1
|
Wang F, Amona FM, Pang Y, Zhang Q, Liang Y, Chen X, Ke Y, Chen J, Song C, Wang Y, Li Z, Zhang C, Fang X, Chen X. Porcine reproductive and respiratory syndrome virus nsp5 inhibits the activation of the Nrf2/HO-1 pathway by targeting p62 to antagonize its antiviral activity. J Virol 2025; 99:e0158524. [PMID: 40019253 PMCID: PMC11998497 DOI: 10.1128/jvi.01585-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/12/2024] [Indexed: 03/01/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infections often trigger oxidative stress and cytokine storms, resulting in significant tissue damage that causes fatalities in piglets and reproductive issues in sows. However, it is still unknown how oxidative stress is regulated by viral and host factors in response to PRRSV infection. Here, we found that PRRSV induced cellular oxidative stress by triggering the production of reactive oxygen species and inhibiting the expression of antioxidant enzymes. Although Nrf2 is an important redox regulator that initiates the expression of downstream antioxidant genes, PRRSV can impair the Nrf2/HO-1 pathway. The overexpression of Nrf2 showed a significant anti-PRRSV effect, and inhibiting the expression of Nrf2 promoted the proliferation of PRRSV. Further analysis showed that Nrf2 positively regulated the production of type I interferons and interferon-stimulated genes, which may contribute to its anti-PRRSV effect. By screening the PRRSV-encoded protein, we found that the PRRSV nsp5 protein can degrade Nrf2 at the protein level. Mechanistically, nsp5 promotes Nrf2-Keap1 binding affinity by inhibiting p62-mediated Keap1 sequestration and increasing Keap1 expression. Subsequently, this increased Keap1-mediated degradation of Nrf2 ubiquitination through K48-linked polyubiquitin. Furthermore, we found that the residues Tyr146 and Arg147 of nsp5 are crucial for inhibiting the activation of the p62-mediated Nrf2 antioxidant pathway. Thus, our findings uncover a novel mechanism by which PRRSV disrupts the host antioxidant defense system and highlight the crucial role of the Nrf2/HO-1 antioxidant pathway in host defense against PRRSV.IMPORTANCEOxidative stress-induced redox imbalance is a crucial pathogenic mechanism in viral infections. Nrf2 and its antioxidant genes serve as the main defense pathways against oxidative stress. However, the role of Nrf2 in the context of porcine reproductive and respiratory syndrome virus (PRRSV) infection remains unclear. In this study, we demonstrated that PRRSV infection decreased the expression of antioxidant genes of the Nrf2 signaling pathway and overexpression of Nrf2 triggered a strong anti-PRRSV effect. PRRSV nsp5 enhanced Keap1-dependent degradation of Nrf2 ubiquitination, thereby weakening cellular resistance to oxidative stress and antagonizing the antiviral activity of Nrf2. Our study further revealed a new mechanism by which PRRSV evades host antiviral innate immunity by disturbing cellular redox homeostasis, providing a new target for developing anti-PRRSV drugs.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Fructueux Modeste Amona
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yipeng Pang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Qiaoya Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yuan Liang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xiaohan Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yongding Ke
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Junhao Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Zongyun Li
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
2
|
Zhao M, Chen C, Blankenfeldt W, Pessler F, Büssow K. Effect of pH and buffer on substrate binding and catalysis by cis-aconitate decarboxylase. Sci Rep 2025; 15:5076. [PMID: 39934230 PMCID: PMC11814083 DOI: 10.1038/s41598-025-89341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
cis-Aconitate decarboxylase (ACOD1, CAD, IRG1) catalyses the synthesis of itaconic acid in activated myeloid cells such as macrophages. Several histidine residues in the active site bind the substrate and enable the decarboxylation reaction. The in vitro activity of ACOD1 enzymes is commonly determined by incubation with substrate, followed by HPLC measurement of itaconic acid production. Phosphate buffers have often been used for this assay. However, the influence of buffer type on enzyme activity has not been investigated. Here, the effect of buffer and pH on enzyme kinetics of human and mouse ACOD1 and Aspergillus terreus CAD was investigated. It was found that high concentrations of phosphate inhibit the three enzymes. An alternative buffer was selected and the assay was adapted to the 96-well microtitre plate format for increased throughput. Enzyme kinetics were determined in the pH range of 5.5-8.25. A strong increase of KM values was observed between the physiologically relevant pH values 7.5 and 8.25. The data indicate that more than one histidine residue needs to be protonated in the active site for binding the substrate.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Chutao Chen
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture Between Hannover Medical School and the Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Frank Pessler
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture Between Hannover Medical School and the Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualised Infection Medicine, Hannover, Germany
| | - Konrad Büssow
- Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
3
|
Lu S, Gong Y, He P, Qi M, Dong W. 4-octyl Itaconate Attenuates Acute Pancreatitis and Associated Lung Injury by Suppressing Ferroptosis in Mice. Inflammation 2025:10.1007/s10753-025-02256-x. [PMID: 39920558 DOI: 10.1007/s10753-025-02256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/09/2025]
Abstract
Acute pancreatitis (AP) is a common gastrointestinal emergency requiring hospitalization. In recent years, several studies have demonstrated a role for 4-octyl itaconate (4-OI) in anti-inflammatory and oxidative stress injury. However, the potential effects of 4-OI in AP have not been investigated. Caerulein and LPS were used to induce experimental AP models in mice and AR42J cells and then studied by histopathology, biochemical, and molecular analysis. Ferroptosis inhibitor ferrostatin-1 effectively improves pancreatic injury and reduces lipid peroxidation products in experimental AP mice. 4-OI treatment significantly alleviated pancreatic and AP-associated lung injury and inflammation in experimental AP mice by inhibiting ferroptosis. The ferroptosis activator Erastin blocked the protective effect of 4-OI against pancreatic injury in AP, validating that 4-OI alleviates pancreatitis injury through ferroptosis. In vitro experiments further confirmed that 4-OI treatment ameliorated AP-induced pancreatic injury by inhibiting ferroptosis. Our study, for the first time, found that 4-OI ameliorates AP and AP-related lung injury by inhibiting ferroptosis in experimental AP mice, providing a new therapeutic target for alleviating AP.
