1
|
Bao C, Zhang Y, Feng J, Hong X, Gao N, Feng G. Deciphering tuberculosis: lysosome-centric insights into pathogenesis and therapies. Front Cell Infect Microbiol 2025; 15:1582037. [PMID: 40438237 PMCID: PMC12116394 DOI: 10.3389/fcimb.2025.1582037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/17/2025] [Indexed: 06/01/2025] Open
Abstract
Tuberculosis is a widely spread disease caused by Mycobacterium tuberculosis (Mtb). The pathogenicity of the pathogen is closely associated with the immune defense mechanisms of the host cells. As key cellular degradation and metabolic centers, lysosomes critically regulate tuberculosis infection. When Mtb invades the host, it is taken up by macrophages and enters phagosomes. Subsequently, the phagosomes fuse with lysosomes and form phagolysosomes, which eliminate the pathogenic bacteria through the acidic environment and hydrolytic enzymes within lysosomes. However, Mtb can interfere with the normal functions of lysosomes through various strategies. It can secrete specific factors (such as ESAT-6, ppk-1, and AcpM) to inhibit the acidification of lysosomes, enzyme activity, and the fusion of phagosomes and lysosomes, thereby enabling Mtb proliferation within host cells. An in-depth exploration of the mechanism of the interaction between Mtb and lysosomes will both uncover bacterial immune evasion strategies and identify novel anti-tuberculosis therapeutic targets.
Collapse
Affiliation(s)
- Cui Bao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanyuan Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiao Feng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiuwen Hong
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Gao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ganzhu Feng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Russell DG, Simwela NV, Mattila JT, Flynn J, Mwandumba HC, Pisu D. How macrophage heterogeneity affects tuberculosis disease and therapy. Nat Rev Immunol 2025; 25:370-384. [PMID: 39774813 DOI: 10.1038/s41577-024-01124-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Macrophages are the primary host cell type for infection by Mycobacterium tuberculosis in vivo. Macrophages are also key immune effector cells that mediate the control of bacterial growth. However, the specific macrophage phenotypes that are required for optimal immune control of M. tuberculosis infection in vivo remain poorly defined. There are two distinct macrophage lineages in the lung, comprising embryonically derived, tissue-resident alveolar macrophages and recruited, blood monocyte-derived interstitial macrophages. Recent studies have shown that these lineages respond divergently to similar immune environments within the tuberculosis granuloma. Here, we discuss how the differing responses of macrophage lineages might affect the control or progression of tuberculosis disease. We suggest that the ability to reprogramme macrophage responses appropriately, through immunological or chemotherapeutic routes, could help to optimize vaccines and drug regimens for tuberculosis.
Collapse
Affiliation(s)
- David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Nelson V Simwela
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - JoAnne Flynn
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Davide Pisu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| |
Collapse
|
3
|
Pfau DJ, Bryk R. High throughput screening assay for the identification of ATF4 and TFEB activating compounds. AUTOPHAGY REPORTS 2025; 4:2473765. [PMID: 40265045 PMCID: PMC11980509 DOI: 10.1080/27694127.2025.2473765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 04/24/2025]
Abstract
Macrophages act to defend against infection, but can fail to completely prevent bacterial replication and dissemination in an immunocompetent host. Recent studies have shown that activation of a host transcription factor, TFEB, a regulator of lysosomal biogenesis, could restrict intramacrophage replication of the human pathogen Mycobacterium tuberculosis and synergize with suboptimal levels of the antibiotic rifampin to reduce bacterial loads. Currently available small molecule TFEB activators lack selectivity and potency, but could be potentially useful in a variety of pathological conditions with suboptimal lysosomal activity. TFEB nuclear translocation and activation depend on its phosphorylation status which is controlled by multiple cellular pathways. We devised a whole cell, high throughput screening assay to identify small molecules that activate TFEB by establishing a stably transfected HEK293T reporter cell line for ATF4, a basic leucine zipper transcription factor induced by stress response and activated in parallel to TFEB. We optimized its use in vitro using compounds that target endoplasmic reticulum stress and intracellular calcium signaling. We report results from screening the commercially available LOPAC library and the Selleck Chemicals library modified to include only FDA-approved drugs and clinical research compounds. We identified twenty-one compounds across six clinical use categories that activate ATF4, and confirmed that two proteasome inhibitors promote TFEB activation. The results of this study provide an assay that could be used to screen for small molecules that activate ATF4 and TFEB and a potential list of compounds identified as activators of the ATF4 transcription factor in response to cellular stress.
