1
|
Hawman DW, Leventhal S, Meade-White K, Graham W, Gaffney K, Khandhar A, Murray J, Prado-Smith J, Shaia C, Saturday G, Buda H, Moise L, Erasmus J, Feldmann H. A replicating RNA vaccine confers protection against Crimean-Congo hemorrhagic fever in cynomolgus macaques. EBioMedicine 2025; 115:105698. [PMID: 40222105 PMCID: PMC12018191 DOI: 10.1016/j.ebiom.2025.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Crimean-Congo hemorrhagic fever is a tick-borne febrile illness with wide geographic distribution. In recent years the geographic range of CCHFV and its tick vector have increased, placing an increasing number of people at risk of CCHFV infection. Currently there are no widely available vaccines and although the World Health Organization recommends ribavirin for treatment, its efficacy is unclear. Vaccines are critically needed for CCHFV. METHODS Here we evaluated a promising replicating RNA vaccine for CCHFV in a Cynomolgus macaque model of disease. FINDINGS In primed and boosted macaques, we found that our replicating RNA vaccine expressing the CCHFV nucleoprotein (repNP) was highly immunogenic, eliciting a robust non-neutralizing antibody response that conferred significant protection against CCHFV challenge. Macaques receiving a single repNP vaccination were partially protected against CCHFV challenge. INTERPRETATION Our data demonstrate that our repNP vaccine and NP-specific antibody can protect against CCHFV in non-human primates. FUNDING This study was supported by the Intramural Research Program of the NIAID/NIH and the Medical CBRN Defense Consortium grant #MCDC2204-011.
Collapse
Affiliation(s)
- David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA; HDT Bio, Seattle, WA, 98109, USA.
| | - Shanna Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | | | | | | | - Justin Murray
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Jessy Prado-Smith
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | | | | | | | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| |
Collapse
|
2
|
Karaliota S, Moussa M, Rosati M, Devasundaram S, Sengupta S, Goldfarbmuren KC, Burns R, Bear J, Stellas D, Urban EA, Deleage C, Khandhar AP, Erasmus J, Berglund P, Reed SG, Pavlakis GN, Felber BK. Highly immunogenic DNA/LION nanocarrier vaccine potently activates lymph nodes inducing long-lasting immunity in macaques. iScience 2025; 28:112232. [PMID: 40230522 PMCID: PMC11994941 DOI: 10.1016/j.isci.2025.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/15/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
A SARS-CoV-2 spike DNA vaccine formulated with a cationic nanoparticle emulsion (LION) was tested in Rhesus macaques. It induced robust, long-lasting (>2 years) cellular and humoral immunity, including increased neutralization breadth. T cell responses were predominantly CD8+, in contrast to other DNA vaccines. A rapid transient cytokine/chemokine response was associated with expansion and trafficking of myeloid cells and lymphocytes. Increased proliferation and dynamic changes between blood and lymph node (LN) were found for monocyte-derived cells, dendritic cells, and B and T cells, resulting in activation of LN and expansion of germinal centers (GCs), likely critical in shaping long-lasting adaptive immunity. Significant GC expansion of B, CD4-, and CD8- cells, including the Tfc3 subset, reflects a balanced immune response, including antibody (Ab) development. DNA/LION vaccination activates myeloid and lymphoid cells in blood and LN and promotes effective antigen presentation, resulting in sustained antigen-specific cellular and humoral responses, emerging as an effective DNA vaccine delivery platform.
Collapse
Affiliation(s)
- Sevasti Karaliota
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Maha Moussa
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Margherita Rosati
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Santhi Devasundaram
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Soumya Sengupta
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Katherine C. Goldfarbmuren
- Advanced Biomedical Computational Science, Leidos Biomedical Research, Inc., Frederick, MD, USA
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Robert Burns
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Dimitris Stellas
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Elizabeth A. Urban
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | | | | | - George N. Pavlakis
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
3
|
Tang L, Que H, Wei Y, Yang T, Tong A, Wei X. Replicon RNA vaccines: design, delivery, and immunogenicity in infectious diseases and cancer. J Hematol Oncol 2025; 18:43. [PMID: 40247301 PMCID: PMC12004886 DOI: 10.1186/s13045-025-01694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/23/2025] [Indexed: 04/19/2025] Open
Abstract
Replicon RNA (RepRNA) represents a cutting-edge technology in the field of vaccinology, fundamentally transforming vaccine design and development. This innovative approach facilitates the induction of robust immune responses against a range of infectious diseases and cancers. RepRNA vaccines leverage the inherent capabilities of RNA-dependent RNA polymerase associated with self-replicating repRNA, allowing for extreme replication within host cells. This process enhances antigen production and subsequently stimulates adaptive immunity. Additionally, the generation of double-stranded RNA during RNA replication can activate innate immune responses. Numerous studies have demonstrated that repRNA vaccines elicit potent humoral and cellular immune responses that are broader and more durable than those generated by conventional mRNA vaccines. These significant immune responses have been shown to provide protection in various models for infectious diseases and cancers. This article will explore the design and delivery of RepRNA vaccines, the mechanisms of immune activation, preclinical studies addressing infectious diseases and tumors, and related clinical trials that focus on safety and immunogenicity.
