1
|
Hill N, Matulina LM, MacIntyre C, Hassani MA, Thomas S, Luban M, Ward I, Abdalla A, Leong JM, Garcia BL, Lemieux JE. Heterologous Surface Display Reveals Conserved Complement Inhibition and Functional Diversification of Borrelia burgdorferi Elp Proteins. Mol Microbiol 2025. [PMID: 40376887 DOI: 10.1111/mmi.15369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/16/2025] [Accepted: 04/14/2025] [Indexed: 05/18/2025]
Abstract
Lyme disease is a tick-borne spirochetosis with diverse clinical manifestations. Genotypic and phenotypic variation among Borrelia burgdorferi strains correlates with variable manifestations of Lyme disease in humans; this diversity is attributed in part to variation in surface-exposed lipoproteins, which are targets of the human antibody response and contribute to tissue adhesion, immune evasion, and other host interactions. Many B. burgdorferi lipoproteins are encoded as multi-copy gene families, such as the OspE/F-like leader peptide (Elp) protein family, which inhibits classical complement activation by binding complement C1s. To characterize Elp allelic variants, we adapted the Pseudomonas syringae ice nucleation protein (INP) system to present B. burgdorferi lipoproteins on the surface of Escherichia coli. Using this system, we identified interactions with classical complement proteins and mapped binding regions, then validated interactions using recombinant proteins and B. burgdorferi surface display. We also discovered a novel potential interaction between Elp proteins and the mammalian basement membrane protein perlecan, thus revealing a bifunctional nature of Elps. Our findings indicate that Elps have undergone functional diversification while maintaining classical complement inhibition mediated by potent and conserved C1s binding and demonstrate that E. coli surface display offers an efficient, cost-effective, and relatively high-throughput approach to characterize B. burgdorferi lipoproteins.
Collapse
Affiliation(s)
- Nathan Hill
- Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Lara M Matulina
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Cameron MacIntyre
- Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - M Amine Hassani
- Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sheila Thomas
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Matteo Luban
- Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Isabelle Ward
- Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Amina Abdalla
- Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Jacob E Lemieux
- Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Socarras KM, Marino MC, Earl JP, Ehrlich RL, Cramer NA, Mell JC, Sen B, Ahmed A, Marconi RT, Ehrlich GD. Characterization of the family-level Borreliaceae pan-genome and development of an episomal typing protocol. mBio 2025:e0094325. [PMID: 40331826 DOI: 10.1128/mbio.00943-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
The Borreliaceae family includes many obligate parasitic bacterial species etiologically associated with a myriad of zoonotic borrelioses, including Lyme disease and vector-borne relapsing fevers. Borreliaceae infections are difficult to detect by both direct and indirect methods, often leading to delayed and missed diagnoses. Efforts to improve diagnostics center around the development of molecular diagnostics (MDx), but due to deep tissue sequestration and the lack of persistent bacteremias, even MDx assays suffer from a lack of sensitivity. Additionally, the extensive genomic heterogeneity among isolates, even within the same species, contributes to the lack of assay sensitivity, as single target assays, whether nucleic acid-based or serologically based, cannot provide universal coverage. This within-species heterogeneity is partly due to differences in replicon repertoires and genomic structures that have likely arisen to support the complex Borreliaceae life cycle necessary for these parasites to survive in multiple hosts, each with unique immune responses. We constructed a Borreliaceae family-level pan-genome and characterized the phylogenetic relationships among the constituent taxa, which supports the recent, although contested, taxonomy of splitting the family into at least two genera. Gene content profiles were created for the majority of the Borreliaceae replicons, providing for the first time their unambiguous molecular typing. Our characterization of the Borreliaceae pan-genome supports the splitting of the former Borrelia genus into two genera and provides for the phylogenetic placement of several non-species designated isolates. Mining this family-level pan-genome will enable the development of precision diagnostics corresponding to gene content-driven clinical outcomes while also providing targets for interventions. IMPORTANCE Using whole genome sequencing, we demonstrated that the bacteria that are transmitted by ticks and other arthropod vectors that cause Lyme disease and relapsing fevers, while related, do not belong within the same genus classification. In addition, through characterization of their highly atypical genomic structure, we were able to develop a genetic typing system that will help with future studies of how they cause disease while also providing targets for medical interventions.
Collapse
Affiliation(s)
- Kalya M Socarras
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Mary C Marino
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Joshua P Earl
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Rachel L Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas A Cramer
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Joshua C Mell
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Bhaswati Sen
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Azad Ahmed
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Garth D Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Brangulis K, Malfetano J, Marcinkiewicz AL, Wang A, Chen YL, Lee J, Liu Z, Yang X, Strych U, Tupina D, Akopjana I, Bottazzi ME, Pal U, Hsieh CL, Chen WH, Lin YP. Mechanistic insights into the structure-based design of a CspZ-targeting Lyme disease vaccine. Nat Commun 2025; 16:2898. [PMID: 40189575 PMCID: PMC11973211 DOI: 10.1038/s41467-025-58182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
Borrelia burgdorferi (Bb) causes Lyme disease (LD), one of the most common vector-borne diseases in the Northern Hemisphere. Here, we solve the crystal structure of a mutated Bb vaccine antigen, CspZ-YA that lacks the ability to bind to host complement factor H (FH). We generate point mutants of CspZ-YA and identify CspZ-YAI183Y and CspZ-YAC187S to trigger more robust bactericidal responses. Compared to CspZ-YA, these CspZ-YA mutants require a lower immunization frequency to protect mice from LD-associated inflammation and bacterial colonization. Antigenicity of wild-type and mutant CspZ-YA proteins are similar, as measured using sera from infected people or immunized female mice. Structural comparison of CspZ-YA with CspZ-YAI183Y and CspZ-YAC187S shows enhanced interactions of two helices adjacent to the FH-binding sites in the mutants, consistent with their elevated thermostability. In line with these findings, protective CspZ-YA monoclonal antibodies show increased binding to CspZ-YA at a physiological temperature (37 °C). In summary, this proof-of-concept study applies structural vaccinology to enhance intramolecular interactions for the long-term stability of a Bb antigen while maintaining its protective epitopes, thus promoting LD vaccine development.
Collapse
Affiliation(s)
- Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, Riga, Latvia.
- Department of Human Physiology and Biochemistry, Riga Stradins University, Riga, Latvia.
| | - Jill Malfetano
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
| | - Ashley L Marcinkiewicz
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Alan Wang
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
- Pomona College, Claremont, CA, USA
| | - Yi-Lin Chen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Jungsoon Lee
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Zhuyun Liu
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Xiuli Yang
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Ulrich Strych
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Dagnija Tupina
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Maria-Elena Bottazzi
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, USA
| | - Utpal Pal
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Wen-Hsiang Chen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA.
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA.
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA.
