1
|
Alenezy EK, Kandjani AE, Shaibani M, Trinchi A, Bhargava SK, Ippolito SJ, Sabri Y. Human breath analysis; Clinical application and measurement: An overview. Biosens Bioelectron 2025; 278:117094. [PMID: 40037038 DOI: 10.1016/j.bios.2024.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/05/2024] [Accepted: 12/21/2024] [Indexed: 03/06/2025]
Abstract
Human breath has been recognized as a complex yet predictive mixture of volatile organic compounds (VOCs) and inorganic gas species that can be utilized to non-invasively diagnose common diseases. Current laboratory techniques such as gas chromatography/mass spectrometry (GC/MS) and high-performance liquid chromatography (HPLC), are capable of VOC detection down to ppm concentrations. However, these methods are expensive, non-portable, require pre-processing of the exhaled VOCs, and expert operators, making them unsuitable for wide-spread use. Portable gas sensors have various advantages over other methods used in gas analysis, including ease of transportation, reduced treatment costs, fast results, and improved patient experience. Recent advancements in gas sensing technologies have enabled such devices to be used to diagnose, predict, and monitor a wide range of diseases and conditions, however, many challenges need still need to be addressed (i.e., sensitivity and selectivity) before they can be employed for such applications. Although nanotechnology has greatly improved the performance of gas sensor materials and their capacity to detect VOCs in human breath, issues around repeatability and accuracy remain, as well as adequateness due to the close proximity of the human body and the sensor device. This review focuses on how recent advancements in nanotechnology and solid-state materials have enabled VOC gas sensors to evolve into miniaturized, sensitive and selective devices for monitoring human breath in clinical applications. An introduction to the key aspects of breath analysis, including sources of VOCs in human breath and their role in disease diagnosis, is discussed. Furthermore, the current limitations and future prospects of such gas sensors for breath monitoring applications are also discussed in detail.
Collapse
Affiliation(s)
- Ebtsam K Alenezy
- Department of chemistry, College of Science, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia.
| | - Ahmad E Kandjani
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Research Unit, Clayton, VIC, 3168, Australia.
| | - Mahdokht Shaibani
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia.
| | - Adrian Trinchi
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Research Unit, Clayton, VIC, 3168, Australia.
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia.
| | - Samuel J Ippolito
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia; School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia.
| | - Ylias Sabri
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia; School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia.
| |
Collapse
|
2
|
Shilnikova N, Momoli F, Karyakina N, Krewski D. Review of non-invasive biomarkers as a tool for exposure characterization in human health risk assessments. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:122-150. [PMID: 39607011 DOI: 10.1080/10937404.2024.2428206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Blood and urine are historically the most frequent matrices used for measuring chemical levels in human biomonitoring studies. As biomonitoring programs are refreshed, consideration of specific priority substances and specific population targets provide opportunities for inclusion of alternative non- or minimally invasive matrices. This review describes methods used in health risk assessment to characterize exposure and risk based upon biomarkers from noninvasive matrices other than urine or blood, including human milk, hair, fingernails, toenails, exhaled breath, deciduous teeth, sweat, semen, meconium, and feces. Illustrative examples of these methods relevant to chemical management are provided. This review suggests that, although these alternative noninvasive biomarkers are not frequently used in human health risk assessment at present, these biomarkers may prove useful in (1) characterizing exposure and health risk in vulnerable populations, (2) cumulative risk assessments, and (3) community-based risk assessments, depending upon the substance of concern. To incorporate alternative noninvasive biomarkers into human health risk assessments with confidence, more research is needed to improve our knowledge of the relationships between external dose, internal dose, and biologic consequent effects in matrices other than blood and urine.
Collapse
Affiliation(s)
- N Shilnikova
- Risk Sciences International, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - F Momoli
- Risk Sciences International, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - N Karyakina
- Risk Sciences International, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - D Krewski
- Risk Sciences International, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
Cen Z, Huang Y, Li S, Dong S, Wang W, Li X. Advancing Breathomics through Accurate Discrimination of Endogenous from Exogenous Volatiles in Breath. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18541-18553. [PMID: 39340814 DOI: 10.1021/acs.est.4c04575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Breathomics, a growing field in exposure monitoring and clinical diagnostics, has faced accuracy challenges due to unclear contributing factors. This study aims to enhance the potential of breathomics in various frontiers by categorizing exhaled volatile organic compounds (VOCs) as endogenous or exogenous. Analyzing ambient air and breath samples from 271 volunteers via TD-GC × GC-TOF MS/FID, we identify and quantify 50 common VOCs in exhaled breath. Advanced quantitative structure-property relationships and compartment models are employed to obtain VOCs kinetic parameters. This in-depth approach allows us to accurately determine the alveolar concentration of VOCs and further discern their origins, facilitating personalized application of breathomics in exposure assessment and disease diagnosis. Our findings demonstrate that prolonged external exposure turns humans into secondary pollutant sources. Analysis of endogenous VOCs reveals that internal exposure poses more significant health risks than external. Moreover, by correcting environmental backgrounds, we improve the accuracy of gastrointestinal disease diagnostic models by 15-25%. This advancement in identifying VOC origins via compartmental models promises to elevate the clinical relevance of breathomics, marking a leap forward in exposure assessment and precision medicine.
Collapse
Affiliation(s)
- Zhengnan Cen
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Yuerun Huang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Shangzhewen Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Shanshan Dong
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Wenshan Wang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Xiang Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
- Institute of Eco-Chongming (IEC), Shanghai 200062, P. R. China
| |
Collapse
|
4
|
Roy S, Maiti KS. Baseline correction for the infrared spectra of exhaled breath. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124473. [PMID: 38795528 DOI: 10.1016/j.saa.2024.124473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
Infrared spectroscopy appears to be a promising analytical method for the metabolic analysis of breath. However, due to the presence of trace amounts in exhaled breath, the absorption strength of the metabolites remains extremely low. In such low detection limits, the nonlinear detection sensitivity of the infrared detector and electronic noise strongly modify the baseline of the acquired infrared spectra of breath. Fitting the reference molecular spectra with the baseline-modified spectral features of breath metabolites does not provide accurate identification. Therefore, baseline correction of the acquired infrared spectra of breath is the primary requirement for the success of breath-based infrared diagnosis. A selective spectral region-based, simple baseline correction method is proposed for the infrared spectroscopy of breath.
Collapse
Affiliation(s)
- Susmita Roy
- Technical University of Munich, School of Medicine and Health, Department of Clinical Medicine, Klinikum rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| | - Kiran Sankar Maiti
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany; Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany.
| |
Collapse
|
5
|
Kim KB, Sohn MS, Min S, Yoon JW, Park JS, Li J, Moon YK, Kang YC. Highly Selective and Reversible Detection of Simulated Breath Hydrogen Sulfide Using Fe-Doped CuO Hollow Spheres: Enhanced Surface Redox Reaction by Multi-Valent Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308963. [PMID: 38461524 DOI: 10.1002/smll.202308963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/19/2024] [Indexed: 03/12/2024]
Abstract
The precise and reversible detection of hydrogen sulfide (H2S) at high humidity condition, a malodorous and harmful volatile sulfur compound, is essential for the self-assessment of oral diseases, halitosis, and asthma. However, the selective and reversible detection of trace concentrations of H2S (≈0.1 ppm) in high humidity conditions (exhaled breath) is challenging because of irreversible H2S adsorption/desorption at the surface of chemiresistors. The study reports the synthesis of Fe-doped CuO hollow spheres as H2S gas-sensing materials via spray pyrolysis. 4 at.% of Fe-doped CuO hollow spheres exhibit high selectivity (response ratio ≥ 34.4) over interference gas (ethanol, 1 ppm) and reversible sensing characteristics (100% recovery) to 0.1 ppm of H2S under high humidity (relative humidity 80%) at 175 °C. The effect of multi-valent transition metal ion doping into CuO on sensor reversibility is confirmed through the enhancement of recovery kinetics by doping 4 at.% of Ti- or Nb ions into CuO sensors. Mechanistic details of these excellent H2S sensing characteristics are also investigated by analyzing the redox reactions and the catalytic activity change of the Fe-doped CuO sensing materials. The selective and reversible detection of H2S using the Fe-doped CuO sensor suggested in this work opens a new possibility for halitosis self-monitoring.
Collapse
Affiliation(s)
- Ki Beom Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Myung Sung Sohn
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ji-Wook Yoon
- Department of Information Materials Engineering, Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jin-Sung Park
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Young Kook Moon
- Department of Functional Ceramics, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
6
|
Shaw G, Vicario F, Buizza R. System for continuous metabolic monitoring of mechanically ventilated patients. Front Med (Lausanne) 2024; 11:1356087. [PMID: 39015791 PMCID: PMC11250480 DOI: 10.3389/fmed.2024.1356087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
In clinical settings, due largely to the cost, size and calibration complexity of existing indirect calorimetry systems, there is seldom instrumentation available to provide reliable, continuous tracking of a mechanically ventilated patient's metabolic output in support of proper nutrition. The atypical metabolisms associated with critically ill patients are difficult to predict and both underfeeding and overfeeding lead to negative impacts on both mortality and the recovery and healing processes. With these issues in mind, a novel ventilator-agnostic indirect calorimetry sensor design, prototype development, and validation were undertaken with the goal of enabling 24/7 metabolic monitoring of mechanically ventilated patients by means of a passive, rate-proportional side-stream sampling scheme and miniature mixing chamber. The miniature mixing chamber enables the use of small, low-cost gas concentration and flow sensing components to ensure the affordability of commercial design-for-manufacture implementations of the prototype sensor. In addition to continuous measurement of patient metabolism, the prototype sensor also enables autonomous monitoring and detection of calibration drift in the gas measurement sensors without disrupting the patient ventilation.
