1
|
Viola H, Chen LH, Jo S, Washington K, Selva C, Li A, Feng D, Giacalone V, Stephenson ST, Cottrill K, Mohammad A, Williams E, Qu X, Lam W, Ng NL, Fitzpatrick A, Grunwell J, Tirouvanziam R, Takayama S. High-throughput quantitation of human neutrophil recruitment and functional responses in an air-blood barrier array. APL Bioeng 2025; 9:026110. [PMID: 40290728 PMCID: PMC12033047 DOI: 10.1063/5.0220367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/19/2024] [Indexed: 04/30/2025] Open
Abstract
Dysregulated neutrophil recruitment drives many pulmonary diseases, but most preclinical screening methods are unsuited to evaluate pulmonary neutrophilia, limiting progress toward therapeutics. Namely, high-throughput therapeutic assays typically exclude critical neutrophilic pathophysiology, including blood-to-lung recruitment, dysfunctional activation, and resulting impacts on the air-blood barrier. To meet the conflicting demands of physiological complexity and high throughput, we developed an assay of 96-well leukocyte recruitment in an air-blood barrier array (L-ABBA-96) that enables in vivo-like neutrophil recruitment compatible with downstream phenotyping by automated flow cytometry. We modeled acute respiratory distress syndrome (ARDS) with neutrophil recruitment to 20 ng/mL epithelial-side interleukin 8 and found a dose-dependent reduction in recruitment with physiologic doses of baricitinib, a JAK1/2 inhibitor recently Food and Drug Administration-approved for severe Coronavirus Disease 2019 ARDS. Additionally, neutrophil recruitment to patient-derived cystic fibrosis sputum supernatant induced disease-mimetic recruitment and activation of healthy donor neutrophils and upregulated endothelial e-selectin. Compared to 24-well assays, the L-ABBA-96 reduces required patient sample volumes by 25 times per well and quadruples throughput per plate. Compared to microfluidic assays, the L-ABBA-96 recruits two orders of magnitude more neutrophils per well, enabling downstream flow cytometry and other standard biochemical assays. This novel pairing of high-throughput in vitro modeling of organ-level lung function with parallel high-throughput leukocyte phenotyping substantially advances opportunities for pathophysiological studies, personalized medicine, and drug testing applications.
Collapse
Affiliation(s)
| | - Liang-Hsin Chen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Seongbin Jo
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Kendra Washington
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Cauviya Selva
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Andrea Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Daniel Feng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | - Evelyn Williams
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Xianggui Qu
- Department of Mathematics and Statistics, Oakland University, Rochester, Michigan 48309, USA
| | | | | | | | - Jocelyn Grunwell
- Department of Pediatrics, Division of Critical Care Medicine, Emory University School of Medicine and Children's Healthcare of Atlanta at Arthur M. Blank Hospital, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
2
|
Baer B, Lin J, Schaaf KR, Ware LB, Shaver CM, Bastarache JA. Matrix metalloproteinase-7 is dispensable in a mouse model of sepsis-induced acute lung injury. PLoS One 2025; 20:e0321349. [PMID: 40341670 PMCID: PMC12061409 DOI: 10.1371/journal.pone.0321349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/05/2025] [Indexed: 05/10/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening form of acute lung injury whose pathogenesis is characterized by excessive lung inflammation and alveolar-capillary barrier permeability. Matrix metalloproteinase 7 (MMP7) can regulate leukocyte recruitment and the production of pro-inflammatory cytokines, but whether it plays a role in acute lung injury (ALI) is an unanswered question. We hypothesized that global loss of MMP7 would attenuate sepsis-induced ALI and systemic inflammation. To test this, male and female MMP7 knockout (MMP7KO) mice and wild-type (WT) littermates were exposed to a two-hit model of ALI (sepsis+hyperoxia). Sepsis was induced through intraperitoneal injection of cecal slurry (CS; 1.6mg/g) or 5% dextrose (control) followed by exposure to hyperoxia (HO; FiO2=0.95) or room air (control, FiO2=0.21). At 24-hours post-CS+HO, we measured weight loss, illness severity, and body temperature. The mice were then sacrificed, and samples from the lungs, kidneys, spleen, blood, peritoneal wash, and bronchoalveolar lavage (BAL) fluid were collected for analysis. Bacterial burden was assessed in the peritoneum, lung, and spleen. Lung inflammation was assessed by BAL inflammatory cell recruitment and pro-inflammatory cytokine concentrations as well as lung tissue mRNA expression of pro-inflammatory cytokines. Alveolar-capillary barrier disruption was quantified by BAL total protein, BAL immunoglobulin M, and lung wet-to-dry weight ratios. Histologic evidence of lung injury was evaluated using a histological scoring system. Systemic inflammation was measured through plasma pro-inflammatory cytokines and peritoneal inflammatory cells. Kidney function, inflammation, and injury were assessed through plasma urea nitrogen concentrations, as well as tissue levels of pro-inflammatory cytokines, neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule 1 (KIM-1). Relative mRNA expression of MMP-7, MMP-9, and MMP-2 was also quantified in both lung and kidney tissue through qPCR. At 24-hours post-CS+HO all mice developed ALI. Septic mice also had increased systemic inflammation, kidney inflammation, kidney injury, and kidney dysfunction compared to controls. Loss of MMP7 did not affect markers of inflammation, organ injury, or organ dysfunction. Interestingly, septic male mice exhibited more severe illness, systemic and lung inflammation, lung injury, and lung expression of matrix metalloproteinases, while septic female mice exhibited more kidney inflammation, kidney injury, and kidney expression of matrix metalloproteinases. In conclusion, MMP7 is not essential for the development or resolution of sepsis-induced ALI in this model and likely plays a limited role in the condition.
Collapse
Affiliation(s)
- Brandon Baer
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jason Lin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kaitlyn R. Schaaf
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ciara M. Shaver
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Julie A. Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
3
|
Taenaka H, Matthay MA. Mechanisms of impaired alveolar fluid clearance. Anat Rec (Hoboken) 2025; 308:1026-1039. [PMID: 36688689 PMCID: PMC10564110 DOI: 10.1002/ar.25166] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
Impaired alveolar fluid clearance (AFC) is an important cause of alveolar edema fluid accumulation in patients with acute respiratory distress syndrome (ARDS). Alveolar edema leads to insufficient gas exchange and worse clinical outcomes. Thus, it is important to understand the pathophysiology of impaired AFC in order to develop new therapies for ARDS. Over the last few decades, multiple experimental studies have been done to understand the molecular, cellular, and physiological mechanisms that regulate AFC in the normal and the injured lung. This review provides a review of AFC in the normal lung, focuses on the mechanisms of impaired AFC, and then outlines the regulation of AFC. Finally, we summarize ongoing challenges and possible future research that may offer promising therapies for ARDS.
Collapse
Affiliation(s)
- Hiroki Taenaka
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, USA
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, USA
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Michael A. Matthay
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, USA
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, USA
| |
Collapse
|
4
|
van Amstel RBE, Bartek B, Vlaar APJ, Gay E, van Vught LA, Cremer OL, Van der Poll T, Shapiro NI, Matthay MA, Calfee CS, Sinha P, Bos LDJ. Temporal Transitions of the Hyperinflammatory and Hypoinflammatory Phenotypes in Critical Illness. Am J Respir Crit Care Med 2025; 211:347-356. [PMID: 39642348 PMCID: PMC11936145 DOI: 10.1164/rccm.202406-1241oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/06/2024] [Indexed: 12/08/2024] Open
Abstract
Rationale: Systemic molecular phenotypes of critical illness are prognostically informative, yet their temporal kinetics and implications of changing phenotypes remain incompletely understood. Objectives: To determine the temporal nature of the Hyperinflammatory and Hypoinflammatory phenotypes and assess the impact of transition between the phenotypes on mortality. Methods: We used data from one prospective observational cohort (MARS [Molecular Diagnosis and Risk Stratification of Sepsis]) and two randomized controlled trials in acute respiratory distress syndrome (ALVEOLI [Assessment of Low Tidal Volume and Elevated End-Expiratory Pressure to Obviate Lung Injury]) and sepsis (CLOVERS [Crystalloid Liberal or Vasopressors Early Resuscitation in Sepsis]). Critically ill patients with biomarkers available at multiple time points (Days 0-4) were included. We used a validated classifier model incorporating plasma IL-8, protein C, and serum bicarbonate to assign phenotypes on each day. We determined the association of longitudinal phenotype transition and 90-day all-cause mortality. Measurements and Main Results: Data from 2,407, 527, and 868 patients were included in MARS, ALVEOLI, and CLOVERS, respectively. In MARS, 36.0% were classified by the parsimonious model as Hyperinflammatory at Day 0, decreasing to 15.6% by Day 2 and 6.3% by Day 4. In ALVEOLI and CLOVERS, 26.4% and 24.8% of patients were Hyperinflammatory at Day 0, decreasing to 13.4% and 5.7% at Day 3, respectively. In all three cohorts, switching classification from Hyperinflammatory (Day 0) to Hypoinflammatory over time was associated with significantly improved mortality compared with persistently Hyperinflammatory patients. Mediation analysis indicated that only a minor proportion of this improvement could be attributed to ameliorating organ failure. Conclusions: The prevalence of the Hyperinflammatory phenotype, as assigned using a parsimonious biomarker classifier model, decreases over the first several days of critical illness, irrespective of acute respiratory distress syndrome diagnosis. The transition from Hyperinflammatory to Hypoinflammatory mediates a trajectory toward recovery beyond the resolution of organ failure.
Collapse
Affiliation(s)
| | - Brian Bartek
- Department of Anesthesiology, School of Medicine, Washington University, St. Louis, Missouri
| | | | - Elizabeth Gay
- Department of Anesthesiology, School of Medicine, Washington University, St. Louis, Missouri
| | - Lonneke A. van Vught
- Department of Intensive Care Medicine and
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam University Medical Center, location University of Amsterdam, Amsterdam, the Netherlands
| | - Olaf L. Cremer
- Department of Intensive Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tom Van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam University Medical Center, location University of Amsterdam, Amsterdam, the Netherlands
| | - Nathan I. Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts; and
| | - Michael A. Matthay
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Carolyn S. Calfee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Pratik Sinha
- Department of Anesthesiology, School of Medicine, Washington University, St. Louis, Missouri
| | | |
Collapse
|
5
|
Wang R, Gan C, Mao R, Chen Y, Yan R, Li G, Xiong T, Guo J. Rat models of postintracerebral hemorrhage pneumonia induced by nasal inoculation with Klebsiella pneumoniae or intratracheal inoculation with LPS. Front Immunol 2025; 15:1477902. [PMID: 39845950 PMCID: PMC11750689 DOI: 10.3389/fimmu.2024.1477902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background A stable and reproducible experimental bacterial pneumonia model postintracerebral hemorrhage (ICH) is necessary to help investigating the pathogenesis and novel treatments of Stroke-associated pneumonia (SAP). Aim To establish a Gram-negative bacterial pneumonia-complicating ICH rat model and an acute lung injury (ALI)-complicating ICH rat model. Methods We established two standardized models of post-ICH pneumonia by nasal inoculation with Klebsiella pneumoniae (Kp) or intratracheal inoculation with lipopolysaccharide (LPS). Survival and neurological scores were monitored. Magnetic resonance imaging was performed to evaluate hematoma volume. Abdominal aortic blood was collected for leukocyte counting, serum was isolated to determine concentrations of S100β and proinflammatory cytokines using ELISAs. Histopathological changes of brain, lung and gut were assessed using hematoxylin-eosin staining. Lung was isolated for immunofluorescence staining for myeloperoxidase (MPO). Bronchoalveolar lavage fluid was collected for leukocyte counting, and supernatant was prepared to measure MPO activity. Ileum was isolated for immunofluorescence staining for tight junction proteins ZO-1 and γδ TCRs/IL-17A and for Alcian blue-nuclear fast red staining of acidic mucins. Feces were collected, 16S rRNA sequencing, untargeted metabolomics and Spearman's correlation analyses were performed to explore changes of gut microbiota, metabolites and their interactions. Results In Kp-induced bacterial pneumonia-complicating ICH rats, we demonstrated that Kp challenge caused more severe neurological deficits, brain damage, neuroinflammation, and aggravated pneumonia and lung injury. Disruptions of the intestinal structure and gut barrier and the reductions of the protective intestinal IL-17A-producing γδT cells were also observed. Kp challenge exacerbated the gut microbiota dysbiosis and fecal metabolic profile disorders, which were characterized by abnormal sphingolipid metabolism especially elevated ceramide levels; increased levels of neurotoxic quinolinic acid and an upregulation of tryptophan (Trp)-serotonin-melatonin pathway. Spearman's correlation analyses further revealed that the reduction or depletion of some beneficial bacteria, such as Allobaculum and Faecalitalea, and the blooming of some opportunistic pathogens, such as Turicibacter, Dietzia, Corynebacterium and Clostridium_sensu_stricto_1 in Kp-induced SAP rats were associated with the disordered sphingolipid and Trp metabolism. Using an LPS-induced ALI complicating ICH model, we also characterized SAP-induced brain, lung and gut histopathology injuries; peripheral immune disorders and intense pulmonary inflammatory responses. Conclusions These two models may be highly useful for investigating the pathogenesis and screening and optimizing potential treatments for SAP. Moreover, the differential genera and sphingolipid or Trp metabolites identified above seem to be promising therapeutic targets.
Collapse
Affiliation(s)
- Ruihua Wang
- Research Team of Prevention and Treatment of Cerebral Hemorrhage Applying Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changlian Gan
- School of Traditional Dai Medicine, West Yunnan University of Applied Science, Xishuangbanna, China
| | - Rui Mao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- Department of Bioinformatics, State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianqin Xiong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianwen Guo
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Neurology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Wan P, Gao K, Miao F, Shi M, Chen X. Protective effects of tissue factor pathway inhibitor on mice with lipopolysaccharide-induced acute lung injury. Exp Cell Res 2025; 444:114357. [PMID: 39603553 DOI: 10.1016/j.yexcr.2024.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
Acute lung injury (ALI) resulting from bacterial infection poses a significant risk, and its etiology involves the complex interplay of harmful immune responses and blood coagulation. Despite this understanding, the roles and mechanisms of tissue factor pathway inhibitor (TFPI) in LPS-induced ALI remain insufficiently elucidated. In this study, we aimed to explore the effects of TFPI in LPS-induced ALI. Our investigations revealed that TFPI exerts multiple beneficial effects in LPS-induced ALI. Specifically, TFPI reduces microvascular permeability, Myeloperoxidase (MPO) activity, and cytokine production while inhibiting blood coagulation. Moreover, TFPI demonstrates the capacity to promote proliferation and suppress apoptosis in Human microvascular endothelial cells (HMEC-1) and Human umbilical vein endothelial cells (HUVEC) through the inhibition of the caspase pathway and mitochondrial apoptosis pathway. Furthermore, our findings indicate a correlation between tissue factor (TF) and TFPI expression, with TFPI regulation observed in HMEC-1 cells following LPS treatment. This novel insight suggests that TFPI plays a regulatory role in TF expression. Overall, the protective effect of TFPI on LPS-induced ALI is unveiled by its ability to enhance endothelial cell proliferation and inhibit apoptosis through the modulation of caspase and Bcl-2/Bax pathways. These results underscore the potential of TFPI as a promising therapeutic target for ALI treatment.