- Department of Biomedical Sciences, SUNY Albany, Albany, NY, USA.
| |
Collapse
|
4
|
Pfeifle A, Anderson-Duvall R, Tamming LA, Zhang W, Thulasi Raman SN, Gravel C, Wu J, Coatsworth H, Voordouw MJ, Zhang X, Johnston MJW, Chen W, Sauve S, Wang L, Li X. Borrelia burgdorferi Strain-Specific Differences in Mouse Infectivity and Pathology. Pathogens 2025; 14:352. [PMID: 40333117 PMCID: PMC12029986 DOI: 10.3390/pathogens14040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 05/09/2025] Open
Abstract
Lyme disease (LD), caused by infection with the tick-borne bacteria, Borrelia burgdorferi, is associated with a wide array of symptoms in human patients. Variations in clinical manifestations are thought to be influenced by genetic differences among B. burgdorferi strains. In this study, we evaluated the infectivity, tissue bacterial load, pathology, and immunogenicity of five strains of B. burgdorferi sensu stricto (297 Ah130, Bb16-54, B31-A3, Bb16-126, JD1) in female C3H/HeN mice at three infectious doses (104, 105, 106 spirochetes). We found that strains Bb16-126 and JD1 were the most infectious, resulting in 100% infection across all the tested doses. Strain Bb16-126 caused the highest bacterial burden in the heart tissue and significant carditis, whereas JD1 exhibited the lowest spirochete load in the heart and minimal carditis. In comparison, strain B31-A3 demonstrated the highest abundance in the tibiotarsal joint. Infection with all the strains induced severe lymph node hyperplasia, with JD1 producing the greatest increase in cellularity. Using a diagnostic C6 peptide ELISA, all the strains induced significant anti-C6 IgM and IgG antibody titers at 14 days post-infection; however, strain B31-A3 elicited the highest anti-C6 IgM titers. Our findings demonstrate the importance of strain diversity in shaping B. burgdorferi pathogenesis in a mouse model and provide insights for developing strain-specific diagnostic, therapeutic, and vaccine strategies.
Collapse
Affiliation(s)
- Annabelle Pfeifle
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Rose Anderson-Duvall
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Levi A. Tamming
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Wanyue Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Sathya N. Thulasi Raman
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
| | - Caroline Gravel
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
| | - Jianguo Wu
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
| | - Heather Coatsworth
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3M4, Canada;
| | - Maarten J. Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Xu Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Michael J. W. Johnston
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, ON K1N 1J1, Canada;
| | - Simon Sauve
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Xuguang Li
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| |
Collapse
|
5
|
Hillman C, Theriault H, Dmitriev A, Hansra S, Rosa PA, Wachter J. Borrelia burgdorferi lacking all cp32 prophage plasmids retains full infectivity in mice. EMBO Rep 2025; 26:1997-2012. [PMID: 40108404 PMCID: PMC12018966 DOI: 10.1038/s44319-025-00378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 03/22/2025] Open
Abstract
The causative agent of Lyme disease, Borrelia burgdorferi, contains a unique, segmented genome comprising multiple linear and circular plasmids. To date, the genomes of over 63 sequenced Lyme disease Borrelia carry one or more 32 kbp circular plasmids (cp32) or cp32-like elements. The cp32 plasmids are endogenous prophages and encode, among other elements, a family of surface exposed lipoproteins termed OspEF-related proteins. These lipoproteins are synthesized during mammalian infection and are considered important components of the spirochete's adaptive response to the vertebrate host. Here, we detail the construction and infectivity of the first described B. burgdorferi strain lacking all cp32 plasmids. Despite their universal presence, our findings indicate that B. burgdorferi does not require any cp32 plasmids to complete the experimental mouse-tick-mouse infectious cycle and a total lack of cp32s does not impair spirochete infectivity.
Collapse
Affiliation(s)
- Chad Hillman
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Hannah Theriault
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, 12144, USA
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, 12159, USA
| | - Anton Dmitriev
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Satyender Hansra
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Patricia A Rosa
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jenny Wachter
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
6
|
Freeman-Gallant G, McCarthy K, Yates J, Kulas K, Rudolph MJ, Vance DJ, Mantis NJ. A Refined Human Linear B Cell Epitope Map of Outer Surface Protein C (OspC) From the Lyme Disease Spirochete, Borrelia Burgdorferi. Pathog Immun 2025; 10:159-186. [PMID: 40017585 PMCID: PMC11867186 DOI: 10.20411/pai.v10i1.756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/07/2025] [Indexed: 03/01/2025] Open
Abstract
Background A detailed understanding of the human antibody response to outer surface protein C (OspC) of Borrelia burgdorferi has important implications for Lyme disease diagnostics and vaccines. Methods In this report, 13 peptides encompassing 8 reported OspC linear B-cell epitopes from OspC types A, B, and K, including the largely conserved C-terminus (residues 193-210), were evaluated by multiplex immunoassay (MIA) for IgG reactivity with ~700 human serum samples confirmed positive in a 2-tiered Lyme disease diagnostic assay (Bb+) and ~160 post-treatment Lyme disease (PTLD) serum samples. The vmp-like sequence E (VlsE) C6-17 peptide was included as a positive control. Results Serum IgG from Bb+ samples were reactive with 10 of the 13 OspC-derived peptides tested, with the C-terminal peptide (residues 193-210) being the most reactive. Spearman's rank correlation matrices and hierarchical clustering revealed a strong correlation between 193-210 and VlsE C6-17 peptide reactivity but little demonstrable association between 193-210 and the other OspC peptides or recombinant OspC. OspC peptide reactivities (excluding 193-210) were strongly correlated with each other and were disproportionately influenced by a subset of pan-reactive samples. In the PTLD sample set, none of the OspC-derived peptides were significantly reactive over baseline, even though VlsE C6-17 peptide reactivity remained. Conclusions The asynchronous and potentially short-lived serologic response to OspC-derived peptides reveals the complexity of B-cell responses to B. burgdorferi lipoproteins and confounds interpretation of antibody profiles for Lyme disease diagnostics.
Collapse
Affiliation(s)
- Grace Freeman-Gallant
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Kathleen McCarthy
- Department of Biomedical Sciences, University at Albany, Albany, New York
| | - Jennifer Yates
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Biomedical Sciences, University at Albany, Albany, New York
| | - Karen Kulas
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
| | | | - David J. Vance
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Biomedical Sciences, University at Albany, Albany, New York
| | - Nicholas J. Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Biomedical Sciences, University at Albany, Albany, New York
| |
Collapse
|
7
|
Ogrinc K, Bogovič P, Maraspin V, Lotrič Furlan S, Rojko T, Ružić-Sabljić E, Kastrin A, Strle K, Wormser GP, Strle F. Assessment of three criteria to establish borrelial infection in suspected lyme neuroborreliosis. Infection 2025; 53:165-174. [PMID: 38980540 PMCID: PMC11825597 DOI: 10.1007/s15010-024-02338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE Diagnosis of (European) Lyme neuroborreliosis has been based on clinical presentation, cerebrospinal fluid (CSF) pleocytosis and demonstration of intrathecal borrelial antibody synthesis (ITBAS) to document Borrelia burgdorferi s. l. INFECTION It is not known if other criteria to document Borrelia infection may contribute to the diagnosis. METHODS We compared the sensitivity of three individual criteria (ITBAS, CSF Borrelia culture, and the presence of erythema migrans [EM]) to confirm the diagnosis of early Lyme neuroborreliosis in 280 patients ≥ 15 years of age evaluated at a Lyme borreliosis outpatient clinic in Slovenia. The patients had either radicular pain of new onset or involvement of a cranial nerve but without radicular pain, each in conjunction with CSF pleocytosis. Evaluation was of patients who had each of the three confirmatory criteria assessed, and for whom at least one criterion was positive. RESULTS Analysis of 280 patients, 120 women and 160 men, median age 57 (range 15-84) years, revealed that ITBAS was the most frequently observed positive criterion (85.4%), followed by EM (52.9%), and by a positive CSF Borrelia culture (9.6%). Of the 280 patients, 154 (55%) met only one criterion (43.2% ITBAS only, 10.7% EM only, and 1.1% positive CSF culture only), whereas 42.1% met two criteria. Only 2.9% of patients were positive by all three criteria. CONCLUSION Although ITBAS was the most frequent criterion for confirmation for Borrelia infection, the presence of EM alone confirmed an additional 10.7% of patients and a positive CSF Borrelia culture alone added another 1.1%.
