolic reprogramming. We found that the macrophage metabolic landscape was similar regardless of the infecting M. tuberculosis isolate. Paralleling single-Toll-like receptor (TLR) activated macrophages, glycolysis inhibition during infection impaired IL-1β secretion. However, departing from TLR -based models, in infected macrophages, IL-1β secretion was independent of mitochondrial metabolic changes and hypoxia-inducible factor 1α (HIF-1α). Additionally, we found an unappreciated impact of a host metabolic inhibitor on the pathogen, and show that inflammasome activation and IL-1β production by macrophages require metabolically active bacteria. Our study highlights the potential confounding effect of host metabolic inhibitors on the pathogen and uncoupling of M. tuberculosis-inflammasome modulation from the host metabolic reprogramming.
Collapse
Affiliation(s)
- Ana Isabel Fernandes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Alexandre Jorge Pinto
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Diogo Silvério
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ulrike Zedler
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Carolina Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Iola F Duarte
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| | - Margarida Saraiva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Peng B, Li H, Peng XX. Metabolic state-driven nutrient-based approach to combat bacterial antibiotic resistance. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:24. [PMID: 40185857 PMCID: PMC11971349 DOI: 10.1038/s44259-025-00092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 03/03/2025] [Indexed: 04/07/2025]
Abstract
To combat antibiotic resistance, one innovative approach, known as the metabolic state-driven approach, exploits the fact that exogenous nutrient metabolites can stimulate uptake of antibiotics. The most effective nutrient metabolites are identified by comparing metabolic states between antibiotic-sensitive and -resistant bacteria. When bacteria are exposed to the specific nutrient metabolites, they undergo a form of metabolic reprogramming. This review summarizes the recent progress on the metabolic state-driven approach.
Collapse
Affiliation(s)
- Bo Peng
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Hui Li
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Xuan-Xian Peng
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, PR China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
- Guangdong Litai Pharmaceutical Co. LTD, Jieyang, PR China.
| |
Collapse
|
3
|
Hanusrichterova J, Baranovicova E, Barosova R, Kolomaznik M, Mikolka P, Kosutova P, Mokra D, Mokry J, Calkovska A. Metabolic profiling in experimental guinea pig models of bacterial and allergic inflammation. Metabolomics 2025; 21:43. [PMID: 40123009 PMCID: PMC11930882 DOI: 10.1007/s11306-025-02239-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/11/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Based on distinct triggers, bacterial and allergen-induced inflammatory reactions have different pathophysiology. Metabolomic analysis is high-throughput technique that can provide potential biomarkers to distinguish between these responses. OBJECTIVES In order to find out the metabolic profiles of two types of inflammation, metabolites were analysed in blood plasma and bronchoalveolar lavage fluid (BALF) of guinea pigs subjected to bacterial lipopolysaccharide (LPS) or allergen ovalbumin (OVA). METHODS Hydrogen-1 nuclear magnetic resonance (1H NMR) spectroscopy for metabolite analysis was performed in samples of blood plasma and BALF of guinea pigs. RESULTS Random forest algorithm built on combination of levels of circulating and BALF metabolites resulted in almost ideal discrimination between acute allergic and bacterial inflammation. The differences between inflammation triggered by LPS and OVA were manifested in shift in energy metabolism, metabolism of branched-chain amino acids (BCAAs)/branched-chain keto acids (BCKAs) with alterations in alanine and glutamine, which are linked with both, ammonia homeostasis as well as gluconeogenesis. CONCLUSION Distinct molecule nutrients are to be utilized during acute bacterial and allergic inflammatory response.
Collapse
Affiliation(s)
- J Hanusrichterova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 11161/4D, 03601, Martin, Slovakia.
| | - E Baranovicova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 11161/4D, 03601, Martin, Slovakia
| | - R Barosova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 11161/4C, 03601, Martin, Slovakia
| | - M Kolomaznik
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 11161/4D, 03601, Martin, Slovakia
| | - P Mikolka
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 11161/4C, 03601, Martin, Slovakia
| | - P Kosutova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 11161/4D, 03601, Martin, Slovakia
| | - D Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 11161/4C, 03601, Martin, Slovakia
| | - J Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 11161/4C, 03601, Martin, Slovakia
| | - A Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 11161/4C, 03601, Martin, Slovakia
| |
Collapse
|
4
|
Dalal R, Sadhu S, Batra A, Goswami S, Dandotiya J, K V V, Yadav R, Singh V, Chaturvedi K, Kannan R, Kumar S, Kumar Y, Rathore DK, Salunke DB, Ahuja V, Awasthi A. Gut commensals-derived succinate impels colonic inflammation in ulcerative colitis. NPJ Biofilms Microbiomes 2025; 11:44. [PMID: 40082467 PMCID: PMC11906746 DOI: 10.1038/s41522-025-00672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
Gut microbiota-derived metabolites play a crucial role in modulating the inflammatory response in inflammatory bowel disease (IBD). In this study, we identify gut microbiota-derived succinate as a driver of inflammation in ulcerative colitis (UC) by activating succinate-responsive, colitogenic helper T (Th) cells that secrete interleukin (IL)-9. We demonstrate that colitis is associated with an increase in succinate-producing gut bacteria and decrease in succinate-metabolizing gut bacteria. Similarly, UC patients exhibit elevated levels of succinate-producing gut bacteria and luminal succinate. Intestinal colonization by succinate-producing gut bacteria or increased succinate availability, exacerbates colonic inflammation by activating colitogenic Th9 cells. In contrast, intestinal colonization by succinate-metabolizing gut bacteria, blocking succinate receptor signaling with an antagonist, or neutralizing IL-9 with an anti-IL-9 antibody alleviates inflammation by reducing colitogenic Th9 cells. Our findings underscore the role of gut microbiota-derived succinate in driving colitogenic Th9 cells and suggesting its potential as a therapeutic target for treating IBD.
Collapse
Affiliation(s)
- Rajdeep Dalal
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Jawaharlal Nehru University, New Delhi, India
| | - Srikanth Sadhu
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Aashima Batra
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Sandeep Goswami
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Jyotsna Dandotiya
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Vinayakadas K V
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Rahul Yadav
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Virendra Singh
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Kartikey Chaturvedi
- Non-communicable disease centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Rahul Kannan
- Non-communicable disease centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Shakti Kumar
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Yashwant Kumar
- Non-communicable disease centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Deepak Kumar Rathore
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Deepak B Salunke
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, Ansari Nagar East, New Delhi, India
| | - Amit Awasthi
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
| |
Collapse
|
5
|
Wang Y, Wang G, Zhang L, Cai Q, Lin M, Huang D, Xie Y, Lin W, Lin X. Aeromonas hydrophila CobQ is a new type of NAD +- and Zn 2+-independent protein lysine deacetylase. eLife 2025; 13:RP97511. [PMID: 39998869 PMCID: PMC11856932 DOI: 10.7554/elife.97511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Protein NƐ-lysine acetylation (Kac) modifications play crucial roles in diverse physiological and pathological functions in cells. In prokaryotic cells, there are only two types of lysine deacetylases (KDACs) that are Zn2+- or NAD+-dependent. In this study, we reported a protein, AhCobQ, in Aeromonas hydrophila ATCC 7966 that presents NAD+- and Zn2+-independent KDAC activity. Furthermore, its KDAC activity is located in an unidentified domain (from 195 to 245 aa). Interestingly, AhCobQ has no homology with current known KDACs, and no homologous protein was found in eukaryotic cells. A protein substrate analysis showed that AhCobQ has specific protein substrates in common with other known KDACs, indicating that these KDACs can dynamically co-regulate the states of Kac proteins. Microbiological methods employed in this study affirmed AhCobQ's positive regulation of isocitrate dehydrogenase (ICD) enzymatic activity at the K388 site, implicating AhCobQ in the modulation of bacterial enzymatic activities. In summary, our findings present compelling evidence that AhCobQ represents a distinctive type of KDAC with significant roles in bacterial biological functions.