Collapse
Affiliation(s)
- Posum Wan
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai, 200040, China
| | - Kaiheng Gao
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai, 200040, China
| | - Feng Miao
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai, 200040, China
| | - Meng Shi
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai, 200040, China.
| | - Xiaofeng Chen
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai, 200040, China.
| |
Collapse
|
7
|
Chen H, Qi T, Guo S, Zhang X, Zhan M, Liu S, Yin Y, Guo Y, Zhang Y, Zhao C, Wang X, Wang H. Integrating respiratory microbiome and host immune response through machine learning for respiratory tract infection diagnosis. NPJ Biofilms Microbiomes 2024; 10:83. [PMID: 39266570 PMCID: PMC11393347 DOI: 10.1038/s41522-024-00548-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/19/2024] [Indexed: 09/14/2024] Open
Abstract
At present, the diagnosis of lower respiratory tract infections (LRTIs) is difficult, and there is an urgent need for better diagnostic methods. This study enrolled 136 patients from 2020 to 2021 and collected bronchoalveolar lavage fluid (BALF) specimens. We used metatranscriptome to analyze the lower respiratory tract microbiome (LRTM) and host immune response. The diversity of the LRTM in LRTIs significantly decreased, manifested by a decrease in the abundance of normal microbiota and an increase in the abundance of opportunistic pathogens. The upregulated differentially expressed genes (DEGs) in the LRTIs group were mainly enriched in infection immune response-related pathways. Klebsiella pneumoniae had the most significant increase in abundance in LRTIs, which was strongly correlated with host infection or inflammation genes TNFRSF1B, CSF3R, and IL6R. We combined LRTM and host transcriptome data to construct a machine-learning model with 12 screened features to discriminate LRTIs and non-LRTIs. The results showed that the model trained by Random Forest in the validate set had the best performance (ROC AUC: 0.937, 95% CI: 0.832-1). The independent external dataset showed an accuracy of 76.5% for this model. This study suggests that the model integrating LRTM and host transcriptome data can be an effective tool for LRTIs diagnosis.
Collapse
Affiliation(s)
- Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, P. R. China.
| | - Tianqi Qi
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing, P. R. China
| | - Siyu Guo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, P. R. China
| | - Xiaoyang Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, P. R. China
| | - Minghua Zhan
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, P. R. China
| | - Si Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, P. R. China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, P. R. China
| | - Yifan Guo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, P. R. China
| | - Yawei Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, P. R. China
| | - Chunjiang Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, P. R. China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, P. R. China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, P. R. China.
| |
Collapse
|
8
|
Liu Y, Chen L. Impact of interleukin 6 levels on acute lung injury risk and disease severity in critically ill sepsis patients. World J Clin Cases 2024; 12:5374-5381. [PMID: 39156085 PMCID: PMC11238679 DOI: 10.12998/wjcc.v12.i23.5374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Sepsis is a life-threatening condition characterized by a dysregulation of the host response to infection that can lead to acute lung injury (ALI) and multiple organ dysfunction syndrome (MODS). Interleukin 6 (IL-6) is a pro-inflammatory cytokine that plays a crucial role in the pathogenesis of sepsis and its complications. AIM To investigate the relationship among plasma IL-6 levels, risk of ALI, and disease severity in critically ill patients with sepsis. METHODS This prospective and observational study was conducted in the intensive care unit of a tertiary care hospital between January 2021 and December 2022. A total of 83 septic patients were enrolled. Plasma IL-6 levels were measured upon admission using an enzyme-linked immunosorbent assay. The development of ALI and MODS was monitored during hospitalization. Disease severity was evaluated by Acute Physiology and Chronic Health Evaluation II (APACHE II) and Sequential Organ Failure Assessment (SOFA) scores. RESULTS Among the 83 patients with sepsis, 38 (45.8%) developed ALI and 29 (34.9%) developed MODS. Plasma IL-6 levels were significantly higher in patients who developed ALI than in those without ALI (median: 125.6 pg/mL vs 48.3 pg/mL; P < 0.001). Similarly, patients with MODS had higher IL-6 levels than those without MODS (median: 142.9 pg/mL vs 58.7 pg/mL; P < 0.001). Plasma IL-6 levels were strongly and positively correlated with APACHE II (r = 0.72; P < 0.001) and SOFA scores (r = 0.68; P < 0.001). CONCLUSION Elevated plasma IL-6 levels in critically ill patients with sepsis were associated with an increased risk of ALI and MODS. Higher IL-6 levels were correlated with greater disease severity, as reflected by higher APACHE II and SOFA scores. These findings suggest that IL-6 may serve as a biomarker for predicting the development of ALI and disease severity in patients with sepsis.
Collapse
Affiliation(s)
- Ya Liu
- Department of Intensive Care Unit, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Li Chen
- Department of Intensive Care Unit, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| |
Collapse
|
9
|
Cao F, Zhang L, Zhao Z, Shen X, Xiong J, Yang Z, Gong B, Liu M, Chen H, Xiao H, Huang M, Liu Y, Qiu G, Wang K, Zhou F, Xiao J. TM9SF1 offers utility as an efficient predictor of clinical severity and mortality among acute respiratory distress syndrome patients. Front Immunol 2024; 15:1408406. [PMID: 38887291 PMCID: PMC11180774 DOI: 10.3389/fimmu.2024.1408406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Acute respiratory distress syndrome (ARDS) is a major cause of death among critically ill patients in intensive care settings, underscoring the need to identify biomarkers capable of predicting ARDS patient clinical status and prognosis at an early time point. This study specifically sought to explore the utility and clinical relevance of TM9SF1 as a biomarker for the early prediction of disease severity and prognostic outcomes in patients with ARDS. Methods This study enrolled 123 patients with severe ARDS and 116 patients with non-severe ARDS for whom follow-up information was available. The mRNA levels of TM9SF1 and cytokines in peripheral blood mononuclear cells from these patients were evaluated by qPCR. The predictive performance of TM9SF1 and other clinical indicators was evaluated using received operating characteristic (ROC) curves. A predictive nomogram was developed based on TM9SF1 expression and evaluated for its ability in the early prediction of severe disease and mortality in patients with ARDS. Results TM9SF1 mRNA expression was found to be significantly increased in patients with severe ARDS relative to those with non-severe disease or healthy controls. ARDS severity increased in correspondence with the level of TM9SF1 expression (odds ratio [OR] = 2.43, 95% confidence interval [CI] = 2.15-3.72, P = 0.005), and high TM9SF1 levels were associated with a greater risk of mortality (hazard ratio [HR] = 2.27, 95% CI = 2.20-4.39, P = 0.001). ROC curves demonstrated that relative to other clinical indicators, TM9SF1 offered superior performance in the prediction of ARDS severity and mortality. A novel nomogram incorporating TM9SF1 expression together with age, D-dimer levels, and C-reactive protein (CRP) levels was developed and was used to predict ARDS severity (AUC = 0.887, 95% CI = 0.715-0.943). A separate model incorporating TM9SF1 expression, age, neutrophil-lymphocyte ratio (NLR), and D-dimer levels (C-index = 0.890, 95% CI = 0.627-0.957) was also developed for predicting mortality. Conclusion Increases in ARDS severity and patient mortality were observed with rising levels of TM9SF1 expression. TM9SF1 may thus offer utility as a novel biomarker for the early prediction of ARDS patient disease status and clinical outcomes.
Collapse
Affiliation(s)
- Fengsheng Cao
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Lu Zhang
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Zhenwang Zhao
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xiaofang Shen
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Jinsong Xiong
- Gucheng People’s Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Zean Yang
- Gucheng People’s Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Baoxian Gong
- Gucheng People’s Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Mingming Liu
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Huabo Chen
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Hong Xiao
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Min Huang
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yang Liu
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Guangyu Qiu
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Ke Wang
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Fengqiao Zhou
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Juan Xiao
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
10
|
Viola H, Chen LH, Jo S, Washington K, Selva C, Li A, Feng D, Giacalone V, Stephenson ST, Cottrill K, Mohammed A, Williams E, Qu X, Lam W, Ng NL, Fitzpatrick A, Grunwell J, Tirouvanziam R, Takayama S. HIGH THROUGHPUT QUANTITATION OF HUMAN NEUTROPHIL RECRUITMENT AND FUNCTIONAL RESPONSES IN AN AIR-BLOOD BARRIER ARRAY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593624. [PMID: 38798413 PMCID: PMC11118313 DOI: 10.1101/2024.05.10.593624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dysregulated neutrophil recruitment drives many pulmonary diseases, but most preclinical screening methods are unsuited to evaluate pulmonary neutrophilia, limiting progress towards therapeutics. Namely, high throughput therapeutic screening systems typically exclude critical neutrophilic pathophysiology, including blood-to-lung recruitment, dysfunctional activation, and resulting impacts on the air-blood barrier. To meet the conflicting demands of physiological complexity and high throughput, we developed an assay of 96-well Leukocyte recruitment in an Air-Blood Barrier Array (L-ABBA-96) that enables in vivo -like neutrophil recruitment compatible with downstream phenotyping by automated flow cytometry. We modeled acute respiratory distress syndrome (ARDS) with neutrophil recruitment to 20 ng/mL epithelial-side interleukin 8 (IL-8) and found a dose dependent reduction in recruitment with physiologic doses of baricitinib, a JAK1/2 inhibitor recently FDA-approved for severe COVID-19 ARDS. Additionally, neutrophil recruitment to patient-derived cystic fibrosis sputum supernatant induced disease-mimetic recruitment and activation of healthy donor neutrophils and upregulated endothelial e-selectin. Compared to 24-well assays, the L-ABBA-96 reduces required patient sample volumes by 25 times per well and quadruples throughput per plate. Compared to microfluidic assays, the L-ABBA-96 recruits two orders of magnitude more neutrophils per well, enabling downstream flow cytometry and other standard biochemical assays. This novel pairing of high-throughput in vitro modeling of organ-level lung function with parallel high-throughput leukocyte phenotyping substantially advances opportunities for pathophysiological studies, personalized medicine, and drug testing applications.
Collapse
|
11
|
Chen Y, Guo M, Xie K, Lei M, Chai Y, Zhang Z, Deng Z, Peng Q, Cao J, Lin S, Xu F. Progranulin promotes regulatory T cells plasticity by mitochondrial metabolism through AMPK/PGC-1α pathway in ARDS. Clin Immunol 2024; 261:109940. [PMID: 38365048 DOI: 10.1016/j.clim.2024.109940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
As the aging population increases, the focus on elderly patients with acute respiratory distress syndrome (ARDS) is also increasing. In this article, we found progranulin (PGRN) differential expression in ARDS patients and healthy controls, even in young and old ARDS patients. Its expression strongly correlates with several cytokines in both young and elderly ARDS patients. PGRN has comparable therapeutic effects in young and elderly mice with lipopolysaccharide-induced acute lung injury, manifesting as lung injury, apoptosis, inflammation, and regulatory T cells (Tregs) differentiation. Considering that Tregs differentiation relies on metabolic reprogramming, we discovered that Tregs differentiation was mediated by mitochondrial function, especially in the aged population. Furthermore, we demonstrated that PGRN alleviated the mitochondrial damage during Tregs differentiation through the AMPK/PGC-1α pathway in T cells. Collectively, PGRN may regulate mitochondria function to promote Tregs differentiation through the AMPK/PGC-1α pathway to improve ARDS.
Collapse
Affiliation(s)
- Yanqing Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Minkang Guo
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Xie
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Lei
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yusen Chai
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Zhengtao Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenhua Deng
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiaozhi Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shihui Lin
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Fang Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Li G, Yan K, Zhang W, Pan H, Guo P. ARDS and aging: TYMS emerges as a promising biomarker and therapeutic target. Front Immunol 2024; 15:1365206. [PMID: 38558817 PMCID: PMC10978671 DOI: 10.3389/fimmu.2024.1365206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Background Acute Respiratory Distress Syndrome (ARDS) is a common condition in the intensive care unit (ICU) with a high mortality rate, yet the diagnosis rate remains low. Recent studies have increasingly highlighted the role of aging in the occurrence and progression of ARDS. This study is committed to investigating the pathogenic mechanisms of cellular and genetic changes in elderly ARDS patients, providing theoretical support for the precise treatment of ARDS. Methods Gene expression profiles for control and ARDS samples were obtained from the Gene Expression Omnibus (GEO) database, while aging-related genes (ARGs) were sourced from the Human Aging Genomic Resources (HAGR) database. Differentially expressed genes (DEGs) were subjected to functional enrichment analysis to understand their roles in ARDS and aging. The Weighted Gene Co-expression Network Analysis (WGCNA) and machine learning pinpointed key modules and marker genes, with ROC curves illustrating their significance. The expression of four ARDS-ARDEGs was validated in lung samples from aged mice with ARDS using qRT-PCR. Gene set enrichment analysis (GSEA) investigated the signaling pathways and immune cell infiltration associated with TYMS expression. Single-nucleus RNA sequencing (snRNA-Seq) explored gene-level differences among cells to investigate intercellular communication during ARDS onset and progression. Results ARDEGs are involved in cellular responses to DNA damage stimuli, inflammatory reactions, and cellular senescence pathways. The MEmagenta module exhibited a significant correlation with elderly ARDS patients. The LASSO, RRF, and XGBoost algorithms were employed to screen for signature genes, including CKAP2, P2RY14, RBP2, and TYMS. Further validation emphasized the potential role of TYMS in the onset and progression of ARDS. Immune cell infiltration indicated differential proportion and correlations with TYMS expression. SnRNA-Seq and cell-cell communication analysis revealed that TYMS is highly expressed in endothelial cells, and the SEMA3 signaling pathway primarily mediates cell communication between endothelial cells and other cells. Conclusion Endothelial cell damage associated with aging could contribute to ARDS progression by triggering inflammation. TYMS emerges as a promising diagnostic biomarker and potential therapeutic target for ARDS.