Collapse
Affiliation(s)
- Lirui Tang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ting Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China.
| | - Aiping Tong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Pinto PBA, Timis J, Chuensirikulchai K, Li QH, Lu HH, Maule E, Nguyen M, Alves RPDS, Verma SK, Ana-Sosa-Batiz F, Valentine K, Landeras-Bueno S, Kim K, Hastie K, Saphire EO, Alves A, Elong Ngono A, Shresta S. Co-immunization with spike and nucleocapsid based DNA vaccines for long-term protective immunity against SARS-CoV-2 Omicron. NPJ Vaccines 2024; 9:252. [PMID: 39702529 PMCID: PMC11659323 DOI: 10.1038/s41541-024-01043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024] Open
Abstract
The continuing evolution of SARS-CoV-2 variants challenges the durability of existing spike (S)-based COVID-19 vaccines. We hypothesized that vaccines composed of both S and nucleocapsid (N) antigens would increase the durability of protection by strengthening and broadening cellular immunity compared with S-based vaccines. To test this, we examined the immunogenicity and efficacy of wild-type SARS-CoV-2 S- and N-based DNA vaccines administered individually or together to K18-hACE2 mice. S, N, and S + N vaccines all elicited polyfunctional CD4+ and CD8+ T cell responses and provided short-term cross-protection against Beta and Omicron BA.2 variants, but only co-immunization with S + N vaccines provided long-term protection against Omicron BA.2. Depletion of CD4+ and CD8+ T cells reduced the long-term efficacy, demonstrating a crucial role for T cells in the durability of protection. These findings underscore the potential to enhance long-lived protection against SARS-CoV-2 variants by combining S and N antigens in next-generation COVID-19 vaccines.
Collapse
Affiliation(s)
- Paolla Beatriz Almeida Pinto
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, 21040-900, Brazil
| | - Julia Timis
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Kantinan Chuensirikulchai
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Qin Hui Li
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Hsueh Han Lu
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Erin Maule
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Michael Nguyen
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | | | | | | | - Kristen Valentine
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Sara Landeras-Bueno
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- University Cardenal Herrera-CEU, CEU Universities, Valencia, 46113, Spain
| | - Kenneth Kim
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Kathryn Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, 92093, USA
| | - Ada Alves
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, 21040-900, Brazil
| | - Annie Elong Ngono
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA.
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA.
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, 92093, USA.
| |
Collapse
|
5
|
Rawle DJ, Hugo LE, Cox AL, Devine GJ, Suhrbier A. Generating prophylactic immunity against arboviruses in vertebrates and invertebrates. Nat Rev Immunol 2024; 24:621-636. [PMID: 38570719 DOI: 10.1038/s41577-024-01016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
The World Health Organization recently declared a global initiative to control arboviral diseases. These are mainly caused by pathogenic flaviviruses (such as dengue, yellow fever and Zika viruses) and alphaviruses (such as chikungunya and Venezuelan equine encephalitis viruses). Vaccines represent key interventions for these viruses, with licensed human and/or veterinary vaccines being available for several members of both genera. However, a hurdle for the licensing of new vaccines is the epidemic nature of many arboviruses, which presents logistical challenges for phase III efficacy trials. Furthermore, our ability to predict or measure the post-vaccination immune responses that are sufficient for subclinical outcomes post-infection is limited. Given that arboviruses are also subject to control by the immune system of their insect vectors, several approaches are now emerging that aim to augment antiviral immunity in mosquitoes, including Wolbachia infection, transgenic mosquitoes, insect-specific viruses and paratransgenesis. In this Review, we discuss recent advances, current challenges and future prospects in exploiting both vertebrate and invertebrate immune systems for the control of flaviviral and alphaviral diseases.