Collapse
Affiliation(s)
- Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Agricultural College, Anhui Science and Technology UniversityChuzhouChina
| | - Guibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingChina
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Qilan Cai
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Meizhen Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Dongping Huang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuyue Xie
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
6
|
Yu H, Ren K, Jin Y, Zhang L, Liu H, Huang Z, Zhang Z, Chen X, Yang Y, Wei Z. Mitochondrial DAMPs: Key mediators in neuroinflammation and neurodegenerative disease pathogenesis. Neuropharmacology 2025; 264:110217. [PMID: 39557152 DOI: 10.1016/j.neuropharm.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are increasingly linked to mitochondrial dysfunction and neuroinflammation. Central to this link are mitochondrial damage-associated molecular patterns (mtDAMPs), including mitochondrial DNA, ATP, and reactive oxygen species, released during mitochondrial stress or damage. These mtDAMPs activate inflammatory pathways, such as the NLRP3 inflammasome and cGAS-STING, contributing to the progression of neurodegenerative diseases. This review delves into the mechanisms by which mtDAMPs drive neuroinflammation and discusses potential therapeutic strategies targeting these pathways to mitigate neurodegeneration. Additionally, it explores the cross-talk between mitochondria and the immune system, highlighting the complex interplay that exacerbates neuronal damage. Understanding the role of mtDAMPs could pave the way for novel treatments aimed at modulating neuroinflammation and slowing disease progression, ultimately improving patient outcome.
Collapse
Affiliation(s)
- Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yage Jin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Li Zhang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Zhen Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Ziheng Zhang
- College of Life Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, PR China
| | - Xing Chen
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
7
|
Li SH, Tao Y, Yang ZC, Fu HZ, Lin HY, Peng XX, Li H. Valine potentiates cefoperazone-sulbactam to kill methicillin-resistant Staphylococcus aureus. mSystems 2025; 10:e0124424. [PMID: 39692510 PMCID: PMC11748551 DOI: 10.1128/msystems.01244-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 12/19/2024] Open
Abstract
Metabolic state-reprogramming approach was extended from Gram-negative bacteria to Gram-positive bacterium methicillin-resistant Staphylococcus aureus (MRSA) for identifying desired reprogramming metabolites to synergize existing antibiotic killing to MRSA. Metabolomics comparison between MRSA and methicillin-sensitive Staphylococcus aureus showed a depressed metabolic state in MRSA. Valine was identified as the most depressed metabolite/biomarker, and valine, leucine and isoleucine biosynthesis as the most enriched metabolic pathway. Thus, valine was used as a reprogramming metabolite to potentiate existing antibiotic killing to MRSA. Among the tested antibiotics, valine synergized cefoperazone-sulbactam (SCF) to produce the greatest killing effect. The combined effect of SCF and valine was demonstrated in clinical MRSA isolates and in mouse systemic and thigh infection models. Underlying mechanisms were attributed to valine-induced the activation of the pyruvate cycle/the TCA cycle and fatty acid biosynthesis. The activated pyruvate cycle/the TCA cycle elevated proton motive force by NADH and the activated fatty acid biosynthesis promoted membrane permeability by lauric acid. Both together increased cefoperazone uptake, which outpaces efflux action and thereby intracellular drug is elevated to effectively kill MRSA. These results provide the combination of valine and SCF to produce a new drug candidate effective against MRSA. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is possibly the most infamous example of antibiotic resistance and new antibiotics are urgently needed to control it. The present study used metabolic state-reprogramming approach to identify an ideal biomarker as an antibiotic adjuvant for reversing the metabolic state of MRSA. The most repressed valine was identified as the adjuvant. Exogenous valine most effectively potentiated cefoperazone-sulbactam (SCF) to kill MRSA in vitro and in vivo. Viability of 18 clinical MRSA isolates was reduced by the top 276.64-fold in the presence of valine and SCF. In mouse models, lower bacterial load in liver, spleen, kidney, thigh, and higher survival were determined in the SCF + valine than valine or SCF alone. Valine promoted MRSA to increase SCF uptake that overcomes the efflux and enzymatic hydrolysis. It also extended the PAE of SCF. These occur because valine activates the pyruvate cycle to elevate proton motive force by NADH and increases membrane permeability by lauric acid. Therefore, the combination of valine and SCF is a new drug candidate effective against MRSA.
Collapse
Affiliation(s)
- Shao-hua Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Yuan Tao
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Zhi-cheng Yang
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Huan-zhe Fu
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Hui-yin Lin
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xuan-xian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Li H, Yang J, Kuang SF, Fu HZ, Lin HY, Peng B. Magnesium modulates phospholipid metabolism to promote bacterial phenotypic resistance to antibiotics. eLife 2025; 13:RP100427. [PMID: 39745871 DOI: 10.7554/elife.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Non-inheritable antibiotic or phenotypic resistance ensures bacterial survival during antibiotic treatment. However, exogenous factors promoting phenotypic resistance are poorly defined. Here, we demonstrate that Vibrio alginolyticus are recalcitrant to killing by a broad spectrum of antibiotics under high magnesium. Functional metabolomics demonstrated that magnesium modulates fatty acid biosynthesis by increasing saturated fatty acid biosynthesis while decreasing unsaturated fatty acid production. Exogenous supplementation of unsaturated and saturated fatty acids increased and decreased bacterial susceptibility to antibiotics, respectively, confirming the role of fatty acids in antibiotic resistance. Functional lipidomics revealed that glycerophospholipid metabolism is the major metabolic pathway remodeled by magnesium, where phosphatidylethanolamine biosynthesis is reduced and phosphatidylglycerol production is increased. This process alters membrane composition, increasing membrane polarization, and decreasing permeability and fluidity, thereby reducing antibiotic uptake by V. alginolyticus. These findings suggest the presence of a previously unrecognized metabolic mechanism by which bacteria escape antibiotic killing through the use of an environmental factor.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jun Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Su-Fang Kuang
- State Key Laboratory of Biocontrol, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Huan-Zhe Fu
- State Key Laboratory of Biocontrol, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Hui-Yin Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Bo Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
9
|
Xiang J, Tian SQ, Wang SW, Liu YL, Li H, Peng B. Pyruvate Abundance Confounds Aminoglycoside Killing of Multidrug-Resistant Bacteria via Glutathione Metabolism. RESEARCH (WASHINGTON, D.C.) 2024; 7:0554. [PMID: 39697188 PMCID: PMC11654824 DOI: 10.34133/research.0554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
To explore whether the metabolic state reprogramming approach may be used to explore previously unknown metabolic pathways that contribute to antibiotic resistance, especially those that have been neglected in previous studies, pyruvate reprogramming was performed to reverse the resistance of multidrug-resistant Edwardsiella tarda. Surprisingly, we identified a pyruvate-regulated glutathione system that occurs by boosting glycine, serine, and threonine metabolism. Moreover, cysteine and methionine metabolism played a key role in this reversal. This process involved pyruvate-depressed glutathione and pyruvate-promoted glutathione oxidation, which was attributed to the elevated glutathione peroxidase and depressed glutathione reductase that was inhibited by glycine. This regulation inhibited reactive oxygen species (ROS) degradation and thereby elevated ROS to eliminate E. tarda. Loss of metB, gpx, and gor of the metabolic pathways increased and decreased resistance, respectively, both in vitro and in vivo, thereby supporting the hypothesis of a pyruvate-cysteine-glutathione system/glycine-ROS metabolic pathway. The role of this metabolic pathway in drug resistance and reprogramming reversal was demonstrated in laboratory-evolved gentamicin-resistant E. tarda and other clinically isolated multidrug- and carbapenem-resistant pathogens. Thus, we reveal a less studied antibiotic resistance metabolic pathway along with the mechanisms involved in its reversal.