Collapse
Affiliation(s)
- Katarina Ogrinc
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.
| | - Petra Bogovič
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Vera Maraspin
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Stanka Lotrič Furlan
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Tereza Rojko
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Eva Ružić-Sabljić
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Kastrin
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Strle
- Tufts University School of Medicine, Boston, Mass, USA
| | | | - Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Laing RA, Foster MJ, Hassani MA, Kotzen B, Huang W, Shea T, Schaffner SF, Cerar T, Freimark L, Ruzic-Sabljic E, Liveris D, Reed KD, Branda JA, Steere AC, Wormser GP, Strle F, Sabeti PC, Earl A, Schwartz I, Strle K, Lemieux JE. Complex exchanges among plasmids and clonal expansion of lineages shape the population structure and virulence of Borrelia burgdorferi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635312. [PMID: 39974970 PMCID: PMC11838331 DOI: 10.1101/2025.01.29.635312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background In the United States, Borrelia burgdorferi (Bb) is the principal etiologic agent of Lyme disease. The complex structure of Bb genomes has posed challenges for genomic studies because homology among the bacterium's many plasmids, which account for ~40% of the genome by length, has made them difficult to sequence and assemble. Results We used long-read sequencing to generate near-complete assemblies of 62 isolates of human-derived Bb and collected public genomes with plasmid sequences. We characterized genetic diversity and population structure in the resulting set of 82 plasmid-complete Borrelia burgdorferi sensu stricto genomes. The Bb core genome is encoded by a chromosome and the conserved plasmids cp26, lp54, and lp17; the accessory genome is encoded by all other plasmids and the distal arm of the chromosome. Near-complete genomes reveal that the most granular Bb genotypes are clonal expansions of complex rearrangements among accessory genome elements. Ribosomal spacer types (RST) represent multiple collections of such genotypes, whereas OspC types are usually clonal. Structural rearrangements are non-randomly distributed throughout the genome, with cp32 plasmids undergoing dense exchanges and most linear plasmids, except lp54, sharing blocks among themselves and with the distal arm of the chromosome. OspC type A strains, known to possess greater virulence in humans, are distinguished by the presence of lp28-1 and lp56. Rearrangements among plasmids tended to preserve gene content, suggesting functional constraints among gene networks. Using k-partite graph decompositions, we identified gene sets with correlation patterns suggestive of conserved functional modules. Conclusions Long-read assemblies reveal that Bb population genetic structure results from clonal expansion of lineages that have undergone complex rearrangements among plasmid-encoded accessory genome elements. Genetic structure is preserved among genes even when plasmid rearrangements occur, suggesting that selection among epistatic loci maintains functional genetic networks. The analysis of near-complete genomes assembled using long-read sequencing methods advances our understanding of Bb biology and Lyme disease pathogenesis by providing the first detailed view of population variation in previously inaccessible areas of the Bb genome.
Collapse
Affiliation(s)
- Rachel A. Laing
- Massachusetts General Hospital, Harvard Medical School
- Broad Institute of MIT and Harvard
| | - Michael J. Foster
- Massachusetts General Hospital, Harvard Medical School
- Broad Institute of MIT and Harvard
| | - M. Amine Hassani
- Massachusetts General Hospital, Harvard Medical School
- Broad Institute of MIT and Harvard
| | - Benjamin Kotzen
- Massachusetts General Hospital, Harvard Medical School
- Broad Institute of MIT and Harvard
| | - Weihua Huang
- New York Medical College
- East Carolina University
| | | | | | | | | | | | | | | | | | | | | | | | - Pardis C. Sabeti
- Broad Institute of MIT and Harvard
- Harvard University
- Harvard T.H.Chan School of Public Health
| | | | | | | | - Jacob E. Lemieux
- Massachusetts General Hospital, Harvard Medical School
- Broad Institute of MIT and Harvard
| |
Collapse
|
9
|
Brangulis K, Sürth V, Marcinkiewicz AL, Akopjana I, Kazaks A, Bogans J, Huber A, Lin YP, Kraiczy P. CspZ variant-specific interaction with factor H incorporates a metal site to support Lyme borreliae complement evasion. J Biol Chem 2025; 301:108083. [PMID: 39675703 PMCID: PMC11773018 DOI: 10.1016/j.jbc.2024.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Polymorphic microbial immune evasion proteins dictate the pathogen species- or strain-specific virulence. Metals can impact how microbial proteins confer host-pathogen interactions, but whether this activity can be allelically variable is unclear. Here, we investigate the polymorphic CspZ protein of Lyme disease spirochete bacteria to assess the role of metals in protein-protein interaction. CspZ facilitates evasion of the complement system, the first line of immune defense through binding to the complement regulator factor H (FH). By obtaining a high-resolution cocrystal CspZ-FH structure, we identified a zinc coordinating the binding of FH SCR6-7 domains to a Glu65 on a loop from CspZ of Borrelia burgdorferi B31. However, zinc is dispensable for human FH binding for CspZ orthologs with a different loop orientation and/or lacking this glutamate. Phylogenetic analysis of all known human FH-binding CspZ variants further grouped the proteins into three unique lineages correlating with loop sequences. This suggests multiple FH-binding mechanisms evolved through Lyme disease spirochete-host interactions. Overall, this multidisciplinary work elucidates how the allelically specific immune evasion role of metals is impacted by microbial protein polymorphisms.
Collapse
Affiliation(s)
- Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, Riga, Latvia; Department of Human Physiology and Biochemistry, Riga Stradins University, Riga, Latvia.
| | - Valerie Sürth
- Goethe University Frankfurt, University Hospital of Frankfurt, Institute of Medical Microbiology and Infection Control, Frankfurt, Germany
| | - Ashley L Marcinkiewicz
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA; Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Alisa Huber
- Goethe University Frankfurt, University Hospital of Frankfurt, Institute of Medical Microbiology and Infection Control, Frankfurt, Germany
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA; Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA; Department of Biomedical Sciences, SUNY Albany, Albany, New York, USA.
| | - Peter Kraiczy
- Goethe University Frankfurt, University Hospital of Frankfurt, Institute of Medical Microbiology and Infection Control, Frankfurt, Germany.
| |
Collapse
|
10
|
Reddy PJ, Sun Z, Wippel HH, Baxter DH, Swearingen K, Shteynberg DD, Midha MK, Caimano MJ, Strle K, Choi Y, Chan AP, Schork NJ, Varela-Stokes AS, Moritz RL. Borrelia PeptideAtlas: A proteome resource of common Borrelia burgdorferi isolates for Lyme research. Sci Data 2024; 11:1313. [PMID: 39622905 PMCID: PMC11612207 DOI: 10.1038/s41597-024-04047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Lyme disease is caused by an infection with the spirochete Borrelia burgdorferi, and is the most common vector-borne disease in North America. B. burgdorferi isolates harbor extensive genomic and proteomic variability and further comparison of isolates is key to understanding the infectivity of the spirochetes and biological impacts of identified sequence variants. Here, we applied both transcriptome analysis and mass spectrometry-based proteomics to assemble peptide datasets of B. burgdorferi laboratory isolates B31, MM1, and the infective isolate B31-5A4, to provide a publicly available Borrelia PeptideAtlas. Included are total proteome, secretome, and membrane proteome identifications of the individual isolates. Proteomic data collected from 35 different experiment datasets, totaling 386 mass spectrometry runs, have identified 81,967 distinct peptides, which map to 1,113 proteins. The Borrelia PeptideAtlas covers 86% of the total B31 proteome of 1,291 protein sequences. The Borrelia PeptideAtlas is an extensible comprehensive peptide repository with proteomic information from B. burgdorferi isolates useful for Lyme disease research.