Collapse
Affiliation(s)
- Daniel J. Pfau
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Ruslana Bryk
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Dill-McFarland KA, Peterson G, Lim PN, Skerrett S, Hawn TR, Rothchild AC, Campo M. Shared and distinct responses of human and murine alveolar macrophages and monocyte-derived macrophages to Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640814. [PMID: 40093075 PMCID: PMC11908159 DOI: 10.1101/2025.02.28.640814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Macrophages serve as important sites of bacterial replication and host immune response during Mycobacterium tuberculosis (Mtb) infection with distinct roles for alveolar macrophages (AMs) early in infection and monocyte-derived (MDMs) during later stages of disease. Here, we leverage data from human and mouse models to perform a cross-species analysis of macrophage responses to Mtb infection. Overall, we find that both subsets of human and murine macrophages mount a strong interferon response to Mtb infection. However, AM across both species do not generate as strong a pro-inflammatory response as human MDMs or murine bone marrow-derived macrophages (BMDMs), as characterized by TNFA signaling and inflammatory response pathways. Interestingly, AMs from mice that were previously vaccinated with BCG (scBCG) or from a model of contained TB (coMtb) had Mtb responses that were more similar to human AMs than control mice. We also identify species-specific pathways altered by infection differently in mouse and human macrophages, specifically in pathways related to cholesterol in AMs as well as MYC targets and Hedgehog signaling in MDMs/BMDMs. Lastly, to investigate downstream effects of the macrophage interferon responses, we examine macrophage expression of IL-10, an immunosuppressive cytokine induced by Type I Interferons, and c-Maf, a transcription factor required for IL-10 expression in myeloid cells. We find that c-Maf and IL-10 have significantly lower expression in AMs compared to MDMs in both humans and mice, suggesting one possible mechanism by which AMs mount a stronger interferon response following Mtb infection. Overall, these results highlight the dynamics of innate myeloid responses over the course of Mtb infection and the benefit of a combined analysis across species to reveal conserved and unique responses.
Collapse
|
5
|
Zheng W, Borja M, Dorman LC, Liu J, Zhou A, Seng A, Arjyal R, Sunshine S, Nalyvayko A, Pisco AO, Rosenberg OS, Neff N, Zha BS. Single-cell analysis reveals Mycobacterium tuberculosis ESX-1-mediated accumulation of permissive macrophages in infected mouse lungs. SCIENCE ADVANCES 2025; 11:eadq8158. [PMID: 39813329 PMCID: PMC11734715 DOI: 10.1126/sciadv.adq8158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025]
Abstract
Mycobacterium tuberculosis (MTB) ESX-1, a type VII secretion system, is a key virulence determinant contributing to MTB's survival within lung mononuclear phagocytes (MNPs), but its effect on MNP recruitment and differentiation remains unknown. Here, using multiple single-cell RNA sequencing techniques, we studied the role of ESX-1 in MNP heterogeneity and response in mice and murine bone marrow-derived macrophages (BMDM). We found that ESX-1 is required for MTB to recruit diverse MNP subsets with high MTB burden. Further, MTB induces a transcriptional signature of immune evasion in lung macrophages and BMDM in an ESX-1-dependent manner. Spatial transcriptomics revealed an up-regulation of permissive features within MTB lesions, where monocyte-derived macrophages concentrate near MTB-infected cells. Together, our findings suggest that MTB ESX-1 facilitates the recruitment and differentiation of MNPs, which MTB can infect and manipulate for survival. Our dataset across various models and methods could contribute to the broader understanding of recruited cell heterogeneity during MTB lung infection.