Collapse
Affiliation(s)
- Gang Li
- Department of Emergency Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ke Yan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wanyi Zhang
- Department of Emergency Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Haiyan Pan
- Department of Emergency Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Pengxiang Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
13
|
Aubin Vega M, Girault A, Meunier É, Chebli J, Privé A, Robichaud A, Adam D, Brochiero E. Function of KvLQT1 potassium channels in a mouse model of bleomycin-induced acute lung injury. Front Physiol 2024; 15:1345488. [PMID: 38444763 PMCID: PMC10912346 DOI: 10.3389/fphys.2024.1345488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by an exacerbated inflammatory response, severe damage to the alveolar-capillary barrier and a secondary infiltration of protein-rich fluid into the airspaces, ultimately leading to respiratory failure. Resolution of ARDS depends on the ability of the alveolar epithelium to reabsorb lung fluid through active transepithelial ion transport, to control the inflammatory response, and to restore a cohesive and functional epithelium through effective repair processes. Interestingly, several lines of evidence have demonstrated the important role of potassium (K+) channels in the regulation of epithelial repair processes. Furthermore, these channels have previously been shown to be involved in sodium/fluid absorption across alveolar epithelial cells, and we have recently demonstrated the contribution of KvLQT1 channels to the resolution of thiourea-induced pulmonary edema in vivo. The aim of our study was to investigate the role of the KCNQ1 pore-forming subunit of KvLQT1 channels in the outcome of ARDS parameters in a model of acute lung injury (ALI). We used a molecular approach with KvLQT1-KO mice challenged with bleomycin, a well-established ALI model that mimics the key features of the exudative phase of ARDS on day 7. Our data showed that KvLQT1 deletion exacerbated the negative outcome of bleomycin on lung function (resistance, elastance and compliance). An alteration in the profile of infiltrating immune cells was also observed in KvLQT1-KO mice while histological analysis showed less interstitial and/or alveolar inflammatory response induced by bleomycin in KvLQT1-KO mice. Finally, a reduced repair rate of KvLQT1-KO alveolar cells after injury was observed. This work highlights the complex contribution of KvLQT1 in the development and resolution of ARDS parameters in a model of ALI.
Collapse
Affiliation(s)
- Mélissa Aubin Vega
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Alban Girault
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
- Laboratoire de Physiologie Cellulaire et Moléculaire (LPCM UR UPJV 4667), Amiens, France
| | - Émilie Meunier
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jasmine Chebli
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Anik Privé
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | | | - Damien Adam
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Emmanuelle Brochiero
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
14
|
Xu Y, Bao L, Cao S, Pang B, Zhang J, Zhang Y, Chen M, Wang Y, Sun Q, Zhao R, Guo S, Sun J, Cui X. Pharmacological effects and mechanism of Maxing Shigan decoction in the treatment of Pseudomonas aeruginosa pneumonia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117424. [PMID: 37984543 DOI: 10.1016/j.jep.2023.117424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/05/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maxing Shigan Decoction (MXSG) is a traditional Chinese Medicine effectively used in respiratory infections and bacterial pneumonia. However, the mechanism of MXSG treating acute Pseudomonas aeruginosa (P. aeruginosa) pneumonia is still unclear. AIM OF THE STUDY This study aimed to investigate the therapeutic effects of MXSG on acute P. aeruginosa pneumonia and explore its potential mechanisms. MATERIALS AND METHODS HPLC-MS analysis was performed to analyze the chemical composition. Antibacterial effects in vitro were evaluated by minimum inhibitory concentration (MIC). Forty-five male BALB/c mice were divided into control group, model group, levofloxacin group, MXSG-L (7.7 g/kg/d), and MXSG-H group (15.4 g/kg/d). Mice were intranasal instillation with P. aeruginosa to induce acute P. aeruginosa pneumonia model. Levofloxacin and MXSG were administered by oral gavage once a day. After 3 days of treatment, the lung index measurement, micro-CT, arterial blood gas analysis, bacteria load determination, and HE staining were performed. Network pharmacological analysis and transcriptome sequencing were employed to predict the potential mechanisms of MXSG on bacterial pneumonia. The expressions of relating genes were detected by immunofluorescence, Western blot, and RT-PCR. RESULTS In vitro, MIC of P. aeruginosa is greater than 500 mg/mL. In the treatment of acute P. aeruginosa pneumonia model, MXSG significantly improved body weight loss, lung index, and pulmonary lesions. MXSG treatment also reduced the bacterial load and ameliorated oxygen saturation significantly. Transcriptomes, immunofluorescence, Western blot, and RT-PCR analysis showed MXSG treating acute P. aeruginosa pneumonia through the IL-17 signaling pathway and HIF-1α/IL-6/STAT3 signaling pathway. CONCLUSIONS We demonstrated the efficacy and mechanism of MXSG in the treatment of acute P. aeruginosa pneumonia, which provides a scientific basis for its clinical application.
Collapse
Affiliation(s)
- Yingli Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lei Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Shan Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bo Pang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jingsheng Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Mengping Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yaxin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qiyue Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ronghua Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Shanshan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
15
|
Komaru Y, Bai YZ, Kreisel D, Herrlich A. Interorgan communication networks in the kidney-lung axis. Nat Rev Nephrol 2024; 20:120-136. [PMID: 37667081 DOI: 10.1038/s41581-023-00760-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/06/2023]
Abstract
The homeostasis and health of an organism depend on the coordinated interaction of specialized organs, which is regulated by interorgan communication networks of circulating soluble molecules and neuronal connections. Many diseases that seemingly affect one primary organ are really multiorgan diseases, with substantial secondary remote organ complications that underlie a large part of their morbidity and mortality. Acute kidney injury (AKI) frequently occurs in critically ill patients with multiorgan failure and is associated with high mortality, particularly when it occurs together with respiratory failure. Inflammatory lung lesions in patients with kidney failure that could be distinguished from pulmonary oedema due to volume overload were first reported in the 1930s, but have been largely overlooked in clinical settings. A series of studies over the past two decades have elucidated acute and chronic kidney-lung and lung-kidney interorgan communication networks involving various circulating inflammatory cytokines and chemokines, metabolites, uraemic toxins, immune cells and neuro-immune pathways. Further investigations are warranted to understand these clinical entities of high morbidity and mortality, and to develop effective treatments.
Collapse
Affiliation(s)
- Yohei Komaru
- Department of Medicine, Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Yun Zhu Bai
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Andreas Herrlich
- Department of Medicine, Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- VA Saint Louis Health Care System, John Cochran Division, St. Louis, MO, USA.
| |
Collapse
|
16
|
Radi MH, El-Shiekh RA, Hegab AM, Henry SR, Avula B, Katragunta K, Khan IA, El-Halawany AM, Abdel-Sattar E. LC-QToF chemical profiling of Euphorbia grantii Oliv. and its potential to inhibit LPS-induced lung inflammation in rats via the NF-κB, CY450P2E1, and P38 MAPK14 pathways. Inflammopharmacology 2024; 32:461-494. [PMID: 37572137 PMCID: PMC10907465 DOI: 10.1007/s10787-023-01298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that causes high morbidity and mortality worldwide. The aerial parts of Euphorbia grantii Oliv. were extracted with methanol to give a total methanolic extract (TME), which was further fractionated into dichloromethane (DCMF) and the remaining mother liquor (MLF) fractions. Biological guided anti-inflammatory assays in vitro revealed that the DCMF showed the highest activity (IC50 6.9 ± 0.2 μg/mL and 0.29 ± 0.01 μg/mL) compared to. celecoxib (IC50 of 88.0 ± 1 μg/mL and 0.30 ± 0.01 μg/mL) on COX-1 and COX-2, respectively. Additionally, anti-LOX activity was IC50 = 24.0 ± 2.5 μg/mL vs. zileuton with IC50 of 40.0 ± 0.5 μg/mL. LC-DAD-QToF analysis of TME and the active DCMF resulted in the tentative identification and characterization of 56 phytochemical compounds, where the diterpenes were the dominated metabolites. An LPS-induced inflammatory model of ALI (10 mg/kg i.p) was used to assess the anti-inflammatory potential of DCMF in vivo at dose of 200 mg/kg and 300 mg/kg compared to dexamethasone (5 mg/kg i.p). Our treatments significantly reduced the pro-inflammatory cytokines (TNF-α, IL-1, IL-6, and MPO), increased the activity of antioxidant enzymes (SOD, CAT, and GSH), decreased the activity of oxidative stress enzyme (MDA), and reduced the expression of inflammatory genes (p38.MAPK14 and CY450P2E1). The western blotting of NF-κB p65 in lung tissues was inhibited after orally administration of the DCMF. Histopathological study of the lung tissues, scoring, and immunohistochemistry of transforming growth factor-beta 1 (TGF-β1) were also assessed. In both dose regimens, DCMF of E. grantii prevented further lung damage and reduced the side effects of LPS on acute lung tissue injury.
Collapse
Affiliation(s)
- Mai Hussin Radi
- Herbal Department, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Amany Mohammed Hegab
- Developmental Pharmacology Department, Egyptian Drug Authority (EDA), Giza, Egypt
| | | | - Bharathi Avula
- School of Pharmacy, National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA
| | - Kumar Katragunta
- School of Pharmacy, National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA
| | - Ikhlas A Khan
- School of Pharmacy, National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Ali M El-Halawany
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
17
|
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9:19. [PMID: 38228603 PMCID: PMC10791971 DOI: 10.1038/s41392-023-01722-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
The lungs were long thought to be sterile until technical advances uncovered the presence of the lung microbial community. The microbiome of healthy lungs is mainly derived from the upper respiratory tract (URT) microbiome but also has its own characteristic flora. The selection mechanisms in the lung, including clearance by coughing, pulmonary macrophages, the oscillation of respiratory cilia, and bacterial inhibition by alveolar surfactant, keep the microbiome transient and mobile, which is different from the microbiome in other organs. The pulmonary bacteriome has been intensively studied recently, but relatively little research has focused on the mycobiome and virome. This up-to-date review retrospectively summarizes the lung microbiome's history, composition, and function. We focus on the interaction of the lung microbiome with the oropharynx and gut microbiome and emphasize the role it plays in the innate and adaptive immune responses. More importantly, we focus on multiple respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), fibrosis, bronchiectasis, and pneumonia. The impact of the lung microbiome on coronavirus disease 2019 (COVID-19) and lung cancer has also been comprehensively studied. Furthermore, by summarizing the therapeutic potential of the lung microbiome in lung diseases and examining the shortcomings of the field, we propose an outlook of the direction of lung microbiome research.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Fowler AA. Vitamin C: Rationale for Its Use in Sepsis-Induced Acute Respiratory Distress Syndrome (ARDS). Antioxidants (Basel) 2024; 13:95. [PMID: 38247519 PMCID: PMC10812524 DOI: 10.3390/antiox13010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening event that occurs in patients suffering from bacterial, fungal, or viral sepsis. Research performed over the last five decades showed that ARDS is a consequence of severe unrestrained systemic inflammation, which leads to injury of the lung's microvasculature and alveolar epithelium. ARDS leads to acute hypoxic/hypercapnic respiratory failure and death in a significant number of patients hospitalized in intensive care units worldwide. Basic and clinical research performed during the time since ARDS was first described has been unable to construct a pharmacological agent that will combat the inflammatory fire leading to ARDS. In-depth studies of the molecular pharmacology of vitamin C indicate that it can serve as a potent anti-inflammatory agent capable of attenuating the pathobiological events that lead to acute injury of the lungs and other body organs. This analysis of vitamin C's role in the treatment of ARDS includes a focused systematic review of the literature relevant to the molecular physiology of vitamin C and to the past performance of clinical trials using the agent.
Collapse
Affiliation(s)
- Alpha A Fowler
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
19
|
Fang Y, Xiao C, Wang L, Wang Y, Zeng J, Liang Y, Huang R, Shi Y, Wu S, Du X, Sun S, Li M, Zheng Y, Wu H, Guo Q, Yang W. Synergistic Enhancement of Isoforskolin and Dexamethasone Against Sepsis and Acute Lung Injury Mouse Models. J Inflamm Res 2023; 16:5989-6001. [PMID: 38088941 PMCID: PMC10712681 DOI: 10.2147/jir.s421232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/09/2023] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND Sepsis is initiated by the dysfunctional response of the host immune system to infection. Septic shock and acute lung injury (ALI) are the main etiology of death caused by sepsis. Glucocorticoids, which are commonly used in clinic to antagonize the inflammatory response of sepsis, may cause serious side effects. Isoforskolin (ISOF) from the plant Coleus forskohlii stimulates adenylyl cyclase, increases the cAMP level and inhibits inflammatory response. The aim of this study was to investigate the synergistic effect of ISOF with dexamethasone (DEX) to prevent and ameliorate septic inflammation. METHODS Lipopolysaccharide (LPS) of 30 and 5 mg/kg (iv.) was used to induce sepsis and ALI mice model respectively in vivo. BEAS-2B cells stimulated by LPS were applied as cell model in vitro. The cumulative survival of mice with LPS-induced sepsis and the histopathological changes of lungs in mice with acute lung injury were observed, and the secretion of pro-inflammatory cytokines was analyzed by ELISA. The expression of RGS2 in BEAS-2B cells was detected by immunoblotting assay and PCR. RESULTS In the sepsis mice model, ISOF (10 mg/kg) combined with DEX (10 mg/kg.) (ip.) pretreatment significantly increased mice survival rate from 33.3% to 58.3%, which was significantly higher than that of ISOF or DEX treated alone. In the ALI mice model, ISOF, DEX pretreatment alone and combined application attenuated pulmonary pathological changes in ALI mice. Furthermore, ISOF, DEX alone or combined administration decreased MPO, MDA, IL-6, and IL-8 levels, while significantly synergistic effects were observed in the combined treatment group compared with ISOF or DEX alone. In BEAS-2B cells, combined pretreatment with ISOF and DEX significantly decreased the expression of IL-8 and increased the expression of RGS2. CONCLUSION The results indicated that ISOF in combination with DEX synergistically improves survival rate and attenuates ALI in mice model through anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Yan Fang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People’s Republic of China
- The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Chuang Xiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People’s Republic of China
| | - Lueli Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People’s Republic of China
| | - Youlan Wang
- Kunming Institute of Medical Sciences, Kunming, People’s Republic of China
| | - Jun Zeng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People’s Republic of China
| | - Yaping Liang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People’s Republic of China
| | - Rong Huang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People’s Republic of China
| | - Yunke Shi
- The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Sha Wu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People’s Republic of China
| | - Xiaohua Du
- The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Shibo Sun
- The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Min Li
- The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Yuanyuan Zheng
- The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Hongxiang Wu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People’s Republic of China
| | - Qiuzhe Guo
- Fuwai Yunnan Cardiovascular Hospital, Kunming, People’s Republic of China
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
20
|
Saki N, Javan M, Moghimian-Boroujeni B, Kast RE. Interesting effects of interleukins and immune cells on acute respiratory distress syndrome. Clin Exp Med 2023; 23:2979-2996. [PMID: 37330918 DOI: 10.1007/s10238-023-01118-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a medical condition characterized by widespread inflammation in the lungs with consequent proportional loss of gas exchange function. ARDS is linked with severe pulmonary or systemic infection. Several factors, including secretory cytokines, immune cells, and lung epithelial and endothelial cells, play a role in the development and progression of this disease. The present study is based on Pubmed database information (1987-2022) using the words "Acute respiratory distress syndrome", "Interleukin", "Cytokines" and "Immune cells". Cytokines and immune cells play an important role in this disease, with particular emphasis on the balance between pro-inflammatory and anti-inflammatory factors. Neutrophils are one of several important mediators of Inflammation, lung tissue destruction, and malfunction during ARDS. Some immune cells, such as macrophages and eosinophils, play a dual role in releasing inflammatory mediators, recruitment inflammatory cells and the progression of ARDS, or releasing anti-inflammatory mediators, clearing the lung of inflammatory cells, and helping to improve the disease. Different interleukins play a role in the development or inhibition of ARDS by helping to activate various signaling pathways, helping to secrete other inflammatory or anti-inflammatory interleukins, and playing a role in the production and balance between immune cells involved in ARDS. As a result, immune cells and, inflammatory cytokines, especially interleukins play an important role in the pathogenesis of this disease Therefore, understanding the relevant mechanisms will help in the proper diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Javan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Bahareh Moghimian-Boroujeni
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, 61357-15794, Iran.