Collapse
Affiliation(s)
- Jiao Xiang
- State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes,
School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Si-qi Tian
- State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes,
School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Shi-wen Wang
- State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes,
School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Ying-li Liu
- State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes,
School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Hui Li
- State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes,
School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Bo Peng
- State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes,
School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
10
|
Yang B, Guo X, Shi C, Liu G, Qin X, Chen S, Gan L, Liang D, Shao K, Xu R, Zhong J, Mo Y, Li H, Luo D. Alterations in purine and pyrimidine metabolism associated with latent tuberculosis infection: insights from gut microbiome and metabolomics analyses. mSystems 2024; 9:e0081224. [PMID: 39436103 PMCID: PMC11575419 DOI: 10.1128/msystems.00812-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Individuals with latent tuberculosis infection (LTBI) account for almost 30% of the population worldwide and have the potential to develop active tuberculosis (ATB). Despite this, the current understanding of the pathogenesis of LTBI is limited. The gut microbiome can be altered in tuberculosis patients, and an understanding of the changes associated with the progression from good health to LTBI to ATB can provide novel perspectives for understanding the pathogenesis of LTBI by identifying microbial and molecular biomarkers associated therewith. In this study, fecal samples from healthy controls (HC), individuals with LTBI and ATB patients were collected for gut microbiome and metabolomics analyses. Compared to HC and LTBI subjects, participants with ATB showed a significant decrease in gut bacterial α-diversity. Additionally, there were significant differences in gut microbial communities and metabolism among the HC, LTBI, and ATB groups. PICRUSt2 analysis revealed that microbiota metabolic pathways involving the degradation of purine and pyrimidine metabolites were upregulated in LTBI and ATB individuals relative to HCs. Metabolomic profiling similarly revealed that purine and pyrimidine metabolite levels were decreased in LTBI and ATB samples relative to those from HCs. Further correlation analyses revealed that the levels of purine and pyrimidine metabolites were negatively correlated with those of gut microbial genera represented by Ruminococcus_gnavus_group (R. gnavus), and the levels of R. gnavus were also positively correlated with adenosine nucleotide degradation II, which is a purine degradation pathway. Moreover, a combined signature including hypoxanthine and xanthine was found to effectively distinguish between LTBI and HC samples (area under the curve [AUC] of training set = 0.796; AUC of testing set = 0.924). Therefore, through gut microbiome and metabolomic analyses, these findings provide valuable clues regarding how alterations in gut purine and pyrimidine metabolism are linked to the pathogenesis of LTBI.IMPORTANCEThis study provides valuable insight into alterations in the gut microbiome and metabolomic profiles in a cohort of adults with LTBI and ATB. Perturbed gut purine and pyrimidine metabolism in LTBI was associated with the compositional alterations of gut microbiota, which may be an impetus for developing novel diagnostic strategies and interventions targeting LTBI.
Collapse
Affiliation(s)
- Boyi Yang
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- The First Clinical College, Guangxi Medical University, Nanning, China
| | - Xiaojing Guo
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Chongyu Shi
- Molecular Biology Laboratory of Respiratory Disease, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Gang Liu
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaoling Qin
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Shiyi Chen
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Li Gan
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Dongxu Liang
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Kai Shao
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Ruolan Xu
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Jieqing Zhong
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Yujie Mo
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Hai Li
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, China
| | - Dan Luo
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, China
| |
Collapse
|
11
|
Xie J, Jia Z, Li Y, Liao L, Zhu Z, Wang Y, Huang R. Analysis of GCRV Pathogenesis and Therapeutic Measures Through Proteomic and Metabolomic Investigations in GCRV-Infected Tissues of Grass Carp ( Ctenopharyngodon idella). Int J Mol Sci 2024; 25:11852. [PMID: 39519403 PMCID: PMC11546743 DOI: 10.3390/ijms252111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Hemorrhagic disease caused by grass carp reovirus (GCRV) infection is a major problem affecting the grass carp aquaculture industry. Therefore, inhibiting the spread of GCRV infection is of great economic significance. Herein, we sequenced five tissues (gill, liver, intestine, kidney, and muscle) from grass carp before and after GCRV infection using data-independent acquisition proteomic and untargeted metabolomic technologies, and quantitatively identified 10,808 proteins and 4040 metabolites. Then, we analyzed the differentially expressed proteins (DEPs) and metabolites (DEMs) before and after GCRV infection in the five tissues. Gene ontology analysis revealed that the five tissue DEPs were enriched in metabolic, including carbohydrate and lipid metabolic processes. Chemical taxonomy analysis showed that the categories of DEMs mainly included carbohydrates and lipids, such as fatty acids, glycerophospholipids, steroids, and their derivatives. Both the proteomic and the metabolomic data showed that GCRV affected the carbohydrate and lipid metabolism in the host. Shared pathway analysis was performed at both the protein and metabolic levels, showing significant enrichment of the glycolysis and pentose phosphate pathways (p < 0.001). Further analysis of glycolysis and pentose phosphate pathway inhibitors revealed that these two pathways are important for GCRV replication. As the kidney was the most affected among the five tissues, we analyzed the butanoate metabolism in the kidney, which revealed that most of the differentially expressed proteins and differently expressed metabolites in the butanoate metabolism were related to the TCA cycle. Further investigation showed that fumaric acid, an intermediate product in the TCA cycle, significantly inhibited GCRV replication in the CIK cells (p < 0.001), and that this inhibitory effect may be related to its induction of interferon system activation. The addition of fumaric acid to feed increased the survival rate of juvenile grass carp by 19.60% during GCRV infection, and protected the tissues of those infected with GCRV, making it a potential anti-GCRV feed additive. Our results provide new perspectives on GCRV pathogenesis and antiviral strategies for grass carp.
Collapse
Affiliation(s)
- Juhong Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.X.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Jia
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yangyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.X.)
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.X.)
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.X.)
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.X.)
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.X.)
| |
Collapse
|
12
|
Li F, Xu T, Fang D, Wang Z, Liu Y. Inosine reverses multidrug resistance in Gram-negative bacteria carrying mobilized RND-type efflux pump gene cluster tmexCD-toprJ. mSystems 2024; 9:e0079724. [PMID: 39254032 PMCID: PMC11495011 DOI: 10.1128/msystems.00797-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Antimicrobial resistance is rapidly increasing worldwide, highlighting the urgent need for pharmaceutical and nonpharmaceutical interventions to tackle different-to-treat bacterial infections. Tigecycline, a semi-synthesis glycylcycline for parenteral administration, is widely recognized as one of the few effective therapies available against pan-drug resistant Gram-negative pathogens. Regrettably, the efficacy of multiple drugs, including tigecycline, is currently being undermined due to the emergence of a recently discovered mobilized resistance-nodulation-division-type efflux pump gene cluster tmexCD1-toprJ1. Herein, by employing untargeted metabolomic approaches, we reveal that the expression of tmexCD1-toprJ1 disrupts bacterial purine metabolism, with inosine being identified as a crucial biomarker. Notably, the supplementation of inosine effectively reverses tigecycline resistance in tmexCD1-toprJ1-positive bacteria. Mechanistically, exogenous inosine enhanced bacterial proton motive force, which promotes the uptake of tigecycline. Furthermore, inosine enhances succinate biosynthesis by stimulating the tricarboxylic acid cycle. Succinate interacts with the two-component system EnvZ/OmpR and upregulates OmpK 36, thereby promoting the influx of tigecycline. These actions collectively lead to the increased intracellular accumulation of tigecycline. Overall, our study offers a distinct combinational strategy to manage infections caused by tmexCD-toprJ-positive bacteria. IMPORTANCE TMexCD1-TOprJ1, a mobilized resistance-nodulation-division-type efflux pump, confers phenotypic resistance to multiple classes of antibiotics. Nowadays, tmexCD-toprJ has disseminated among diverse species of clinical pathogens, exacerbating the need for novel anti-infective strategies. In this study, we report that tmexCD1-toprJ1-negative and -positive bacteria exhibit significantly different metabolic flux and characteristics, especially in purine metabolism. Intriguingly, the addition of inosine, a purine metabolite, effectively restores the antibacterial activity of tigecycline by promoting antibiotic uptake. Our findings highlight the correlation between bacterial mechanism and antibiotic resistance, and offer a distinct approach to overcome tmexCD-toprJ-mediated multidrug resistance.