Collapse
Affiliation(s)
- Shimin Lu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
- Central Laboratory of Renmin Hospital, Wuhan, 430060, Hubei Province, China
| | - Yang Gong
- Central Laboratory of Renmin Hospital, Wuhan, 430060, Hubei Province, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Pengzhan He
- Central Laboratory of Renmin Hospital, Wuhan, 430060, Hubei Province, China
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Mingming Qi
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang Province, China
| | - Weiguo Dong
- Central Laboratory of Renmin Hospital, Wuhan, 430060, Hubei Province, China.
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
4
|
Al Akiki Dit Al Mazraani R, Malys N, Maliene V. Itaconate and its derivatives as anti-pathogenic agents. RSC Adv 2025; 15:4408-4420. [PMID: 39931396 PMCID: PMC11808480 DOI: 10.1039/d4ra08298b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
Pathogenic microorganisms and viruses cause outbreaks and pandemics that affect millions of people worldwide. Despite recent advances in pharmacology and medicine, the ability of infectious diseases to spread in the modern era is accelerating due to various factors contributing to increased human-to-human and human-animal contacts. With the global rise of drug resistance among pathogens and frequently occurring viral outbreaks, alternative drugs and therapies that specifically inhibit microbial virulence or regulate immune responses are attracting growing interest. The present review focuses on itaconate and its derivatives as potential anti-pathogenic agents. It summarizes the current state of research on itaconate metabolism in bacteria, fungi and mammals. This is followed by a comprehensive review of recent advances studying itaconate and its derivatives as anti-inflammatory, immunoregulatory, antimicrobial and antiviral compounds, along with their mechanisms of action. Finally, the review emphasises the existing challenges and future research directions for the application of itaconate and its derivatives as anti-pathogenic agents.
Collapse
Affiliation(s)
| | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų st. 19 Kaunas LT-50254 Lithuania
- Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų st. 19 Kaunas LT-50254 Lithuania
| | - Vida Maliene
- Built Environment and Sustainable Technologies Research Institute, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University Byrom Street Liverpool L3 3AF UK
| |
Collapse
|
5
|
Li W, Yin X, Zhang L. FOXA2 regulates endoplasmic reticulum stress, oxidative stress, and apoptosis in spermatogonial cells by the Nrf2 pathway under hypoxic conditions. Exp Cell Res 2025; 444:114388. [PMID: 39701358 DOI: 10.1016/j.yexcr.2024.114388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/24/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Hypoxia-caused spermatogenesis impairment may contribute to male infertility. FOXA2 has been found to be abundant in spermatogonial stem cells and critical for spermatogenesis. Here we aimed to explore the roles of FOXA2 in regulating spermatogonial cells against hypoxia stimulation. Our results showed that FOXA2 expression was downregulated in hypoxia-stimulated spermatogonial cells. Overexpression of FOXA2 prevented hypoxia-induced endoplasmic reticulum (ER) stress with decreased expression levels of associated markers including GRP78, CHOP, and ATF-4. FOXA2 overexpression caused a decrease in MDA content and an increase in activities of SOD, CAT, and GSH-Px in spermatogonial cells under hypoxic conditions, implying its inhibitory effect on oxidative stress. Besides, cell apoptosis under hypoxic conditions was also prevented by FOXA2 overexpression, as shown by reduced apoptotic rate and caspase-3 activity. Moreover, we found that hypoxia stimulation inactivated the Nrf2 pathway, which could be prevented by FOXA2 overexpression. Nrf2 knockdown attenuated the effects of FOXA2 overexpression on hypoxia-induced ER stress, oxidative stress, and apoptosis in spermatogonial cells. In conclusion, FOXA2 exerted protective effects on spermatogonial cells against hypoxia-induced ER stress, oxidative stress, and apoptosis via regulating Nrf2/HO-1 signaling. These findings suggested that FOXA2 might be a therapeutic target for treating hypoxia-induced spermatogenesis impairment.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Reproductive Medicine, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China.