Collapse
Affiliation(s)
- Gary Shaw
- Lincoln Laboratory, Massachusetts Institute of Technology, Advanced EO Systems, Lexington, MA, United States
| | | | | |
Collapse
|
7
|
Wang S, Jiao C, Gerlach G, Körner J. Porosity Engineering of Dried Smart Poly( N-isopropylacrylamide) Hydrogels for Gas Sensing. Biomacromolecules 2024; 25:2715-2727. [PMID: 38047737 PMCID: PMC11094736 DOI: 10.1021/acs.biomac.3c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
A recent study unveiled the potential of acrylamide-based stimulus-responsive hydrogels for volatile organic compound detection in gaseous environments. However, for gas sensing, a large surface area, that is, a highly porous material, offering many adsorption sites is crucial. The large humidity variation in the gaseous environment constitutes a significant challenge for preserving an initially porous structure, as the pores tend to be unstable and irreversibly collapse. Therefore, the present investigation focuses on enhancing the porosity of smart PNiPAAm hydrogels under the conditions of a gaseous environment and the preservation of the structural integrity for long-term use. We have studied the influence of polyethylene glycol (PEG) as a porogen and the application of different drying methods and posttreatment. The investigations lead to the conclusion that only the combination of PEG addition, freeze-drying, and subsequent conditioning in high relative humidity enables a long-term stable formation of a porous surface and inner structure of the material. The significantly enhanced swelling response in a gaseous environment and in the test gas acetone is confirmed by gravimetric experiments of bulk samples and continuous measurements of thin films on piezoresistive pressure sensor chips. These measurements are furthermore complemented by an in-depth analysis of the morphology and microstructure. While the study was conducted for PNiPAAm, the insights and developed processes are general in nature and can be applied for porosity engineering of other smart hydrogel materials for VOC detection in gaseous environments.
Collapse
Affiliation(s)
- Sitao Wang
- Institute
of Solid-State Electronics, Dresden University
of Technology, 01062 Dresden, Germany
| | - Chen Jiao
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Gerald Gerlach
- Institute
of Solid-State Electronics, Dresden University
of Technology, 01062 Dresden, Germany
| | - Julia Körner
- Institute
of Electrical Engineering and Measurement Technology, Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
8
|
Zhang H, Wu T, Wu Q, Chen W, Ye C, Wang M, He X. Measurement of CO 2 Isotopologue Ratios Using a Hollow Waveguide-Based Mid-Infrared Dispersion Spectrometer. Anal Chem 2023; 95:18479-18486. [PMID: 38054623 DOI: 10.1021/acs.analchem.3c03722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
We demonstrate for the first time the measurement of CO2 isotope ratios (13C/12C and 18O/16O) in a hollow waveguide (HWG) fiber using a mid-infrared heterodyne phase-sensitive dispersion spectrometer (HPSDS). A 4.329 μm interband cascade laser is used to target the absorption lines of three CO2 isotopes (13C16O2, 18O12C16O, and 12C16O2) in a 1 m long and 1 mm inner diameter HWG fiber. The detection limits are 0.29 ppm, 65.78 ppb, and 14.65 ppm with an integration time of 218 s for 13C16O2, 18O12C16O, and 12C16O2, respectively, at a modulation frequency of 160 MHz and a pressure of 230 mbar. The measurement precisions of δ13C and δ18O are 0.89 and 0.88 ‰, respectively, corresponding to an integration time of 167 s. An experimental comparison between a HPSDS and a built wavelength modulation system with second-harmonic detection (WMS-2f) is conducted. The results show that compared to the WMS-2f, the developed HPSDS exhibits a greater linear dynamic range and excellent long-term stability. This work aims to demonstrate a detection technique of CO2 isotope dispersion spectroscopy with a large dynamic range for relevant applications focusing on samples with high concentrations of CO2 (% volume fraction), such as respiratory analysis in medical diagnostics.
Collapse
Affiliation(s)
- Haojie Zhang
- Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China
| | - Tao Wu
- Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China
| | - Qiang Wu
- Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Weidong Chen
- Laboratoire de Physicochimie de l'Atmosphère,Université du Littoral Côte d'Opale, 189A Av. Maurice Schumann, Dunkerque 59140, France
| | - Chenwen Ye
- Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China
| | - Mengyu Wang
- Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China
| | - Xingdao He
- Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
9
|
Kidavu AVS, Chaudhary AK. Low level detection of acetone vapor by improvised design of high "Q" tunable frequency Helmholtz photoacoustic cell using UV, mid- IR and THz sources. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123218. [PMID: 37556924 DOI: 10.1016/j.saa.2023.123218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
The paper reports the designing and fabrication aspects of a high "Q = 492.3" Helmholtz photoacoustic (PA) cell employed for the trace level detection of acetone, a biomarker by using 266 nm- UV, Mid-IR (5.4-10.6 micron) and 0.11 Terahertz (THz) sources. The designed Helmholtz PA cell is made of Aluminum and possesses a natural frequency tunable between 1.4 to 4.4 kHz range using a movable piston arrangement of the microphone sensor. Numerous types of disorders, including diabetes, asthma, lung cancer, etc., can be diagnosed using the acetone concentration obtained through breath analysis. The comparative study is related to the response of different types of excitation mechanisms contributed by electronics, vibrational and rotational modes of acetone. The low-level detection (LoD) limit for acetone is of the order of 5.06 & 7.92 ppbV, and 15.3 pptV, respectively, in UV, Mid-IR, and THz region. This study contributes to the development of a highly sensitive, non-invasive acetone detection and quantification modality.
Collapse
Affiliation(s)
- Arjun V S Kidavu
- Advanced Centre for Research in High Energy Materials University of Hyderabad, Hyderabad 500046, India
| | - A K Chaudhary
- Advanced Centre for Research in High Energy Materials University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
10
|
Li Y, Wei X, Zhou Y, Wang J, You R. Research progress of electronic nose technology in exhaled breath disease analysis. MICROSYSTEMS & NANOENGINEERING 2023; 9:129. [PMID: 37829158 PMCID: PMC10564766 DOI: 10.1038/s41378-023-00594-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 10/14/2023]
Abstract
Exhaled breath analysis has attracted considerable attention as a noninvasive and portable health diagnosis method due to numerous advantages, such as convenience, safety, simplicity, and avoidance of discomfort. Based on many studies, exhaled breath analysis is a promising medical detection technology capable of diagnosing different diseases by analyzing the concentration, type and other characteristics of specific gases. In the existing gas analysis technology, the electronic nose (eNose) analysis method has great advantages of high sensitivity, rapid response, real-time monitoring, ease of use and portability. Herein, this review is intended to provide an overview of the application of human exhaled breath components in disease diagnosis, existing breath testing technologies and the development and research status of electronic nose technology. In the electronic nose technology section, the three aspects of sensors, algorithms and existing systems are summarized in detail. Moreover, the related challenges and limitations involved in the abovementioned technologies are also discussed. Finally, the conclusion and perspective of eNose technology are presented.
Collapse
Affiliation(s)
- Ying Li
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192 China
- Laboratory of Intelligent Microsystems, Beijing Information Science and Technology University, Beijing, 100192 China
| | - Xiangyang Wei
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192 China
- Laboratory of Intelligent Microsystems, Beijing Information Science and Technology University, Beijing, 100192 China
| | - Yumeng Zhou
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192 China
| | - Jing Wang
- School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun, 130022 China
| | - Rui You
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192 China
- Laboratory of Intelligent Microsystems, Beijing Information Science and Technology University, Beijing, 100192 China
| |
Collapse
|
11
|
Cao Z, Jing R, Ma S, Wang J, Hu G, Wei G, Luo Q. Theoretical study on the interaction between acetone and BN monolayer doped with Ni for the clinical diagnosis of diabetes mellitus. NANOTECHNOLOGY 2023; 34:445102. [PMID: 37489853 DOI: 10.1088/1361-6528/acea29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Endogenous volatile organic compounds (VOCs) in human exhaled gases can reflect human health status and be used for clinical diagnosis and health monitoring. Acetone is the sign VOC gases of diabetes mellitus. In order to find a potential material for the detection of acetone in the application of the clinical diagnosis of diabetes mellitus. The adsorption properties, including adsorption energy, adsorption distance, charge transfer, density of states, electron localization function and electrons density difference, of acetone on BN monolayer doped with Ni were comprehensively investigated based on density functional theory. The results show that there could be chemisorption between acetone and Ni-BN monolayer and Ni-BN monolayer is probably suitable gas sensitive material for the detection of acetone in the application of diabetes mellitus monitoring and clinical diagnosis.
Collapse
Affiliation(s)
- Zhengqin Cao
- College of Electrical Engineering, Chongqing University of Science and Technology, Chongqing, People's Republic of China
| | - Renjun Jing
- College of Electrical Engineering, Chongqing University of Science and Technology, Chongqing, People's Republic of China
| | - Shouxiao Ma
- Institute of Water Resources and Electric Power, Qinghai University, Xining City, Qinghai Province, People's Republic of China
| | - Jia Wang
- College of Medical Informatics, Chongqing Medical University, Chongqing, People's Republic of China
| | - Gang Hu
- College of Electrical Engineering, Chongqing University of Science and Technology, Chongqing, People's Republic of China
| | - Gang Wei
- College of Electrical Engineering, Chongqing University of Science and Technology, Chongqing, People's Republic of China
| | - Qiming Luo
- College of Electrical Engineering, Chongqing University of Science and Technology, Chongqing, People's Republic of China
| |
Collapse
|
12
|
Xiang C, Yang H, Zhao Z, Deng F, Lv Y, Yang Y, Duan Y, Li W, Hu B. Volatolomics analysis of exhaled breath and gastric-endoluminal gas for distinguishing early upper gastrointestinal cancer from benign. J Breath Res 2023; 17:036004. [PMID: 37094569 DOI: 10.1088/1752-7163/accfb8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/24/2023] [Indexed: 04/26/2023]
Abstract
Exhaled breath and gastric-endoluminal gas (volatile products of diseased tissues) contain a large number of volatile organic compounds, which are valuable for early diagnosis of upper gastrointestinal (UGI) cancer. In this study, exhaled breath and gastric-endoluminal gas of patients with UGI cancer and benign disease were analyzed by gas chromatography-mass spectrometry (GC-MS) and ultraviolet photoionization time-of-flight mass spectrometry (UVP-TOFMS) to construct UGI cancer diagnostic models. Breath samples of 116 UGI cancer and 77 benign disease subjects and gastric-endoluminal gas samples of 114 UGI cancer and 76 benign disease subjects were collected. Machine learning (ML) algorithms were used to construct UGI cancer diagnostic models. Classification models based on exhaled breath for distinguishing UGI cancer from the benign group have area under the curve (AUC) of receiver operating characteristic curve values of 0.959 and 0.994 corresponding to GC-MS and UVP-TOFMS analysis, respectively. The AUC values of models based on gastric-endoluminal gas for UGI cancer and benign group classification are 0.935 and 0.929 corresponding to GC-MS and UVP-TOFMS analysis, respectively. This work indicates that volatolomics analysis of exhaled breath and gastric-endoluminal diseased tissues have great potential in early screening of UGI cancer. Moreover, gastric-endoluminal gas can be a means of gas biopsy to provide auxiliary information for the examination of tissue lesions during gastroscopy.