Collapse
Affiliation(s)
- Weihao Zheng
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | | | | | | | - Andy Zhou
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Amanda Seng
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Sara Sunshine
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Alina Nalyvayko
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | | | - Oren S. Rosenberg
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, California, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Beth Shoshana Zha
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
6
|
Peters JM, Irvine EB, Makatsa MS, Rosenberg JM, Wadsworth MH, Hughes TK, Sutton MS, Nyquist SK, Bromley JD, Mondal R, Roederer M, Seder RA, Darrah PA, Alter G, Seshadri C, Flynn JL, Shalek AK, Fortune SM, Bryson BD. High-dose intravenous BCG vaccination induces enhanced immune signaling in the airways. SCIENCE ADVANCES 2025; 11:eadq8229. [PMID: 39742484 PMCID: PMC11694782 DOI: 10.1126/sciadv.adq8229] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025]
Abstract
Intradermal Bacillus Calmette-Guérin (BCG) is the most widely administered vaccine, but it does not sufficiently protect adults against pulmonary tuberculosis. Recent studies in nonhuman primates show that intravenous BCG administration offers superior protection against Mycobacterium tuberculosis (Mtb). We used single-cell analysis of bronchoalveolar lavage cells from rhesus macaques vaccinated via different routes and doses of BCG to identify alterations in the immune ecosystem in the airway following vaccination. Our findings reveal that high-dose intravenous BCG induces an influx of polyfunctional T cells and macrophages in the airways, with alveolar macrophages from high-dose intravenous BCG displaying a basal activation state in the absence of purified protein derivative stimulation, defined in part by interferon signaling. Enhanced intercellular immune signaling and stronger T helper 1-T helper 17 transcriptional responses were observed following purified protein derivative stimulation. These results suggest that high-dose intravenous BCG vaccination creates a specialized immune environment that primes airway cells for effective Mtb clearance.
Collapse
Affiliation(s)
- Joshua M. Peters
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward B. Irvine
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mohau S. Makatsa
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Jacob M. Rosenberg
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Infectious Diseases, MGH, Boston, MA, USA
| | - Marc H. Wadsworth
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Travis K. Hughes
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | | | - Sarah K. Nyquist
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Joshua D. Bromley
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Rajib Mondal
- Research Laboratory of Electronics, Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | | | | | | | - Galit Alter
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alex K. Shalek
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Sarah M. Fortune
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bryan D. Bryson
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
| |
Collapse
|
7
|
Mediaas SD, Haug M, Louet C, Wahl SGF, Gidon A, Flo TH. Metformin improves Mycobacterium avium infection by strengthening macrophage antimicrobial functions. Front Immunol 2024; 15:1463224. [PMID: 39737195 PMCID: PMC11682992 DOI: 10.3389/fimmu.2024.1463224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction The incidence and prevalence of infections with non-tuberculous mycobacteria such as Mycobacterium avium (Mav) are increasing. Prolonged drug regimens, inherent antibiotic resistance, and low cure rates underscore the need for improved treatment, which may be achieved by combining standard chemotherapy with drugs targeting the host immune system. Here, we examined if the diabetes type 2 drug metformin could improve Mav-infection. Methods Metformin was administered to C57BL/6 mice infected intranasally with Mav and C57BL/6 mice were infected intranasally with Mav and treated with metformin over 3 weeks. Organ bacterial loads and lung pathology, inflammatory cytokines and immune cell profiles were assessed. For mechanistic insight, macrophages infected with Mav were treated with metformin alone or in combination with inhibitors for mitochondrial ROS or AMPK and assessed for bacterial burden and phagosome maturation. Results and discussion Three weeks of metformin treatment significantly reduced the lung mycobacterial burden in mice infected with Mav without major changes in the overall lung pathology or immune cell composition. Metformin treatment had no significant impact on tissue inflammation except for a tendency of increased lung IFNγ and infiltration of Mav-specific IFNγ-secreting T cells. Metformin did, however, boost the antimicrobial capacity of infected macrophages directly by modulating metabolism/activating AMPK, increasing mitochondrial ROS and phagosome maturation, and indirectly by bolstering type I immunity. Taken together, our data show that metformin improved the control of Mav-infection in mice, mainly by strengthening antimicrobial defenses in macrophages, and suggest that metformin has potential as an adjunct treatment of Mav infections.