| | - Xiurong Yin
- Department of Reproductive Medicine, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China
| | - Lei Zhang
- Biology Teaching and Research Office, Tianjin Vocational Institute, Tianjin, China
| |
Collapse
|
6
|
Costa B, Gouveia MJ, Vale N. Oxidative Stress Induced by Antivirals: Implications for Adverse Outcomes During Pregnancy and in Newborns. Antioxidants (Basel) 2024; 13:1518. [PMID: 39765846 PMCID: PMC11727424 DOI: 10.3390/antiox13121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
Oxidative stress plays a critical role in various physiological and pathological processes, particularly during pregnancy, where it can significantly affect maternal and fetal health. In the context of viral infections, such as those caused by Human Immunodeficiency Virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), oxidative stress may exacerbate complications by disrupting cellular function and immune responses. Antiviral drugs, while essential in managing these infections, can also contribute to oxidative stress, potentially impacting both the mother and the developing fetus. Understanding the mechanisms by which antivirals can contribute to oxidative stress and examination of pharmacokinetic changes during pregnancy that influence drug metabolism is essential. Some research indicates that antiretroviral drugs can induce oxidative stress and mitochondrial dysfunction during pregnancy, while other studies suggest that their use is generally safe. Therefore, concerns about long-term health effects persist. This review delves into the complex interplay between oxidative stress, antioxidant defenses, and antiviral therapies, focusing on strategies to mitigate potential oxidative damage. By addressing gaps in our understanding, we highlight the importance of balancing antiviral efficacy with the risks of oxidative stress. Moreover, we advocate for further research to develop safer, more effective therapeutic approaches during pregnancy. Understanding these dynamics is essential for optimizing health outcomes for both mother and fetus in the context of viral infections during pregnancy.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
| | - Maria João Gouveia
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
- Center for the Study in Animal Science (CECA/ICETA), University of Porto, 4051-401 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
7
|
Cao L, She Z, Zhao Y, Cheng C, Li Y, Xu T, Mao H, Zhang Y, Hui X, Lin X, Wang T, Sun X, Huang K, Zhao L, Jin M. Inhibition of RAN attenuates influenza a virus replication and nucleoprotein nuclear export. Emerg Microbes Infect 2024; 13:2387910. [PMID: 39087696 PMCID: PMC11321118 DOI: 10.1080/22221751.2024.2387910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Nuclear export of the viral ribonucleoprotein (vRNP) is a critical step in the influenza A virus (IAV) life cycle and may be an effective target for the development of anti-IAV drugs. The host factor ras-related nuclear protein (RAN) is known to participate in the life cycle of several viruses, but its role in influenza virus replication remains unknown. In the present study, we aimed to determine the function of RAN in influenza virus replication using different cell lines and subtype strains. We found that RAN is essential for the nuclear export of vRNP, as it enhances the binding affinity of XPO1 toward the viral nuclear export protein NS2. Depletion of RAN constrained the vRNP complex in the nucleus and attenuated the replication of various subtypes of influenza virus. Using in silico compound screening, we identified that bepotastine could dissociate the RAN-XPO1-vRNP trimeric complex and exhibit potent antiviral activity against influenza virus both in vitro and in vivo. This study demonstrates the important role of RAN in IAV replication and suggests its potential use as an antiviral target.
Collapse
Affiliation(s)
- Lei Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Ziwei She
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Ya Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Chuxing Cheng
- Wuhan Keqian Biological Co. Ltd., Wuhan, People’s Republic of China
| | - Yaqin Li
- Wuhan Keqian Biological Co. Ltd., Wuhan, People’s Republic of China
| | - Ting Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Haiying Mao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Yumei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Xianfeng Hui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Ting Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Lianzhong Zhao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People’s Republic of China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
- Hubei Jiangxia Laboratory, Wuhan, People’s Republic of China
| |
Collapse
|
8
|
Huang Y, Urban C, Hubel P, Stukalov A, Pichlmair A. Protein turnover regulation is critical for influenza A virus infection. Cell Syst 2024; 15:911-929.e8. [PMID: 39368468 DOI: 10.1016/j.cels.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
The abundance of a protein is defined by its continuous synthesis and degradation, a process known as protein turnover. Here, we systematically profiled the turnover of proteins in influenza A virus (IAV)-infected cells using a pulse-chase stable isotope labeling by amino acids in cell culture (SILAC)-based approach combined with downstream statistical modeling. We identified 1,798 virus-affected proteins with turnover changes (tVAPs) out of 7,739 detected proteins (data available at pulsechase.innatelab.org). In particular, the affected proteins were involved in RNA transcription, splicing and nuclear transport, protein translation and stability, and energy metabolism. Many tVAPs appeared to be known IAV-interacting proteins that regulate virus propagation, such as KPNA6, PPP6C, and POLR2A. Notably, our analysis identified additional IAV host and restriction factors, such as the splicing factor GPKOW, that exhibit significant turnover rate changes while their total abundance is minimally affected. Overall, we show that protein turnover is a critical factor both for virus replication and antiviral defense.