Collapse
Affiliation(s)
- Chengfang Xiang
- School of Chemistry, Sichuan University, Chengdu 610065, People's Republic of China
| | - Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610064, People's Republic of China
| | - Zhongjun Zhao
- School of Mechanical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Fulong Deng
- School of Mechanical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yantong Lv
- School of Chemical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yanting Yang
- Aliben Sci & Technol Co Ltd, Chengdu 611930, People's Republic of China
| | - Yixiang Duan
- School of Mechanical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
- Aliben Sci & Technol Co Ltd, Chengdu 611930, People's Republic of China
| | - Wenwen Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610064, People's Republic of China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
13
|
Ahuja P, Ujjain SK, Kukobat R, Urita K, Moriguchi I, Furuse A, Hattori Y, Fujimoto K, Rao G, Ge X, Wright T, Kaneko K. Air-permeable redox mediated transcutaneous CO 2 sensor. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 457:141260. [PMID: 36620723 PMCID: PMC9804966 DOI: 10.1016/j.cej.2022.141260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Standard clinical care of neonates and the ventilation status of human patients affected with coronavirus disease involves continuous CO2 monitoring. However, existing noninvasive methods are inadequate owing to the rigidity of hard-wired devices, insubstantial gas permeability and high operating temperature. Here, we report a cost-effective transcutaneous CO2 sensing device comprising elastomeric sponges impregnated with oxidized single-walled carbon nanotubes (oxSWCNTs)-based composites. The proposed device features a highly selective CO2 sensing response (detection limit 155 ± 15 ppb), excellent permeability and reliability under a large deformation. A follow-up prospective study not only offers measurement equivalency to existing clinical standards of CO2 monitoring but also provides important additional features. This new modality allowed for skin-to-skin care in neonates and room-temperature CO2 monitoring as compared with clinical standard monitoring system operating at high temperature to substantially enhance the quality for futuristic applications.
Collapse
Affiliation(s)
- Preety Ahuja
- Research Initiative for Supra-Material, Shinshu University, Nagano 380-8553, Japan
- Center for Advanced Sensor Technology and Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Sanjeev Kumar Ujjain
- Research Initiative for Supra-Material, Shinshu University, Nagano 380-8553, Japan
- Center for Advanced Sensor Technology and Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Radovan Kukobat
- Center for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka 78000, Bosnia and Herzegovina
| | - Koki Urita
- Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan
| | - Isamu Moriguchi
- Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan
| | - Ayumi Furuse
- Research Initiative for Supra-Material, Shinshu University, Nagano 380-8553, Japan
| | - Yoshiyuki Hattori
- Division of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Keisaku Fujimoto
- Omachi Municipal General Hospital, Omachi 398-0002, Japan
- School of Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Govind Rao
- Center for Advanced Sensor Technology and Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Xudong Ge
- Center for Advanced Sensor Technology and Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Thelma Wright
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Katsumi Kaneko
- Research Initiative for Supra-Material, Shinshu University, Nagano 380-8553, Japan
| |
Collapse
|
14
|
Kim C, Lee KK, Kang MS, Shin DM, Oh JW, Lee CS, Han DW. Artificial olfactory sensor technology that mimics the olfactory mechanism: a comprehensive review. Biomater Res 2022; 26:40. [PMID: 35986395 PMCID: PMC9392354 DOI: 10.1186/s40824-022-00287-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/13/2022] [Indexed: 11/19/2022] Open
Abstract
Artificial olfactory sensors that recognize patterns transmitted by olfactory receptors are emerging as a technology for monitoring volatile organic compounds. Advances in statistical processing methods and data processing technology have made it possible to classify patterns in sensor arrays. Moreover, biomimetic olfactory recognition sensors in the form of pattern recognition have been developed. Deep learning and artificial intelligence technologies have enabled the classification of pattern data from more sensor arrays, and improved artificial olfactory sensor technology is being developed with the introduction of artificial neural networks. An example of an artificial olfactory sensor is the electronic nose. It is an array of various types of sensors, such as metal oxides, electrochemical sensors, surface acoustic waves, quartz crystal microbalances, organic dyes, colorimetric sensors, conductive polymers, and mass spectrometers. It can be tailored depending on the operating environment and the performance requirements of the artificial olfactory sensor. This review compiles artificial olfactory sensor technology based on olfactory mechanisms. We introduce the mechanisms of artificial olfactory sensors and examples used in food quality and stability assessment, environmental monitoring, and diagnostics. Although current artificial olfactory sensor technology has several limitations and there is limited commercialization owing to reliability and standardization issues, there is considerable potential for developing this technology. Artificial olfactory sensors are expected to be widely used in advanced pattern recognition and learning technologies, along with advanced sensor technology in the future.
Collapse
|
15
|
Li B, Zhang X, Huo L, Gao S, Guo C, Zhang Y, Major Z, Zhang F, Cheng X, Xu Y. Controllable construction of ZnFe 2O 4-based micro-nano heterostructure for the rapid detection and degradation of VOCs. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129005. [PMID: 35500342 DOI: 10.1016/j.jhazmat.2022.129005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Micro-nano heterogeneous oxides have received extensive attention due to their distinctive physicochemical properties. However, it is a challenge to prepare the hierarchical multicomponent metal oxide nanomaterials with abundant heterogeneous interfaces in a controllable way. In this work, the effective construction of the heterogeneous structure of the material is achieved by regulating the ratio of metal salts under thermal solvent condition. Three-dimensional spheres (ZnFe2O4) constructed by zero-dimensional ultra-small nanoparticles, in particular three-dimensional hollow sea urchin spheres (ZnO/ZnFe2O4) constructed by one-dimensional nanorods and three-dimensional hydrangeas (α-Fe2O3/ZnFe2O4) assembled by two-dimensional nanosheets were obtained. The two composite materials contain a large number of heterojunctions, which enhances the sensitivity of material to volatile organic compounds gas. Among them, the α-Fe2O3/ZnFe2O4 composite shows the best sensing performance for VOCs. For example, its response to 100 ppm acetone reaches 142 at 170 °C with the response time shortened to 3 s and the detection limit falling to 10 ppb. Meanwhile, the composite material presents a degradation rate of more than 90% for VOCs at a flow rate of 20 mL/min at 170 °C. In addition, the sensing and sensitivity mechanism of the composite material are studied in detail by combining GC-MS, XPS with UV diffuse reflectance tests.
Collapse
Affiliation(s)
- Baosheng Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xianfa Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Lihua Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Shan Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Chuanyu Guo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yu Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Zoltán Major
- Institute of Polymer Product Engineering, Johannes Kepler University Linz, Austria
| | - Fangdou Zhang
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoli Cheng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| | - Yingming Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
16
|
Díaz de León-Martínez L, Grimaldo-Galeana JM, Alcántara-Quintana LE, Díaz-Barriga F, Pérez-Vázquez FJ, Flores-Ramírez R. Evaluation of cytokines in exhaled breath condensate in an occupationally exposed population to pneumotoxic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59872-59884. [PMID: 35397024 DOI: 10.1007/s11356-022-20101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The quarrying is considered a precarious occupation with high toxicity, is an informal economic activity that employs low technology, limited protection, and poses a risk to workers and their families. In quarrying, silica dust is generated and there is also occupational exposure to significant mixtures of pneumotoxic pollutants, including mineral dust (crystalline silica, carbon or cement, polycyclic aromatic hydrocarbons (PAHs), solvents, and others, which are aggravated by the lack of use of protective equipment, causing irreversible damage to the worker's respiratory health. Thus, the objective of this work focused on the evaluation of the respiratory health of artisan stonemasons in San Luis Potosí, Mexico through the study of exhaled breath condensate (EBC) (pH, pro-inflammatory cytokines) as well as the study of the exposure to pollutants present in the work area (PAHs, toluene, and 2.5 µm particulate matter) through biomarkers of exposure (hippuric acid and hydroxylated metabolites of PAHs). The results show the presence of crystalline SiO2 in 100% of the samples analyzed; the PM2.5 concentrations were 5 to 10 times the permitted levels. Regarding exposure to PAHs, all the stonemasons presented urine concentrations of at least 5 of the OH-PAHs evaluated; 9-OH-FLU occurred at higher concentrations of 171.2 (122.7-279.4) µg L-1; hippuric acid, which was present in 100% of the workers evaluated in concentrations of 283.4 (27.72-1119) mg L-1, 100% of which were above the values established for occupational scenarios. The pH values obtained for the EBC samples were presented at an average of 7.07 (6.33-7.66). Pro-inflammatory cytokines were present in 86.1% of the study population. The cytokine that was found in higher concentrations was IL-2, with a mean of 178.01 pg mL-1 and 3124.01 pg mL-1 for the pH < 7 and pH > 7 groups, respectively. Some correlations between the cytokines and the exposure biomarkers were presented. Stonemasons are highly exposed to pneumotoxic pollutants and markers of inflammation at the pulmonary level; in addition, a high risk of developing silicosis. Quarrying should be addressed as a carcinogenic activity, which would imply the design of monitoring and control strategies for these pollutants that our country currently lacks, particularly in precarious occupations. It is necessary to develop strategies to protect the health of precarious workers.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, CP, Mexico
| | - José Moisés Grimaldo-Galeana
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, CP, Mexico
| | - Luz Eugenia Alcántara-Quintana
- Unidad de Innovación en Diagnóstico Celular Y Molecular, Coordinación Para La Innovación Y La Aplicación de La Ciencia Y Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a Sección, 78120, San Luis Potosi, Mexico
| | - Fernando Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, CP, Mexico
| | - Francisco Javier Pérez-Vázquez
- Coordinación Para La Innovación Y Aplicación de La Ciencia Y La Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, CP, Mexico
| | - Rogelio Flores-Ramírez
- Coordinación Para La Innovación Y Aplicación de La Ciencia Y La Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, CP, Mexico.
| |
Collapse
|
17
|
|
18
|
Alshareef M, Snari RM, Alaysuy O, Aldawsari AM, Abumelha HM, Katouah H, El-Metwaly NM. Optical Detection of Acetone Using " Turn-Off" Fluorescent Rice Straw Based Cellulose Carbon Dots Imprinted onto Paper Dipstick for Diabetes Monitoring. ACS OMEGA 2022; 7:16766-16777. [PMID: 35601306 PMCID: PMC9118203 DOI: 10.1021/acsomega.2c01492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/26/2022] [Indexed: 05/08/2023]
Abstract
Persistent bad breath has been reported as a sign of serious diabetes health conditions. If an individual's breath has a strong odor of acetone, it may indicate high levels of ketones in the blood owing to diabetic ketoacidosis. Thus, acetone gas in the breath of patients with diabetes can be detected using the current easy-to-use fluorescent test dipstick. In another vein, rice straw waste is the most well-known solid pollutant worldwide. Thus, finding a simple technique to change rice straw into a valuable material is highly important. A straightforward and environmentally friendly approach for reprocessing rice straw as a starting material for the creation of fluorescent nitrogen-doped carbon dots (NCDs) has been established. The preparation process of NCDs was carried out via one-pot hydrothermal carbonization using NH4OH as a passivation substance. A testing strip was developed on the basis of cellulose CD nanoparticles (NPs) immobilized onto cellulose paper assay. The NCDs demonstrated a quantum yield of 23.76%. A fluorescence wavelength was detected at 443 nm upon applying an excitation wavelength of 354 nm. NCDs demonstrated remarkable selectivity for acetone gas as their fluorescence was definitely exposed to quenching by acetone as a consequence of the inner filter effect. A linear correlation was observed across the concentration range of 0.5-150 mM. To detect and measure acetone gas, the present cellulose paper strip has a "switch off" fluorescent signal. A readout limit was accomplished for an aqueous solution of acetone as low as 0.5 mM under ambient conditions. The chromogenic fluorescence of the cellulose assay responsiveness depends on the fluorescence quenching characteristic of the cellulose carbon dots in acetone. A thin fluorescent cellulose carbon dot layer was deposited onto the surface of cellulose strips by a simple impregnation process. CDs were made using NP morphology and analyzed using infrared spectroscopy and transmission electron microscopy. The carbon dot distribution on the paper strip was evaluated by scanning electron microscope and energy-dispersive X-ray analysis. The absorption and fluorescence spectral analyses were investigated. The paper sheets' mechanical qualities were also examined.