Collapse
Affiliation(s)
- Sindre Dahl Mediaas
- Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Infection, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Markus Haug
- Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Infection, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Claire Louet
- Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sissel Gyrid Freim Wahl
- Department of Pathology, Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Alexandre Gidon
- Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Infection, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
8
|
Chin J, Abeydeera N, Repasy T, Rivera-Lugo R, Mitchell G, Nguyen VQ, Zheng W, Richards A, Swaney DL, Krogan NJ, Ernst JD, Cox JS, Budzik JM. Tax1bp1 enhances bacterial virulence and promotes inflammatory responses during Mycobacterium tuberculosis infection of alveolar macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628616. [PMID: 39763950 PMCID: PMC11702572 DOI: 10.1101/2024.12.16.628616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Crosstalk between autophagy, host cell death, and inflammatory host responses to bacterial pathogens enables effective innate immune responses that limit bacterial growth while minimizing coincidental host damage. Mycobacterium tuberculosis (Mtb) thwarts innate immune defense mechanisms in alveolar macrophages (AMs) during the initial stages of infection and in recruited bone marrow-derived cells during later stages of infection. However, how protective inflammatory responses are achieved during Mtb infection and the variation of the response in different macrophage subtypes remain obscure. Here, we show that the autophagy receptor Tax1bp1 plays a critical role in enhancing inflammatory cytokine production and increasing the susceptibility of mice to Mtb infection. Surprisingly, although Tax1bp1 restricts Mtb growth during infection of bone marrow-derived macrophages (BMDMs) (Budzik et al. 2020) and terminates cytokine production in response to cytokine stimulation or viral infection, Tax1bp1 instead promotes Mtb growth in AMs, neutrophils, and a subset of recruited monocyte-derived cells from the bone marrow. Tax1bp1 also leads to increases in bacterial growth and inflammatory responses during infection of mice with Listeria monocytogenes, an intracellular pathogen that is not effectively targeted to canonical autophagy. In Mtb-infected AMs but not BMDMs, Tax1bp1 enhances necrotic-like cell death early after infection, reprogramming the mode of host cell death to favor Mtb replication in AMs. Tax1bp1's impact on host cell death is a mechanism that explains Tax1bp1's cell type-specific role in the control of Mtb growth. Similar to Tax1bp1-deficiency in AMs, the expression of phosphosite-deficient Tax1bp1 restricts Mtb growth. Together, these results show that Tax1bp1 plays a crucial role in linking the regulation of autophagy, cell death, and pro-inflammatory host responses and enhancing susceptibility to bacterial infection.
Collapse
Affiliation(s)
- Jeffrey Chin
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nalin Abeydeera
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Teresa Repasy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Present address: Seattle Children's Hospital, Seattle, WA, USA
| | - Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Present address: Department of Biology, Stanford University, Stanford, CA, USA
| | - Gabriel Mitchell
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Present address: Open Innovation at Global Health Disease Area for Biomedical Research, Novartis, Emeryville, CA, USA
| | - Vinh Q Nguyen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA, USA
| | - Weihao Zheng
- Division of Experiment Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Alicia Richards
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA USA
- J. David Gladstone Institutes, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA USA
- J. David Gladstone Institutes, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA USA
- J. David Gladstone Institutes, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Joel D Ernst
- Division of Experiment Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jeffery S Cox
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jonathan M Budzik
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
9
|
Mittal E, Prasad GVRK, Upadhyay S, Sadadiwala J, Olive AJ, Yang G, Sassetti CM, Philips JA. Mycobacterium tuberculosis virulence lipid PDIM inhibits autophagy in mice. Nat Microbiol 2024; 9:2970-2984. [PMID: 39242815 PMCID: PMC12097147 DOI: 10.1038/s41564-024-01797-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/25/2024] [Indexed: 09/09/2024]
Abstract
Mycobacterium tuberculosis (Mtb) infects several lung macrophage populations, which have distinct abilities to restrict Mtb. What enables Mtb survival in certain macrophage populations is not well understood. Here we used transposon sequencing analysis of Mtb in wild-type and autophagy-deficient mouse macrophages lacking ATG5 or ATG7, and found that Mtb genes involved in phthiocerol dimycocerosate (PDIM) virulence lipid synthesis confer resistance to autophagy. Using ppsD mutant Mtb, we found that PDIM inhibits LC3-associated phagocytosis (LAP) by inhibiting phagosome recruitment of NADPH oxidase. In mice, PDIM protected Mtb from LAP and classical autophagy. During acute infection, PDIM was dispensable for Mtb survival in alveolar macrophages but required for survival in non-alveolar macrophages in an autophagy-dependent manner. During chronic infection, autophagy-deficient mice succumbed to infection with PDIM-deficient Mtb, with impairments in B-cell accumulation in lymphoid follicles. These findings demonstrate that PDIM contributes to Mtb virulence and immune evasion, revealing a contributory role for autophagy in B-cell responses.