Collapse
Affiliation(s)
- Yiqi Huang
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Christian Urban
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Philipp Hubel
- Core Facility Hohenheim, Universität Hohenheim, Stuttgart, Germany
| | - Alexey Stukalov
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany; Institute of Virology, Helmholtz Munich, Munich, Germany; German Centre for Infection Research (DZIF), Partner Site, Munich, Germany.
| |
Collapse
|
9
|
He R, Zuo Y, Yi K, Liu B, Song C, Li N, Geng Q. The role and therapeutic potential of itaconate in lung disease. Cell Mol Biol Lett 2024; 29:129. [PMID: 39354366 PMCID: PMC11445945 DOI: 10.1186/s11658-024-00642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
Lung diseases triggered by endogenous or exogenous factors have become a major concern, with high morbidity and mortality rates, especially after the coronavirus disease 2019 (COVID-19) pandemic. Inflammation and an over-activated immune system can lead to a cytokine cascade, resulting in lung dysfunction and injury. Itaconate, a metabolite produced by macrophages, has been reported as an effective anti-inflammatory and anti-oxidative stress agent with significant potential in regulating immunometabolism. As a naturally occurring metabolite in immune cells, itaconate has been identified as a potential therapeutic target in lung diseases through its role in regulating inflammation and immunometabolism. This review focuses on the origin, regulation, and function of itaconate in lung diseases, and briefly discusses its therapeutic potential.
Collapse
Affiliation(s)
- Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Ke Yi
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Jilin University, Changchun, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China.
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China.
| |
Collapse
|
10
|
McGettrick AF, Bourner LA, Dorsey FC, O'Neill LAJ. Metabolic Messengers: itaconate. Nat Metab 2024; 6:1661-1667. [PMID: 39060560 DOI: 10.1038/s42255-024-01092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
The metabolite itaconate has emerged as an important immunoregulator with roles in antibacterial defence, inhibition of inflammation and, more recently, as an inhibitory factor in obesity. Itaconate is one of the most upregulated metabolites in inflammatory macrophages. It is produced owing to the disturbance of the tricarboxylic acid cycle and the diversion of aconitate to itaconate via the enzyme aconitate decarboxylase 1. In immunology, initial studies concentrated on the role of itaconate in inflammatory macrophages where it was shown to be inhibitory, but this has expanded as the impact of itaconate on other cell types is starting to emerge. This review focuses on itaconate as a key immunoregulatory metabolite and describes its diverse mechanisms of action and its many impacts on the immune and inflammatory responses and in cancer. We also examine the clinical relevance of this immunometabolite and its therapeutic potential for immune and inflammatory diseases.
Collapse
Affiliation(s)
- A F McGettrick
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - L A Bourner
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - F C Dorsey
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - L A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
Letafati A, Taghiabadi Z, Ardekani OS, Abbasi S, Najafabadi AQ, Jazi NN, Soheili R, Rodrigo R, Yavarian J, Saso L. Unveiling the intersection: ferroptosis in influenza virus infection. Virol J 2024; 21:185. [PMID: 39135112 PMCID: PMC11321227 DOI: 10.1186/s12985-024-02462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
The influenza virus (IFV) imposes a considerable health and economic burden globally, requiring a comprehensive understanding of its pathogenic mechanisms. Ferroptosis, an iron-dependent lipid peroxidation cell death pathway, holds unique implications for the antioxidant defense system, with possible contributions to inflammation. This exploration focuses on the dynamic interplay between ferroptosis and the host defense against viruses, emphasizing the influence of IFV infections on the activation of the ferroptosis pathway. IFV causes different types of cell death, including apoptosis, necrosis, and ferroptosis. IFV-induced ferroptotic cell death is mediated by alterations in iron homeostasis, intensifying the accumulation of reactive oxygen species and promoting lipid peroxidation. A comprehensive investigation into the mechanism of ferroptosis in viral infections, specifically IFV, has great potential to identify therapeutic strategies. This understanding may pave the way for the development of drugs using ferroptosis inhibitors, presenting an effective approach to suppress viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Taghiabadi
- Department of Microbiology and Virology of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Omid Salahi Ardekani
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Simin Abbasi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Qaraee Najafabadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Negar Nayerain Jazi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roben Soheili
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jila Yavarian
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy.
| |
Collapse
|
12
|
Wang J, Zeng X, Gou J, Zhu X, Yin D, Yin L, Shen X, Dai Y, Pan X. Antiviral activity of luteolin against porcine epidemic diarrhea virus in silico and in vitro. BMC Vet Res 2024; 20:288. [PMID: 38961481 PMCID: PMC11221151 DOI: 10.1186/s12917-024-04053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV) mainly causes acute and severe porcine epidemic diarrhea (PED), and is highly fatal in neonatal piglets. No reliable therapeutics against the infection exist, which poses a major global health issue for piglets. Luteolin is a flavonoid with anti-viral activity toward several viruses. RESULTS We evaluated anti-viral effects of luteolin in PEDV-infected Vero and IPEC-J2 cells, and identified IC50 values of 23.87 µM and 68.5 µM, respectively. And found PEDV internalization, replication and release were significantly reduced upon luteolin treatment. As luteolin could bind to human ACE2 and SARS-CoV-2 main protease (Mpro) to contribute viral entry, we first identified that luteolin shares the same core binding site on pACE2 with PEDV-S by molecular docking and exhibited positive pACE2 binding with an affinity constant of 71.6 µM at dose-dependent increases by surface plasmon resonance (SPR) assay. However, pACE2 was incapable of binding to PEDV-S1. Therefore, luteolin inhibited PEDV internalization independent of PEDV-S binding to pACE2. Moreover, luteolin was firmly embedded in the groove of active pocket of Mpro in a three-dimensional docking model, and fluorescence resonance energy transfer (FRET) assays confirmed that luteolin inhibited PEDV Mpro activity. In addition, we also observed PEDV-induced pro-inflammatory cytokine inhibition and Nrf2-induced HO-1 expression. Finally, a drug resistant mutant was isolated after 10 cell culture passages concomitant with increasing luteolin concentrations, with reduced PEDV susceptibility to luteolin identified at passage 10. CONCLUSIONS Our results push forward that anti-PEDV mechanisms and resistant-PEDV properties for luteolin, which may be used to combat PED.