Collapse
Affiliation(s)
- Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leon E Hugo
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Abigail L Cox
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gregor J Devine
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia.
| |
Collapse
|
6
|
Warner NL, Archer J, Park S, Singh G, McFadden KM, Kimura T, Nicholes K, Simpson A, Kaelber JT, Hawman DW, Feldmann H, Khandhar AP, Berglund P, Vogt MR, Erasmus JH. A self-amplifying RNA vaccine prevents enterovirus D68 infection and disease in preclinical models. Sci Transl Med 2024; 16:eadi1625. [PMID: 39110777 PMCID: PMC11789928 DOI: 10.1126/scitranslmed.adi1625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
The recent emergence and rapid response to severe acute respiratory syndrome coronavirus 2 was enabled by prototype pathogen and vaccine platform approaches, driven by the preemptive application of RNA vaccine technology to the related Middle East respiratory syndrome coronavirus. Recently, the National Institutes of Allergy and Infectious Diseases identified nine virus families of concern, eight enveloped virus families and one nonenveloped virus family, for which vaccine generation is a priority. Although RNA vaccines have been described for a variety of enveloped viruses, a roadmap for their use against nonenveloped viruses is lacking. Enterovirus D68 was recently designated a prototype pathogen within the family Picornaviridae of nonenveloped viruses because of its rapid evolution and respiratory route of transmission, coupled with a lack of diverse anti-enterovirus vaccine approaches in development. Here, we describe a proof-of-concept approach using a clinical stage RNA vaccine platform that induced robust enterovirus D68-neutralizing antibody responses in mice and nonhuman primates and prevented upper and lower respiratory tract infections and neurological disease in mice. In addition, we used our platform to rapidly characterize the antigenic diversity within the six genotypes of enterovirus D68, providing the necessary data to inform multivalent vaccine compositions that can elicit optimal breadth of neutralizing responses. These results demonstrate that RNA vaccines can be used as tools in our pandemic-preparedness toolbox for nonenveloped viruses.
Collapse
Affiliation(s)
| | | | | | - Garima Singh
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Kathryn M. McFadden
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | - Jason T. Kaelber
- Institute for Quantitative Biomedicine, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
| | - David W. Hawman
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | | | | | - Matthew R. Vogt
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
7
|
Edwards KR, Malhi H, Schmidt K, Davis AR, Homad LJ, Warner NL, Chhan CB, Scharffenberger SC, Gaffney K, Hinkley T, Potchen NB, Wang JY, Price J, McElrath MJ, Olson J, King NP, Lund JM, Moodie Z, Erasmus JH, McGuire AT. A gH/gL-encoding replicon vaccine elicits neutralizing antibodies that protect humanized mice against EBV challenge. NPJ Vaccines 2024; 9:120. [PMID: 38926438 PMCID: PMC11208421 DOI: 10.1038/s41541-024-00907-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Epstein-Barr virus (EBV) is associated with several malignancies, neurodegenerative disorders and is the causative agent of infectious mononucleosis. A vaccine that prevents EBV-driven morbidity and mortality remains an unmet need. EBV is orally transmitted, infecting both B cells and epithelial cells. Several virally encoded proteins are involved in entry. The gH/gL glycoprotein complex is essential for infectivity irrespective of cell type, while gp42 is essential for infection of B cells. gp350 promotes viral attachment by binding to CD21 or CD35 and is the most abundant glycoprotein on the virion. gH/gL, gp42 and gp350, are known targets of neutralizing antibodies and therefore relevant immunogens for vaccine development. Here, we developed and optimized the delivery of several alphavirus-derived replicon RNA (repRNA) vaccine candidates encoding gH/gL, gH/gL/gp42 or gp350 delivered by a cationic nanocarrier termed LION™. The lead candidate, encoding full-length gH/gL, elicited high titers of neutralizing antibodies that persisted for at least 8 months and a vaccine-specific CD8+ T cell response. Transfer of vaccine-elicited IgG protected humanized mice from EBV-driven tumor formation and death following high-dose viral challenge. These data demonstrate that LION/repRNA-gH/gL is an ideal candidate vaccine for preventing EBV infection and/or related malignancies in humans.