Collapse
Affiliation(s)
- Ekansh Mittal
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| | - G V R Krishna Prasad
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sandeep Upadhyay
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jully Sadadiwala
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Andrew J Olive
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Guozhe Yang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
10
|
Darboe F, Reijneveld JF, Maison DP, Martinez L, Suliman S. Unmasking the hidden impact of viruses on tuberculosis risk. Trends Immunol 2024; 45:649-661. [PMID: 39181733 PMCID: PMC11769684 DOI: 10.1016/j.it.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024]
Abstract
Tuberculosis (TB) is a leading cause of mortality from an infectious disease. In this opinion article, we focus on accumulating scientific evidence indicating that viral infections may contribute to TB progression, possibly allowing novel preventive interventions. Viruses can remodel the mammalian immune system, potentially modulating the risk of reactivating latent microbes such as Mycobacterium tuberculosis (Mtb). Evidence is mixed regarding the impact of emergent viruses such as SARS-CoV-2 on the risk of TB. Therefore, we posit that important knowledge gaps include elucidating which viral families increase TB risk and whether these provide unique or shared immune mechanisms. We also propose potential future research to define the contribution of viruses to TB pathogenesis.
Collapse
Affiliation(s)
- Fatoumatta Darboe
- Zuckerberg San Francisco General Hospital, Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Josephine F Reijneveld
- Zuckerberg San Francisco General Hospital, Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - David P Maison
- Zuckerberg San Francisco General Hospital, Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Leonardo Martinez
- Boston University School of Public Health, Department of Epidemiology, Boston, MA, USA.
| | - Sara Suliman
- Zuckerberg San Francisco General Hospital, Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
11
|
Guallar-Garrido S, Soldati T. Exploring host-pathogen interactions in the Dictyostelium discoideum-Mycobacterium marinum infection model of tuberculosis. Dis Model Mech 2024; 17:dmm050698. [PMID: 39037280 PMCID: PMC11552500 DOI: 10.1242/dmm.050698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Mycobacterium tuberculosis is a pathogenic mycobacterium that causes tuberculosis. Tuberculosis is a significant global health concern that poses numerous clinical challenges, particularly in terms of finding effective treatments for patients. Throughout evolution, host immune cells have developed cell-autonomous defence strategies to restrain and eliminate mycobacteria. Concurrently, mycobacteria have evolved an array of virulence factors to counteract these host defences, resulting in a dynamic interaction between host and pathogen. Here, we review recent findings, including those arising from the use of the amoeba Dictyostelium discoideum as a model to investigate key mycobacterial infection pathways. D. discoideum serves as a scalable and genetically tractable model for human phagocytes, providing valuable insights into the intricate mechanisms of host-pathogen interactions. We also highlight certain similarities between M. tuberculosis and Mycobacterium marinum, and the use of M. marinum to more safely investigate mycobacteria in D. discoideum.
Collapse
Affiliation(s)
- Sandra Guallar-Garrido
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| |
Collapse
|