Collapse
Affiliation(s)
- Jieru Wang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Xiaoyu Zeng
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Jiaojiao Gou
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Xiaojie Zhu
- China Institute of Veterinary Drug Control, Beijing, 100000, China
| | - Dongdong Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Lei Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Xuehuai Shen
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Yin Dai
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China.
| | - Xiaocheng Pan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China.
| |
Collapse
|
13
|
Ye D, Wang P, Chen LL, Guan KL, Xiong Y. Itaconate in host inflammation and defense. Trends Endocrinol Metab 2024; 35:586-606. [PMID: 38448252 DOI: 10.1016/j.tem.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Immune cells undergo rapid and extensive metabolic changes during inflammation. In addition to contributing to energetic and biosynthetic demands, metabolites can also function as signaling molecules. Itaconate (ITA) rapidly accumulates to high levels in myeloid cells under infectious and sterile inflammatory conditions. This metabolite binds to and regulates the function of diverse proteins intracellularly to influence metabolism, oxidative response, epigenetic modification, and gene expression and to signal extracellularly through binding the G protein-coupled receptor (GPCR). Administration of ITA protects against inflammatory diseases and blockade of ITA production enhances antitumor immunity in preclinical models. In this article, we review ITA metabolism and its regulation, discuss its target proteins and mechanisms, and conjecture a rationale for developing ITA-based therapeutics to treat inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Dan Ye
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Pu Wang
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lei-Lei Chen
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Xiong
- Cullgen Inc., 12730 High Bluff Drive, San Diego, CA 92130, USA.
| |
Collapse
|
14
|
Kombe Kombe AJ, Fotoohabadi L, Nanduri R, Gerasimova Y, Daskou M, Gain C, Sharma E, Wong M, Kelesidis T. The Role of the Nrf2 Pathway in Airway Tissue Damage Due to Viral Respiratory Infections. Int J Mol Sci 2024; 25:7042. [PMID: 39000157 PMCID: PMC11241721 DOI: 10.3390/ijms25137042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Respiratory viruses constitute a significant cause of illness and death worldwide. Respiratory virus-associated injuries include oxidative stress, ferroptosis, inflammation, pyroptosis, apoptosis, fibrosis, autoimmunity, and vascular injury. Several studies have demonstrated the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) in the pathophysiology of viral infection and associated complications. It has thus emerged as a pivotal player in cellular defense mechanisms against such damage. Here, we discuss the impact of Nrf2 activation on airway injuries induced by respiratory viruses, including viruses, coronaviruses, rhinoviruses, and respiratory syncytial viruses. The inhibition or deregulation of Nrf2 pathway activation induces airway tissue damage in the presence of viral respiratory infections. In contrast, Nrf2 pathway activation demonstrates protection against tissue and organ injuries. Clinical trials involving Nrf2 agonists are needed to define the effect of Nrf2 therapeutics on airway tissues and organs damaged by viral respiratory infections.
Collapse
Affiliation(s)
- Arnaud John Kombe Kombe
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Leila Fotoohabadi
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Ravikanth Nanduri
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Yulia Gerasimova
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Maria Daskou
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chandrima Gain
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Theodoros Kelesidis
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Hao J, Zhang X, Hu R, Lu X, Wang H, Li Y, Cheng K, Li Q. Metabolomics combined with network pharmacology reveals a role for astragaloside IV in inhibiting enterovirus 71 replication via PI3K-AKT signaling. J Transl Med 2024; 22:555. [PMID: 38858642 PMCID: PMC11163744 DOI: 10.1186/s12967-024-05355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Astragaloside IV (AST-IV), as an effective active ingredient of Astragalus membranaceus (Fisch.) Bunge. It has been found that AST-IV inhibits the replication of dengue virus, hepatitis B virus, adenovirus, and coxsackievirus B3. Enterovirus 71 (EV71) serves as the main pathogen in severe hand-foot-mouth disease (HFMD), but there are no specific drugs available. In this study, we focus on investigating whether AST-IV can inhibit EV71 replication and explore the potential underlying mechanisms. METHODS The GES-1 or RD cells were infected with EV71, treated with AST-IV, or co-treated with both EV71 and AST-IV. The EV71 structural protein VP1 levels, the viral titers in the supernatant were measured using western blot and 50% tissue culture infective dose (TCID50), respectively. Network pharmacology was used to predict possible pathways and targets for AST-IV to inhibit EV71 replication. Additionally, ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was used to investigate the potential targeted metabolites of AST-IV. Associations between metabolites and apparent indicators were performed via Spearman's algorithm. RESULTS This study illustrated that AST-IV effectively inhibited EV71 replication. Network pharmacology suggested that AST-IV inhibits EV71 replication by targeting PI3K-AKT. Metabolomics results showed that AST-IV achieved these effects by elevating the levels of hypoxanthine, 2-ketobutyric acid, adenine, nicotinic acid mononucleotide, prostaglandin H2, 6-hydroxy-1 H-indole-3- acetamide, oxypurinol, while reducing the levels of PC (14:0/15:0). Furthermore, AST-IV also mitigated EV71-induced oxidative stress by reducing the levels of MDA, ROS, while increasing the activity of T-AOC, CAT, GSH-Px. The inhibition of EV71 replication was also observed when using the ROS inhibitor N-Acetylcysteine (NAC). Additionally, AST-IV exhibited the ability to activate the PI3K-AKT signaling pathway and suppress EV71-induced apoptosis. CONCLUSION This study suggests that AST-IV may activate the cAMP and the antioxidant stress response by targeting eight key metabolites, including hypoxanthine, 2-ketobutyric acid, adenine, nicotinic acid mononucleotide, prostaglandin H2, 6-Hydroxy-1 H-indole-3-acetamide, oxypurinol and PC (14:0/15:0). This activation can further stimulate the PI3K-AKT signaling to inhibit EV71-induced apoptosis and EV71 replication.