Collapse
Affiliation(s)
- Panga J Reddy
- Institute for Systems Biology, Seattle, Washington, USA
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington, USA
| | | | | | | | | | - Mukul K Midha
- Institute for Systems Biology, Seattle, Washington, USA
| | | | - Klemen Strle
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Yongwook Choi
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Agnes P Chan
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | - Andrea S Varela-Stokes
- Tufts University Cummings School of Veterinary Medicine, Department of Comparative Pathobiology, Grafton, MA, 01536, USA
| | | |
Collapse
|
11
|
Marques A. Symptoms after Lyme disease: What's past is prologue. Sci Transl Med 2024; 16:eado2103. [PMID: 39536119 DOI: 10.1126/scitranslmed.ado2103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Protracted fatigue and other symptoms can occur after Lyme disease and other infections, with numerous possible drivers. Studies on posttreatment Lyme disease have been inconclusive, with no confirmed biomarker emerging. Prolonged antibiotic therapy provides no benefit. Thus, a holistic approach toward understanding and treating this complex disease is necessary.
Collapse
Affiliation(s)
- Adriana Marques
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1888 USA
| |
Collapse
|
12
|
Nowak TA, Fernandes C, Malfetano J, Lasek-Nesselquist E, Combs M, Strle K, Burke RL, Lin YP. Microbial genetic variation impacts host eco-immunological strategies and microparasite fitness in Lyme borreliae-reptile system. Ticks Tick Borne Dis 2024; 15:102410. [PMID: 39541748 PMCID: PMC11815320 DOI: 10.1016/j.ttbdis.2024.102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Tolerance and resistance are two host eco-immunological strategies in response to microparasite invasion. In the strategy of "resistance", host responses are induced to decrease microparasite replication while the "tolerance" strategy allows hosts coexistence with microparasites by minimizing responses to avoid immune-mediated damage. The causative agent of Lyme disease is a group of genotypically diverse bacterial species, Borrelia burgdorferi sensu lato (Bb), which is transmitted by Ixodes ticks and persists in different reservoir animals. In North America, eastern fence lizards (Sceloporus undulatus) can be fed on by Ixodes ticks but are incompetent to one genotype of Bb (i.e., ospC type A). However, field-collected lizards showed evidence of previous infection by Bb strains with undefined genotypes. Supporting this evidence, we introduced three genotypically different Bb strains individually to eastern fence lizards and found a Bb genotype-dependent manner of infectivity. We compared liver transcriptomics and observed elevated immune responses triggered by a lizard-incompetent Bb strain (strain B31). We showed two lizard-competent strains with one having no immunomodulation (strain B379) but the other developing upregulated immune responses (strain 297). These results suggest that genetic variation in microparasites both induces different host strategies for dealing with infection and determines microparasite fitness in the hosts. These findings demonstrate that Bb and eastern fence lizards can serve as a model to investigate the mechanisms underlying eco-immunological strategies of tolerance vs. resistance during host-microparasite interaction.
Collapse
Affiliation(s)
- Tristan A Nowak
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA; Department of Biomedical Sciences, SUNY Albany, Albany, NY, USA
| | - Carly Fernandes
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA; Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Jill Malfetano
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
| | - Erica Lasek-Nesselquist
- Department of Biomedical Sciences, SUNY Albany, Albany, NY, USA; Bioinformatics Core, Wadsworth Center, NYSDOH, Albany, NY, USA
| | - Matthew Combs
- National Wildlife Research Center, United State Department of Agriculture, Fort Collins, CO, USA
| | - Klemen Strle
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA, USA
| | - Russell L Burke
- Department of Biology, Hofstra University, Hempstead, NY, USA
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA; Department of Biomedical Sciences, SUNY Albany, Albany, NY, USA; Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA.
| |
Collapse
|
13
|
Brangulis K, Malfetano J, Marcinkiewicz AL, Wang A, Chen YL, Lee J, Liu Z, Yang X, Strych U, Bottazzi ME, Pal U, Hsieh CL, Chen WH, Lin YP. Mechanistic insights into structure-based design of a Lyme disease subunit vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619738. [PMID: 39554036 PMCID: PMC11565809 DOI: 10.1101/2024.10.23.619738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The quality of protective immunity plays a critical role in modulating vaccine efficacy, with native antigens often not able to trigger sufficiently strong immune responses for pathogen killing. This warrants creation of structure-based vaccine design, leveraging high-resolution antigen structures for mutagenesis to improve protein stability and efficient immunization strategies. Here, we investigated the mechanisms underlying structure-based vaccine design using CspZ-YA, a vaccine antigen from Borrelia burgdorferi, the bacteria causing Lyme disease (LD), the most common vector-borne disease in the Northern Hemisphere. Compared to wild-type CspZ-YA, we found CspZ-YAI183Y and CspZ-YAC187S required lower immunization frequency to protect mice from LD-associated manifestations and bacterial colonization. We observed indistinguishable human and mouse antigenicity between wild-type and mutant CspZ-YA proteins after native infection or active immunization. This supports our newly generated, high-resolution structures of CspZ-YAI183Y and CspZ-YAC187S, showing no altered surface epitopes after mutagenesis. However, CspZ-YAI183Y and CspZ-YAC187S favored the interactions between helices H and I, consistent with their elevated thermostability. Such findings are further strengthened by increasing ability of protective CspZ-YA monoclonal antibodies in binding to CspZ-YA at a physiological temperature (37°C). Overall, this study demonstrated enhanced intramolecular interactions improved long-term stability of antigens while maintaining protective epitopes, providing a mechanism for structure-based vaccine design. These findings can ultimately be extended to other vaccine antigens against newly emerging pathogens for the improvement of protective immunity.