Collapse
Affiliation(s)
- Fulei Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tianqi Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dan Fang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Li L, Shao J, Tong C, Gao W, Pan P, Qi C, Gao C, Zhang Y, Zhu Y, Chen C. Non-tuberculous mycobacteria enhance the tryptophan-kynurenine pathway to induce immunosuppression and facilitate pulmonary colonization. Front Cell Infect Microbiol 2024; 14:1455605. [PMID: 39497924 PMCID: PMC11532197 DOI: 10.3389/fcimb.2024.1455605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/23/2024] [Indexed: 11/07/2024] Open
Abstract
The increasing prevalence of non-tuberculous mycobacterium (NTM) infections alongside tuberculosis (TB) underscores a pressing public health challenge. Yet, the mechanisms governing their infection within the lung remain poorly understood. Here, we integrate metagenomic sequencing, metabolomic sequencing, machine learning classifiers, SparCC, and MetOrigin methods to profile bronchoalveolar lavage fluid (BALF) samples from NTM/TB patients. Our aim is to unravel the intricate interplay between lung microbial communities and NTM/Mycobacterium tuberculosis infections. Our investigation reveals a discernible reduction in the compositional diversity of the lung microbiota and a diminished degree of mutual interaction concomitant with NTM/TB infections. Notably, NTM patients exhibit a distinct microbial community characterized by marked specialization and notable enrichment of Pseudomonas aeruginosa and Staphylococcus aureus, driving pronounced niche specialization for NTM infection. Simultaneously, these microbial shifts significantly disrupt tryptophan metabolism in NTM infection, leading to an elevation of kynurenine. Mycobacterium intracellulare, Mycobacterium paraintracellulare, Mycobacterium abscessus, and Pseudomonas aeruginosa have been implicated in the metabolic pathways associated with the conversion of indole to tryptophan via tryptophan synthase within NTM patients. Additionally, indoleamine-2,3-dioxygenase converts tryptophan into kynurenine, fostering an immunosuppressive milieu during NTM infection. This strategic modulation supports microbial persistence, enabling evasion from immune surveillance and perpetuating a protracted state of NTM infection. The elucidation of these nuanced microbial and metabolic dynamics provides a profound understanding of the intricate processes underlying NTM and TB infections, offering potential avenues for therapeutic intervention and management.
Collapse
Affiliation(s)
- Longjie Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jiaofang Shao
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Chunran Tong
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Weiwei Gao
- Department of Tuberculosis, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pan Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Chen Qi
- Department of Cardiothoracic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chenxi Gao
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Ying Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Cheng Chen
- Department of Infectious Disease, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Kuang SF, Xiang J, Zeng YY, Peng XX, Li H. Elevated Membrane Potential as a Tetracycline Resistance Mechanism in Escherichia coli. ACS Infect Dis 2024; 10:2196-2211. [PMID: 38836553 DOI: 10.1021/acsinfecdis.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The metabolic environment is responsible for antibiotic resistance, which highlights the way in which the antibiotic resistance mechanism works. Here, GC-MS-based metabolomics with iTRAQ-based proteomics was used to characterize a metabolic state in tetracycline-resistant Escherichia coli K12 (E. coli-RTET) compared with tetracycline-sensitive E. coli K12. The repressed pyruvate cycle against the elevation of the proton motive force (PMF) and ATP constructed the most characteristic feature as a consequence of tetracycline resistance. To understand the role of the elevated PMF in tetracycline resistance, PMF inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and the pH gradient were used to investigate how the elevation influences bacterial viability and intracellular antibiotic concentration. A strong synergy was detected between CCCP and tetracycline to the viability, which was consistent with increasing intracellular drug and decreasing external pH. Furthermore, E. coli-RTET and E. coli-RGEN with high and low PMF concentrations were susceptible to gentamicin and tetracycline, respectively. The elevated PMF in E. coli-RTET was attributed to the activation of other metabolic pathways, except for the pyruvate cycle, including a malate-oxaloacetate-phosphoenolpyruvate-pyruvate-malate cycle. These results not only revealed a PMF-dependent mechanism for tetracycline resistance but also provided a solution to tetracycline-resistant pathogens by aminoglycosides and aminoglycoside-resistant bacteria by tetracyclines.
Collapse
Affiliation(s)
- Su-Fang Kuang
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Jiao Xiang
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Ying-Yue Zeng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Xuan-Xian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
15
|
Zhang L, Fu Y, Xu Q, Chen X, Xie Y, Zhang B, Lin X. Quantitative proteomics reveals the complex regulatory networks of LTTR-type regulators in pleiotropic functions of Aeromonas hydrophila. Int J Biol Macromol 2024; 270:132315. [PMID: 38740149 DOI: 10.1016/j.ijbiomac.2024.132315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are ubiquitously distributed and abundant transcriptional regulators in prokaryotes, playing pivotal roles in diverse physiological processes. Nonetheless, despite their prevalence, the intricate functionalities and physiological implications of this protein family remain incompletely elucidated. In this study, we employed a comprehensive approach to deepen our understanding of LTTRs by generating a collection of 20 LTTR gene-deletion strains in Aeromonas hydrophila, accounting for 42.6 % of the predicted total LTTR repertoire, and subjected them to meticulous assessment of their physiological phenotypes. Leveraging quantitative proteomics, we conducted a comparative analysis of protein expression variations between six representative mutants and the wild-type strain. Subsequent bioinformatics analysis unveiled the involvement of these LTTRs in modulating a wide array of biological processes, notably including two-component regulatory systems (TCSs) and intracellular central metabolism. Moreover, employing subsequent microbiological methodologies, we experimentally verified the direct involvement of at least six LTTRs in the regulation of galactose metabolism. Importantly, through ELISA and competitive ELISA assays, we demonstrated the competitive binding capabilities of these LTTRs with the promoter of the α-galactosidase gene AHA_1897 and identified that four LTTRs (XapR, YidZ, YeeY, and AHA_1805) do not engage in competitive binding with other LTTRs. Overall, our comprehensive findings not only provide fundamental insights into the regulatory mechanisms governing crucial physiological functions of bacteria through LTTR family proteins but also uncover an intricate and interactive regulatory network mediated by LTTRs.
Collapse
Affiliation(s)
- Lishan Zhang
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuying Fu
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou, Fujian Province 350007, China
| | - Qiaozhen Xu
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Chen
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuyue Xie
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binghui Zhang
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou 350003, China
| | - Xiangmin Lin
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
16
|
Dore MP, Pes GM. Trained Immunity and Trained Tolerance: The Case of Helicobacter pylori Infection. Int J Mol Sci 2024; 25:5856. [PMID: 38892046 PMCID: PMC11172748 DOI: 10.3390/ijms25115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Trained immunity is a concept in immunology in which innate immune cells, such as monocytes and macrophages, exhibit enhanced responsiveness and memory-like characteristics following initial contact with a pathogenic stimulus that may promote a more effective immune defense following subsequent contact with the same pathogen. Helicobacter pylori, a bacterium that colonizes the stomach lining, is etiologically associated with various gastrointestinal diseases, including gastritis, peptic ulcer, gastric adenocarcinoma, MALT lymphoma, and extra gastric disorders. It has been demonstrated that repeated exposure to H. pylori can induce trained immunity in the innate immune cells of the gastric mucosa, which become more responsive and better able to respond to subsequent H. pylori infections. However, interactions between H. pylori and trained immunity are intricate and produce both beneficial and detrimental effects. H. pylori infection is characterized histologically as the presence of both an acute and chronic inflammatory response called acute-on-chronic inflammation, or gastritis. The clinical outcomes of ongoing inflammation include intestinal metaplasia, gastric atrophy, and dysplasia. These same mechanisms may also reduce immunotolerance and trigger autoimmune pathologies in the host. This review focuses on the relationship between trained immunity and H. pylori and underscores the dynamic interplay between the immune system and the pathogen in the context of gastric colonization and inflammation.