Collapse
Affiliation(s)
- JinFang Hao
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing Chronic Inflammation, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Zhang
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
| | - Ruixian Hu
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Xiufeng Lu
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Hui Wang
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Yuanhong Li
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Kai Cheng
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Qingshan Li
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing Chronic Inflammation, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
16
|
Muzammil K, Sabah Ghnim Z, Saeed Gataa I, Fawzi Al-Hussainy A, Ali Soud N, Adil M, Ali Shallan M, Yasamineh S. NRF2-mediated regulation of lipid pathways in viral infection. Mol Aspects Med 2024; 97:101279. [PMID: 38772081 DOI: 10.1016/j.mam.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/14/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
The first line of defense against viral infection of the host cell is the cellular lipid membrane, which is also a crucial first site of contact for viruses. Lipids may sometimes be used as viral receptors by viruses. For effective infection, viruses significantly depend on lipid rafts during the majority of the viral life cycle. It has been discovered that different viruses employ different lipid raft modification methods for attachment, internalization, membrane fusion, genome replication, assembly, and release. To preserve cellular homeostasis, cells have potent antioxidant, detoxifying, and cytoprotective capabilities. Nuclear factor erythroid 2-related factor 2 (NRF2), widely expressed in many tissues and cell types, is one crucial component controlling electrophilic and oxidative stress (OS). NRF2 has recently been given novel tasks, including controlling inflammation and antiviral interferon (IFN) responses. The activation of NRF2 has two effects: it may both promote and prevent the development of viral diseases. NRF2 may also alter the host's metabolism and innate immunity during viral infection. However, its primary function in viral infections is to regulate reactive oxygen species (ROS). In several research, the impact of NRF2 on lipid metabolism has been examined. NRF2 is also involved in the control of lipids during viral infection. We evaluated NRF2's function in controlling viral and lipid infections in this research. We also looked at how lipids function in viral infections. Finally, we investigated the role of NRF2 in lipid modulation during viral infections.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | | | | | | | - Nashat Ali Soud
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
17
|
Conzatti A, Colombo R, Siqueira R, Campos-Carraro C, Turck P, Luz de Castro A, Belló-Klein A, Sander da Rosa Araujo A. Sulforaphane Improves Redox Homeostasis and Right Ventricular Contractility in a Model of Pulmonary Hypertension. J Cardiovasc Pharmacol 2024; 83:612-620. [PMID: 38547510 DOI: 10.1097/fjc.0000000000001557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/28/2024] [Indexed: 11/01/2024]
Abstract
ABSTRACT Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance (PVR), imposing overload on the right ventricle (RV) and imbalance of the redox state. Our study investigated the influence of treatment with sulforaphane (SFN), found in cruciferous vegetables, on RV remodeling and redox homeostasis in monocrotaline (MCT)-induced PAH. Male Wistar rats were separated into 4 groups: control (CTR); CTR + SFN; MCT; and MCT + SFN. PAH induction was implemented by a single dose of MCT (60 mg/kg intraperitoneally). Treatment with SFN (2.5 mg/kg/day intraperitoneally) started on the seventh day after the MCT injection and persisted for 2 weeks. After 21 days of PAH induction, echocardiographic, hemodynamic, and oxidative stress evaluation was performed. The MCT group showed an increase in RV hypertrophy, RV systolic area, RV systolic, mean pulmonary artery pressure, and PVR and exhibited a decrease in the RV outflow tract acceleration time/ejection time ratio, RV fractional shortening, and tricuspid annular plane systolic excursion compared to CTR ( P < 0.05). SFN-treated PAH attenuated detrimental changes in tricuspid annular plane systolic excursion, mean pulmonary artery pressure, and PVR parameters. Catalase levels and the glutathione/Glutathione disulfide (GSSG) ratio were diminished in the MCT group compared to CTR ( P < 0.05). SFN increased catalase levels and normalized the glutathione/GSSG ratio to control levels ( P < 0.05). Data express the benefit of SFN treatment on the cardiac function of rats with PAH associated with the cellular redox state.