Collapse
Affiliation(s)
| | - Jill Malfetano
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
| | - Ashley L. Marcinkiewicz
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, MA, USA
| | - Alan Wang
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
| | - Yi-Lin Chen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Jungsoon Lee
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Zhuyun Liu
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Xiuli Yang
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Ulrich Strych
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Maria-Elena Bottazzi
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, United States
| | - Utpal Pal
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Wen-Hsiang Chen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, MA, USA
- Department of Biomedical Sciences, SUNY Albany, Albany, NY, USA
| |
Collapse
|
14
|
Rudolph MJ, Chen Y, Vorauer C, Vance DJ, Piazza CL, Willsey GG, McCarthy K, Muriuki B, Cavacini LA, Guttman M, Mantis NJ. Structure of a Human Monoclonal Antibody in Complex with Outer Surface Protein C of the Lyme Disease Spirochete, Borreliella burgdorferi. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1234-1243. [PMID: 39240158 DOI: 10.4049/jimmunol.2400247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
Lyme disease is a tick-borne, multisystem infection caused by the spirochete Borreliella burgdorferi. Although Abs have been implicated in the resolution of Lyme disease, the specific B cell epitopes targeted during human infections remain largely unknown. In this study, we characterized and defined the structural epitope of a patient-derived bactericidal monoclonal IgG (B11) against outer surface protein C (OspC), a homodimeric lipoprotein necessary for B. burgdorferi tick-mediated transmission and early-stage colonization of vertebrate hosts. High-resolution epitope mapping was accomplished through hydrogen deuterium exchange-mass spectrometry and X-ray crystallography. Structural analysis of B11 Fab-OspCA complexes revealed the B11 Fabs associated in a 1:1 stoichiometry with the lateral faces of OspCA homodimers such that the Abs are essentially positioned perpendicular to the spirochete's outer surface. B11's primary contacts reside within the membrane-proximal regions of α-helices 1 and 6 and adjacent loops 5 and 6 in one OspCA monomer. In addition, B11 spans the OspCA dimer interface, engaging opposing α-helix 1', α-helix 2', and loop 2-3' in the second OspCA monomer. The B11-OspCA structure is reminiscent of the recently solved mouse transmission blocking monoclonal IgG B5 in complex with OspCA, indicating a mode of engagement with OspC that is conserved across species. In conclusion, we provide a detailed insight into the interaction between a functional human Ab and an immunodominant Lyme disease Ag long considered an important vaccine candidate.
Collapse
Affiliation(s)
| | - Yang Chen
- New York Structural Biology Center, New York, NY
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - David J Vance
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY
- Department of Biomedical Sciences, University at Albany, Albany, NY
| | - Carol Lyn Piazza
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY
| | - Graham G Willsey
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY
| | | | | | - Lisa A Cavacini
- University of Massachusetts Chan Medical School, Worcester, MA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY
- Department of Biomedical Sciences, University at Albany, Albany, NY
| |
Collapse
|
15
|
Bourgeois JS, Hu LT. Hitchhiker's Guide to Borrelia burgdorferi. J Bacteriol 2024; 206:e0011624. [PMID: 39140751 PMCID: PMC11411949 DOI: 10.1128/jb.00116-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Don't Panic. In the nearly 50 years since the discovery of Lyme disease, Borrelia burgdorferi has emerged as an unlikely workhorse of microbiology. Interest in studying host-pathogen interactions fueled significant progress in making the fastidious microbe approachable in laboratory settings, including the development of culture methods, animal models, and genetic tools. By developing these systems, insight has been gained into how the microbe is able to survive its enzootic cycle and cause human disease. Here, we discuss the discovery of B. burgdorferi and its development as a model organism before diving into the critical lessons we have learned about B. burgdorferi biology at pivotal stages of its lifecycle: gene expression changes during the tick blood meal, colonization of a new vertebrate host, and developing a long-lasting infection in that vertebrate until a new tick feeds. Our goal is to highlight the advancements that have facilitated B. burgdorferi research and identify gaps in our current understanding of the microbe.
Collapse
Affiliation(s)
- Jeffrey S. Bourgeois
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Akther S, Mongodin EF, Morgan RD, Di L, Yang X, Golovchenko M, Rudenko N, Margos G, Hepner S, Fingerle V, Kawabata H, Norte AC, de Carvalho IL, Núncio MS, Marques A, Schutzer SE, Fraser CM, Luft BJ, Casjens SR, Qiu W. Natural selection and recombination at host-interacting lipoprotein loci drive genome diversification of Lyme disease and related bacteria. mBio 2024; 15:e0174924. [PMID: 39145656 PMCID: PMC11389397 DOI: 10.1128/mbio.01749-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024] Open
Abstract
Lyme disease, caused by spirochetes in the Borrelia burgdorferi sensu lato clade within the Borrelia genus, is transmitted by Ixodes ticks and is currently the most prevalent and rapidly expanding tick-borne disease in Europe and North America. We report complete genome sequences of 47 isolates that encompass all established species in this clade while highlighting the diversity of the widespread human pathogenic species B. burgdorferi. A similar set of plasmids has been maintained throughout Borrelia divergence, indicating that they are a key adaptive feature of this genus. Phylogenetic reconstruction of all sequenced Borrelia genomes revealed the original divergence of Eurasian and North American lineages and subsequent dispersals that introduced B. garinii, B. bavariensis, B. lusitaniae, B. valaisiana, and B. afzelii from East Asia to Europe and B. burgdorferi and B. finlandensis from North America to Europe. Molecular phylogenies of the universally present core replicons (chromosome and cp26 and lp54 plasmids) are highly consistent, revealing a strong clonal structure. Nonetheless, numerous inconsistencies between the genome and gene phylogenies indicate species dispersal, genetic exchanges, and rapid sequence evolution at plasmid-borne loci, including key host-interacting lipoprotein genes. While localized recombination occurs uniformly on the main chromosome at a rate comparable to mutation, lipoprotein-encoding loci are recombination hotspots on the plasmids, suggesting adaptive maintenance of recombinant alleles at loci directly interacting with the host. We conclude that within- and between-species recombination facilitates adaptive sequence evolution of host-interacting lipoprotein loci and contributes to human virulence despite a genome-wide clonal structure of its natural populations. IMPORTANCE Lyme disease (also called Lyme borreliosis in Europe), a condition caused by spirochete bacteria of the genus Borrelia, transmitted by hard-bodied Ixodes ticks, is currently the most prevalent and rapidly expanding tick-borne disease in the United States and Europe. Borrelia interspecies and intraspecies genome comparisons of Lyme disease-related bacteria are essential to reconstruct their evolutionary origins, track epidemiological spread, identify molecular mechanisms of human pathogenicity, and design molecular and ecological approaches to disease prevention, diagnosis, and treatment. These Lyme disease-associated bacteria harbor complex genomes that encode many genes that do not have homologs in other organisms and are distributed across multiple linear and circular plasmids. The functional significance of most of the plasmid-borne genes and the multipartite genome organization itself remains unknown. Here we sequenced, assembled, and analyzed whole genomes of 47 Borrelia isolates from around the world, including multiple isolates of the human pathogenic species. Our analysis elucidates the evolutionary origins, historical migration, and sources of genomic variability of these clinically important pathogens. We have developed web-based software tools (BorreliaBase.org) to facilitate dissemination and continued comparative analysis of Borrelia genomes to identify determinants of human pathogenicity.