Collapse
Affiliation(s)
- Maria Pina Dore
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Clinica Medica, Viale San Pietro 8, 07100 Sassari, Italy;
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza Blvd, Houston, TX 77030, USA
| | - Giovanni Mario Pes
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Clinica Medica, Viale San Pietro 8, 07100 Sassari, Italy;
| |
Collapse
|
17
|
Zhang Y, Jia D, Wu Y, Xu Y. Antipyretic and anti-inflammatory effects of inosine, an active component of Kangfuxin. Immunobiology 2024; 229:152812. [PMID: 38781756 DOI: 10.1016/j.imbio.2024.152812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Kangfuxin has been widely recognized for its use in treating ulcerative conditions and mucositis, primarily due to its anti-inflammatory properties, which promote cell proliferation, granulation tissue growth, and angiogenesis. However, the exact mechanisms underlying these effects remain poorly understood. In this study, we employed high-throughput mass spectrometry to identify 11 compounds in Kangfuxin, including uracil, hypoxanthine, xanthine, inosine, glutamic acid, glycine, alanine, valine, isoleucine, leucine, and lysine. Notably, the antipyretic and anti-inflammatory properties of inosine, one of these compounds, have not been well characterized. To address this gap, we induced fever in vivo using lipopolysaccharide (LPS) and conducted various experiments, including the analysis of endogenous mediators, inflammatory factors, quantitative polymerase chain reaction (QPCR), Western blotting, and hematoxylin and eosin (HE) staining. Our findings indicate that inosine significantly reduces LPS-induced fever, inhibits the expression of inflammatory factors, and alleviates the inflammatory response. These results suggest that inosine may serve as a potential therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Yue Zhang
- Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming 650500, China; Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, 212 Daguan Road, Xishan District, Kunming 650032, China.
| | - Daqi Jia
- Department of Pathology, Affiliated Banan Hospital of Chongqing Medical University, Longzhouwan Street, Yunan District Chongqing, 401320, China.
| | - Yipeng Wu
- Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming 650500, China; Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, 212 Daguan Road, Xishan District, Kunming 650032, China.
| | - Yongqing Xu
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, 212 Daguan Road, Xishan District, Kunming 650032, China.
| |
Collapse
|
18
|
Zhang H, Mao Y, Nie Z, Li Q, Wang M, Cai C, Hao W, Shen X, Gu N, Shen W, Song H. Iron Oxide Nanoparticles Engineered Macrophage-Derived Exosomes for Targeted Pathological Angiogenesis Therapy. ACS NANO 2024; 18:7644-7655. [PMID: 38412252 PMCID: PMC10938920 DOI: 10.1021/acsnano.4c00699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Engineering exosomes with nanomaterials usually leads to the damage of exosomal membrane and bioactive molecules. Here, pathological angiogenesis targeting exosomes with magnetic imaging, ferroptosis inducing, and immunotherapeutic properties is fabricated using a simple coincubation method with macrophages being the bioreactor. Extremely small iron oxide nanoparticle (ESIONPs) incorporated exosomes (ESIONPs@EXO) are acquired by sorting the secreted exosomes from M1-polarized macrophages induced by ESIONPs. ESIONPs@EXO suppress pathological angiogenesis in vitro and in vivo without toxicity. Furthermore, ESIONPs@EXO target pathological angiogenesis and exhibit an excellent T1-weighted contrast property for magnetic resonance imaging. Mechanistically, ESIONPs@EXO induce ferroptosis and exhibit immunotherapeutic ability toward pathological angiogenesis. These findings demonstrate that a pure biological method engineered ESIONPs@EXO using macrophages shows potential for targeted pathological angiogenesis therapy.
Collapse
Affiliation(s)
- Haorui Zhang
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Yu Mao
- Nanjing
Key Laboratory for Cardiovascular Information and Health Engineering
Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital,
Medical School, Nanjing University, Nanjing 210093, P.R. China
| | - Zheng Nie
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Qing Li
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Mengzhu Wang
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Chang Cai
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Weiju Hao
- University
of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Xi Shen
- Department
of Ophthalmology, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai 200020, P.R. China
| | - Ning Gu
- Nanjing
Key Laboratory for Cardiovascular Information and Health Engineering
Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital,
Medical School, Nanjing University, Nanjing 210093, P.R. China
| | - Wei Shen
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Hongyuan Song
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| |
Collapse
|
19
|
Fu Y, Zhang L, Lin Y, Zhao X, Chen H, Zhong Y, Jiang W, Wu X, Lin X. Unveiling the antibacterial mechanism of resveratrol against Aeromonas hydrophila through proteomics analysis. Front Cell Infect Microbiol 2024; 14:1378094. [PMID: 38510959 PMCID: PMC10951904 DOI: 10.3389/fcimb.2024.1378094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
This investigation delves into elucidating the mechanism by which resveratrol (Res), a natural polyterpenoid renowned for its antimicrobial properties, exerts its effects on Aeromonas hydrophila, a ubiquitous waterborne pathogen. Our findings underscore the dose-dependent manifestation of resveratrol in exhibiting antibacterial and antibiofilm formation activities against A. hydrophila. Employing a Data-independent acquisition (DIA) based quantitative proteomics methodology, we systematically compared differentially expressed proteins in A. hydrophila subjected to varying concentrations of Res. Subsequent bioinformatics analyses revealed key proteins and pathways pivotal in resveratrol's antimicrobial action, encompassing oxidative stress, energy metabolism, and cell membrane integrity. Validation of the proteomics outcomes was meticulously conducted using the qPCR method at the mRNA level. Dynamic trend analysis unveiled alterations in biological processes, notably the correlation between the cell division-related protein ZapC and resveratrol content. Furthermore, scanning electron microscopy corroborated a significant elongation of A. hydrophila cells, affirming resveratrol's capability to inhibit cell division. In concert, resveratrol emerges as a participant in the cell membrane integrity pathway, biofilm formation, and potentially, the regulation of genes associated with cell division, resulting in morphological elongation. These revelations position resveratrol as a promising natural alternative to conventional antibiotics for treating A. hydrophila infections.
Collapse
Affiliation(s)
- Yuying Fu
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou, China
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yi Lin
- Ningde Customs, Fujian, Ningde, China
| | - Xinrui Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Haoyu Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yicheng Zhong
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Wenjia Jiang
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou, China
| | - Xiaoyun Wu
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
20
|
Li S, Xiang J, Zeng Y, Peng X, Li H. Elevated proton motive force is a tetracycline resistance mechanism that leads to the sensitivity to gentamicin in Edwardsiella tarda. Microb Biotechnol 2024; 17:e14379. [PMID: 38085112 PMCID: PMC10832521 DOI: 10.1111/1751-7915.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/10/2023] [Indexed: 02/03/2024] Open
Abstract
Tetracycline is a commonly used human and veterinary antibiotic that is mostly discharged into environment and thereby tetracycline-resistant bacteria are widely isolated. To combat these resistant bacteria, further understanding for tetracycline resistance mechanisms is needed. Here, GC-MS based untargeted metabolomics with biochemistry and molecular biology techniques was used to explore tetracycline resistance mechanisms of Edwardsiella tarda. Tetracycline-resistant E. tarda (LTB4-RTET ) exhibited a globally repressed metabolism against elevated proton motive force (PMF) as the most characteristic feature. The elevated PMF contributed to the resistance, which was supported by the three results: (i) viability was decreased with increasing PMF inhibitor carbonylcyanide-3-chlorophenylhydrazone; (ii) survival is related to PMF regulated by pH; (iii) LTB4-RTET were sensitive to gentamicin, an antibiotic that is dependent upon PMF to kill bacteria. Meanwhile, gentamicin-resistant E. tarda with low PMF are sensitive to tetracycline is also demonstrated. These results together indicate that the combination of tetracycline with gentamycin will effectively kill both gentamycin and tetracycline resistant bacteria. Therefore, the present study reveals a PMF-enhanced tetracycline resistance mechanism in LTB4-RTET and provides an effective approach to combat resistant bacteria.