Collapse
Affiliation(s)
- Kristina R Edwards
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Harman Malhi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Karina Schmidt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Amelia R Davis
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Leah J Homad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Crystal B Chhan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Samuel C Scharffenberger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | - Nicole B Potchen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Jing Yang Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jason Price
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - James Olson
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Hawman DW, Leventhal SS, Meade-White K, Khandhar A, Murray J, Lovaglio J, Shaia C, Saturday G, Hinkley T, Erasmus J, Feldmann H. A replicating RNA vaccine confers protection in a rhesus macaque model of Crimean-Congo hemorrhagic fever. NPJ Vaccines 2024; 9:86. [PMID: 38769294 PMCID: PMC11106275 DOI: 10.1038/s41541-024-00887-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne febrile illness with a wide geographic distribution. In recent years the geographic range of Crimean-Congo hemorrhagic fever virus (CCHFV) and its tick vector have increased, placing an increasing number of people at risk of CCHFV infection. Currently, there are no widely available vaccines, and although the World Health Organization recommends ribavirin for treatment, its efficacy is unclear. Here we evaluate a promising replicating RNA vaccine in a rhesus macaque (Macaca mulatta) model of CCHF. This model provides an alternative to the established cynomolgus macaque model and recapitulates mild-to-moderate human disease. Rhesus macaques infected with CCHFV consistently exhibit viremia, detectable viral RNA in a multitude of tissues, and moderate pathology in the liver and spleen. We used this model to evaluate the immunogenicity and protective efficacy of a replicating RNA vaccine. Rhesus macaques vaccinated with RNAs expressing the CCHFV nucleoprotein and glycoprotein precursor developed robust non-neutralizing humoral immunity against the CCHFV nucleoprotein and had significant protection against the CCHFV challenge. Together, our data report a model of CCHF using rhesus macaques and demonstrate that our replicating RNA vaccine is immunogenic and protective in non-human primates after a prime-boost immunization.
Collapse
Affiliation(s)
- David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| | - Shanna S Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | | | - Justin Murray
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | | | | | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| |
Collapse
|
9
|
Silva-Pilipich N, Beloki U, Salaberry L, Smerdou C. Self-Amplifying RNA: A Second Revolution of mRNA Vaccines against COVID-19. Vaccines (Basel) 2024; 12:318. [PMID: 38543952 PMCID: PMC10974399 DOI: 10.3390/vaccines12030318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 11/12/2024] Open
Abstract
SARS-CoV-2 virus, the causative agent of COVID-19, has produced the largest pandemic in the 21st century, becoming a very serious health problem worldwide. To prevent COVID-19 disease and infection, a large number of vaccines have been developed and approved in record time, including new vaccines based on mRNA encapsulated in lipid nanoparticles. While mRNA-based vaccines have proven to be safe and effective, they are more expensive to produce compared to conventional vaccines. A special type of mRNA vaccine is based on self-amplifying RNA (saRNA) derived from the genome of RNA viruses, mainly alphaviruses. These saRNAs encode a viral replicase in addition to the antigen, usually the SARS-CoV-2 spike protein. The replicase can amplify the saRNA in transfected cells, potentially reducing the amount of RNA needed for vaccination and promoting interferon I responses that can enhance adaptive immunity. Preclinical studies with saRNA-based COVID-19 vaccines in diverse animal models have demonstrated the induction of robust protective immune responses, similar to conventional mRNA but at lower doses. Initial clinical trials have confirmed the safety and immunogenicity of saRNA-based vaccines in individuals that had previously received authorized COVID-19 vaccines. These findings have led to the recent approval of two of these vaccines by the national drug agencies of India and Japan, underscoring the promising potential of this technology.
Collapse
Affiliation(s)
- Noelia Silva-Pilipich
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, 31008 Pamplona, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain
| | - Uxue Beloki
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, 31008 Pamplona, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain
| | - Laura Salaberry
- Facultad de Ingeniería, Universidad ORT Uruguay, Montevideo 11100, Uruguay;
- Nanogrow Biotech, Montevideo 11500, Uruguay
| | - Cristian Smerdou
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, 31008 Pamplona, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain
| |
Collapse
|
10
|
Dominguez F, Palchevska O, Frolova EI, Frolov I. Alphavirus-based replicons demonstrate different interactions with host cells and can be optimized to increase protein expression. J Virol 2023; 97:e0122523. [PMID: 37877718 PMCID: PMC10688356 DOI: 10.1128/jvi.01225-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Alphavirus replicons are being developed as self-amplifying RNAs aimed at improving the efficacy of mRNA vaccines. These replicons are convenient for genetic manipulations and can express heterologous genetic information more efficiently and for a longer time than standard mRNAs. However, replicons mimic many aspects of viral replication in terms of induction of innate immune response, modification of cellular transcription and translation, and expression of nonstructural viral genes. Moreover, all replicons used in this study demonstrated expression of heterologous genes in cell- and replicon's origin-specific modes. Thus, many aspects of the interactions between replicons and the host remain insufficiently investigated, and further studies are needed to understand the biology of the replicons and their applicability for designing a new generation of mRNA vaccines. On the other hand, our data show that replicons are very flexible expression systems, and additional modifications may have strong positive impacts on protein expression.