Collapse
Affiliation(s)
- Mubark Alshareef
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Razan M. Snari
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Omaymah Alaysuy
- Department
of Chemistry, College of Science, University
of Tabuk, 71474 Tabuk, Saudi Arabia
| | - Afrah M. Aldawsari
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
- King
Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Hana M. Abumelha
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hanadi Katouah
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, El-Gomhoria
Street, Mansoura 35516, Egypt
- ;
| |
Collapse
|
19
|
Ruszkiewicz DM, Myers R, Henderson B, Dato-Haji-Md-Yusof H, Meister A, Moreno S, Eddleston M, Darnley K, Nailon W, McLaren D, Lao YE, Hovda KE, Lam S, Cristescu SM, Thomas CLP. Peppermint protocol: first results for gas chromatography-ion mobility spectrometry. J Breath Res 2022; 16. [PMID: 35508103 DOI: 10.1088/1752-7163/ac6ca0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Abstract
The Peppermint Initiative seeks to inform the standardisation of breath analysis methods. Five Peppermint Experiments with gas chromatography-ion mobility spectrometry (GC-IMS), operating in the positive mode with a tritium 3H 5.68 keV, 370 MBq ionisation source, were undertaken to provide benchmark Peppermint Washout data for this technique, to support its use in breath-testing, analysis, and research. Headspace analysis of a peppermint-oil capsule by GC-IMS with on-column injection (0.5 cm3) identified 12 IMS responsive compounds, of which the four most abundant were: eucalyptol; β-pinene; α-pinene; and limonene. Elevated concentrations of these four compounds were identified in exhaled-breath following ingestion of a peppermint-oil capsule. An unidentified compound attributed as a volatile catabolite of peppermint-oil was also observed. The most intense exhaled peppermint-oil component was eucalyptol, which was selected as a peppermint marker for benchmarking GC-IMS. Twenty-five washout experiments monitored levels of exhaled eucalyptol, by GC-IMS with on-column injection (0.5 cm3), at t=0 min, and then at t+60, t+90, t+165, t+285 and t+360 min from ingestion of a peppermint capsule resulting in 148 peppermint breath analyses. Additionally, the Peppermint Washout data was used to evaluate clinical deployments with a further five washout tests run in clinical settings generating an additional 35 breath samples. Regression analysis yielded an average extrapolated time taken for exhaled eucalyptol levels to return to baseline values to be 429 ± 62 min (± 95% confidence-interval). The benchmark value was assigned to the lower 95 % confidence-interval, 367 min. Further evaluation of the data indicated that the maximum number of volatile organic compounds (VOC) discernible from a 0.5 cm3 breath sample was 69, while the use of an in-line biofilter appeared to reduce this to 34.
Collapse
Affiliation(s)
- Dorota M Ruszkiewicz
- Department of Chemistry, , Loughborough University School of Science, Centre for Analytical Science, Loughborough, Leicestershire, LE11 3TU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Renelle Myers
- British Columbia Cancer Research Centre, University of British Columbia, Vancouver, British Columbia, V5Z 1L3, CANADA
| | - Ben Henderson
- Department of Analytical Chemistry and Chemometrics, Radboud Universiteit, Institute of Molecules and Materials, Nijmegen, 6500 HC, NETHERLANDS
| | - Hazim Dato-Haji-Md-Yusof
- Department of Chemistry, , Loughborough University School of Science, Centre for Analytical Science, Loughborough, Leicestershire, LE11 3TU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Austin Meister
- British Columbia Cancer Research Centre, University of British Columbia, Vancouver, British Columbia, V5Z 1L3, CANADA
| | - Sergi Moreno
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Michael Eddleston
- Pharmacology, Toxicology and Therapeutics Unit, University of Edinburgh Division of Clinical and Surgical Sciences, Centre for Cardiovascular Science, Edinburgh, Scotland, EH16 4TJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Kareen Darnley
- Royal Infirmary of Edinburgh, Wellcome Trust Clinical Research Facility, Edinburgh, Edinburgh, EH16 4SA, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - William Nailon
- Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, Scotland, EH4 2XU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Duncan McLaren
- Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, Scotland, EH4 2XU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Yvonne Elisabeth Lao
- Oslo University Hospital, Norwegian National Unit for CBRNE Medicine, Oslo, 20 0372, NORWAY
| | - Knut Erik Hovda
- Oslo University Hospital, Norwegian National Unit for CBRNE Medicine, Oslo, 20 0372, NORWAY
| | - Stephen Lam
- British Columbia Cancer Research Centre, University of British Columbia, Vancouver, British Columbia, V5Z 1L3, CANADA
| | - Simona M Cristescu
- Department of Analytical Chemistry and Chemometrics, Radboud Universiteit, Institute of Molecules and Materials, Nijmegen, Gelderland, 6500 HC, NETHERLANDS
| | - C L Paul Thomas
- Department of Chemistry, Loughborough University School of Science, Centre for Analytical Science, Loughborough, Leicestershire, LE11 3TU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
20
|
Breath Biomarkers as Disease Indicators: Sensing Techniques Approach for Detecting Breath Gas and COVID-19. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extensive research shows that there is a close correlation between a disease diagnostic and the patient’s exhale breath gas composition. It has been demonstrated, for example, that patients with a diabetes diagnosis have a certain level of acetone fume in their exhale breath. Actually, symptoms from many other diseases could be easily diagnosed if appropriate and reliable gas sensing technologies are available. The COVID-19 pandemic has created demand for a cheap and quick screening tool for the disease, where breath biomarker screening could be a very promising approach. It has been shown that COVID-19 patients potentially present a simultaneous increase in ethanal (acetaldehyde) and acetone in their exhale breath. In this paper, we explore two different sensing approaches to detect ethanal/acetone, namely by colorimetric markers, which could for example be integrated into facemasks, and by a breathalyzer containing a functionalized quartz crystal microbalance. Both approaches can successfully detect the presence of a biomarker gas on a person’s breath and this could potentially revolutionize the future of healthcare in terms of non-invasive and early-stage detection of various diseases.
Collapse
|
21
|
Simultaneous determination of exhaled breath vapor and exhaled breath aerosol using filter-incorporated needle-trap devices: A comparison of gas-phase and droplet-bound components. Anal Chim Acta 2022; 1203:339671. [DOI: 10.1016/j.aca.2022.339671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 01/25/2023]
|
22
|
Effect of household air pollutants on the composition of exhaled breath characterized by solid-phase microextraction and needle-trap devices. Anal Bioanal Chem 2022; 414:5573-5583. [PMID: 35274153 DOI: 10.1007/s00216-022-03997-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 01/07/2023]
Abstract
Exposure to household air pollutants is becoming a serious environmental health risk. Various methods can be applied to assess humans' exposure status to indoor pollutants, with breath monitoring being among the best options. Breath sampling is fast and non-invasive, and contains compounds that can be used as markers for evaluating exposure length and estimating internal concentrations of pollutants. However, the distribution of compounds between gas and droplets in breath samples represents one of the key challenges associated with this analytical method. In this work, a needle-trap device (NTD) was prepared by packing the needle with a porous filter, divinyl benzene, and Carboxen to enable the exhaustive capture of both droplet-bound and gaseous components. Furthermore, fiber-based solid-phase microextraction (SPME) was also applied to extract compounds from only the gas phase to distinguish this portion of analytes from the total concentration in the sample. Dynamic, real-time breath sampling was enabled via a new sampling tube equipped with 2 one-way valves, which was specially designed for this work. Both methods provided satisfactory reproducibility, repeatability, and sensitivity, with detection limits as low as 0.05 ng mL-1. To investigate the real-world applicability of the proposed devices, breath samples were obtained from volunteers who had been exposed to candle and incense smoke and aerosol sprays, or had smoked cannabis. The results revealed the high concentration of organic air pollutants in inhaled air (maximum of 215 ng mL-1) and exhaled breath (maximum of 14.4 ng mL-1) and a correlation between the components in inhaled air and exhaled breath. Significantly, the findings further revealed that the developed NTD has enhanced breath-sample determinations, especially for polar compounds, which tend to remain trapped in breath droplets.
Collapse
|
23
|
Zhang H, He R, Niu Y, Han F, Li J, Zhang X, Xu F. Graphene-enabled wearable sensors for healthcare monitoring. Biosens Bioelectron 2022; 197:113777. [PMID: 34781177 DOI: 10.1016/j.bios.2021.113777] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/19/2023]
Abstract
Wearable sensors in healthcare monitoring have recently found widespread applications in biomedical fields for their non- or minimal-invasive, user-friendly and easy-accessible features. Sensing materials is one of the major challenges to achieve these superiorities of wearable sensors for healthcare monitoring, while graphene-based materials with many favorable properties have shown great efficiency in sensing various biochemical and biophysical signals. In this paper, we review state-of-the-art advances in the development and modification of graphene-based materials (i.e., graphene, graphene oxide and reduced graphene oxide) for fabricating advanced wearable sensors with 1D (fibers), 2D (films) and 3D (foams/aerogels/hydrogels) macroscopic structures. We summarize the structural design guidelines, sensing mechanisms, applications and evolution of the graphene-based materials as wearable sensors for healthcare monitoring of biophysical signals (e.g., mechanical, thermal and electrophysiological signals) and biochemical signals from various body fluids and exhaled gases. Finally, existing challenges and future prospects are presented in this area.