Collapse
MESH Headings
- Animals
- Sulfoxides/pharmacology
- Isothiocyanates/pharmacology
- Male
- Rats, Wistar
- Oxidation-Reduction
- Monocrotaline
- Disease Models, Animal
- Ventricular Function, Right/drug effects
- Oxidative Stress/drug effects
- Antioxidants/pharmacology
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/drug therapy
- Homeostasis/drug effects
- Ventricular Remodeling/drug effects
- Myocardial Contraction/drug effects
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/chemically induced
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiopathology
- Pulmonary Artery/metabolism
- Rats
- Arterial Pressure/drug effects
- Pulmonary Arterial Hypertension/drug therapy
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Arterial Hypertension/metabolism
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/drug therapy
- Ventricular Dysfunction, Right/metabolism
Collapse
Affiliation(s)
- Adriana Conzatti
- Laboratory of Cardiovascular Physiology, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kurmasheva N, Said A, Wong B, Kinderman P, Han X, Rahimic AHF, Kress A, Carter-Timofte ME, Holm E, van der Horst D, Kollmann CF, Liu Z, Wang C, Hoang HD, Kovalenko E, Chrysopoulou M, Twayana KS, Ottosen RN, Svenningsen EB, Begnini F, Kiib AE, Kromm FEH, Weiss HJ, Di Carlo D, Muscolini M, Higgins M, van der Heijden M, Arulanandam R, Bardoul A, Tong T, Ozsvar A, Hou WH, Schack VR, Holm CK, Zheng Y, Ruzek M, Kalucka J, de la Vega L, Elgaher WAM, Korshoej AR, Lin R, Hiscott J, Poulsen TB, O'Neill LA, Roy DG, Rinschen MM, van Montfoort N, Diallo JS, Farin HF, Alain T, Olagnier D. Octyl itaconate enhances VSVΔ51 oncolytic virotherapy by multitarget inhibition of antiviral and inflammatory pathways. Nat Commun 2024; 15:4096. [PMID: 38750019 PMCID: PMC11096414 DOI: 10.1038/s41467-024-48422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKβ independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.
Collapse
Affiliation(s)
- Naziia Kurmasheva
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Aida Said
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Boaz Wong
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Ottawa Hospital Research Insitute, Ottawa, ON, K1H 8L6, Canada
| | - Priscilla Kinderman
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Xiaoying Han
- Lady Davis Institute, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Anna H F Rahimic
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Alena Kress
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University, 60438, Frankfurt am Main, Germany
| | | | - Emilia Holm
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | | | | | - Zhenlong Liu
- Lady Davis Institute, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Chen Wang
- Lady Davis Institute, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Huy-Dung Hoang
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Elina Kovalenko
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | | | | | - Rasmus N Ottosen
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | | | - Fabio Begnini
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - Anders E Kiib
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | | | - Hauke J Weiss
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Daniele Di Carlo
- Pasteur Laboratories, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, 00161, Italy
| | - Michela Muscolini
- Pasteur Laboratories, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, 00161, Italy
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Mirte van der Heijden
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Angelina Bardoul
- Cancer Axis, CHUM Research Centre, Montreal, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
- Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Tong Tong
- Department of Neurosurgery, Aarhus University Hospital, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
- DCCC Brain Tumor Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - Attila Ozsvar
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
| | - Wen-Hsien Hou
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Vivien R Schack
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Christian K Holm
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Yunan Zheng
- Small Molecule Therapeutics & Platform Technologies, AbbVie Inc., 1 North Waukegon Road, North Chicago, IL, 60064, USA
| | - Melanie Ruzek
- AbbVie, Bioresearch Center, 100 Research Drive, Worcester, MA, 01608, USA
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Walid A M Elgaher
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, E8.1, 66123, Saarbrücken, Germany
| | - Anders R Korshoej
- Department of Neurosurgery, Aarhus University Hospital, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
- DCCC Brain Tumor Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rongtuan Lin
- Lady Davis Institute, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - John Hiscott
- Pasteur Laboratories, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, 00161, Italy
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Dominic G Roy
- Cancer Axis, CHUM Research Centre, Montreal, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
- Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
- III. Department of Medicine and Hamburg Center for Kidney Health, Hamburg, Germany
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean-Simon Diallo
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Ottawa Hospital Research Insitute, Ottawa, ON, K1H 8L6, Canada
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Tommy Alain
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - David Olagnier
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
19
|
Wu S, Wang S, Lin X, Yang S, Ba X, Xiong D, Xiao L, Li R. Lanatoside C inhibits herpes simplex virus 1 replication by regulating NRF2 distribution within cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155308. [PMID: 38185069 DOI: 10.1016/j.phymed.2023.155308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND In the past decades, extensive research has been conducted to identify new drug targets for the treatment of Herpes simplex virus type 1 (HSV-1) infections. However, the emergence of drug-resistant HSV-1 strains remains a major challenge. This necessitates the identification of new drugs with novel mechanisms of action. Lanatoside C (LanC), a cardiac glycoside (CG) approved by the US Food and Drug Administration (FDA), has demonstrated anticancer and antiviral properties. Nevertheless, its potential as an agent against HSV-1 infections and the underlying mechanism of action are currently unknown. PURPOSE This study aimed to investigate the antiviral activity of LanC against HSV-1 and elucidate its molecular mechanisms. METHODS The in vitro antiviral activity of LanC was assessed by examining the levels of viral genes, proteins, and virus titers in HSV-1-infected ARPE-19 and Vero cells. Immunofluorescence (IF) analysis was performed to determine the intracellular distribution of NRF2. Additionally, an in vivo mouse model of HSV-1 infection was developed to evaluate the antiviral activity of LanC, using indicators such as intraepidermal nerve fibers (IENFs) loss and viral gene inhibition. RESULTS Our findings demonstrate that LanC significantly inhibits HSV-1 replication both in vitro and in vivo. The antiviral effect of LanC is mediated by the perinuclear translocation of NRF2. CONCLUSIONS LanC exhibits anti-HSV-1 effects in viral infections, which are associated with the intracellular translocation of NRF2. These findings suggest that LanC has the potential to serve as a novel NRF2 modulator in the treatment of viral diseases.