Collapse
Affiliation(s)
- Saymon Akther
- Graduate Center and Hunter College, City University of New York, New York, New York, USA
| | | | | | - Lia Di
- Graduate Center and Hunter College, City University of New York, New York, New York, USA
| | - Xiaohua Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, USA
| | - Maryna Golovchenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - Natalie Rudenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - Gabriele Margos
- Bavarian Health and Food Safety Authority and German National Reference Centre for Borrelia, Oberschleissheim, Bavaria, Germany
| | - Sabrina Hepner
- Bavarian Health and Food Safety Authority and German National Reference Centre for Borrelia, Oberschleissheim, Bavaria, Germany
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority and German National Reference Centre for Borrelia, Oberschleissheim, Bavaria, Germany
| | | | - Ana Cláudia Norte
- Department of Life Sciences, University of Coimbra, MARE-Marine and Environmental Sciences Centre, Coimbra, Portugal
| | | | - Maria Sofia Núncio
- Centre for Vector and Infectious Diseases Research, Águas de Moura, Portugal
| | - Adriana Marques
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | | - Claire M Fraser
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Benjamin J Luft
- Department of Medicine, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, USA
| | - Sherwood R Casjens
- University of Utah School of Medicine and School of Biological Sciences, Salt Lake City, Utah, USA
| | - Weigang Qiu
- Graduate Center and Hunter College, City University of New York, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
17
|
Steere AC, Lemieux JE. Wider recognition and greater understanding of postinfectious, antibiotic-refractory Lyme arthritis. J Clin Invest 2024; 134:e184109. [PMID: 39225104 PMCID: PMC11364397 DOI: 10.1172/jci184109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Lyme disease, caused by Borrelia burgdorferi (Bb), can progress to Lyme arthritis (LA). While most patients with LA respond successfully to antibiotic therapy, a small percentage fail to improve, a condition known as antibiotic-refractory Lyme arthritis (ARLA). While T cell responses are known to drive ARLA, molecular mechanisms for ARLA remain unknown. In this issue of the JCI, Dirks et al. isolated disease-specific Th cells from patients with ARLA residing in Germany. A distinct TCR-β motif distinguished ARLA from other rheumatic diseases. Notably, the TCR-β motif was linked predominantly to HLA-DRB1*11 or 13 alleles, which differed from alleles in patients from North America. It also mapped primarily to T peripheral helper (Tph) cells, as opposed to classical Th1 cells. These findings provide a roadmap explaining how T cell responses necessary for control of an infection can, despite antibiotic therapy, drive a disadvantageous T cell response, resulting in a postinfectious, inflammatory arthritis.
Collapse
Affiliation(s)
- Allen C. Steere
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology and
| | - Jacob E. Lemieux
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Lemieux JE. Analysis of the Borreliaceae Pangenome Reveals a Distinct Genomic Architecture Conserved Across Phylogenetic Scales. J Infect Dis 2024; 230:S51-S61. [PMID: 39140725 DOI: 10.1093/infdis/jiae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
The family Borreliaceae contains arthropod-borne spirochetes that cause two widespread human diseases, Lyme disease and relapsing fever. Lyme disease is a subacute, progressive illness with variable stage and tissue manifestations. Relapsing fever is an acute febrile illness with prominent bacteremia that may recur and disseminate, particularly to the nervous system. Clinical heterogeneity is a hallmark of both diseases. While human clinical manifestations are influenced by a wide variety of factors, including immune status and host genetic susceptibility, there is evidence that Borreliaceae microbial factors influence the clinical manifestations of human disease caused by this family of spirochetes. Despite these associations, the spirochete genes that influence the severity and manifestations of human disease are, for the most part, unknown. Recent work has identified lineage-specific expansions of lipoproteome-rich accessory genome elements in virulent clones of Borrelia burgdorferi. Using publicly available genome assemblies, it is shown that all Borreliaceae lineages for which sufficient sequence data are available harbor a similar pattern of strongly structured, lineage-specific expansions in their accessory genomes, particularly among lipoproteins, and that this pattern holds across phylogenetic scales including genera, species, and genotypes. The relationships among pangenome elements suggest that infrequent episodes of marked genomic change followed by clonal expansion in geographically and enzootically structured populations may account for the unique lineage structure of Borreliaceae. This analysis informs future genotype-phenotype studies among Borreliaceae and lays a foundation for studies of individual gene function guided by phylogenetic patterns of conservation, diversification, gain, and/or loss.
Collapse
Affiliation(s)
- Jacob E Lemieux
- Division of Infectious Diseases, Massachusetts General Hospital, Departments of Medicine and Microbiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Steere AC. Lyme Arthritis: A 50-Year Journey. J Infect Dis 2024; 230:S1-S10. [PMID: 39140724 PMCID: PMC11322885 DOI: 10.1093/infdis/jiae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Lyme arthritis (LA) was recognized as a separate entity in 1975 because of geographic clustering of children often diagnosed with juvenile rheumatoid arthritis in Lyme, Connecticut. After identification of erythema migrans as a common early feature of the illness, a prospective study of such patients implicated Ixodes scapularis ticks in disease transmission. In 1982, the causative agent, now called Borrelia burgdorferi, was cultured from these ticks and from Lyme disease patients. Subsequently, it was shown that LA could usually be treated successfully with oral antibiotics but sometimes required intravenous antibiotics. Yet, a small percentage of patients developed a dysregulated, proinflammatory immune response leading to persistent postinfectious synovitis with vascular damage, cytotoxic and autoimmune responses, and fibroblast proliferation, a lesion similar to that of rheumatoid arthritis. The message from postinfectious LA for other autoimmune arthritides is that a complex immune response with autoimmune features can begin with a microbial infection.
Collapse
Affiliation(s)
- Allen C Steere
- Center for Immunology and Inflammatory Diseases, Department of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
20
|
Bourgeois JS, You SS, Clendenen LH, Shrestha M, Petnicki-Ocwieja T, Telford SR, Hu LT. Comparative reservoir competence of Peromyscus leucopus, C57BL/6J, and C3H/HeN for Borrelia burgdorferi B31. Appl Environ Microbiol 2024; 90:e0082224. [PMID: 38899883 PMCID: PMC11267898 DOI: 10.1128/aem.00822-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Borrelia burgdorferi, a Lyme disease spirochete, causes a range of acute and chronic maladies in humans. However, a primary vertebrate reservoir in the United States, the white-footed deermouse Peromyscus leucopus, is reported not to have reduced fitness following infection. Although laboratory strains of Mus musculus mice have successfully been leveraged to model acute human Lyme disease, the ability of these rodents to model B. burgdorferi-P. leucopus interactions remains understudied. Here, we compared infection of P. leucopus with B. burgdorferi B31 with infection of the traditional B. burgdorferi murine models-C57BL/6J and C3H/HeN Mus musculus, which develop signs of inflammation akin to human disease. We find that B. burgdorferi was able to reach much higher burdens (10- to 30-times higher) in multiple M. musculus skin sites and that the overall dynamics of infection differed between the two rodent species. We also found that P. leucopus remained transmissive to larval Ixodes scapularis for a far shorter period than either M. musculus strain. In line with these observations, we found that P. leucopus does launch a modest but sustained inflammatory response against B. burgdorferi in the skin, which we hypothesize leads to reduced bacterial viability and rodent-to-tick transmission in these hosts. Similarly, we also observe evidence of inflammation in infected P. leucopus hearts. These observations provide new insight into reservoir species and the B. burgdorferi enzootic cycle.IMPORTANCEA Lyme disease-causing bacteria, Borrelia burgdorferi, must alternate between infecting a vertebrate host-usually rodents or birds-and ticks. In order to be successful in that endeavor, the bacteria must avoid being killed by the vertebrate host before it can infect a new larval tick. In this work, we examine how B. burgdorferi and one of its primary vertebrate reservoirs, Peromyscus leucopus, interact during an experimental infection. We find that B. burgdorferi appears to colonize its natural host less successfully than conventional laboratory mouse models, which aligns with a sustained seemingly anti-bacterial response by P. leucopus against the microbe. These data enhance our understanding of P. leucopus host-pathogen interactions and could potentially serve as a foundation to uncover ways to disrupt the spread of B. burgdorferi in nature.