Collapse
Affiliation(s)
- Huiqing Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy & Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Rongyan He
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yan Niu
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fei Han
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jing Li
- Department of Plastic and Burn Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Xiongwen Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy & Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
24
|
The Potential Use of Volatile Biomarkers for Malaria Diagnosis. Diagnostics (Basel) 2021; 11:diagnostics11122244. [PMID: 34943481 PMCID: PMC8700171 DOI: 10.3390/diagnostics11122244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
Pathogens may change the odor and odor-related biting behavior of the vector and host to enhance pathogen transmission. In recent years, volatile biomarker investigations have emerged to identify odors that are differentially and specifically released by pathogens and plants, or the pathogen-infected or even cancer patients. Several studies have reported odors or volatile biomarkers specifically detected from the breath and skin of malaria-infected individuals. This review will discuss the potential use of these odors or volatile biomarkers for the diagnosis of malaria. This approach not only allows for the non-invasive mean of sample collection but also opens up the opportunity to develop a biosensor for malaria diagnosis in low-resource settings.
Collapse
|
25
|
Lee JE, Lim CK, Song H, Choi SY, Lee DS. A highly smart MEMS acetone gas sensors in array for diet-monitoring applications. MICRO AND NANO SYSTEMS LETTERS 2021. [DOI: 10.1186/s40486-021-00136-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractIn the present work, gas sensor arrays consisted of four different sensing materials based on CuO and their depositions on the MEMS microheaters were designed, fabricated and characterized. The sensor array is consisted with CuO, CuO with Pt NPs, ZnO–CuO and ZnO–CuO with Au NPs and their gas sensing properties are characterized for detection of exhaled breath-related VOCs. Through MEMS microheaters, power consumption is considered for application to healthcare devices which requires ultrasensitive acetone gas sensitivity. Also, using the principal component analysis, it enables to discriminate acetone gas, a biomarker for fat burning during diet, with other VOCs gases. The device would be applicable for on-site diet monitoring in the field of mobile healthcare.
Collapse
|
26
|
Zhang J, Tian Y, Luo Z, Qian C, Li W, Duan Y. Breath volatile organic compound analysis: an emerging method for gastric cancer detection. J Breath Res 2021; 15. [PMID: 34610588 DOI: 10.1088/1752-7163/ac2cde] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Gastric cancer is a common malignancy, being the fifth most frequently diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide. Diagnosis of gastric cancer at the early stage is critical to effectively improve the survival rate. However, a substantial proportion of patients with gastric cancer in the early stages lack specific symptoms or are asymptomatic. Moreover, the imaging techniques currently used for gastric cancer screening, such as computed tomography and barium examination, are usually radioactive and have low sensitivity and specificity. Even though endoscopy has high accuracy for gastric cancer screening, its application is limited by the invasiveness of the technique. Breath analysis is an economic, effective, easy to perform, non-invasive detection method, and has no undesirable side effects on subjects. Extensive worldwide research has been conducted on breath volatile organic compounds (VOCs), which reveals its prospect as a potential method for gastric cancer detection. Many interesting results have been obtained and innovative methods have been introduced in this subject; hence, an extensive review would be beneficial. By providing a comprehensive list of breath VOCs identified by gastric cancer would promote further research in this field. This review summarizes the commonly used technologies for exhaled breath analysis, focusing on the application of analytical instruments in the detection of breath VOCs in gastric cancers, and the alterations in the profile of breath biomarkers in gastric cancer patients are discussed as well.
Collapse
Affiliation(s)
- Jing Zhang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Cheng Qian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, People's Republic of China
| | - Wenwen Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| |
Collapse
|
27
|
Popa C, Petrus M, Bratu AM, Negut I. Experimental Investigation on Water Adsorption Using Laser Photoacoustic Spectroscopy and Numerical Simulations. MATERIALS 2021; 14:ma14195839. [PMID: 34640236 PMCID: PMC8510237 DOI: 10.3390/ma14195839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/15/2023]
Abstract
In the present research we propose a model to assess the water vapors adsorption capacity of a SiO2 trap in the breathing circuit, aiming to reduce the loading of interfering compounds in human breath samples. In this study we used photoacoustic spectroscopy to analyze the SiO2 adsorption of interfering compounds from human breath and numerical simulations to study the flow of expired breath gas through porous media. As a result, the highest adsorption rate was achieved with a flow rate of 300 sccm, while the lowest rate was achieved with a flow rate of 600 sccm. In the procedure of H2O removal from the human breath air samples, we determined a quantity of 213 cm3 SiO2 pearls to be used for a 750 mL sampling bag, in order to keep the detection of ethylene free of H2O interference. The data from this study encourages the premise that the SiO2 trap is efficient in the reduction of interfering compounds (like water vapors) from the human breath.
Collapse
|
28
|
Kim C, Raja IS, Lee JM, Lee JH, Kang MS, Lee SH, Oh JW, Han DW. Recent Trends in Exhaled Breath Diagnosis Using an Artificial Olfactory System. BIOSENSORS 2021; 11:337. [PMID: 34562928 PMCID: PMC8467588 DOI: 10.3390/bios11090337] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Artificial olfactory systems are needed in various fields that require real-time monitoring, such as healthcare. This review introduces cases of detection of specific volatile organic compounds (VOCs) in a patient's exhaled breath and discusses trends in disease diagnosis technology development using artificial olfactory technology that analyzes exhaled human breath. We briefly introduce algorithms that classify patterns of odors (VOC profiles) and describe artificial olfactory systems based on nanosensors. On the basis of recently published research results, we describe the development trend of artificial olfactory systems based on the pattern-recognition gas sensor array technology and the prospects of application of this technology to disease diagnostic devices. Medical technologies that enable early monitoring of health conditions and early diagnosis of diseases are crucial in modern healthcare. By regularly monitoring health status, diseases can be prevented or treated at an early stage, thus increasing the human survival rate and reducing the overall treatment costs. This review introduces several promising technical fields with the aim of developing technologies that can monitor health conditions and diagnose diseases early by analyzing exhaled human breath in real time.
Collapse
Affiliation(s)
- Chuntae Kim
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea
| | | | - Jong-Min Lee
- School of Nano Convergence Technology, Hallym University, Chuncheon 24252, Korea
| | | | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| | - Seok Hyun Lee
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| | - Jin-Woo Oh
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea
- Department of Nanoenergy Engineering, Pusan National University, Busan 46241, Korea
| | - Dong-Wook Han
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
29
|
Yamanaka HR, Cheung C, Mendoza JS, Oliva DJ, Elzey-Aberilla K, Perrault KA. Pilot Study on Exhaled Breath Analysis for a Healthy Adult Population in Hawaii. Molecules 2021; 26:molecules26123726. [PMID: 34207244 PMCID: PMC8234827 DOI: 10.3390/molecules26123726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 02/01/2023] Open
Abstract
Fast diagnostic results using breath analysis are an anticipated possibility for disease diagnosis or general health screenings. Tests that do not require sending specimens to medical laboratories possess capabilities to speed patient diagnosis and protect both patient and healthcare staff from unnecessary prolonged exposure. The objective of this work was to develop testing procedures on an initial healthy subject cohort in Hawaii to act as a range-finding pilot study for characterizing the baseline of exhaled breath prior to further research. Using comprehensive two-dimensional gas chromatography (GC×GC), this study analyzed exhaled breath from a healthy adult population in Hawaii to profile the range of different volatile organic compounds (VOCs) and survey Hawaii-specific differences. The most consistently reported compounds in the breath profile of individuals were acetic acid, dimethoxymethane, benzoic acid methyl ester, and n-hexane. In comparison to other breathprinting studies, the list of compounds discovered was representative of control cohorts. This must be considered when implementing proposed breath diagnostics in new locations with increased interpersonal variation due to diversity. Further studies on larger numbers of subjects over longer periods of time will provide additional foundational data on baseline breath VOC profiles of control populations for comparison to disease-positive cohorts.
Collapse
|
30
|
Ma MY, Yu LQ, Wang SW, Meng Y, Lv YK. Hybrid ZIF-8-90 for Selective Solid-Phase Microextraction of Exhaled Breath from Gastric Cancer Patients. ACS APPLIED BIO MATERIALS 2021; 4:3608-3613. [PMID: 35014446 DOI: 10.1021/acsabm.1c00107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal-organic frameworks (MOFs) are a new kind of microporous materials whose unique properties make them promising as coatings for solid phase microextraction (SPME). However, previous MOF coatings for SPME exclusively focus on single-linker MOFs, and the selective enrichment of polar or nonpolar targets depends on the polarity of linker on the surface of MOFs, which greatly limits the application of MOF coating for SPME in real samples. Here, we report a hybrid MOF-coated stainless steel fiber for SPME of biomarkers in exhaled breath from gastric cancer patients. Zeolitic imidazolate framework-8-90 (ZIF-8-90) possesses the aldehyde groups and methyl groups in the framework as a model MOF, and eight biomarkers (ethanol, acetone, hexanal, hexanol, nonane, isoprene, heptane, and decane) were used as the target analytes. The ZIF-8-90-coated fiber shows high enrichment efficiency for hydrophilic targets and hydrophobic targets, wide linearity (three orders of magnitude), and low detection limits (0.82-2.64 μg L-1). The ZIF-8-90-coated fiber exhibited higher enrichment performance for all the investigated analytes as a result of the synergy of methyl and aldehyde groups, the porous structure, and the suitable pore size of ZIF-8-90 (4-5 Å). The relative standard deviation (RSD) of six repetitions for extractions using the same ZIF-8-90-coated fiber ranged from 2.5 to 7.3%. The reproducibility between the three fibers prepared in parallel varied in the range of 4.8-12% (RSD). The fabricated ZIF-8-90-coated fiber lasted for at least 120 cycles of extraction/desorption/conditioning without an obvious reduction in extraction efficiency and precision. Finally, the developed ZIF-8-90-coated SPME fiber has been successfully used for the analysis of exhaled breath samples from gastric patients with satisfied recoveries (88-106%).