Collapse
Affiliation(s)
- Songbin Wu
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, National Key Clinic of Pain Medicine, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Sashuang Wang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, National Key Clinic of Pain Medicine, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Xiaomian Lin
- Department of Pharmacy, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, National Key Clinic of Pain Medicine, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiyuan Ba
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, National Key Clinic of Pain Medicine, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Donglin Xiong
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, National Key Clinic of Pain Medicine, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, National Key Clinic of Pain Medicine, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Rongzhen Li
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, National Key Clinic of Pain Medicine, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
20
|
Ribó-Molina P, Weiss HJ, Susma B, van Nieuwkoop S, Persoons L, Zheng Y, Ruzek M, Daelemans D, Fouchier RAM, O'Neill LAJ, van den Hoogen BG. 4-Octyl itaconate reduces influenza A replication by targeting the nuclear export protein CRM1. J Virol 2023; 97:e0132523. [PMID: 37823646 PMCID: PMC10617539 DOI: 10.1128/jvi.01325-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Itaconate derivates, as well as the naturally produced metabolite, have been proposed as antivirals against influenza virus. Here, the mechanism behind the antiviral effects of exogenous 4-octyl itaconate (4-OI), a derivative of itaconate, against the influenza A virus replication is demonstrated. The data indicate that 4-OI targets the cysteine at position 528 of the CRM1 protein, resulting in inhibition of the nuclear export of viral ribonucleoprotein complexes in a similar manner as previously described for other selective inhibitors of nuclear export. These results postulate a mechanism not observed before for this immuno-metabolite derivative. This knowledge is helpful for the development of derivatives of 4-OI as potential antiviral and anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Pau Ribó-Molina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hauke J. Weiss
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | - Leentje Persoons
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Yunan Zheng
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Melanie Ruzek
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Luke A. J. O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
21
|
Li Y, Xu Y, Li W, Li J, Wu W, Kang J, Jiang H, Liu P, Liu J, Gong W, Li X, Ni C, Liu M, Chen L, Li S, Wu X, Zhao Y, Ren J. Itaconate inhibits SYK through alkylation and suppresses inflammation against hvKP induced intestinal dysbiosis. Cell Mol Life Sci 2023; 80:337. [PMID: 37897551 PMCID: PMC11073195 DOI: 10.1007/s00018-023-04971-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/23/2023] [Accepted: 09/18/2023] [Indexed: 10/30/2023]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP) is a highly lethal opportunistic pathogen that elicits more severe inflammatory responses compared to classical Klebsiella pneumoniae (cKP). In this study, we investigated the interaction between hvKP infection and the anti-inflammatory immune response gene 1 (IRG1)-itaconate axis. Firstly, we demonstrated the activation of the IRG1-itaconate axis induced by hvKP, with a dependency on SYK signaling rather than STING. Importantly, we discovered that exogenous supplementation of itaconate effectively inhibited excessive inflammation by directly inhibiting SYK kinase at the 593 site through alkylation. Furthermore, our study revealed that itaconate effectively suppressed the classical activation phenotype (M1 phenotype) and macrophage cell death induced by hvKP. In vivo experiments demonstrated that itaconate administration mitigated hvKP-induced disturbances in intestinal immunopathology and homeostasis, including the restoration of intestinal barrier integrity and alleviation of dysbiosis in the gut microbiota, ultimately preventing fatal injury. Overall, our study expands the current understanding of the IRG1-itaconate axis in hvKP infection, providing a promising foundation for the development of innovative therapeutic strategies utilizing itaconate for the treatment of hvKP infections.
Collapse
Affiliation(s)
- Yangguang Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Yu Xu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Weizhen Li
- School of Medicine, Anhui University of Science and Technology, Huainan, 232000, China
| | - Jiayang Li
- School of Medicine, Southeast University, Nanjing, 210000, China
| | - Wenqi Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiaqi Kang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haiyang Jiang
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Peizhao Liu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Juanhan Liu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenbin Gong
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi Province, China
| | - Xuanheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chujun Ni
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Mingda Liu
- The Core Laboratory, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Lijuan Chen
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Sicheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China.
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|