| | | |
Collapse
|
21
|
Kramer D, Hilton R, Roman J. Pulmonary fibrosis and COVID-19. Am J Med Sci 2023; 366:245-253. [PMID: 37481205 DOI: 10.1016/j.amjms.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
The COVID-19 pandemic has caused the death of millions and many more have been infected worldwide. The causative virus, SARS-CoV-2, affects the lung where it elicits an aggressive inflammatory response leading to respiratory failure in severe cases. This infection has been linked to pulmonary fibrosis, a process characterized by fibroproliferation and the exaggerated deposition of collagen and other extracellular matrices. These events damage the lung architecture, especially its gas-exchanging units, leading to hypoxemic respiratory failure. The mechanisms by which the virus affects the lung remain incompletely understood, but it is postulated that after entering the airways, the virus binds to Angiotensin Converting Enzyme (ACE) receptors on the surface of epithelial cells, not only stimulating oxidative stress and inflammation, but also promoting the expression of soluble pro-fibrotic factors responsible for the accumulation of fibroblasts, their activation into myofibroblasts, and their unregulated expression of extracellular matrices. These events may trigger the rapid progression or exacerbation of underlying interstitial lung disorders or promote fibrosis in a previously healthy lung. Although the natural progression of such conditions cannot always be predicted, fibrosis may progress even after the virus has been eliminated or, in cases where it does not progress, may become irreversible, leading to long-standing symptoms like shortness of breath and exercise intolerance resulting from loss of lung function. Although COVID-19 related pulmonary fibrosis is not common, preventive measures like vaccination are encouraged, as they are expected to reduce infection or its severity, thereby decreasing the possibility of life-changing respiratory conditions such as pulmonary fibrosis.
Collapse
Affiliation(s)
- Daniel Kramer
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine; Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Robert Hilton
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine; Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jesse Roman
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine; Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
22
|
Rolland-Debord C, Piéroni L, Bejar F, Milon A, Choinier P, Blin E, Bravais J, Halitim P, Letellier A, Camuset J, Parrot A, Fajac A, Cadranel J. Cell and cytokine analyses from bronchoalveolar lavage in non-critical COVID-19 pneumonia. Intern Emerg Med 2023; 18:1723-1732. [PMID: 37353659 DOI: 10.1007/s11739-023-03341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
Cell and cytokine analyses from bronchoalveolar lavage (BAL) in non-critically ill patients with COVID-19 pneumonia are poorly described. This study focused on patients hospitalized in the non-intensive care unit for either suspected COVID-19 pneumonia or persistent respiratory symptoms following proven COVID-19 pneumonia. Overall, 54 patients who underwent BAL between April 2020 and February 2021 for suspected or follow-up of proven COVID-19 pneumonia were included. Based on SARS-CoV-2 polymerase chain reaction test results and clinical follow-up, three pulmonary disease groups were defined: non-COVID-19 (n = 20), acute COVID-19 (n = 13), and post-COVID-19 (n = 24) pneumonia patients. Cytological and cytokine analyses were performed on BAL fluid (IL-1β, IL-6, IL-8, IL-10, TNF-α, IFN-γ, HGF, and TGF-β), with investigators blinded to the patient groups. Lymphocytic alveolitis with plasmocytes was observed in acute COVID-19 pneumonia, returning to normal post-COVID-19. The highest cytokine levels were observed in COVID-19 patients, with significantly increased IFN-γ, IL-10, and HGF levels compared to non-COVID-19 patients, while significantly decreased IL-6, IL-8, IL-10, IFN-γ, TNF-α, and HGF levels were noted in post-COVID-19 patients. In COVID-19 patients, correlations between IL-10, TNF-α and IFN-γ concentrations were found. Lymphocytic alveolitis with plasmacytosis was found in non-critical COVID-19 pneumonia This alveolitis is associated with the presence of IL-6, IL-8, IL-10, TNF-α, IFN-γ and HGF. Alveolitis and cytokines levels decreased in post-COVID-19 pneumonia.
Collapse
Affiliation(s)
- Camille Rolland-Debord
- Department of Pneumology and Thoracic Oncology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France.
- Department of Pneumology, Service de Pneumologie, CHU Gabriel Montpied, Université Clermont Auvergne, 53 rue Montalembert, 63000, Clermont-Ferrand, France.
| | - Laurence Piéroni
- Department of Biochemistry, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Farah Bejar
- Department of Biochemistry, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Audrey Milon
- Department of Radiology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Pascaline Choinier
- Department of Pneumology and Thoracic Oncology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Emmanuelle Blin
- Department of Pneumology and Thoracic Oncology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Juliette Bravais
- Department of Pneumology and Thoracic Oncology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Pierre Halitim
- Department of Pneumology and Thoracic Oncology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Alice Letellier
- Department of Pneumology and Thoracic Oncology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Juliette Camuset
- Department of Thoracic and Vascular Surgery, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Antoine Parrot
- Department of Pneumology and Thoracic Oncology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Anne Fajac
- Department of Pathology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| | - Jacques Cadranel
- Department of Pneumology and Thoracic Oncology, AP-HP Hôpital Tenon, Sorbonne Université, Paris, France
| |
Collapse
|
23
|
de Brabander J, Boers LS, Kullberg RFJ, Zhang S, Nossent EJ, Heunks LMA, Vlaar APJ, Bonta PI, Schultz MJ, van der Poll T, Duitman J, Bos LDJ. Persistent alveolar inflammatory response in critically ill patients with COVID-19 is associated with mortality. Thorax 2023; 78:912-921. [PMID: 37142421 DOI: 10.1136/thorax-2023-219989] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023]
Abstract
INTRODUCTION Patients with COVID-19-related acute respiratory distress syndrome (ARDS) show limited systemic hyperinflammation, but immunomodulatory treatments are effective. Little is known about the inflammatory response in the lungs and if this could be targeted using high-dose steroids (HDS). We aimed to characterise the alveolar immune response in patients with COVID-19-related ARDS, to determine its association with mortality, and to explore the association between HDS treatment and the alveolar immune response. METHODS In this observational cohort study, a comprehensive panel of 63 biomarkers was measured in repeated bronchoalveolar lavage (BAL) fluid and plasma samples of patients with COVID-19 ARDS. Differences in alveolar-plasma concentrations were determined to characterise the alveolar inflammatory response. Joint modelling was performed to assess the longitudinal changes in alveolar biomarker concentrations, and the association between changes in alveolar biomarker concentrations and mortality. Changes in alveolar biomarker concentrations were compared between HDS-treated and matched untreated patients. RESULTS 284 BAL fluid and paired plasma samples of 154 patients with COVID-19 were analysed. 13 biomarkers indicative of innate immune activation showed alveolar rather than systemic inflammation. A longitudinal increase in the alveolar concentration of several innate immune markers, including CC motif ligand (CCL)20 and CXC motif ligand (CXCL)1, was associated with increased mortality. Treatment with HDS was associated with a subsequent decrease in alveolar CCL20 and CXCL1 levels. CONCLUSIONS Patients with COVID-19-related ARDS showed an alveolar inflammatory state related to the innate host response, which was associated with a higher mortality. HDS treatment was associated with decreasing alveolar concentrations of CCL20 and CXCL1.
Collapse
Affiliation(s)
- Justin de Brabander
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Leonoor S Boers
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Robert F J Kullberg
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Shiqi Zhang
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Esther J Nossent
- Pulmonary Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Leo M A Heunks
- Intensive Care Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Alexander P J Vlaar
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Peter I Bonta
- Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Infection & Immunity, Inflammatory Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - JanWillem Duitman
- Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Infection & Immunity, Inflammatory Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Experimental Immunology (EXIM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Lieuwe D J Bos
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Rahimi S, Bakht M, Javadi A, Foroughi F, Marashi SMA, Nikkhahi F. Characterization of novel bacteriophage PSKP16 and its therapeutic potential against β-lactamase and biofilm producer strain of K2-Hypervirulent Klebsiella pneumoniae pneumonia infection in mice model. BMC Microbiol 2023; 23:233. [PMID: 37612659 PMCID: PMC10464470 DOI: 10.1186/s12866-023-02979-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Severe infections caused by β- lactamase producers, hypervirulent Klebsiella pneumoniae (BhvKp) with K2 serotype, highlight emergency need for new therapeutic strategies against this pathogen. We aimed to assess the efficacy of a novel phage, PSKP16, in the treating of pneumonia induced by BhvKp in mice models. METHOD Genome sequences of PSKP16 were analyzed, and associated information can be found in NCBI. We applied treatment in two ways: by using mice for immediate and delayed treatments. Moreover, acute pneumonia obtained by BhvKp with intranasal method, was characterized in terms of histopathology of pulmonary lesions, biomarkers of inflammation level, leukocytes cells infiltration extent in mice, and was assessed treatment of them with PSKP16 multiplicity of infection (MOI: 10), either individually or in combination with gentamicin. Assessment of the ability of PSKP16 to inhibit BhvKp biofilm was studied. RESULTS PSKP16 was associated with the Drexlerviridae family, and had a genome size of 46,712 bp, and 67 predicted ORFs. Herein, prompt phage administration's efficacy to decrease bacterial load and improve the survival rate in pneumonia models was faster than the synergism model with delay, but both almost displayed similar endpoints. The distribution of BhvKp strains in the lung was consistent with the histopathological findings, simultaneous inflammation, and level of serum tumor necrosis factor-α (TNF α). The phage treatment presented a lack of severe lesions and alveolar edema, reduction of inflammatory cell infiltration, which not only was it not associated with an over-inflammation but also provided a faster correction of blood cell count abnormalities compared to gentamicin. Phage with a high concentration in in vitro model effectively eliminated biofilms. CONCLUSION It is essential to raise clinical awareness and management of BhvKp infections, signaled as the next superbug in waiting. The results of our study underscore the importance of PSKP16 as a phage with promising therapeutic potential in treating BhvKp-induced pneumonia.
Collapse
Affiliation(s)
- Sara Rahimi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Bakht
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Javadi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Community Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farshad Foroughi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
25
|
Mai J, He Q, Liu Y, Hou Y. Hyperoside Attenuates Sepsis-Induced Acute Lung Injury (ALI) through Autophagy Regulation and Inflammation Suppression. Mediators Inflamm 2023; 2023:1257615. [PMID: 37545738 PMCID: PMC10400302 DOI: 10.1155/2023/1257615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 05/21/2023] [Accepted: 06/22/2023] [Indexed: 08/08/2023] Open
Abstract
Background Sepsis mortality and morbidity are aggravated by acute lung injury (ALI) or acute respiratory distress syndrome. Published studies have discovered that hyperoside (HYP) has an anti-inflammatory and therapeutic effect in many diseases. However, whether HYP treatment can attenuate sepsis-induced ALI is still obscure. Methods In this study, a cecal ligation and puncture (CLP)-induced sepsis mouse model was constructed. The mouse lungs were harvested and assessed using proteomics, immunohistochemistry, immunofluorescence, and enzyme-linked immunosorbent assay for pro-inflammatory cytokines. Human lung microvascular endothelial cells (HLMVECs) were induced with lipopolysaccharide (LPS) for the in vitro model. Results The results showed that HYP treatment attenuated sepsis-induced ALI through an increased survival rate, decreased inflammatory factor expression, and lung tissue apoptosis. At the same time, HYP pretreatment restored angiogenesis in CLP-induced mouse lung tissues. Proteomics detection showed that Atg13 played a vital role in HYP-mediated protection against sepsis-induced ALI. The in vitro experiment showed HYP treatment attenuated LPS-induced HLMVEC damage by regulating Atg13-mediated autophagy. Inhibiting autophagy or silencing Atg13 reversed the protective effect of HYP against sepsis-induced ALI. Conclusion Taken together, we conclude that HYP attenuated sepsis-induced ALI by regulating autophagy and inhibiting inflammation.