Collapse
Affiliation(s)
- Shao‐hua Li
- State Key Laboratory of Bio‐Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
| | - Jiao Xiang
- State Key Laboratory of Bio‐Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
| | - Ying‐yue Zeng
- State Key Laboratory of Bio‐Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
| | - Xuan‐xian Peng
- State Key Laboratory of Bio‐Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
- Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Guangdong Litai Pharmaceutical Co. Ltd.JieyangGuangdongChina
| | - Hui Li
- State Key Laboratory of Bio‐Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
- Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
21
|
Kuang SF, Xiang J, Chen YT, Peng XX, Li H, Peng B. Exogenous pyruvate promotes gentamicin uptake to kill antibiotic-resistant Vibrio alginolyticus. Int J Antimicrob Agents 2024; 63:107036. [PMID: 37981076 DOI: 10.1016/j.ijantimicag.2023.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
OBJECTIVES Elucidating antibiotic resistance mechanisms is necessary for developing novel therapeutic strategies. The increasing incidence of antibiotic-resistant Vibrio alginolyticus infection threatens both human health and aquaculture, but the mechanism has not been fully elucidated. METHODS Here, an isobaric tags for relative and absolute quantification (iTRAQ) functional proteomics analysis was performed on gentamicin-resistant V. alginolyticus (VA-RGEN) and a gentamicin-sensitive strain in order to characterize the global protein expression changes upon gentamicin resistance. Then, the bacterial killing assay and bacterial gentamicin pharmacokinetics were performed. RESULTS Proteomics analysis demonstrated a global metabolic downshift in VA-RGEN, where the pyruvate cycle (the P cycle) was severely compromised. Exogenous pyruvate restored the P cycle activity, disrupting the redox state and increasing the membrane potential. It thereby potentiated gentamicin-mediated killing by approximately 3000- and 150-fold in vitro and in vivo, respectively. More importantly, bacterial gentamicin pharmacokinetics indicated that pyruvate enhanced gentamicin influx to a degree that exceeded the gentamicin expelled by the bacteria, increasing the intracellular gentamicin. CONCLUSION Thus, our study suggests a metabolism-based approach to combating gentamicin-resistant V. algonolyticus, which paves the way for combating other types of antibiotic-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Su-Fang Kuang
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Laboratory for Marine Biology and Biotechnology & Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; School of Health, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Jiao Xiang
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Yue-Tao Chen
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xuan-Xian Peng
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Laboratory for Marine Biology and Biotechnology & Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Li
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Laboratory for Marine Biology and Biotechnology & Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bo Peng
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Laboratory for Marine Biology and Biotechnology & Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
22
|
Jiang M, Chen X, Li H, Peng X, Peng B. Exogenous L-Alanine promotes phagocytosis of multidrug-resistant bacterial pathogens. EMBO Rep 2023; 24:e49561. [PMID: 37943703 PMCID: PMC10702822 DOI: 10.15252/embr.201949561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Multidrug-resistant bacteria present a major threat to public health that urgently requires new drugs or treatment approaches. Here, we conduct integrated proteomic and metabolomics analyses to screen for molecular candidates improving survival of mice infected with Vibrio parahaemolyticus, which indicate that L-Alanine metabolism and phagocytosis are strongly correlated with mouse survival. We also assess the role of L-Alanine in improving mouse survival by in vivo bacterial challenge experiments using various bacteria species, including V. parahaemolyticus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Functional studies demonstrate that exogenous L-Alanine promotes phagocytosis of these multidrug-resistant pathogen species. We reveal that the underlying mechanism involves two events boosted by L-Alanine: TLR4 expression and L-Alanine-enhanced TLR4 signaling via increased biosynthesis and secretion of fatty acids, including palmitate. Palmitate enhances binding of lipopolysaccharide to TLR4, thereby promoting TLR4 dimer formation and endocytosis for subsequent activation of the PI3K/Akt and NF-κB pathways and bacteria phagocytosis. Our data suggest that modulation of the metabolic environment is a plausible approach for combating multidrug-resistant bacteria infection.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory of Bio‐Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
- Laboratory for Marine Biology and Biotechnology and Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Institute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Xin‐Hai Chen
- State Key Laboratory of Bio‐Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
| | - Hui Li
- State Key Laboratory of Bio‐Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
- Laboratory for Marine Biology and Biotechnology and Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Xuan‐Xian Peng
- State Key Laboratory of Bio‐Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
- Laboratory for Marine Biology and Biotechnology and Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Bo Peng
- State Key Laboratory of Bio‐Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
- Laboratory for Marine Biology and Biotechnology and Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
23
|
Auria E, Deschamps J, Briandet R, Dupuy B. Extracellular succinate induces spatially organized biofilm formation in Clostridioides difficile. Biofilm 2023; 5:100125. [PMID: 37214349 PMCID: PMC10192414 DOI: 10.1016/j.bioflm.2023.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Clostridioides difficile infection associated to gut microbiome dysbiosis is the leading cause for nosocomial diarrhea. The ability of C. difficile to form biofilms has been progressively linked to its pathogenesis as well as its persistence in the gut. Although C. difficile has been reported to form biofilms in an increasing number of conditions, little is known about how these biofilms are formed in the gut and what factors may trigger their formation. Here we report that succinate, a metabolite abundantly produced by the dysbiotic gut microbiota, induces in vitro biofilm formation of C. difficile strains. We characterized the morphology and spatial composition of succinate-induced biofilms, and compared to non-induced or deoxycholate (DCA) induced biofilms. Biofilms induced by succinate are significantly thicker, structurally more complex, and poorer in proteins and exopolysaccharides (EPS). We then applied transcriptomics and genetics to characterize the early stages of succinate-induced biofilm formation and we showed that succinate-induced biofilm results from major metabolic shifts and cell-wall composition changes. Similar to DCA-induced biofilms, biofilms induced by succinate depend on the presence of a rapidly metabolized sugar. Finally, although succinate can be consumed by the bacteria, we found that the extracellular succinate is in fact responsible for the induction of biofilm formation through complex regulation involving global metabolic regulators and the osmotic stress response. Thus, our work suggests that as a gut signal, succinate may drive biofilm formation and help persistence of C. difficile in the gut, increasing the risk of relapse.