Collapse
Affiliation(s)
- Jeffrey S. Bourgeois
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| | - Stephanie S. You
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| | - Luke H. Clendenen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| | - Muskan Shrestha
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| | - Tanja Petnicki-Ocwieja
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| | - Sam R. Telford
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
- Department of Infectious Disease and Global Health, Tufts University, North Grafton, Massachusetts, USA
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Dirks J, Fischer J, Klaussner J, Hofmann C, Holl-Wieden A, Buck V, Klemann C, Girschick HJ, Caruana I, Erhard F, Morbach H. Disease-specific T cell receptors maintain pathogenic T helper cell responses in postinfectious Lyme arthritis. J Clin Invest 2024; 134:e179391. [PMID: 38963700 PMCID: PMC11364382 DOI: 10.1172/jci179391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUNDAntibiotic-Refractory Lyme Arthritis (ARLA) involves a complex interplay of T cell responses targeting Borrelia burgdorferi antigens progressing toward autoantigens by epitope spreading. However, the precise molecular mechanisms driving the pathogenic T cell response in ARLA remain unclear. Our aim was to elucidate the molecular program of disease-specific Th cells.METHODSUsing flow cytometry, high-throughput T cell receptor (TCR) sequencing, and scRNA-Seq of CD4+ Th cells isolated from the joints of patients with ARLA living in Europe, we aimed to infer antigen specificity through unbiased analysis of TCR repertoire patterns, identifying surrogate markers for disease-specific TCRs, and connecting TCR specificity to transcriptional patterns.RESULTSPD-1hiHLA-DR+CD4+ effector T cells were clonally expanded within the inflamed joints and persisted throughout disease course. Among these cells, we identified a distinct TCR-β motif restricted to HLA-DRB1*11 or *13 alleles. These alleles, being underrepresented in patients with ARLA living in North America, were unexpectedly prevalent in our European cohort. The identified TCR-β motif served as surrogate marker for a convergent TCR response specific to ARLA, distinguishing it from other rheumatic diseases. In the scRNA-Seq data set, the TCR-β motif particularly mapped to peripheral T helper (TPH) cells displaying signs of sustained proliferation, continuous TCR signaling, and expressing CXCL13 and IFN-γ.CONCLUSIONBy inferring disease-specific TCRs from synovial T cells we identified a convergent TCR response in the joints of patients with ARLA that continuously fueled the expansion of TPH cells expressing a pathogenic cytokine effector program. The identified TCRs will aid in uncovering the major antigen targets of the maladaptive immune response.FUNDINGSupported by the German Research Foundation (DFG) MO 2160/4-1; the Federal Ministry of Education and Research (BMBF; Advanced Clinician Scientist-Program INTERACT; 01EO2108) embedded in the Interdisciplinary Center for Clinical Research (IZKF) of the University Hospital Würzburg; the German Center for Infection Research (DZIF; Clinical Leave Program; TI07.001_007) and the Interdisciplinary Center for Clinical Research (IZKF) Würzburg (Clinician Scientist Program, Z-2/CSP-30).
Collapse
MESH Headings
- Humans
- Lyme Disease/immunology
- Lyme Disease/pathology
- Lyme Disease/genetics
- HLA-DRB1 Chains/genetics
- HLA-DRB1 Chains/immunology
- Female
- Male
- T-Lymphocytes, Helper-Inducer/immunology
- Borrelia burgdorferi/immunology
- Middle Aged
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Adult
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
Collapse
Affiliation(s)
- Johannes Dirks
- Pediatric Inflammation Medicine, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Jonas Fischer
- Pediatric Inflammation Medicine, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Julia Klaussner
- Pediatric Inflammation Medicine, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Christine Hofmann
- Pediatric Inflammation Medicine, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Annette Holl-Wieden
- Pediatric Inflammation Medicine, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Viktoria Buck
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Christian Klemann
- Department of Pediatric Immunology, Rheumatology, and Infectiology, Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | | | - Ignazio Caruana
- Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, Würzburg, Germany
| | - Florian Erhard
- Computational Systems Virology and Bioinformatics, Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
- Faculty for Informatics and Data Science, University of Regensburg, Regensburg, Germany
| | - Henner Morbach
- Pediatric Inflammation Medicine, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
22
|
Socarras KM, Marino MC, Earl JP, Ehrlich RL, Cramer NA, Mell JC, Sen B, Ahmed A, Marconi RT, Ehrlich GD. Characterization of the family-level Borreliaceae pan-genome and development of an episomal typing protocol. RESEARCH SQUARE 2024:rs.3.rs-4491589. [PMID: 38947078 PMCID: PMC11213207 DOI: 10.21203/rs.3.rs-4491589/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background The Borreliaceae family includes many obligate parasitic bacterial species which are etiologically associated with a myriad of zoonotic borrelioses including Lyme disease and vector-borne relapsing fevers. Infections by the Borreliaceae are difficult to detect by both direct and indirect methods, often leading to delayed and missed diagnoses. Efforts to improve diagnoses center around the development of molecular diagnostics (MDx), but due to deep tissue sequestration of the causative spirochaetes and the lack of persistent bacteremias, even MDx assays suffer from a lack of sensitivity. Additionally, the highly extensive genomic heterogeneity among isolates, even within the same species, contributes to the lack of assay sensitivity as single target assays cannot provide universal coverage. This within-species heterogeneity is partly due to differences in replicon repertoires and genomic structures that have likely arisen to support the complex Borreliaceae lifecycle in which these parasites have to survive in multiple hosts each with unique immune responses. Results We constructed a Borreliaceae family-level pangenome and characterized the phylogenetic relationships among the constituent taxa which supports the recent taxonomy of splitting the family into at least two genera. Gene content pro les were created for the majority of the Borreliaceae replicons, providing for the first time their unambiguous molecular typing. Conclusion Our characterization of the Borreliaceae pan-genome supports the splitting of the former Borrelia genus into two genera and provides for the phylogenetic placement of several non-species designated isolates. Mining this family-level pangenome will enable precision diagnostics corresponding to gene content-driven clinical outcomes while also providing targets for interventions.
Collapse
Affiliation(s)
- Kayla M Socarras
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| | - Mary C Marino
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| | - Joshua P Earl
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| | | | - Nicholas A Cramer
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center
| | - Joshua C Mell
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| | - Bhaswati Sen
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| | - Azad Ahmed
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center
| | - Garth D Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| |
Collapse
|
23
|
Rudolph MJ, Chen Y, Vorauer C, Vance DJ, Piazza CL, Willsey GG, McCarthy K, Muriuki B, Cavacini LA, Guttman M, Mantis NJ. Structure of a human monoclonal antibody in complex with Outer surface protein C (OspC) of the Lyme disease spirochete, Borreliella burgdorferi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591597. [PMID: 38746285 PMCID: PMC11092446 DOI: 10.1101/2024.04.29.591597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Lyme disease is a tick-borne, multisystem infection caused by the spirochete, Borreliella burgdorferi . Although antibodies have been implicated in the resolution of Lyme disease, the specific B cell epitopes targeted during human infections remain largely unknown. In this study, we characterized and defined the structural epitope of a patient-derived bactericidal monoclonal IgG ("B11") against Outer surface protein C (OspC), a homodimeric lipoprotein necessary for B. burgdorferi tick-mediated transmission and early-stage colonization of vertebrate hosts. High-resolution epitope mapping was accomplished through hydrogen deuterium exchange-mass spectrometry (HDX-MS) and X-ray crystallography. Structural analysis of B11 Fab-OspC A complexes revealed the B11 Fabs associated in a 1:1 stoichiometry with the lateral faces of OspC A homodimers such that the antibodies are essentially positioned perpendicular to the spirochete's outer surface. B11's primary contacts reside within the membrane proximal regions of α-helices 1 and 6 and adjacent loops 5 and 6 in one OspC A monomer. In addition, B11 spans the OspC A dimer interface, engaging opposing α-helix 1', α-helix 2', and loop 2-3' in the second OspC A monomer. The B11-OspC A structure is reminiscent of the recently solved mouse transmission blocking monoclonal IgG B5 in complex with OspC A , indicating a mode of engagement with OspC that is conserved across species. In conclusion, we provide the first detailed insight into the interaction between a functional human antibody and an immunodominant Lyme disease antigen long considered an important vaccine target.