Collapse
Affiliation(s)
- Meng-Yuan Ma
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Li-Qing Yu
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Shuo-Wen Wang
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Ying Meng
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Yun-Kai Lv
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| |
Collapse
|
31
|
Cheng P, Wang C, Wang Y, Xu L, Dang F, Lv L, Li X. Enhanced acetone sensing properties based on in situgrowth SnO 2nanotube arrays. NANOTECHNOLOGY 2021; 32:245503. [PMID: 33691290 DOI: 10.1088/1361-6528/abed74] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Large-scale and well-alignedin situgrowth SnO2nanotube (NT) arrays have been synthesized directly on the surface of the Al2O3ceramic tube by a cost-effective template self-etching method. The morphology ofin situSnO2NTs can be adjusted by changing the concentration of urea. The structure and morphology characteristics of SnO2NT were examined via x-ray diffraction, BET, and scanning electron microscopy, respectively. A series of detections were carried out to evaluate the gas sensing performances. The results indicated thatin situgrowth SnO2NT arrays sensor exhibited an excellent response (S = 20.3), good linearity under the concentration range of ppm level (5-300 ppm), and outstanding selectivity to 100 ppm of acetone gas. Compared with the sensors fabricated by a slurry-coating method, the controllablein situassembled SnO2NT arrays exhibited a more stable structure and easier fabrication process. The high acetone sensing performance might due to the unique hollow structure and favorable orientation growth. The dominant sensing mechanism about thein situgrowth SnO2NT arrays sensor has been discussed in detail. It is expected thatin situgrowth SnO2NT arrays sensor with the general working principle and controllable growth strategy will become a promising functional material in monitoring and detecting acetone.
Collapse
Affiliation(s)
- Pengfei Cheng
- School of Aerospace Science and Technology, Xidian University, 266 Xifeng Road, Xi'an 710126, People's Republic of China
| | - Chen Wang
- School of Aerospace Science and Technology, Xidian University, 266 Xifeng Road, Xi'an 710126, People's Republic of China
| | - Yinglin Wang
- School of Aerospace Science and Technology, Xidian University, 266 Xifeng Road, Xi'an 710126, People's Republic of China
| | - Luping Xu
- School of Aerospace Science and Technology, Xidian University, 266 Xifeng Road, Xi'an 710126, People's Republic of China
| | - Fan Dang
- School of Aerospace Science and Technology, Xidian University, 266 Xifeng Road, Xi'an 710126, People's Republic of China
| | - Li Lv
- School of Aerospace Science and Technology, Xidian University, 266 Xifeng Road, Xi'an 710126, People's Republic of China
| | - Xu Li
- School of Aerospace Science and Technology, Xidian University, 266 Xifeng Road, Xi'an 710126, People's Republic of China
| |
Collapse
|
32
|
Abstract
Colorimetric sensing technologies have been widely used for both quantitative detection of specific analyte and recognition of a large set of analytes in gas phase, ranging from environmental chemicals to biomarkers in breath. However, the accuracy and reliability of the colorimetric gas sensors are threatened by the humidity interference in different application scenarios. Though substantial progress has been made toward new colorimetric sensors development, unless the humidity interference is well addressed, the colorimetric sensors cannot be deployed for real-world applications. Although there are comprehensive and insightful review articles about the colorimetric gas sensors, they have focused more on the progress in new sensing materials, new sensing systems, and new applications. There is a need for reviewing the works that have been done to solve the humidity issue, a challenge that the colorimetric gas sensors commonly face. In this review paper, we analyzed the mechanisms of the humidity interference and discussed the approaches that have been reported to mitigate the humidity interference in colorimetric sensing of environmental gases and breath biomarkers. Finally, the future perspectives of colorimetric sensing technologies are also discussed.
Collapse
Affiliation(s)
- Jingjing Yu
- Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Di Wang
- Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Vishal Varun Tipparaju
- Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Francis Tsow
- Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaojun Xian
- Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
33
|
Long Y, Wang C, Wang T, Li W, Dai W, Xie S, Tian Y, Liu M, Liu Y, Peng X, Liu Y, Zhang Y, Wang R, Li Q, Duan Y. High performance exhaled breath biomarkers for diagnosis of lung cancer and potential biomarkers for classification of lung cancer. J Breath Res 2021; 15:016017. [PMID: 33586667 DOI: 10.1088/1752-7163/abaecb] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Exhaled breath analysis has emerged as a promising non-invasive method for diagnosing lung cancer (LC), whereas reliable biomarkers are lacking. Herein, a standardized and systematic study was presented for LC diagnosis, classification and metabolism exploration. To improve the reliability of biomarkers, a validation group was included, and quality control for breath sampling and analysis, comprehensive pollutants analysis, and strict biomarker screening were performed. The performance of exhaled breath biomarkers was shown to be excellent in diagnosing LC even in early stages (stage I and II) with surpassing 0.930 area under the receiver operating characteristic (ROC) curve (AUC), 90% of sensitivity and 88% of specificity both in the discovery and validation analyses. Meanwhile, in these two groups, diagnosing subtypes of LC attained AUCs over 0.930 and reached 1.00 in the two subtypes of adenocarcinomas. It is demonstrated that the metabolism changes in LC are possibly related to lipid oxidation, gut microbial, cytochrome P450 and glutathione S-transferase, and glutathione pathways change in LC progression. Overall, the reliable biomarkers contribute to the clinical application of breath analysis in screening LC patients as well as those in early stages.
Collapse
Affiliation(s)
- Yijing Long
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-source and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Volatile Organic Compounds in Exhaled Breath as Fingerprints of Lung Cancer, Asthma and COPD. J Clin Med 2020; 10:jcm10010032. [PMID: 33374433 PMCID: PMC7796324 DOI: 10.3390/jcm10010032] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Lung cancer, chronic obstructive pulmonary disease (COPD) and asthma are inflammatory diseases that have risen worldwide, posing a major public health issue, encompassing not only physical and psychological morbidity and mortality, but also incurring significant societal costs. The leading cause of death worldwide by cancer is that of the lung, which, in large part, is a result of the disease often not being detected until a late stage. Although COPD and asthma are conditions with considerably lower mortality, they are extremely distressful to people and involve high healthcare overheads. Moreover, for these diseases, diagnostic methods are not only costly but are also invasive, thereby adding to people’s stress. It has been appreciated for many decades that the analysis of trace volatile organic compounds (VOCs) in exhaled breath could potentially provide cheaper, rapid, and non-invasive screening procedures to diagnose and monitor the above diseases of the lung. However, after decades of research associated with breath biomarker discovery, no breath VOC tests are clinically available. Reasons for this include the little consensus as to which breath volatiles (or pattern of volatiles) can be used to discriminate people with lung diseases, and our limited understanding of the biological origin of the identified VOCs. Lung disease diagnosis using breath VOCs is challenging. Nevertheless, the numerous studies of breath volatiles and lung disease provide guidance as to what volatiles need further investigation for use in differential diagnosis, highlight the urgent need for non-invasive clinical breath tests, illustrate the way forward for future studies, and provide significant guidance to achieve the goal of developing non-invasive diagnostic tests for lung disease. This review provides an overview of these issues from evaluating key studies that have been undertaken in the years 2010–2019, in order to present objective and comprehensive updated information that presents the progress that has been made in this field. The potential of this approach is highlighted, while strengths, weaknesses, opportunities, and threats are discussed. This review will be of interest to chemists, biologists, medical doctors and researchers involved in the development of analytical instruments for breath diagnosis.
Collapse
|
35
|
Rehouma H, Noumeir R, Essouri S, Jouvet P. Advancements in Methods and Camera-Based Sensors for the Quantification of Respiration. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7252. [PMID: 33348827 PMCID: PMC7766256 DOI: 10.3390/s20247252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023]
Abstract
Assessment of respiratory function allows early detection of potential disorders in the respiratory system and provides useful information for medical management. There is a wide range of applications for breathing assessment, from measurement systems in a clinical environment to applications involving athletes. Many studies on pulmonary function testing systems and breath monitoring have been conducted over the past few decades, and their results have the potential to broadly impact clinical practice. However, most of these works require physical contact with the patient to produce accurate and reliable measures of the respiratory function. There is still a significant shortcoming of non-contact measuring systems in their ability to fit into the clinical environment. The purpose of this paper is to provide a review of the current advances and systems in respiratory function assessment, particularly camera-based systems. A classification of the applicable research works is presented according to their techniques and recorded/quantified respiration parameters. In addition, the current solutions are discussed with regards to their direct applicability in different settings, such as clinical or home settings, highlighting their specific strengths and limitations in the different environments.
Collapse
Affiliation(s)
- Haythem Rehouma
- École de Technologie Supérieure, Montreal, QC H3T 1C5, Canada;
| | - Rita Noumeir
- École de Technologie Supérieure, Montreal, QC H3T 1C5, Canada;
| | - Sandrine Essouri
- CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (S.E.); (P.J.)
| | - Philippe Jouvet
- CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (S.E.); (P.J.)
| |
Collapse
|
36
|
Salman D, Eddleston M, Darnley K, Nailon WH, McLaren DB, Hadjithelki A, Ruszkiewicz D, Langejuergen J, Alkhalifa Y, Phillips I, Thomas CLP. Breath markers for therapeutic radiation. J Breath Res 2020; 15:016004. [PMID: 33103660 DOI: 10.1088/1752-7163/aba816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Radiation dose is important in radiotherapy. Too little, and the treatment is not effective, too much causes radiation toxicity. A biochemical measurement of the effect of radiotherapy would be useful in personalisation of this treatment. This study evaluated changes in exhaled breath volatile organic compounds (VOC) associated with radiotherapy with thermal desorption gas chromatography mass-spectrometry followed by data processing and multivariate statistical analysis. Further the feasibility of adopting gas chromatography ion mobility spectrometry for radiotherapy point-of-care breath was assessed. A total of 62 participants provided 240 end-tidal 1 dm3 breath samples before radiotherapy and at 1, 3, and 6 h post-exposure, that were analysed by thermal-desorption/gas-chromatography/quadrupole mass-spectrometry. Data were registered by retention-index and mass-spectra before multivariate statistical analyses identified candidate markers. A panel of sulfur containing compounds (thio-VOC) were observed to increase in concentration over the 6 h following irradiation. 3-methylthiophene (80 ng.m-3 to 790 ng.m-3) had the lowest abundance while 2-thiophenecarbaldehyde(380 ng.m-3 to 3.85 μg.m-3) the highest; note, exhaled 2-thiophenecarbaldehyde has not been observed previously. The putative tumour metabolite 2,4-dimethyl-1-heptene concentration reduced by an average of 73% over the same time. Statistical scoring based on the signal intensities thio-VOC and 3-methylthiophene appears to reflect individuals' responses to radiation exposure from radiotherapy. The thio-VOC are hypothesised to derive from glutathione and Maillard-based reactions and these are of interest as they are associated with radio-sensitivity. Further studies with continuous monitoring are needed to define the development of the breath biochemistry response to irradiation and to determine the optimum time to monitor breath for radiotherapy markers. Consequently, a single 0.5 cm3 breath-sample gas chromatography-ion mobility approach was evaluated. The calibrated limit of detection for 3-methylthiophene was 10 μg.m-3 with a lower limit of the detector's response estimated to be 210 fg.s-1; the potential for a point-of-care radiation exposure study exists.