Collapse
Affiliation(s)
- Jingyin Mai
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200071, China
| | - Qingqing He
- Hospital Infection Management Department, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200052, China
| | - Yuting Liu
- Cardiovascular Department, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200052, China
| | - Yuting Hou
- Department of Pharmacy, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200052, China
| |
Collapse
|
26
|
Sun Z, Chen A, Fang H, Sun D, Huang M, Cheng E, Luo M, Zhang X, Fang H, Qian G. B cell-derived IL-10 promotes the resolution of lipopolysaccharide-induced acute lung injury. Cell Death Dis 2023; 14:418. [PMID: 37443161 PMCID: PMC10345008 DOI: 10.1038/s41419-023-05954-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Inflammation resolution is critical for acute lung injury (ALI) recovery. Interleukin (IL)-10 is a potent anti-inflammatory factor. However, its role in ALI resolution remains unclear. We investigated the effects of IL-10 during the ALI resolution process in a murine lipopolysaccharide (LPS)-induced ALI model. Blockade of IL-10 signaling aggravates LPS-induced lung injury, as manifested by elevated pro-inflammatory factors production and increased neutrophils recruitment to the lung. Thereafter, we used IL-10 GFP reporter mice to discern the source cell of IL-10 during ALI. We found that IL-10 is predominantly generated by B cells during the ALI recovery process. Furthermore, we used IL-10-specific loss in B-cell mice to elucidate the effect of B-cell-derived IL-10 on the ALI resolution process. IL-10-specific loss in B cells leads to increased pro-inflammatory cytokine expression, persistent leukocyte infiltration, and prolonged alveolar barrier damage. Mechanistically, B cell-derived IL-10 inhibits the activation and recruitment of macrophages and downregulates the production of chemokine KC that recruits neutrophils to the lung. Moreover, we found that IL-10 deletion in B cells leads to alterations in the cGMP-PKG signaling pathway. In addition, an exogenous supply of IL-10 promotes recovery from LPS-induced ALI, and IL-10-secreting B cells are present in sepsis-related ARDS. This study highlights that B cell-derived IL-10 is critical for the resolution of LPS-induced ALI and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Zhun Sun
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Anning Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Hongwei Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Donglin Sun
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Meiying Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Erdeng Cheng
- Department of Anesthesiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Mengyuan Luo
- Department of Anesthesiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaoren Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Anesthesiology, Minhang Hospital, Fudan University, Shanghai, China.
| | - Guojun Qian
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
27
|
Fadanni GP, Calixto JB. Recent progress and prospects for anti-cytokine therapy in preclinical and clinical acute lung injury. Cytokine Growth Factor Rev 2023; 71-72:13-25. [PMID: 37481378 DOI: 10.1016/j.cytogfr.2023.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a heterogeneous cause of respiratory failure that has a rapid onset, a high mortality rate, and for which there is no effective pharmacological treatment. Current evidence supports a critical role of excessive inflammation in ARDS, resulting in several cytokines, cytokine receptors, and proteins within their downstream signalling pathways being putative therapeutic targets. However, unsuccessful trials of anti-inflammatory drugs have thus far hindered progress in the field. In recent years, the prospects of precision medicine and therapeutic targeting of cytokines coevolving into effective treatments have gained notoriety. There is an optimistic and growing understanding of ARDS subphenotypes as well as advances in treatment strategies and clinical trial design. Furthermore, large trials of anti-cytokine drugs in patients with COVID-19 have provided an unprecedented amount of information that could pave the way for therapeutic breakthroughs. While current clinical and nonclinical ARDS research suggest relatively limited potential in monotherapy with anti-cytokine drugs, combination therapy has emerged as an appealing strategy and may provide new perspectives on finding safe and effective treatments. Accurate evaluation of these drugs, however, also relies on well-founded experimental research and the implementation of biomarker-guided stratification in future trials. In this review, we provide an overview of anti-cytokine therapy for acute lung injury and ARDS, highlighting the current preclinical and clinical evidence for targeting the main cytokines individually and the therapeutic prospects for combination therapy.
Collapse
Affiliation(s)
- Guilherme Pasetto Fadanni
- Centre of Innovation and Preclinical Studies (CIEnP), Florianópolis, Santa Catarina, Brazil; Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
| | - João Batista Calixto
- Centre of Innovation and Preclinical Studies (CIEnP), Florianópolis, Santa Catarina, Brazil; Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
28
|
Peukert K, Sauer A, Seeliger B, Feuerborn C, Fox M, Schulz S, Wild L, Borger V, Schuss P, Schneider M, Güresir E, Coburn M, Putensen C, Wilhelm C, Bode C. Increased Alveolar Epithelial Damage Markers and Inflammasome-Regulated Cytokines Are Associated with Pulmonary Superinfection in ARDS. J Clin Med 2023; 12:jcm12113649. [PMID: 37297845 DOI: 10.3390/jcm12113649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening form of respiratory failure defined by dysregulated immune homeostasis and alveolar epithelial and endothelial damage. Up to 40% of ARDS patients develop pulmonary superinfections, contributing to poor prognosis and increasing mortality. Understanding what renders ARDS patients highly susceptible to pulmonary superinfections is therefore essential. We hypothesized that ARDS patients who develop pulmonary superinfections display a distinct pulmonary injury and pro-inflammatory response pattern. Serum and BALF samples from 52 patients were collected simultaneously within 24 h of ARDS onset. The incidence of pulmonary superinfections was determined retrospectively, and the patients were classified accordingly. Serum concentrations of the epithelial markers soluble receptor for advanced glycation end-products (sRAGE) and surfactant protein D (SP-D) and the endothelial markers vascular endothelial growth factor (VEGF) and angiopoetin-2 (Ang-2) as well as bronchoalveolar lavage fluid concentrations of the pro-inflammatory cytokines interleukin 1ß (IL-1ß), interleukin 18 (IL-18), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-a) were analyzed via multiplex immunoassay. Inflammasome-regulated cytokine IL-18 and the epithelial damage markers SP-D and sRAGE were significantly increased in ARDS patients who developed pulmonary superinfections. In contrast, endothelial markers and inflammasome-independent cytokines did not differ between the groups. The current findings reveal a distinct biomarker pattern that indicates inflammasome activation and alveolar epithelial injury. This pattern may potentially be used in future studies to identify high-risk patients, enabling targeted preventive strategies and personalized treatment approaches.
Collapse
Affiliation(s)
- Konrad Peukert
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Andrea Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Benjamin Seeliger
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Caroline Feuerborn
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Mario Fox
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Susanne Schulz
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Patrick Schuss
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Neurosurgery, BG Klinikum Unfallkrankenhaus Berlin gGmbH, Warener Str. 7, 12683 Berlin, Germany
| | - Matthias Schneider
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Neurosurgery, University Hospital Leipzig, Liebig Str. 20, Haus 4, 04103 Leipzig, Germany
| | - Mark Coburn
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christian Putensen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christoph Wilhelm
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
29
|
Gao P, Duan W, Shi H, Wang Q. Silencing circPalm2 inhibits sepsis-induced acute lung injury by sponging miR-376b-3p and targeting MAP3K1. Toxicol Res 2023; 39:275-294. [PMID: 37008689 PMCID: PMC10050541 DOI: 10.1007/s43188-022-00169-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The apoptosis and inflammation of pulmonary epithelial cells are important pathogenic factors of sepsis-induced acute lung injury (ALI). Upregulation of circPalm2 (circ_0001212) expression levels has been previously detected in the lung tissue of ALI rats. Herein, the biological significance and detailed mechanism of circPalm2 in ALI pathogenesis were investigated. In vivo models of sepsis-induced ALI were established by treating C57BL/6 mice with cecal ligation and puncture (CLP) surgery. Murine pulmonary epithelial cells (MLE-12 cells) were stimulated with lipopolysaccharide (LPS) to establish in vitro septic ALI models. MLE-12 cell viability and apoptosis were evaluated by CCK-8 assay and flow cytometry analysis, respectively. The pathological alterations of the lung tissue were analysed based on hematoxylin-eosin (H&E) staining. Cell apoptosis in the lung tissue samples was examined by TUNEL staining assay. LPS administration suppressed the viability and accelerated the inflammation and apoptotic behaviours of MLE-12 cells. CircPalm2 displayed high expression in LPS-stimulated MLE-12 cells and possessed circular characteristics. The silencing of circPalm2 impeded apoptosis and inflammation in LPS-stimulated MLE-12 cells. Mechanistically, circPalm2 bound with miR-376b-3p, which targeted MAP3K1. In rescue assays, MAP3K1 enhancement reversed the repressive effects of circPalm2 depletion on LPS-triggered inflammatory injury and MLE-12 cell apoptosis. Furthermore, the lung tissue collected from CLP model mice displayed low miR-376b-3p expression and high levels of circPalm2 and MAP3K1. CircPalm2 positively regulated MAP3K1 expression by downregulating miR-376b-3p in murine lung tissues. Importantly, circPalm2 knockdown attenuated CLP-induced inflammation, apoptosis, and pathological alterations in lung tissues collected from mice. Silenced circPalm2 inhibits LPS-induced pulmonary epithelial cell dysfunction and mitigates abnormalities in lung tissues collected from CLP-stimulated mice via the miR-376b-3p/MAP3K1 axis in septic ALI. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-022-00169-7.
Collapse
Affiliation(s)
- Pengfei Gao
- Shanghai East Clinical Medical College, Nanjing Medical University, No. 150, Jimo Road, Pudong New Area, Shanghai, 200120 China
- Department of Anesthesiology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu 223300 China
| | - Wenying Duan
- Shanghai East Clinical Medical College, Nanjing Medical University, No. 150, Jimo Road, Pudong New Area, Shanghai, 200120 China
| | - Huiyan Shi
- Jinzhou Medical University, Jinzhou, Liaoning 121001 China
| | - Qingxiu Wang
- Shanghai East Clinical Medical College, Nanjing Medical University, No. 150, Jimo Road, Pudong New Area, Shanghai, 200120 China
- Shanghai East Hopital, Tongji University School of Medicine, Shanghai, 200120 China
| |
Collapse
|
30
|
Uysal S, Merter M, Uysal A, Akbulut A. Effects of cytokine hemadsorption as salvage therapy on common laboratory parameters in patients with life-threatening COVID-19. Transfus Apher Sci 2023:103701. [PMID: 36941168 PMCID: PMC10008038 DOI: 10.1016/j.transci.2023.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND The COVID-19 pandemic has led to emergency approval of treatment modalities unusual for viruses, such as therapeutic cytokine Hemadsorption(HA). This study aims to investigate the experience of salvage HA therapy and the effect of HA on routine laboratory tests. METHODS Life-threatening COVID-19 patients followed up between April 2020 and October 2022 who underwent HA salvage therapy were retrospectively enrolled. Data derived from the medical records were evaluated to meet the assumptions of statistical tests, and those that met the relevant statistical rules were selected for further analysis. Tests of Wilcoxon, Paired-T, and repeated measures-ANOVA were used to analyse the laboratory tests performed before and after HA among the surviving and nonsurviving patients. P < 0.05 was selected for the statistical significance of the alpha. RESULTS A total of 55 patients were enrolled in the study. Fibrinogen (p = 0.007), lactate dehydrogenase (LDH) (p = 0.021), C-reactive protein (CRP) (p < 0.0001), and platelet (PLT) (p = 0.046) levels showed a significant decrease with the HA effect. WBC (p = 0.209), lymphocyte (p = 0.135), procalcitonin (PCT) (p = 0.424), ferritin (p = 0.298), and D-dimer (p = 0.391) levels were not affected by HA. Ferritin level was significantly affected by survival status (p = 0.010). All patients tolerated HA well, and 16.4 % (n = 9) of the patients with life-threatening COVID-19 survived. CONCLUSION HA is well tolerated even when used as a last option. However, HA may not affect WBC, lymphocyte, and D-dimer levels. In contrast, the effect of HA could limit the benefits of LDH, CRP, and fibrinogen in various clinical assessments. This study suggests that HA treatment could be beneficial even if selected as a salvage therapy.
Collapse
Affiliation(s)
- Serhat Uysal
- Fırat University School of Medicine, Department of Infectious Diseases, Elazığ, Turkey.
| | - Mustafa Merter
- Fırat University School of Medicine, Hematology Department, Elazığ, Turkey
| | - Ayşe Uysal
- Fırat University School of Medicine, Hematology Department, Elazığ, Turkey
| | - Ayhan Akbulut
- Fırat University School of Medicine, Department of Infectious Diseases, Elazığ, Turkey
| |
Collapse
|
31
|
Haute GV, Luft C, Pedrazza L, Antunes GL, Silveira J, de Souza Basso B, Levorse VGS, Bastos MS, Melo D, Rodrigues KF, Garcia MC, da Costa MS, Matzenbacher LS, Kaiber DB, Donadio MVF, Gracia-Sancho J, de Oliveira JR. Simvastatin attenuates inflammatory process on LPS-induced acute lung injury in mice. Respir Physiol Neurobiol 2023; 309:104002. [PMID: 36566004 DOI: 10.1016/j.resp.2022.104002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/05/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Acute lung injury (ALI) is a disease of high prevalence and is characterized by the excessive production of inflammatory mediators in the lungs of people sick. Inflammation is the major characteristic of ALI and studies report that inhibition of inflammatory cytokines could be an alternative treatment. Statins such as Simvastatin (SV) are known to their use for cholesterol reduction but also for inflammatory and immunoregulatory processes. In this study, we evaluated the effects of SV on LPS-induced alveolar macrophages and in ALI mice model. Our study has demonstrated the protective effects of SV on LPS-activated alveolar macrophages RAW 264.7 and LPS-induced ALI in mice. SV treatment significantly inhibited the alveolar macrophages activation by decreasing the iNOS, IL-1β, and IL-6 gene expression in vitro and in vivo. The treatment also decreased the inflammatory cells migration and the cytokines gene expression. Our findings suggest that SV can act as an anti-inflammatory agent for acute lung injury.
Collapse
Affiliation(s)
- Gabriela Viegas Haute
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Carolina Luft
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Department of Psychology, Brock University, St. Catharines, Canada
| | - Leonardo Pedrazza
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Géssica Luana Antunes
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Josiane Silveira
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab), Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Bruno de Souza Basso
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Vitor Giancarlo Schneider Levorse
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Matheus Scherer Bastos
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Denizar Melo
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Ketlin Fernanda Rodrigues
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Maria Claudia Garcia
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Mariana Severo da Costa
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Lucas Strassburger Matzenbacher
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Daniela Benvenutti Kaiber
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Department of Physiotherapy, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jordi Gracia-Sancho
- Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS - Hospital Clinic de Barcelona - CIBEREHD, Barcelona, Spain; Hepatology, Department of Clinical Research, University of Bern, Switzerland
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| |
Collapse
|
32
|
Integrating biology into clinical trial design. Curr Opin Crit Care 2023; 29:26-33. [PMID: 36580371 DOI: 10.1097/mcc.0000000000001007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Critical care medicine revolves around syndromes, such as acute respiratory distress syndrome (ARDS), sepsis and acute kidney injury. Few interventions have shown to be effective in large clinical trials, likely because of between-patient heterogeneity. Translational evidence suggests that more homogeneous biological subgroups can be identified and that differential treatment effects exist. Integrating biological considerations into clinical trial design is therefore an important frontier of critical care research. RECENT FINDINGS The pathophysiology of critical care syndromes involves a multiplicity of processes, which emphasizes the difficulty of integrating biology into clinical trial design. Biological assessment can be integrated into clinical trials using predictive enrichment at trial inclusion, time-dependent variation to better understand treatment effects and biological markers as surrogate outcomes. SUMMARY Integrating our knowledge on biological heterogeneity into clinical trial design, which has revolutionized other medical fields, could serve as a solution to implement personalized treatment in critical care syndromes. Changing the trial design by using predictive enrichment, incorporation of the evaluation of time-dependent changes and biological markers as surrogate outcomes may improve the likelihood of detecting a beneficial effect from targeted therapeutic interventions and the opportunity to test multiple lines of treatment per patient.