Collapse
|
24
|
Faith DR, Kinnersley M, Brooks DM, Drecktrah D, Hall LS, Luo E, Santiago-Frangos A, Wachter J, Samuels DS, Secor PR. Characterization and genomic analysis of the Lyme disease spirochete bacteriophage ϕBB-1. PLoS Pathog 2024; 20:e1012122. [PMID: 38558079 PMCID: PMC11008901 DOI: 10.1371/journal.ppat.1012122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Lyme disease is a tick-borne infection caused by the spirochete Borrelia (Borreliella) burgdorferi. Borrelia species have highly fragmented genomes composed of a linear chromosome and a constellation of linear and circular plasmids some of which are required throughout the enzootic cycle. Included in this plasmid repertoire by almost all Lyme disease spirochetes are the 32-kb circular plasmid cp32 prophages that are capable of lytic replication to produce infectious virions called ϕBB-1. While the B. burgdorferi genome contains evidence of horizontal transfer, the mechanisms of gene transfer between strains remain unclear. While we know that ϕBB-1 transduces cp32 and shuttle vector DNA during in vitro cultivation, the extent of ϕBB-1 DNA transfer is not clear. Herein, we use proteomics and long-read sequencing to further characterize ϕBB-1 virions. Our studies identified the cp32 pac region and revealed that ϕBB-1 packages linear cp32s via a headful mechanism with preferential packaging of plasmids containing the cp32 pac region. Additionally, we find ϕBB-1 packages fragments of the linear chromosome and full-length plasmids including lp54, cp26, and others. Furthermore, sequencing of ϕBB-1 packaged DNA allowed us to resolve the covalently closed hairpin telomeres for the linear B. burgdorferi chromosome and most linear plasmids in strain CA-11.2A. Collectively, our results shed light on the biology of the ubiquitous ϕBB-1 phage and further implicates ϕBB-1 in the generalized transduction of diverse genes and the maintenance of genetic diversity in Lyme disease spirochetes.
Collapse
Affiliation(s)
- Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Margie Kinnersley
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Diane M. Brooks
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Eric Luo
- Vaccine and Infectious Disease Organization, Saskatoon, Canada
| | - Andrew Santiago-Frangos
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jenny Wachter
- Vaccine and Infectious Disease Organization, Saskatoon, Canada
| | - D. Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| |
Collapse
|
25
|
Cramer NA, Socarras KM, Earl J, Ehrlich GD, Marconi RT. Borreliella burgdorferi factor H-binding proteins are not required for serum resistance and infection in mammals. Infect Immun 2024; 92:e0052923. [PMID: 38289123 PMCID: PMC10929407 DOI: 10.1128/iai.00529-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 03/13/2024] Open
Abstract
The causative agent of Lyme disease (LD), Borreliella burgdorferi, binds factor H (FH) and other complement regulatory proteins to its surface. B. burgdorferi B31 (type strain) encodes five FH-binding proteins (FHBPs): CspZ, CspA, and the OspE paralogs OspEBBN38, OspEBBL39, and OspEBBP38. This study assessed potential correlations between the production of individual FHBPs, FH-binding ability, and serum resistance using a panel of infectious B. burgdorferi clonal populations recovered from dogs. FHBP production was assessed in cultivated spirochetes and by antibody responses in naturally infected humans, dogs, and eastern coyotes (wild canids). FH binding specificity and sensitivity to dog and human serum were also assessed and compared. No correlation was observed between the production of individual FHBPs and FH binding with serum resistance, and CspA was determined to not be produced in animals. Notably, one or more clones isolated from dogs lacked CspZ or the OspE proteins (a finding confirmed by genome sequence determination) and did not bind FH derived from canines. The data presented do not support a correlation between FH binding and the production of individual FHBPs with serum resistance and infectivity. In addition, the limited number and polymorphic nature of cp32s in B. burgdorferi clone DRI85A that were identified through genome sequencing suggest no strict requirement for a defined set of these replicons for infectivity. This study reveals that the immune evasion mechanisms employed by B. burgdorferi are diverse, complex, and yet to be fully defined.
Collapse
Affiliation(s)
- Nicholas A. Cramer
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Kalya M. Socarras
- Department of Microbiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Joshua Earl
- Department of Microbiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Garth D. Ehrlich
- Department of Microbiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| |
Collapse
|
26
|
Faith DR, Kinnersley M, Brooks DM, Drecktrah D, Hall LS, Luo E, Santiago-Frangos A, Wachter J, Samuels DS, Secor PR. Characterization and genomic analysis of the Lyme disease spirochete bacteriophage ϕBB-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574763. [PMID: 38260690 PMCID: PMC10802411 DOI: 10.1101/2024.01.08.574763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Lyme disease is a tick-borne infection caused by the spirochete Borrelia (Borreliella) burgdorferi. Borrelia species have highly fragmented genomes composed of a linear chromosome and a constellation of linear and circular plasmids some of which are required throughout the enzootic cycle. Included in this plasmid repertoire by almost all Lyme disease spirochetes are the 32-kb circular plasmid cp32 prophages that are capable of lytic replication to produce infectious virions called ϕBB-1. While the B. burgdorferi genome contains evidence of horizontal transfer, the mechanisms of gene transfer between strains remain unclear. While we know that ϕBB-1 transduces cp32 and shuttle vector DNA during in vitro cultivation, the extent of ϕBB-1 DNA transfer is not clear. Herein, we use proteomics and long-read sequencing to further characterize ϕBB-1 virions. Our studies identified the cp32 pac region and revealed that ϕBB-1 packages linear cp32s via a headful mechanism with preferentially packaging of plasmids containing the cp32 pac region. Additionally, we find ϕBB-1 packages fragments of the linear chromosome and full-length plasmids including lp54, cp26, and others. Furthermore, sequencing of ϕBB-1 packaged DNA allowed us to resolve the covalently closed hairpin telomeres for the linear B. burgdorferi chromosome and most linear plasmids in strain CA-11.2A. Collectively, our results shed light on the biology of the ubiquitous ϕBB-1 phage and further implicates ϕBB-1 in the generalized transduction of diverse genes and the maintenance of genetic diversity in Lyme disease spirochetes.
Collapse
Affiliation(s)
- Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Margie Kinnersley
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Diane M. Brooks
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Eric Luo
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | | | - Jenny Wachter
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | - D. Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|