Collapse
Affiliation(s)
- Emile Auria
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Julien Deschamps
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Romain Briandet
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Bruno Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| |
Collapse
|
24
|
Xiang J, Li MY, Li H. Aspartate metabolic flux promotes nitric oxide to eliminate both antibiotic-sensitive and -resistant Edwardsiella tarda in zebrafish. Front Immunol 2023; 14:1277281. [PMID: 37885884 PMCID: PMC10598754 DOI: 10.3389/fimmu.2023.1277281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Metabolic reprogramming potentiates host protection against antibiotic-sensitive or -resistant bacteria. However, it remains unclear whether a single reprogramming metabolite is effective enough to combat both antibiotic-sensitive and -resistant bacteria. This knowledge is key for implementing an antibiotic-free approach. Methods The reprogramming metabolome approach was adopted to characterize the metabolic state of zebrafish infected with tetracycline-sensitive and -resistant Edwardsiella tarda and to identify overlapping depressed metabolite in dying zebrafish as a reprogramming metabolite. Results Aspartate was identify overlapping depressed metabolite in dying zebrafish as a reprogramming metabolite. Exogenous aspartate protects zebrafish against infection caused by tetracycline-sensitive and -resistant E. tarda. Mechanistically, exogenous aspartate promotes nitric oxide (NO) biosynthesis. NO is a well-documented factor of promoting innate immunity against bacteria, but whether it can play a role in eliminating both tetracycline-sensitive and -resistant E. tarda is unknown. Thus, in this study, aspartate was replaced with sodium nitroprusside to provide NO, which led to similar aspartate-induced protection against tetracycline-sensitive and -resistant E. tarda. Discussion These findings support the conclusion that aspartate plays an important protective role through NO against both types of E. tarda. Importantly, we found that tetracycline-sensitive and -resistant E. tarda are sensitive to NO. Therefore, aspartate is an effective reprogramming metabolite that allows implementation of an antibiotic-free approach against bacterial pathogens.
Collapse
Affiliation(s)
- Jiao Xiang
- State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min-yi Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Li MX, Wu XT, Jing WQ, Hou WK, Hu S, Yan W. Inosine enhances tumor mitochondrial respiration by inducing Rag GTPases and nascent protein synthesis under nutrient starvation. Cell Death Dis 2023; 14:492. [PMID: 37532694 PMCID: PMC10397262 DOI: 10.1038/s41419-023-06017-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Metabolic heterogeneity of tumor microenvironment (TME) is a hallmark of cancer and a big barrier to cancer treatment. Cancer cells display diverse capacities to utilize alternative carbon sources, including nucleotides, under poor nutrient circumstances. However, whether and how purine, especially inosine, regulates mitochondrial metabolism to buffer nutrient starvation has not been well-defined yet. Here, we identify the induction of 5'-nucleotidase, cytosolic II (NT5C2) gene expression promotes inosine accumulation and maintains cancer cell survival in the nutrient-poor region. Inosine elevation further induces Rag GTPases abundance and mTORC1 signaling pathway by enhancing transcription factor SP1 level in the starved tumor. Besides, inosine supplementary stimulates the synthesis of nascent TCA cycle enzymes, including citrate synthesis (CS) and aconitase 1 (ACO1), to further enhance oxidative phosphorylation of breast cancer cells under glucose starvation, leading to the accumulation of iso-citric acid. Inhibition of the CS activity or knockdown of ACO1 blocks the rescue effect of inosine on cancer survival under starvation. Collectively, our finding highlights the vital signal role of inosine linking mitochondrial respiration and buffering starvation, beyond serving as direct energy carriers or building blocks for genetic code in TME, shedding light on future cancer treatment by targeting inosine metabolism.
Collapse
Affiliation(s)
- Mei-Xin Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao-Ting Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wen-Qiang Jing
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wen-Kui Hou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Sheng Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
26
|
Pontes Pereira TT, Fideles Duarte-Andrade F, Gardone Vitório J, do Espírito Santo Pereira T, Braga Martins FR, Marques Souza JA, Malacco NL, Mathias Melo E, Costa Picossi CR, Pinto E, Santiago Gomez R, Martins Teixeira M, Nori de Macedo A, André Baptista Canuto G, Soriani FM. Chronic alcohol administration alters metabolomic profile of murine bone marrow. Front Immunol 2023; 14:1128352. [PMID: 37090737 PMCID: PMC10113543 DOI: 10.3389/fimmu.2023.1128352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction People with hazardous alcohol use are more susceptible to viral, bacterial, and fungal infections due to the effect of alcohol on immune system cell function. Metabolized ethanol reduces NAD+ to NADH, affecting critical metabolic pathways. Here, our aim was to investigate whether alcohol is metabolized by bone marrow cells and if it impacts the metabolic pathways of leukocyte progenitor cells. This is said to lead to a qualitative and quantitative alteration of key metabolites which may be related to the immune response. Methods We addressed this aim by using C57BL/6 mice under chronic ethanol administration and evaluating the metabolomic profile of bone marrow total cells by gas chromatography-coupled mass spectrometry (GC-MS). Results We identified 19 metabolites. Our data demonstrated that chronic ethanol administration alters the metabolomic profile in the bone marrow, resulting in a statistically diminished abundance of five metabolites in ethanol-treated animals: uracil, succinate, proline, nicotinamide, and tyrosine. Discussion Our results demonstrate for the first time in the literature the effects of alcohol consumption on the metabolome content of hematopoietic tissue and open a wide range of further studies to investigate mechanisms by which alcohol compromises the cellular function of the immune system.
Collapse
Affiliation(s)
| | | | - Jéssica Gardone Vitório
- Department of Clinic, Pathology and Dental Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | - Eliza Mathias Melo
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Ernani Pinto
- Nuclear Energy Center in Agriculture, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil
| | - Ricardo Santiago Gomez
- Department of Clinic, Pathology and Dental Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Gisele André Baptista Canuto
- Department of Analytical Chemistry of the Institute of Chemistry, Universidade Federal da Bahia, Salvador, Brazil
| | | |
Collapse
|
27
|
Wang C, Peng XX, Li H. Fructose potentiates the protective efficiency of live Edwardsiella tarda cell vaccine. Front Immunol 2023; 14:1170166. [PMID: 37063884 PMCID: PMC10097957 DOI: 10.3389/fimmu.2023.1170166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Vaccination is an effective measure to prevent infection by pathogens. Live vaccines have higher protective efficacy than inactivated vaccines. However, how live vaccines interact with the host from a metabolic perspective is unknown. The present study aimed to explore whether a live Edwardsiella tarda vaccine regulates host metabolism and whether this regulation is related to the protective efficacy of the vaccine. Therefore, a gas chromatography mass spectrometry (GC-MS)-based metabolomics approach was used to investigate the metabolomic profile of mice serum after vaccination with live E. tarda vaccine. Fructose was identified as a key biomarker that contributes to the immune protection induced by the live vaccine. Moreover, co-administration of exogenous fructose and the live vaccine synergistically promoted survival of mice and fish after bacterial challenge. These results indicate that metabolites, especially fructose, can potentiate the live E. tarda vaccine to increase its protective efficiency.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, China
- Laboratory of Freshwater Genetics and Breeding, Shandong Freshwater Fisheries Research Institute, Jinan, China
| | - Xuan-xian Peng
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Li
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Hui Li,
| |
Collapse
|
28
|
Jiang M, Su YB, Ye JZ, Li H, Kuang SF, Wu JH, Li SH, Peng XX, Peng B. Ampicillin-controlled glucose metabolism manipulates the transition from tolerance to resistance in bacteria. SCIENCE ADVANCES 2023; 9:eade8582. [PMID: 36888710 PMCID: PMC9995076 DOI: 10.1126/sciadv.ade8582] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/07/2023] [Indexed: 05/31/2023]
Abstract
The mechanism(s) of how bacteria acquire tolerance and then resistance to antibiotics remains poorly understood. Here, we show that glucose abundance decreases progressively as ampicillin-sensitive strains acquire resistance to ampicillin. The mechanism involves that ampicillin initiates this event via targeting pts promoter and pyruvate dehydrogenase (PDH) to promote glucose transport and inhibit glycolysis, respectively. Thus, glucose fluxes into pentose phosphate pathway to generate reactive oxygen species (ROS) causing genetic mutations. Meanwhile, PDH activity is gradually restored due to the competitive binding of accumulated pyruvate and ampicillin, which lowers glucose level, and activates cyclic adenosine monophosphate (cAMP)/cAMP receptor protein (CRP) complex. cAMP/CRP negatively regulates glucose transport and ROS but enhances DNA repair, leading to ampicillin resistance. Glucose and Mn2+ delay the acquisition, providing an effective approach to control the resistance. The same effect is also determined in the intracellular pathogen Edwardsiella tarda. Thus, glucose metabolism represents a promising target to stop/delay the transition of tolerance to resistance.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yu-bin Su
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jin-zhou Ye
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Su-fang Kuang
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Jia-han Wu
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Shao-hua Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Xuan-xian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Bo Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
29
|
Wang Z, Lao J, Kang X, Xie Z, He W, Liu X, Zhong C, Zhang S, Jin J. Insights into the metabolic profiling of Polygonati Rhizoma fermented by Lactiplantibacillus plantarum under aerobic and anaerobic conditions using a UHPLC-QE-MS/MS system. Front Nutr 2023; 10:1093761. [PMID: 36776612 PMCID: PMC9908587 DOI: 10.3389/fnut.2023.1093761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Polygonati Rhizoma is a multi-purpose food with medicinal uses. Fermentation of Polygonati Rhizoma by lactic acid bacteria could provide new insights into the development of Polygonati Rhizoma products. Methods In this study, Lactiplantibacillus plantarum was fermented with Polygonati Rhizoma extracts in a bioreactor under aerobic and anaerobic conditions with pH and DO real-time detection. Metabolic profiling was determined by UHPLC-QE-MS/MS system. Principal component analysis and orthogonal partial least-squares discriminant analysis were used to perform multivariate analysis. Results A total of 98 differential metabolites were identified in broth after fermentation, and 36 were identified between fermentation under aerobic and anaerobic conditions. The main metabolic pathways in the fermentation process are ABC transport and amino acid biosynthesis. Most of the compounds such as L-arginine, L-aspartic acid, leucine, L-lysine, citrate, inosine, carnitine, betaine, and thiamine were significantly increased during fermentation, playing a role in enhancing food flavor. Compared with anaerobic fermentation, aerobic conditions led to a significant rise in the levels of some compounds such as valine, isoleucine, and glutamate; this increase was mainly related to branched-chain amino acid transaminase, isocitrate dehydrogenase, and glutamate dehydrogenase. Discussion Aerobic fermentation is more beneficial for the fermentation of Polygonati Rhizoma by L. plantarum to produce flavor and functional substances. This study is the first report on the fermentation of Polygonati Rhizoma by L. plantarum and provides insights that would be applicable in the development of Polygonati Rhizoma fermented products.