Collapse
|
33
|
Hamacher J, Hadizamani Y, Huwer H, Moehrlen U, Bally L, Stammberger U, Wendel A, Lucas R. Characteristics of inflammatory response and repair after experimental blast lung injury in rats. PLoS One 2023; 18:e0281446. [PMID: 36928833 PMCID: PMC10019677 DOI: 10.1371/journal.pone.0281446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 01/17/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Blast-induced lung injury is associated with inflammatory, which are characterised by disruption of the alveolar-capillary barrier, haemorrhage, pulmonary infiltrateration causing oedema formation, pro-inflammatory cytokine and chemokine release, and anti-inflammatory counter-regulation. The objective of the current study was to define sequence of such alterations in with establishing blast-induced lung injury in rats using an advanced blast generator. METHODS Rats underwent a standardized blast wave trauma and were euthanised at defined time points. Non-traumatised animals served as sham controls. Obtained samples from bronchoalveolar lavage fluid (BALF) at each time-point were assessed for histology, leukocyte infiltration and cytokine/chemokine profile. RESULTS After blast lung injury, significant haemorrhage and neutrophil infiltration were observed. Similarly, protein accumulation, lactate dehydrogenase activity (LDH), alveolar eicosanoid release, matrix metalloproteinase (MMP)-2 and -9, pro-Inflammatory cytokines, including tumour necrosis factor (TNF) and interleukin (IL) -6 raised up. While declining in the level of anti-inflammatory cytokine IL-10 occurred. Ultimately, pulmonary oedema developed that increased to its maximum level within the first 1.5 h, then recovered within 24 h. CONCLUSION Using a stablished model, can facilitate the study of inflammatory response to blast lung injury. Following the blast injury, alteration in cytokine/chemokine profile and activity of cells in the alveolar space occurs, which eventuates in alveolar epithelial barrier dysfunction and oedema formation. Most of these parameters exhibit time-dependent return to their basal status that is an indication to resilience of lungs to blast-induced lung injury.
Collapse
Affiliation(s)
- Jürg Hamacher
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital, Bern, Switzerland
- Lungen-und Atmungsstiftung, Bern, Switzerland
- Medical Clinic V—Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, Homburg, Germany
- Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, Homburg, Germany
- * E-mail:
| | - Yalda Hadizamani
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital, Bern, Switzerland
- Lungen-und Atmungsstiftung, Bern, Switzerland
| | - Hanno Huwer
- Department of Cardiothoracic Surgery, Völklingen Heart Centre, Völklingen, Germany
- Department of Human Genetics, Saarland University, Homburg, Saar, Germany
- Department of Thoracic and Cardiovascular Surgery of the University Hospital of Saarland, Homburg, Saarland, Germany
| | - Ueli Moehrlen
- Lungen-und Atmungsstiftung, Bern, Switzerland
- Pediatric Surgery, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Lia Bally
- Department of Diabetes, Endocrinology, Clinical Nutrition and Metabolism Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Uz Stammberger
- Lungen-und Atmungsstiftung, Bern, Switzerland
- STM ClinMedRes Consulting, Basel, Switzerland
| | - Albrecht Wendel
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Rudolf Lucas
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States of America
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| |
Collapse
|
34
|
Sordillo PP, Allaire A, Bouchard A, Salvail D, Labbe SM. The complex lipid, SPPCT-800, reduces lung damage, improves pulmonary function and decreases pro-inflammatory cytokines in the murine LPS-induced acute respiratory distress syndrome (ARDS) model. PHARMACEUTICAL BIOLOGY 2022; 60:1255-1263. [PMID: 35786152 PMCID: PMC9255205 DOI: 10.1080/13880209.2022.2087689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/30/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Acute respiratory distress syndrome (ARDS) is a highly fatal, inflammatory condition of lungs with multiple causes. There is no adequate treatment. OBJECTIVE Using the murine LPS-induced ARDS model, we investigate SPPCT-800 (a complex lipid) as treatment for ARDS. MATERIALS AND METHODS C57B16/N mice received 50 μg of Escherichia coli O111:B4 lipopolysaccharide (LPS). SPPCT-800 was given as either: (1) 20 or 200 mg/kg dose 3 h after LPS; (2) 200 mg/kg (prophylactically) 30 min before LPS; or (3) eight 200 mg/kg treatments over 72 h. Controls received saline installations. RESULTS At 48 and 72 h, SpO2 was 94% and 90% in controls compared to 97% and 94% in treated animals. Expiration times, at 24 and 48 h, were 160 and 137 msec for controls, but 139 and 107 msec with SPPCT-800. In BALF (24 h), cell counts were 4.7 × 106 (controls) and 2.9 × 106 (treated); protein levels were 1.5 mg (controls) and 0.4 mg (treated); and IL-6 was 942 ± 194 pg/mL (controls) versus 850 ± 212 pg/mL (treated) [at 72 h, 4664 ± 2591 pg/mL (controls) versus 276 ± 151 pg/mL (treated)]. Weight losses, at 48 and 72 h, were 20% and 18% (controls), but 14% and 8% (treated). Lung injury scores, at 24 and 72 h, were 1.4 and 3.0 (controls) and 0.3 and 2.2 (treated). DISCUSSION AND CONCLUSIONS SPPCT-800 was effective in reducing manifestations of ARDS. SPPCT-800 should be further investigated as therapy for ARDS, especially in longer duration or higher cumulative dose studies.
Collapse
Affiliation(s)
| | | | | | - Dan Salvail
- IPS Therapeutique, Sherbrooke, Quebec, Canada
| | | |
Collapse
|
35
|
Stentz FB, Lawson D, Tucker S, Christman J, Sands C. Decreased cardiovascular risk factors and inflammation with remission of type 2 diabetes in adults with obesity using a high protein diet: Randomized control trial. OBESITY PILLARS (ONLINE) 2022; 4:100047. [PMID: 37990670 PMCID: PMC10661976 DOI: 10.1016/j.obpill.2022.100047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 11/23/2023]
Abstract
Objective The study objective was to determine the effects a high protein (HP) vs. a high carbohydrate (HC) diet on cardiovascular risk factors (CVR), inflammation, metabolic parameters, oxidative stress, weight loss, lean and fat body mass, and remission of Type 2 Diabetes (T2DM) in subjects with obesity. Research design and methods Twelve women and men with T2D were recruited and randomized to either a HP (30%protein, 30%fat, 40%carbohydrate) (n = 6) or HC (15%protein, 30%fat, 55%carbohydrate) (n = 6) diet feeding study for 6 months in this randomized controlled trial. All meals were purchased at local grocery stores and provided to subjects for 6 months with daily food menus for HP or HC compliance with weekly food pick-up and weight measurements. Oral glucose tolerance and meal tolerance tests with glucose and insulin measurements and DXA scans were done at baseline and after 6 months on the respective diets. Results After 6 months on the HP diet, 100% of the subjects had remission of their T2DM to Normal Glucose Tolerance (NGT), whereas only 16.6% of subjects on the HC diet had remission of their T2DM. The HP diet group exhibited significant improvement in a) cardiovascular risk factors (p = 0.004, b) inflammatory cytokines(p = 0.001), c) insulin sensitivity(p = 0.001), d) oxidative stress(p = 0.001), e) increased %lean body mass(p = 0.001) compared to the HC diet group at 6 months. Conclusions A significant improvement in cardiovascular risk factors, inflammation, metabolic parameters and 100% remission of T2DM to NGT was achieved with a HP diet compared to a HC diet at 6 months. Clinicaltrialsgov identifier NCT01642849.
Collapse
Affiliation(s)
- Frankie B. Stentz
- Departments of Medicine, Endocrinology, Diabetes and Metabolism Division, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Damon Lawson
- Departments of Medicine, Endocrinology, Diabetes and Metabolism Division, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sidney Tucker
- Departments of Medicine, Endocrinology, Diabetes and Metabolism Division, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - John Christman
- Departments of Medicine, Endocrinology, Diabetes and Metabolism Division, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chris Sands
- Departments of Medicine, Endocrinology, Diabetes and Metabolism Division, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
36
|
Chen Y, Peng M, Li W, Zhao M, Cao X, Li C, Zhang H, Yang M, Liang L, Yue Y, Xia T, Zhong R, Wang Y, Shu Z. Inhibition of inflammasome activation via sphingolipid pathway in acute lung injury by Huanglian Jiedu decoction: An integrative pharmacology approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154469. [PMID: 36202056 DOI: 10.1016/j.phymed.2022.154469] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/21/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is a serious health issue which causes significant morbidity and mortality. Inflammation is an important factor in the pathogenesis of ALI. Even though ALI has been successfully managed using a traditiomal Chinese medicine (TCM), Huanglian Jiedu Decoction (HLD), its mechanism of action remains unknown. PURPOSE This study explored the therapeutic potential of HLD in lipopolysaccharide (LPS)-induced ALI rats by utilizing integrative pharmacology. METHODS Here, the therapeutic efficacy of HLD was evaluated using lung wet/dry weight ratio (W/D), myeloperoxide (MPO) activity, and levels of tumor necrosis factor (TNF-α), interleukin (IL)-1β and IL-6. Network pharmacology predictd the active components of HLD in ALI. Lung tissues were subjected to perform Hematoxylin-eosin (H&E) staining, metabolomics, and transcriptomics. The acid ceramidase (ASAH1) inhibitor, carmofur, was employedto suppress the sphingolipid signaling pathway. RESULTS HLD reduced pulmonary edema and vascular permeability, and suppressed the levels of TNF-α, IL-6, and IL-1β in lung tissue, Bronchoalveolar lavage fluid (BALF), and serum. Network pharmacology combined with transcriptomics and metabolomics showed that sphingolipid signaling was the main regulatory pathway for HLD to ameliorate ALI, as confirmed by immunohistochemical analysis. Then, we reverse verified that the sphingolipid signaling pathway was the main pathway involed in ALI. Finally, berberine, baicalein, obacunone, and geniposide were docked with acid ceramidase to further explore the mechanisms of interaction between the compound and protein. CONCLUSION HLD does have a better therapeutic effect on ALI, and its molecular mechanism is better elucidated from the whole, which is to balance lipid metabolism, energy metabolism and amino acid metabolism, and inhibit NLRP3 inflammasome activation by regulating the sphingolipid pathway. Therefore, HLD and its active components can be used to develop new therapies for ALI and provide a new model for exploring complex TCM systems for treating ALI.
Collapse
Affiliation(s)
- Ying Chen
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingming Peng
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wei Li
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mantong Zhao
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xia Cao
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chuanqiu Li
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Han Zhang
- School of Pharmacy, Jiamusi University, Jiamusi 154000, China
| | - Mengru Yang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lanyuan Liang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yiming Yue
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianyi Xia
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Renxing Zhong
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Wang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zunpeng Shu
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
37
|
Muacevic A, Adler JR. Bilateral Upper Lobe Pulmonary Oedema and Primary Mitral Regurgitation. Cureus 2022; 14:e32347. [PMID: 36628016 PMCID: PMC9826619 DOI: 10.7759/cureus.32347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Pulmonary oedema of uncertain aetiology is a diagnostic challenge to clinicians worldwide. Many indicators are proposed to differentiate between cardiogenic and non-cardiogenic pulmonary oedema. Mixed pulmonary oedema is an overlap between high hydrostatic pressure and increased permeability at the microvascular level. In our case, a 77-year-old patient presented with a nine-day history of shortness of breath. He was hypoxemic in the emergency department, had a pan-systolic murmur on auscultation, and blood results showed raised inflammatory markers without any fever. His chest X-ray and computed tomography pulmonary angiogram showed asymmetric pulmonary oedema in bilateral superior lobes and bilateral pleural effusions. Point-of-care echocardiography revealed severe mitral regurgitation. Trans-oesophageal echocardiography confirmed mitral valve prolapse with the chordae rupture and systolic vein reversal flow seen in the right superior pulmonary vein. He was treated with antibiotics and diuretics. After starting intravenous diuretics, there was a rapid symptomatic improvement, and a repeat chest X-ray showed significant improvements. We concluded that it was a case of mixed pulmonary oedema with predominant cardiac aetiology, and he was referred to cardiothoracic surgery for mitral valve replacement. The case showed that mixed pulmonary oedema with atypical chest radiography appearances would be a diagnostic challenge for clinicians. In such presentations, both cardiogenic and non-cariogenic causes of pulmonary oedema should be considered.
Collapse
|
38
|
de Brabander J, Duijvelaar E, Schippers JR, Smeele PJ, Peters-Sengers H, Duitman JW, Aman J, Bogaard HJ, van der Poll T, Bos LDJ. Immunomodulation and endothelial barrier protection mediate the association between oral imatinib and mortality in hospitalised COVID-19 patients. Eur Respir J 2022; 60:2200780. [PMID: 35896211 PMCID: PMC9301934 DOI: 10.1183/13993003.00780-2022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Imatinib reduced 90-day mortality in hospitalised coronavirus disease 2019 (COVID-19) patients in a recent clinical trial, but the biological effects that cause improved clinical outcomes are unknown. We aimed to determine the biological changes elicited by imatinib in patients with COVID-19 and what baseline biological profile moderates the effect of imatinib. METHODS We undertook a secondary analysis of a randomised, double-blind, placebo-controlled trial of oral imatinib in hospitalised, hypoxaemic COVID-19 patients. Mediating effects of changes in plasma concentration of 25 plasma host response biomarkers on the association between randomisation group and 90-day mortality were studied by combining linear mixed effect modelling and joint modelling. Moderation of baseline biomarker concentrations was evaluated by Cox regression modelling. We identified subphenotypes using Ward's method clustering and evaluated moderation of these subphenotypes using the aforementioned method. RESULTS 332 out of 385 participants had plasma samples available. Imatinib increased the concentration of surfactant protein D (SP-D), and decreased the concentration of interleukin-6, procalcitonin, angiopoietin (Ang)-2/Ang-1 ratio, E-selectin, tumour necrosis factor (TNF)-α, and TNF receptor I. The effect of imatinib on 90-day mortality was fully mediated by changes in these biomarkers. Cluster analysis revealed three host response subphenotypes. Mortality benefit of imatinib was only present in the subphenotype characterised by alveolar epithelial injury indicated by increased SP-D levels in the context of systemic inflammation and endothelial dysfunction (hazard ratio 0.30, 95% CI 0.10-0.92). CONCLUSIONS The effect of imatinib on mortality in hospitalised COVID-19 patients is mediated through modulation of innate immune responses and reversal of endothelial dysfunction, and possibly moderated by biological subphenotypes.