Collapse
Affiliation(s)
- Dahlia Salman
- Centre for Analytical Science, Chemistry, Loughborough University, Loughborough, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Banik GD, Mizaikoff B. Exhaled breath analysis using cavity-enhanced optical techniques: a review. J Breath Res 2020; 14:043001. [PMID: 32969348 DOI: 10.1088/1752-7163/abaf07] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cavity-enhanced absorption spectroscopies (CEAS) have gained importance in a wide range of applications in molecular spectroscopy. The development of optical sensors based on the CEAS techniques coupled with the continuous wave or pulsed laser sources operating in the mid-infrared or near-infrared spectral regime uniquely offers molecularly selective and ultra-sensitive detection of trace species in complex matrices including exhaled human breath. In this review, we discussed recent applications of CEAS for analyzing trace constituents within the exhaled breath matrix facilitating the non-invasive assessment of human health status. Next to a brief discussion on the mechanisms of formation of trace components found in the exhaled breath matrix related to particular disease states, existing challenges in CEAS and future development towards non-invasive clinical diagnostics will be discussed.
Collapse
Affiliation(s)
- Gourab D Banik
- Institute of Analytical and Bioanalytical Chemistry, Ulm University Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | |
Collapse
|
38
|
Janssens E, van Meerbeeck JP, Lamote K. Volatile organic compounds in human matrices as lung cancer biomarkers: a systematic review. Crit Rev Oncol Hematol 2020; 153:103037. [PMID: 32771940 DOI: 10.1016/j.critrevonc.2020.103037] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Volatile organic compounds (VOCs) have shown potential as non-invasive breath biomarkers for lung cancer, but their unclear biological origin currently limits clinical applications. This systematic review explores headspace analysis of VOCs in patient-derived body fluids and lung cancer cell lines to pinpoint lung cancer-specific VOCs and uncover their biological origin. A search was performed in the databases MEDLINE and Web of Science. Twenty-two articles were included in this systematic review. Since there is no standardised approach to analyse VOCs, a plethora of techniques and matrices/cell lines were explored, which is reflected in the various VOCs identified. However, comparing VOCs in the headspace of urine, blood and pleural effusions from patients and lung cancer cell lines showed some overlapping VOCs, indicating their potential use in lung cancer diagnosis. This review demonstrates that VOCs are promising biomarkers for lung cancer. However, due to lack of inter-matrix consensus, standardised prospective trials will have to be conducted to validate clinically relevant biomarkers.
Collapse
Affiliation(s)
- Eline Janssens
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Jan P van Meerbeeck
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium; Pulmonology and Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
39
|
Lee JE, Lim CK, Park HJ, Song H, Choi SY, Lee DS. ZnO-CuO Core-Hollow Cube Nanostructures for Highly Sensitive Acetone Gas Sensors at the ppb Level. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35688-35697. [PMID: 32618181 DOI: 10.1021/acsami.0c08593] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This paper presents a ZnO-CuO p-n heterojunction chemiresistive sensor that comprises CuO hollow nanocubes attached to ZnO spherical cores as active materials. These ZnO-CuO core-hollow cube nanostructures exhibit a remarkable response of 11.14 at 1 ppm acetone and 200 °C, which is a superior result to those reported by other metal-oxide-based sensors. The response can be measured up to 40 ppb, and the limit of detection is estimated as 9 ppb. ZnO-CuO core-hollow cube nanostructures also present high selectivity toward acetone against other volatile organic compounds and demonstrate excellent stability for up to 40 days. The outstanding gas-sensing performance of the developed nanocubes is attributed to their uniform and unique morphology. Their core-shell-like structures allow the main charge transfer pathways to pass the interparticle p-p junctions, and the p-n junctions in each particle increase the sensitivity of the reactions to gas molecules. The small grain size and high surface area of each domain also enhance the surface gas adsorption.
Collapse
Affiliation(s)
- Jae Eun Lee
- Graphene/2D Materials Research Center, Center for Advanced Materials Discovery towards 3D Displays, School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Chan Kyu Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyung Ju Park
- Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Hyunjoon Song
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sung-Yool Choi
- Graphene/2D Materials Research Center, Center for Advanced Materials Discovery towards 3D Displays, School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dae-Sik Lee
- Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| |
Collapse
|
40
|
Pargoletti E, Cappelletti G. Breakthroughs in the Design of Novel Carbon-Based Metal Oxides Nanocomposites for VOCs Gas Sensing. NANOMATERIALS 2020; 10:nano10081485. [PMID: 32751173 PMCID: PMC7466532 DOI: 10.3390/nano10081485] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 01/26/2023]
Abstract
Nowadays, the detection of volatile organic compounds (VOCs) at trace levels (down to ppb) is feasible by exploiting ultra-sensitive and highly selective chemoresistors, especially in the field of medical diagnosis. By coupling metal oxide semiconductors (MOS e.g., SnO2, ZnO, WO3, CuO, TiO2 and Fe2O3) with innovative carbon-based materials (graphene, graphene oxide, reduced graphene oxide, single-wall and multi-wall carbon nanotubes), outstanding performances in terms of sensitivity, selectivity, limits of detection, response and recovery times towards specific gaseous targets (such as ethanol, acetone, formaldehyde and aromatic compounds) can be easily achieved. Notably, carbonaceous species, highly interconnected to MOS nanoparticles, enhance the sensor responses by (i) increasing the surface area and the pore content, (ii) favoring the electron migration, the transfer efficiency (spillover effect) and gas diffusion rate, (iii) promoting the active sites concomitantly limiting the nanopowders agglomeration; and (iv) forming nano-heterojunctions. Herein, the aim of the present review is to highlight the above-mentioned hybrid features in order to engineer novel flexible, miniaturized and low working temperature sensors, able to detect specific VOC biomarkers of a human's disease.
Collapse
Affiliation(s)
- Eleonora Pargoletti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
- Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Firenze, Italy
- Correspondence: (E.P.); (G.C.); Tel.: +39-02-50314228 (G.C.)
| | - Giuseppe Cappelletti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
- Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Firenze, Italy
- Correspondence: (E.P.); (G.C.); Tel.: +39-02-50314228 (G.C.)
| |
Collapse
|
41
|
Cr-Doped Urchin-Like WO 3 Hollow Spheres: The Cooperative Modulation of Crystal Growth and Energy-Band Structure for High-Sensitive Acetone Detection. SENSORS 2020; 20:s20123473. [PMID: 32575568 PMCID: PMC7348964 DOI: 10.3390/s20123473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022]
Abstract
Acetone is a biomarker in the exhaled breath of diabetic patients; sensitive and selective detection of acetone in human exhaled breath plays an important role in noninvasive diagnosis. Tungsten oxide (especially for γ-WO3) is a promising material for the detection of breath acetone. It is generally believed that the stable metastable phase of WO3 (ε-WO3) is the main reason for the improved response to acetone detection. In this work, pure and Cr-doped urchin-like WO3 hollow spheres were synthesized by a facile hydrothermal approach. Analyses of the resulting materials via X-ray photoelectron spectroscopy (XPS) and Raman confirmed that they are mainly composed by γ-WO3. The gas sensing performances of pure and Cr-doped WO3 to acetone were systematically tested. Results show that the sensor based on pure WO3 annealed at 450 °C has a high response of 20.32 toward 100 ppm acetone at a working temperature of 250 °C. After doped with Cr, the response was increased 3.5 times higher than the pure WO3 sensor. The pure and Cr-doped WO3 sensors both exhibit a tiny response to other gases, low detection limits (ppb-level) and an excellent repeatability. The improvement of gas sensing properties could be attributed to an optimized morphology of Cr-doped WO3 by regulating the crystal growth and reducing the assembled nanowires’ diameter. The increasing number of oxygen vacancy and the introduction of impurity energy level with trap effect after Cr doping would lead to the wider depletion layer as well as a better gas sensing performance. This work will contribute to the development of new WO3 acetone sensors with a novel morphology and will explain the increased response after Cr doping from a new perspective.
Collapse
|
42
|
Tipparaju VV, Xian X, Bridgeman D, Wang D, Tsow F, Forzani E, Tao N. Reliable Breathing Tracking with Wearable Mask Device. IEEE SENSORS JOURNAL 2020; 20:5510-5518. [PMID: 33746622 PMCID: PMC7977629 DOI: 10.1109/jsen.2020.2969635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Breathing tracking is critical for the assessment of lung functions, exercise physiologies, and energy expenditure. Conventional methods require using a face mask or mouthpiece that is connected to a stationary equipment through a tube, restricting the location, movement, or even the posture. To obtain accurate breathing physiology parameters that represent the true state of the patient during different scenarios, a wearable technology that has less intervention to patient's activities in free-living conditions is highly preferred. Here, we propose a miniaturized, reliable, and wide-dynamic ranged flow sensing technology that is immune to orientation, movement, and noise. As far as we know, this is the first work of introducing a fully integrated mask device focusing on breath tracking in free-living conditions. There are two key challenges for achieving this goal: miniaturized flow sensing and motion-induced artifacts elimination. To address these challenges, we come up with two technical innovations: 1) in hardware wise, we have designed an integrated flow sensing technique based on differential pressure Pneumotach approach and motion sensing; 2) in software wise, we have developed comprehensive algorithms based baseline tracking and orientation and motion compensation. The effectiveness of the proposed technology has been proven by the experiments. Experimental results from simulator and real breath conditions show high correlation (R2 = 0.9994 and 0.9964 respectively) and mean error within 2.5% for Minute Volume (VE), when compared to values computed from reference methods. These results show that the proposed method is accurate and reliable to track the key breath parameters in free-living conditions.
Collapse
Affiliation(s)
- Vishal Varan Tipparaju
- Center for Bioelectronics & Biosensors, the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Xiaojun Xian
- Center for Bioelectronics & Biosensors, the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Devon Bridgeman
- Center for Bioelectronics & Biosensors, the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Di Wang
- Center for Bioelectronics & Biosensors, the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Francis Tsow
- Center for Bioelectronics & Biosensors, the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Erica Forzani
- Center for Bioelectronics & Biosensors, the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Nongjian Tao
- Center for Bioelectronics & Biosensors, the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
43
|
Glöckler J, Jaeschke C, Kocaöz Y, Kokoric V, Tütüncü E, Mitrovics J, Mizaikoff B. iHWG-MOX: A Hybrid Breath Analysis System via the Combination of Substrate-Integrated Hollow Waveguide Infrared Spectroscopy with Metal Oxide Gas Sensors. ACS Sens 2020; 5:1033-1039. [PMID: 32189494 DOI: 10.1021/acssensors.9b02554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
According to their materials and operating parameters, metal oxide (MOX) sensors respond to target gases only by a change in sensor resistance with a lack in selectivity. By the use of infrared spectroscopy, highly discriminatory information from samples at a molecular level can be obtained and the selectivity can be enhanced. A low-volume gas cell was developed for a commercially available semiconducting MOX methane gas sensor and coupled directly to a mid-infrared gas sensor based on substrate-integrated hollow waveguide (iHWG) technology combined with a Fourier transform infrared spectrometer. This study demonstrates a sensing process with combined orthogonal sensors for fast, time-resolved, and synergic detection of methane and carbon dioxide in gas samples.