Collapse
Affiliation(s)
- ZiLing Wang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China,Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Jia Lao
- Resgreen Group International Inc., Changsha, China
| | - XingYi Kang
- College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, Hunan, China
| | - ZhenNi Xie
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China,Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Wei He
- Resgreen Group International Inc., Changsha, China
| | - XiaoLiu Liu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China,Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Can Zhong
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - ShuiHan Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Jian Jin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China,*Correspondence: Jian Jin,
| |
Collapse
|
30
|
Chen YT, Ma YM, Peng XX, Li H. Glutamine potentiates gentamicin to kill lab-evolved gentamicin-resistant and clinically isolated multidrug-resistant Escherichia coli. Front Microbiol 2022; 13:1071278. [PMID: 36532472 PMCID: PMC9755591 DOI: 10.3389/fmicb.2022.1071278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/10/2022] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION Gentamicin is a conventional antibiotic in clinic. However, with the wide use of antibiotics, gentamicin-resistant Escherichia coli (E. coli) is an ever-increasing problem that causes infection in both humans and animals. Thus, it is especially important to restore gentamicin-mediated killing efficacy. METHOD E. coli K12 BW25113 cells were passaged in medium with and without gentamicin and obtain gentamicin-resistant (K12-R GEN ) and control (K12-S) strains, respectively. Then, the metabonomics of the two strains were analyzed by GC-MS approach. RESULTS K12-R GEN metabolome was characterized as more decreased metabolites than increased metabolites. Meantime, in the most enriched metabolic pathways, almost all of the metabolites were depressed. Alanine, aspartate and glutamate metabolism and glutamine within the metabolic pathway were identified as the most key metabolic pathways and the most crucial biomarkers, respectively. Exogenous glutamine potentiated gentamicin-mediated killing efficacy in glutamine and gentamicin dose-and time-dependent manners in K12-R GEN . Further experiments showed that glutamine-enabled killing by gentamicin was effective to clinically isolated multidrug-resistant E. coli. DISCUSSION These results suggest that glutamine provides an ideal metabolic environment to restore gentamicin-mediated killing, which not only indicates that glutamine is a broad-spectrum antibiotic synergist, but also expands the range of metabolites that contribute to the bactericidal efficiency of aminoglycosides.
Collapse
Affiliation(s)
- Yue-tao Chen
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
| | - Yan-mei Ma
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
| | - Xuan-xian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
31
|
Guo C, Ye JZ, Song M, Peng XX, Li H. Poly I:C promotes malate to enhance innate immune response against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:172-180. [PMID: 36210004 DOI: 10.1016/j.fsi.2022.09.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Polyinosinic-polycytidylic acid (poly I:C) is a synthetic analog of double-stranded RNA (dsRNA) that activates anti-infective innate immunity. The underlying mechanisms are identified as targeting pattern recognition receptors and Th1-inducing. However, whether poly I:C manipulates metabolism to implement this anti-infective function is unknown. Here, GC-MS based metabolomics was used to characterize metabolic profiles induced by different doses of poly I:C. Analysis on the dose-dependent metabolomes shows that elevation of the TCA cycle and malate with the increasing dose of ploy I:C forms the most characteristic feature of the poly I:C stimulation. Exogenous malate activates the TCA cycle and elevates survival of zebrafish infected with Vibrio alginolyticus, which is related to the elevated expression of il-1b, il-6, il-8, tnf-a, and c3b. These results reveal a previously unknown regulation of poly I:C that boosts the TCA cycle to enhance innate immunity against bacterial infection.
Collapse
Affiliation(s)
- Chang Guo
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, China; School of Life Sciences, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Longyan University, Longyan, 364012, China
| | - Jing-Zhou Ye
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, China
| | - Min Song
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, China
| | - Xuan-Xian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
32
|
Kou TS, Wu JH, Chen XW, Peng B. Functional proteomics identify mannitol metabolism in serum resistance and therapeutic implications in Vibrio alginolyticus. Front Immunol 2022; 13:1010526. [PMID: 36389821 PMCID: PMC9660324 DOI: 10.3389/fimmu.2022.1010526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/07/2022] [Indexed: 08/18/2023] Open
Abstract
Serum resistance is recognized as one of the most important pathogenic traits of bacterial pathogens, and no control measure is available. Based on our previous discovery that pathogenic Escherichia coli represses glycine, serine, and threonine metabolism to confer serum resistance and that the reactivation of this pathway by exogenous glycine could restore serum sensitivity, we further investigate the mechanism underlying the action of glycine in Vibrio alginolyticus. Thus, V. alginolyticus is treated with glycine, and the proteomic change is profiled with tandem mass tag-based quantitative proteomics. Compared to the control group, glycine treatment influences the expression of a total of 291 proteins. Among them, a trap-type mannitol/chloroaromatic compound transport system with periplasmic component, encoded by N646_0992, is the most significantly increased protein. In combination with the pathway enrichment analysis showing the altered fructose and mannitol metabolism, mannitol has emerged as a possible metabolite in enhancing the serum killing activity. To demonstrate this, exogenous mannitol reduces bacterial viability. This synergistic effect is further confirmed in a V. alginolyticus-Danio rerio infection model. Furthermore, the mechanism underlying mannitol-enabled serum killing is dependent on glycolysis and the pyruvate cycle that increases the deposition of complement components C3b and C5b-9 on the bacterial surface, whereas inhibiting glycolysis or the pyruvate cycle significantly weakened the synergistic effects and complement deposition. These data together suggest that mannitol is a potent metabolite in reversing the serum resistance of V. alginolyticus and has promising use in aquaculture.
Collapse
Affiliation(s)
- Tian-shun Kou
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jia-han Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuan-wei Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|