Collapse
Affiliation(s)
- Justin de Brabander
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine (CEMM), Amsterdam, The Netherlands
| | - Erik Duijvelaar
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Job R Schippers
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Patrick J Smeele
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Hessel Peters-Sengers
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine (CEMM), Amsterdam, The Netherlands
| | - Jan Willem Duitman
- Amsterdam UMC, location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, The Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Immunology (EXIM), Amsterdam, The Netherlands
| | - Jurjan Aman
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Harm Jan Bogaard
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Tom van der Poll
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine (CEMM), Amsterdam, The Netherlands
| | - Lieuwe D J Bos
- Amsterdam UMC, location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, The Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Intensive Care and Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam, The Netherlands
| |
Collapse
|
39
|
Geilen J, Kainz M, Zapletal B, Geleff S, Wisser W, Bohle B, Schweiger T, Schultz MJ, Tschernko E. Unilateral acute lung injury in pig: a promising animal model. J Transl Med 2022; 20:548. [PMID: 36435803 PMCID: PMC9701381 DOI: 10.1186/s12967-022-03753-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/04/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) occurs in 23% unilateral. Models of unilateral ALI were developed and used previously without clearly demonstrating the strictly unilateral nature and severity of lung injury by the key parameters characterizing ALI as defined by the American Thoracic Society (ATS). Thus, the use of unilateral ALI remained rare despite the innovative approach. Therefore, we developed a unilateral model of ALI and focused on the crucial parameters characterizing ALI. This model can serve for direct comparisons between the injured and intact lungs within single animals, thus, reducing the number of animals required for valid experimental conclusions. METHODS We established the model in nine pigs, followed by an evaluation of key parameters in six pigs (main study). Pigs were ventilated using an adapted left double-lumen tube for lung separation and two ventilators. ALI was induced in the left lung with cyclic rinsing (NaCl 0.9% + Triton® X-100), after which pigs were ventilated for different time spans to test for the timing of ALI onset. Ventilatory and metabolic parameters were evaluated, and bronchoalveolar lavage (BAL) was performed for measurements of inflammatory mediators. Finally, histopathological specimens were collected and examined in respect of characteristics defining the lung injury score (LIS) as suggested by the ATS. RESULTS After adjustments of the model (n = 9) we were able to induce strictly left unilateral ALI in all six pigs of the evaluation study. The median lung injury score was 0.72 (IQR 0.62-0.79) in the left lung vs 0.14 (IQR 0.14-0.16; p < 0.05) in the right lung, confirming unilateral ALI. A significant and sustained drop in pulmonary compliance (Cdyn) of the left lung occurred immediately, whereas Cdyn of the right lung remained unchanged (p < 0.05). BAL fluid concentrations of interleukin-6 and -8 were increased in both lungs. CONCLUSIONS We established a model of unilateral ALI in pigs, confirmed by histopathology, and typical changes in respiratory mechanics and an inflammatory response. This thoroughly evaluated model could serve as a basis for future studies and for comparing pathophysiological and pharmacological changes in the uninjured and injured lung within the same animal.
Collapse
Affiliation(s)
- Johannes Geilen
- Division of Cardiothoracic and Vascular Anesthesia & Critical Care Medicine, Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Matthias Kainz
- Division of Cardiothoracic and Vascular Anesthesia & Critical Care Medicine, Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Bernhard Zapletal
- Division of Cardiothoracic and Vascular Anesthesia & Critical Care Medicine, Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Silvana Geleff
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Wisser
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Schweiger
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Marcus J. Schultz
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Edda Tschernko
- Division of Cardiothoracic and Vascular Anesthesia & Critical Care Medicine, Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
40
|
Khoury O, Clouse C, McSwain MK, Applegate J, Kock ND, Atala A, Murphy SV. Ferret acute lung injury model induced by repeated nebulized lipopolysaccharide administration. Physiol Rep 2022; 10:e15400. [PMID: 36268626 PMCID: PMC9585421 DOI: 10.14814/phy2.15400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 06/16/2023] Open
Abstract
Inflammatory lung diseases affect millions of people worldwide. These diseases are caused by a number of factors such as pneumonia, sepsis, trauma, and inhalation of toxins. Pulmonary function testing (PFT) is a valuable functional methodology for better understanding mechanisms of lung disease, measuring disease progression, clinical diagnosis, and evaluating therapeutic interventions. Animal models of inflammatory lung diseases are needed that accurately recapitulate disease manifestations observed in human patients and provide an accurate prediction of clinical outcomes using clinically relevant pulmonary disease parameters. In this study, we evaluated a ferret lung inflammation model that closely represents multiple clinical manifestations of acute lung inflammation and injury observed in human patients. Lipopolysaccharide (LPS) from Pseudomonas aeruginosa was nebulized into ferrets for 7 repeated daily doses. Repeated exposure to nebulized LPS resulted in a restrictive pulmonary injury characterized using Buxco forced maneuver PFT system custom developed for ferrets. This is the first study to report repeated forced maneuver PFT in ferrets, establishing lung function measurements pre- and post-injury in live animals. Bronchoalveolar lavage and histological analysis confirmed that LPS exposure elicited pulmonary neutrophilic inflammation and structural damage to the alveoli. We believe this ferret model of lung inflammation, with clinically relevant disease manifestations and parameters for functional evaluation, is a useful pre-clinical model for understanding human inflammatory lung disease and for the evaluation of potential therapies.
Collapse
Affiliation(s)
- Oula Khoury
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Cara Clouse
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Malcolm K. McSwain
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jeffrey Applegate
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Nancy D. Kock
- Department of Pathology/Comparative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Anthony Atala
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Sean V. Murphy
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
41
|
Anwar MM, Sah R, Shrestha S, Ozaki A, Roy N, Fathah Z, Rodriguez-Morales AJ. Disengaging the COVID-19 Clutch as a Discerning Eye Over the Inflammatory Circuit During SARS-CoV-2 Infection. Inflammation 2022; 45:1875-1894. [PMID: 35639261 PMCID: PMC9153229 DOI: 10.1007/s10753-022-01674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the cytokine release syndrome (CRS) and leads to multiorgan dysfunction. Mitochondrial dynamics are fundamental to protect against environmental insults, but they are highly susceptible to viral infections. Defective mitochondria are potential sources of reactive oxygen species (ROS). Infection with SARS-CoV-2 damages mitochondria, alters autophagy, reduces nitric oxide (NO), and increases both nicotinamide adenine dinucleotide phosphate oxidases (NOX) and ROS. Patients with coronavirus disease 2019 (COVID-19) exhibited activated toll-like receptors (TLRs) and the Nucleotide-binding and oligomerization domain (NOD-), leucine-rich repeat (LRR-), pyrin domain-containing protein 3 (NLRP3) inflammasome. The activation of TLRs and NLRP3 by SARS-CoV-2 induces interleukin 6 (IL-6), IL-1β, IL-18, and lactate dehydrogenase (LDH). Herein, we outline the inflammatory circuit of COVID-19 and what occurs behind the scene, the interplay of NOX/ROS and their role in hypoxia and thrombosis, and the important role of ROS scavengers to reduce COVID-19-related inflammation.
Collapse
Affiliation(s)
- Mohammed Moustapha Anwar
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
| | - Ranjit Sah
- Tribhuvan University Institute of Medicine, Kathmandu, Nepal
| | - Sunil Shrestha
- Department of Pharmaceutical and Health Service Research, Nepal Health Research and Innovation Foundation, Lalitpur, Nepal
| | - Akihiko Ozaki
- Department of Breast Surgery, Jyoban Hospital of Tokiwa Foundation, Iwaki, Japan
- Medical Governance Research Institute, Tokyo, Japan
| | - Namrata Roy
- SRM University, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Zareena Fathah
- Kings College London, London, UK
- College of Medicine and Health Sciences, United Arab University, Abu Dhabi, United Arab Emirates
| | - Alfonso J Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de Las Americas, Pereira, Risaralda, Colombia.
- Institución Universitaria Visión de Las Americas, Pereira, Risaralda, Colombia.
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru.
- School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia.
| |
Collapse
|
42
|
Kullberg RFJ, de Brabander J, Boers LS, Biemond JJ, Nossent EJ, Heunks LMA, Vlaar APJ, Bonta PI, van der Poll T, Duitman J, Bos LDJ, Wiersinga WJ. Lung Microbiota of Critically Ill Patients with COVID-19 Are Associated with Nonresolving Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2022; 206:846-856. [PMID: 35616585 PMCID: PMC9799265 DOI: 10.1164/rccm.202202-0274oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/26/2022] [Indexed: 01/01/2023] Open
Abstract
Rationale: Bacterial lung microbiota are correlated with lung inflammation and acute respiratory distress syndrome (ARDS) and altered in severe coronavirus disease (COVID-19). However, the association between lung microbiota (including fungi) and resolution of ARDS in COVID-19 remains unclear. We hypothesized that increased lung bacterial and fungal burdens are related to nonresolving ARDS and mortality in COVID-19. Objectives: To determine the relation between lung microbiota and clinical outcomes of COVID-19-related ARDS. Methods: This observational cohort study enrolled mechanically ventilated patients with COVID-19. All patients had ARDS and underwent bronchoscopy with BAL. Lung microbiota were profiled using 16S rRNA gene sequencing and quantitative PCR targeting the 16S and 18S rRNA genes. Key features of lung microbiota (bacterial and fungal burden, α-diversity, and community composition) served as predictors. Our primary outcome was successful extubation adjudicated 60 days after intubation, analyzed using a competing risk regression model with mortality as competing risk. Measurements and Main Results: BAL samples of 114 unique patients with COVID-19 were analyzed. Patients with increased lung bacterial and fungal burden were less likely to be extubated (subdistribution hazard ratio, 0.64 [95% confidence interval, 0.42-0.97]; P = 0.034 and 0.59 [95% confidence interval, 0.42-0.83]; P = 0.0027 per log10 increase in bacterial and fungal burden, respectively) and had higher mortality (bacterial burden, P = 0.012; fungal burden, P = 0.0498). Lung microbiota composition was associated with successful extubation (P = 0.0045). Proinflammatory cytokines (e.g., tumor necrosis factor-α) were associated with the microbial burdens. Conclusions: Bacterial and fungal lung microbiota are related to nonresolving ARDS in COVID-19 and represent an important contributor to heterogeneity in COVID-19-related ARDS.
Collapse
Affiliation(s)
| | | | - Leonoor S. Boers
- Department of Intensive Care Medicine
- Laboratory of Experimental Intensive Care and Anesthesiology
| | | | | | | | - Alexander P. J. Vlaar
- Department of Intensive Care Medicine
- Laboratory of Experimental Intensive Care and Anesthesiology
| | | | - Tom van der Poll
- Center for Experimental and Molecular Medicine
- Division of Infectious Diseases, and
| | - JanWillem Duitman
- Department of Pulmonary Medicine
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Lieuwe D. J. Bos
- Department of Intensive Care Medicine
- Laboratory of Experimental Intensive Care and Anesthesiology
- Department of Pulmonary Medicine
| | - W. Joost Wiersinga
- Center for Experimental and Molecular Medicine
- Division of Infectious Diseases, and
| |
Collapse
|
43
|
Taraxasterol Inhibits Hyperactivation of Macrophages to Alleviate the Sepsis-induced Inflammatory Response of ARDS Rats. Cell Biochem Biophys 2022; 80:763-770. [PMID: 36070121 DOI: 10.1007/s12013-022-01092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
To explore the effect and mechanism of taraxasterol on sepsis-induced acute respiratory distress syndrome (ARDS). Twenty-four male SD rats were randomly divided into four groups: the control group, model (lipopolysaccharide, LPS) group, lipopolysaccharide+taraxasterol (LPS + TXL) group, and lipopolysaccharide+ulinastatin (LPS + UTI) group. The model of sepsis-induced ARDS was established by intraperitoneal injection of LPS. The lung water content of the rats in each group was determined by the dry/wet ratio. Pathology of rat lung tissue was observed through H&E staining. Wright staining was applied to count the number of neutrophils, macrophages, and total cells. ELISA was utilized to measure the levels of the inflammatory factors TNF-α, IL-1β, and IL-6 in bronchoalveolar lavage fluid (BALF). Biochemical detection was adopted to check the levels of myeloperoxidase (MPO), superoxide dismutase (SOD) and catalase (CAT) in lung tissue. Western blotting was performed to check the protein expression of IL-12, iNOS, Arg-1, and Mrc1 in lung tissue. Compared with the LPS group, both taraxasterol and ulinastatin significantly decreased lung tissue water content, improved lung tissue injury, reduced the number of neutrophils, macrophages and total cells, and decreased the level of inflammatory factors. In addition, taraxasterol and ulinastatin also reduced the content of MPO and the expression of IL-12 and iNOS and increased the activity of SOD and CAT as well as the protein expression of Arg-1 and Mrc1. Taraxasterol can suppress macrophage M1 polarization to alleviate the inflammatory response and oxidative stress, thereby treating sepsis-induced ARDS.