Collapse
Affiliation(s)
- Francisco Dominguez
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Oksana Palchevska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elena I. Frolova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ilya Frolov
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
11
|
Kimura T, Leal JM, Simpson A, Warner NL, Berube BJ, Archer JF, Park S, Kurtz R, Hinkley T, Nicholes K, Sharma S, Duthie MS, Berglund P, Reed SG, Khandhar AP, Erasmus JH. A localizing nanocarrier formulation enables multi-target immune responses to multivalent replicating RNA with limited systemic inflammation. Mol Ther 2023; 31:2360-2375. [PMID: 37403357 PMCID: PMC10422015 DOI: 10.1016/j.ymthe.2023.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
RNA vaccines possess significant clinical promise in counteracting human diseases caused by infectious or cancerous threats. Self-amplifying replicon RNA (repRNA) has been thought to offer the potential for enhanced potency and dose sparing. However, repRNA is a potent trigger of innate immune responses in vivo, which can cause reduced transgene expression and dose-limiting reactogenicity, as highlighted by recent clinical trials. Here, we report that multivalent repRNA vaccination, necessitating higher doses of total RNA, could be safely achieved in mice by delivering multiple repRNAs with a localizing cationic nanocarrier formulation (LION). Intramuscular delivery of multivalent repRNA by LION resulted in localized biodistribution accompanied by significantly upregulated local innate immune responses and the induction of antigen-specific adaptive immune responses in the absence of systemic inflammatory responses. In contrast, repRNA delivered by lipid nanoparticles (LNPs) showed generalized biodistribution, a systemic inflammatory state, an increased body weight loss, and failed to induce neutralizing antibody responses in a multivalent composition. These findings suggest that in vivo delivery of repRNA by LION is a platform technology for safe and effective multivalent vaccination through mechanisms distinct from LNP-formulated repRNA vaccines.
Collapse
Affiliation(s)
- Taishi Kimura
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA.
| | - Joseph M Leal
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Adrian Simpson
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Nikole L Warner
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Bryan J Berube
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Jacob F Archer
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Stephanie Park
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Ryan Kurtz
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Troy Hinkley
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | | | - Shibbu Sharma
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | | | - Peter Berglund
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Steven G Reed
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Amit P Khandhar
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Jesse H Erasmus
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA; Department of Microbiology, University of Washington, 750 Republican Street, Seattle, WA 98109, USA
| |
Collapse
|
12
|
Larsen SE, Baldwin SL, Coler RN. Tuberculosis vaccines update: Is an RNA-based vaccine feasible for tuberculosis? Int J Infect Dis 2023; 130 Suppl 1:S47-S51. [PMID: 36963657 PMCID: PMC10033141 DOI: 10.1016/j.ijid.2023.03.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
OBJECTIVES Despite concerted efforts, Mycobacterium tuberculosis (M.tb), the pathogen that causes tuberculosis (TB), continues to be a burden on global health, regaining its dubious distinction in 2022 as the world's biggest infectious killer with global COVID-19 deaths steadily declining. The complex nature of M.tb, coupled with different pathogenic stages, has highlighted the need for the development of novel immunization approaches to combat this ancient infectious agent. Intensive efforts over the last couple of decades have identified alternative approaches to improve upon traditional vaccines that are based on killed pathogens, live attenuated agents, or subunit recombinant antigens formulated with adjuvants. Massive funding and rapid advances in RNA-based vaccines for immunization have recently transformed the possibility of protecting global populations from viral pathogens, such as SARS-CoV-2. Similar efforts to combat bacterial pathogens such as M.tb have been significantly slower to implement. METHODS In this review, we discuss the application of a novel replicating RNA (repRNA)-based vaccine formulated and delivered in nanostructured lipids. RESULTS Our preclinical data are the first to report that RNA platforms are a viable system for TB vaccines and should be pursued with high-priority M.tb antigens containing cluster of differentiation (CD4+) and CD8+ T-cell epitopes. CONCLUSION This RNA vaccine shows promise for use against intracellular bacteria such as M.tb as demonstrated by the feasibility of construction, enhanced induction of cell-mediated and humoral immune responses, and improved bacterial burden outcomes in in vivo aerosol-challenged preclinical TB models.
Collapse
Affiliation(s)
- Sasha E Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, USA
| | - Susan L Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, USA
| | - Rhea N Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, USA; Department of Global Health, University of Washington, Seattle, USA.
| |
Collapse
|