Collapse
Affiliation(s)
- Johannes Glöckler
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Carsten Jaeschke
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- JLM Innovation GmbH, Vor dem Kreuzberg 17, 72070 Tübingen, Germany
| | - Yusuf Kocaöz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Vjekoslav Kokoric
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Erhan Tütüncü
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jan Mitrovics
- JLM Innovation GmbH, Vor dem Kreuzberg 17, 72070 Tübingen, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
44
|
Abstract
Breathing air is a fundamental human need, yet its safety, when challenged by various harmful or lethal substances, is often not properly guarded. For example, air toxicity is currently monitored only for a single or a limited number of known toxicants, thus failing to warn against possible hazardous air fully. Here, we discovered that, within minutes, living rats emitted distinctive profiles of volatile organic compounds (VOCs) via breath when exposed to various airborne toxicants such as endotoxin, O3, ricin, and CO2. Compared to background indoor air, when exposed to ricin or endotoxin aerosols, breath-borne VOC levels, especially that of carbon disulfide, were shown to decrease, while their elevated levels were observed for exposure to O3 and CO2. A clear contrast in breath-borne VOC profiles of rats exposed to different toxicants was observed with a statistical significance. Differences in microRNA regulations such as miR-33, miR-146a, and miR-155 from rats' blood samples revealed different mechanisms used by rats in combating different air toxicant challenges. Similar to dogs, rats were found here to be able to sniff off toxic air by releasing a specific breath-borne VOC profile. The discovered science opens a new arena for online monitoring of air toxicity and health effects of pollutants.
Collapse
Affiliation(s)
- Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyue Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
45
|
Human beings as islands of stability: Monitoring body states using breath profiles. Sci Rep 2019; 9:16167. [PMID: 31700057 PMCID: PMC6838060 DOI: 10.1038/s41598-019-51417-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
By checking the reproducibility of conventional mid-infrared Fourier spectroscopy of human breath in a small test study (15 individuals), we found that a set of volatile organic compounds (VOC) of the individual breath samples remains reproducible at least for 18 months. This set forms a unique individual’s “island of stability” (IOS) in a multidimensional VOC concentration space. The IOS stability can simultaneously be affected by various life effects as well as the onset of a disease. Reflecting the body state, they both should have different characteristics. Namely, they could be distinguished by different temporal profiles: In the case of life effects (beverage intake, physical or mental exercises, smoking etc.), there is a non-monotonic shift of the IOS position with the return to the steady state, whereas a progressing disease corresponds to a monotonic IOS shift. As a first step of proving these dependencies, we studied various life effects with the focus on the strength and characteristic time of the IOS shift. In general, our results support homeostasis on a long time scale of months, allostasis on scales of hours to weeks or until smoke quitting for smokers, as well as resilience in the case of recovery from a disease.
Collapse
|
46
|
Devaraj H, Aw KC, McDaid AJ. Review of functional materials for potential use as wearable infection sensors in limb prostheses. Biomed Eng Lett 2019; 10:43-61. [PMID: 32175129 DOI: 10.1007/s13534-019-00132-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/30/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
The fundamental goal of prosthesis is to achieve optimal levels of performance and enhance the quality of life of amputees. Socket type prostheses have been widely employed despite their known drawbacks. More recently, the advent of osseointegrated prostheses have demonstrated potential to be a better alternative to socket prosthesis eliminating most of the drawbacks of the latter. However, both socket and osseointegrated limb prostheses are prone to superficial infections during use. Infection prone skin lesions from frictional rubbing of the socket against the soft tissue are a known problem of socket type prosthesis. Osseointegration, on the other hand, results in an open wound at the implant-stump interface. The integration of infection sensors in prostheses to detect and prevent infections is proposed to enhance quality of life of amputees. Pathogenic volatiles having been identified to be a potent stimulus, this paper reviews the current techniques in the field of infection sensing, specifically focusing on identifying portable and flexible sensors with potential to be integrated into prosthesis designs. Various sensor architectures including but not limited to sensors fabricated from conducting polymers, carbon polymer composites, metal oxide semiconductors, metal organic frameworks, hydrogels and synthetic oligomers are reviewed. The challenges and their potential integration pathways that can enhance the possibilities of integrating these sensors into prosthesis designs are analysed.
Collapse
Affiliation(s)
- Harish Devaraj
- Department of Mechanical Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
| | - Kean C Aw
- Department of Mechanical Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
| | - Andrew J McDaid
- Department of Mechanical Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
47
|
Azim A, Barber C, Dennison P, Riley J, Howarth P. Exhaled volatile organic compounds in adult asthma: a systematic review. Eur Respir J 2019; 54:13993003.00056-2019. [PMID: 31273044 DOI: 10.1183/13993003.00056-2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
The search for biomarkers that can guide precision medicine in asthma, particularly those that can be translated to the clinic, has seen recent interest in exhaled volatile organic compounds (VOCs). Given the number of studies reporting "breathomics" findings and its growing integration in clinical trials, we performed a systematic review of the literature to summarise current evidence and understanding of breathomics technology in asthma.A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-oriented systematic search was performed (CRD42017084145) of MEDLINE, Embase and the Cochrane databases to search for any reports that assessed exhaled VOCs in adult asthma patients, using the following terms (asthma AND (volatile organic compounds AND exhaled) OR breathomics).Two authors independently determined the eligibility of 2957 unique records, of which 66 underwent full-text review. Data extraction and risk of bias assessment was performed on the 22 studies deemed to fulfil the search criteria. The studies are described in terms of methodology and the evidence narratively summarised under the following clinical headings: diagnostics, phenotyping, treatment stratification, treatment monitoring and exacerbation prediction/assessment.Our review found that most studies were designed to assess diagnostic potential rather than focus on underlying biology or treatable traits. Results are generally limited by a lack of methodological standardisation and external validation and by insufficiently powered studies, but there is consistency across the literature that exhaled VOCs are sensitive to underlying inflammation. Modern studies are applying robust breath analysis workflows to large multi-centre study designs, which should unlock the full potential of measurement of exhaled volatile organic compounds in airways diseases such as asthma.
Collapse
Affiliation(s)
- Adnan Azim
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK .,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Clair Barber
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Paddy Dennison
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - John Riley
- Galaxy Asthma, GSK, Medicines Research Centre, Stevenage, UK
| | - Peter Howarth
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
48
|
Rothbart N, Holz O, Koczulla R, Schmalz K, Hübers HW. Analysis of Human Breath by Millimeter-Wave/Terahertz Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2719. [PMID: 31212999 PMCID: PMC6630364 DOI: 10.3390/s19122719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 11/17/2022]
Abstract
Breath gas analysis is a promising tool for medical research and diagnosis. A particularly powerful technological approach is millimeter-wave/terahertz (mmW/THz) spectroscopy, because it is a very sensitive and highly selective technique. In addition, it offers the potential for compact and affordable sensing systems for wide use. In this work, we demonstrate the capability of a mmW/THz spectrometer for breath analysis. Samples from three volunteers and a sample from ambient air were analyzed with respect to 31 different molecular species. High-resolution absorption spectra were measured by scanning two absorption lines from each species. Out of the 31, a total of 21 species were detected. The results demonstrate the potential of mmW/THz spectroscopy for breath analysis.
Collapse
Affiliation(s)
- Nick Rothbart
- Institute of Optical Sensor Systems, German Aerospace Center (DLR), 12489 Berlin, Germany.
- Department of Physics, Humboldt-Universität zu Berlin, 12489 Berlin, Germany.
| | - Olaf Holz
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), 30625 Hannover, Germany.
- The German Center for Lung Research (DZL), 35392 Giessen, Germany.
| | - Rembert Koczulla
- The German Center for Lung Research (DZL), 35392 Giessen, Germany.
- Department of Pulmonology, Institute for Internal Medicine, Philipps-University of Marburg, 35043 Marburg, Germany.
- Schön Klinik Berchtesgadener Land, Department for Pulmonology, Teaching Hospital of the Philipps-University, 35043 Marburg, Germany.
- Teaching Department of the Paracelsus University Salzburg, 5020 Salzburg, Austria.
| | - Klaus Schmalz
- IHP-Leibniz-Institut für innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany.
| | - Heinz-Wilhelm Hübers
- Institute of Optical Sensor Systems, German Aerospace Center (DLR), 12489 Berlin, Germany.
- Department of Physics, Humboldt-Universität zu Berlin, 12489 Berlin, Germany.
| |
Collapse
|
49
|
Horsch S, Baumbach JI, Rahnenführer J. Statistical analysis of MCC-IMS data for two group comparisons-an exemplary study on two devices. J Breath Res 2019; 13:036011. [PMID: 31048567 DOI: 10.1088/1752-7163/ab1ee2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Multi-capillary-column-Ion-mobility-spectrometry (MCC-IMS) technology for measuring breath gas can be used for distinguishing between healthy and diseased subjects or between different types of diseases. The statistical methods for classifying the corresponding breath samples typically neglects potential confounding clinical and technical variables, reducing both accuracy and generalizability of the results. Especially measuring samples on different technical devices can heavily influence the results. We conducted a controlled breath gas study including 49 healthy volunteers to evaluate the effect of the variables sex, smoking habits and technical device. Every person was measured twice, once before and once after consuming a glass of orange juice. The two measurements were obtained on two different devices. The evaluation of the MCC-IMS data regarding metabolite detection was performed once using the software VisualNow, which requires manual interaction, and once using the fully automated algorithm SGLTR-DBSCAN. We present statistical solutions, peak alignment and scaling, to adjust for the different devices. For the other potential confounders sex and smoking, in our study no significant influence was identified.
Collapse
Affiliation(s)
- S Horsch
- Department of Statistics, TU Dortmund, D-44221, Dortmund, Germany
| | | | | |
Collapse
|
50
|
Xue D, Zong F, Zhang J, Lin X, Li Q. Synthesis of Fe2O3/WO3 nanocomposites with enhanced sensing performance to acetone. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|