Collapse
|
44
|
Dolmatova EV, Forrester SJ, Wang K, Ou Z, Williams HC, Joseph G, Kumar S, Valdivia A, Kowalczyk AP, Qu H, Jo H, Lassègue B, Hernandes MS, Griendling KK. Endothelial Poldip2 regulates sepsis-induced lung injury via Rho pathway activation. Cardiovasc Res 2022; 118:2506-2518. [PMID: 34528082 PMCID: PMC9612795 DOI: 10.1093/cvr/cvab295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
AIMS Sepsis-induced lung injury is associated with significant morbidity and mortality. Previously, we showed that heterozygous deletion of polymerase δ-interacting protein 2 (Poldip2) was protective against sepsis-induced lung injury. Since endothelial barrier disruption is thought to be the main mechanism of sepsis-induced lung injury, we sought to determine if the observed protection was specifically due to the effect of reduced endothelial Poldip2. METHODS AND RESULTS Endothelial-specific Poldip2 knock-out mice (EC-/-) and their wild-type littermates (EC+/+) were injected with saline or lipopolysaccharide (18 mg/kg) to model sepsis-induced lung injury. At 18 h post-injection mice, were euthanized and bronchoalveolar lavage (BAL) fluid and lung tissue were collected to assess leucocyte infiltration. Poldip2 EC-/- mice showed reduced lung leucocyte infiltration in BAL (0.21 ± 0.9×106 vs. 1.29 ± 1.8×106 cells/mL) and lung tissue (12.7 ± 1.8 vs. 23 ± 3.7% neutrophils of total number of cells) compared to Poldip2 EC+/+ mice. qPCR analysis of the lung tissue revealed a significantly dampened induction of inflammatory gene expression (TNFα 2.23 ± 0.39 vs. 4.15 ± 0.5-fold, IκBα 4.32 ± 1.53 vs. 8.97 ± 1.59-fold), neutrophil chemoattractant gene expression (CXCL1 68.8 ± 29.6 vs. 147 ± 25.7-fold, CXCL2 65 ± 25.6 vs. 215 ± 27.3-fold) and a marker of endothelial activation (VCAM1 1.25 ± 0.25 vs. 3.8 ± 0.38-fold) in Poldip2 EC-/- compared to Poldip2 EC+/+ lungs. An in vitro model using human pulmonary microvascular endothelial cells was used to assess the effect of Poldip2 knock-down on endothelial activation and permeability. TNFα-induced endothelial permeability and VE-cadherin disruption were significantly reduced with siRNA-mediated knock-down of Poldip2 (5 ± 0.5 vs. 17.5 ± 3-fold for permeability, 1.5 ± 0.4 vs. 10.9 ± 1.3-fold for proportion of disrupted VE-cadherin). Poldip2 knock-down altered expression of Rho-GTPase-related genes, which correlated with reduced RhoA activation by TNFα (0.94 ± 0.05 vs. 1.29 ± 0.01 of relative RhoA activity) accompanied by redistribution of active-RhoA staining to the centre of the cell. CONCLUSION Poldip2 is a potent regulator of endothelial dysfunction during sepsis-induced lung injury, and its endothelium-specific inhibition may provide clinical benefit.
Collapse
Affiliation(s)
- Elena V Dolmatova
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, WMB 308a, Atlanta, GA 30322, USA
| | - Steven J Forrester
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, WMB 308a, Atlanta, GA 30322, USA
| | - Keke Wang
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, WMB 308a, Atlanta, GA 30322, USA
| | - Ziwei Ou
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, WMB 308a, Atlanta, GA 30322, USA
| | - Holly C Williams
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, WMB 308a, Atlanta, GA 30322, USA
| | - Giji Joseph
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, WMB 308a, Atlanta, GA 30322, USA
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA 30332
| | - Alejandra Valdivia
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, WMB 308a, Atlanta, GA 30322, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Penn State College of Medicine, 700 HMC Cres Rd, Hershey, PA 17033
| | - Hongyan Qu
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, WMB 308a, Atlanta, GA 30322, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA 30332
| | - Bernard Lassègue
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, WMB 308a, Atlanta, GA 30322, USA
| | - Marina S Hernandes
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, WMB 308a, Atlanta, GA 30322, USA
| | - Kathy K Griendling
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, WMB 308a, Atlanta, GA 30322, USA
| |
Collapse
|
45
|
Li S, Zhou Y, Yan D, Wan Y. An Update on the Mutual Impact between SARS-CoV-2 Infection and Gut Microbiota. Viruses 2022; 14:1774. [PMID: 36016396 PMCID: PMC9415881 DOI: 10.3390/v14081774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota is essential for good health. It has also been demonstrated that the gut microbiota can regulate immune responses against respiratory tract infections. Since the outbreak of the COVID-19 pandemic, accumulating evidence suggests that there is a link between the severity of COVID-19 and the alteration of one's gut microbiota. The composition of gut microbiota can be profoundly affected by COVID-19 and vice versa. Here, we summarize the observations of the mutual impact between SARS-CoV-2 infection and gut microbiota composition. We discuss the consequences and mechanisms of the bi-directional interaction. Moreover, we also discuss the immune cross-reactivity between SARS-CoV-2 and commensal bacteria, which represents a previously overlooked connection between COVID-19 and commensal gut bacteria. Finally, we summarize the progress in managing COVID-19 by utilizing microbial interventions.
Collapse
Affiliation(s)
- Shaoshuai Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Public Health Clinical Center, Department of Laboratory Medicine, Shanghai 201508, China
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, China
| | - Yang Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Dongmei Yan
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, China
| | - Yanmin Wan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Public Health Clinical Center, Department of Radiology, Shanghai 201508, China
| |
Collapse
|
46
|
Cui M, Guo S, Cui Y. SRC3 deficiency exacerbates lipopolysaccharide-induced acute respiratory distress syndrome in mice. Exp Lung Res 2022; 48:178-186. [PMID: 35916527 DOI: 10.1080/01902148.2022.2104958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe disease. Inflammation is the key element implicated in ARDS. Steroid receptor coactivator 3 (SRC3), a coactivator protein for transcription, is involved in regulation of inflammatory response. Here we explored the potential roles of SRC3 in ARDS. We utilized the SRC3 deficient (SRC3-/-) mice and established the lipopolysaccharides (LPS)-induced ARDS model. The mortality, lung injury, leucocytes infiltration and inflammatory cytokine production were compared between wild type (WT) and SRC3-/- mice. The NF-κB activation in lung of WT and SRC3-/- mice was measured. After LPS treatment, SRC3-/- mice had higher mortality and more severe lung damage than WT mice. LPS-treated SRC3-/- mice had more leucocytes infiltration and upregulated inflammatory cytokine production. LPS-treated SRC3-/- mice had elevated NF-κB activation. SRC3-/- mice had exacerbated ARDS in LPS-treated mice.
Collapse
Affiliation(s)
- Meixia Cui
- Department of Emergency, Brain Academy District, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Shengtong Guo
- TCM Docters, Brain Academy District, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Ying Cui
- Department of Emergency, Brain Academy District, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
47
|
Rossi JF, Chiang HC, Lu ZY, Levon K, van Rhee F, Kanhai K, Fajgenbaum DC, Klein B. Optimisation of anti-interleukin-6 therapy: Precision medicine through mathematical modelling. Front Immunol 2022; 13:919489. [PMID: 35928820 PMCID: PMC9345304 DOI: 10.3389/fimmu.2022.919489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDysregulated interleukin (IL)-6 production can be characterised by the levels present, the kinetics of its rise and its inappropriate location. Rapid, excessive IL-6 production can exacerbate tissue damage in vital organs. In this situation, therapy with an anti-IL-6 or anti-IL-6 receptor (IL-6R) monoclonal antibody, if inappropriately dosed, may be insufficient to fully block IL-6 signalling and normalise the immune response.MethodsWe analysed inhibition of C-reactive protein (CRP) – a biomarker for IL-6 activity – in patients with COVID-19 or idiopathic multicentric Castleman disease (iMCD) treated with tocilizumab (anti-IL-6R) or siltuximab (anti-IL-6), respectively. We used mathematical modelling to analyse how to optimise anti-IL-6 or anti-IL-6R blockade for the high levels of IL-6 observed in these diseases.ResultsIL-6 signalling was insufficiently inhibited in patients with COVID-19 or iMCD treated with standard doses of anti-IL-6 therapy. Patients whose disease worsened throughout therapy had only partial inhibition of CRP production. Our model demonstrated that, in a scenario representative of iMCD with persistent high IL-6 production not controlled by a single dose of anti-IL-6 therapy, repeated administration more effectively inhibited IL-6 activity. In a situation with rapid, high, dysregulated IL-6 production, such as severe COVID-19 or a cytokine storm, repeated daily administration of an anti-IL-6/anti-IL-6R agent, or alternating daily doses of anti-IL-6 and anti-IL-6R therapies, could neutralise IL-6 activity.ConclusionIn clinical practice, IL-6 inhibition should be individualised based on pathophysiology to achieve full blockade of CRP production.FundingEUSA Pharma funded medical writing assistance and provided access to the phase II clinical data of siltuximab for analysis.
Collapse
Affiliation(s)
- Jean-François Rossi
- Hématologie-Immunothérapie, Institut du Cancer Avignon-Provence, Sainte Catherine, Avignon, France
- Faculté de Médecine Montpellier, Université de Montpellier, Montpellier, France
- *Correspondence: Jean-François Rossi,
| | - Hao-Chun Chiang
- New York University (NYU) Tandon School of Engineering, Brooklyn, NY, United States
| | - Zhao-Yang Lu
- Unité de Thérapie Cellulaire, CHU Montpellier Saint-Eloi, Montpellier, France
| | - Kalle Levon
- New York University (NYU) Tandon School of Engineering, Brooklyn, NY, United States
| | - Frits van Rhee
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Karan Kanhai
- Medical Affairs, EUSA Pharma, Hemel Hempstead, United Kingdom
| | - David C. Fajgenbaum
- Center for Cytokine Storm Treatment & Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bernard Klein
- Faculté de Médecine Montpellier, Université de Montpellier, Montpellier, France
| |
Collapse
|
48
|
FAK mediates LPS-induced inflammatory lung injury through interacting TAK1 and activating TAK1-NFκB pathway. Cell Death Dis 2022; 13:589. [PMID: 35803916 PMCID: PMC9270420 DOI: 10.1038/s41419-022-05046-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Acute lung injury (ALI), characterized by inflammatory damage, is a major clinical challenge. Developing specific treatment options for ALI requires the identification of novel targetable signaling pathways. Recent studies reported that endotoxin lipopolysaccharide (LPS) induced a TLR4-dependent activation of focal adhesion kinase (FAK) in colorectal adenocarcinoma cells, suggesting that FAK may be involved in LPS-induced inflammatory responses. Here, we investigated the involvement and mechanism of FAK in mediating LPS-induced inflammation and ALI. We show that LPS phosphorylates FAK in macrophages. Either FAK inhibitor, site-directly mutation, or siRNA knockdown of FAK significantly suppresses LPS-induced inflammatory cytokine production in macrophages. FAK inhibition also blocked LPS-induced activation of MAPKs and NFκB. Mechanistically, we demonstrate that activated FAK directly interacts with transforming growth factor-β-activated kinase-1 (TAK1), an upstream kinase of MAPKs and NFκB, and then phosphorylates TAK1 at Ser412. In a mouse model of LPS-induced ALI, pharmacological inhibition of FAK suppressed FAK/TAK activation and inflammatory response in lung tissues. These activities resulted in the preservation of lung tissues in LPS-challenged mice and increased survival during LPS-induced septic shock. Collectively, our results illustrate a novel FAK-TAK1-NFκB signaling axis in LPS-induced inflammation and ALI, and support FAK as a potential target for the treatment of ALI.
Collapse
|
49
|
Wang J, Luo F, Suo Y, Zheng Y, Chen K, You D, Liu Y. Safety, efficacy and biomarkers analysis of mesenchymal stromal cells therapy in ARDS: a systematic review and meta-analysis based on phase I and II RCTs. Stem Cell Res Ther 2022; 13:275. [PMID: 35752865 PMCID: PMC9233855 DOI: 10.1186/s13287-022-02956-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) therapy for acute respiratory distress syndrome (ARDS) is an emerging treatment, but most of the current trials of MSCs stay in the animal experimental stage, and the safety and efficacy of MSCs in clinical application are not clear. We aimed to analyze the safety, efficacy and biomarkers of mesenchymal stromal cells in the treatment of ARDS. Methods For this systematic review and meta-analysis, we searched PubMed, Embase, Cochrane Central Register of Controlled Trials, Web of science, CNKI, VIP and Wan Fang data, studies published between database inception and Mar 17, 2022. All randomized controlled trials (RCT) of stem cell interventions for ARDS were included, without language or date restrictions. We did separate meta-analyses for mortality, subjects with adverse events (AEs) and subjects with serious adverse events (SAEs). Since the trials data are dichotomous outcomes, the odds ratio (OR) is adopted for meta-analysis. The quality of the evidence was assessed with the Cochrane risk of bias tool. Findings In total, 5 trials involving 171 patients with ARDS were included in this meta-analysis. A total of 99 individuals were randomly assigned to receive MSCs treatment, and 72 were randomly assigned to receive placebo treatment. Treatment with MSCs appeared to increase the occurrence of adverse events, but this result was not statistically significant (OR, 1.58; 95%CI, 0.64–3.91; P = 0.32). The occurrence of serious adverse events was lower in the MSCs group than in the placebo group (OR, 0.57; 95%CI, 0.14–2.32; P = 0.43); there seems to be no significant difference between the two groups in terms of 28 days mortality (OR, 0.93; 95%CI, 0.45–1.89); oxygenation index and biomarkers showed a tendency to improve in treatment, but there was a lack of more statistically significant clinical evidence to support them. Interpretation Based on the current clinical trials, MSCs intervention has some safety for ARDS patients, but its effectiveness and predictive value of airspace biomarkers need to be determined by more large-scale, standard randomized controlled trials. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02956-3.
Collapse
Affiliation(s)
- Jianbao Wang
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Fenbin Luo
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Ye Suo
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Yuxin Zheng
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Kaikai Chen
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Deyuan You
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Yuqi Liu
- Department of Respiratory and Critical Care Medicine, Fujian Respiratory Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China.
| |
Collapse
|
50
|
Aschner Y, Correll KA, Beke K, Foster DG, Roybal HM, Nelson MR, Meador CL, Strand M, Anderson KC, Moore CM, Reynolds PR, Kopf KW, Burnham EL, Downey GP. PTPα Promotes Fibroproliferative Responses After Acute Lung Injury. Am J Physiol Lung Cell Mol Physiol 2022; 323:L69-L83. [PMID: 35670474 DOI: 10.1152/ajplung.00436.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Acute Respiratory Distress Syndrome (ARDS) is a major healthcare problem, accounting for significant mortality and long-term disability. Approximately 25% of patients with ARDS will develop an over-exuberant fibrotic response, termed fibroproliferative ARDS (FP-ARDS) that portends a poor prognosis and increased mortality. The cellular pathologic processes that drive FP-ARDS remain incompletely understood. We have previously shown that the transmembrane receptor-type tyrosine phosphatase Protein Tyrosine Phosphatase-a (PTPa) promotes pulmonary fibrosis in preclinical murine models through regulation of TGF-b signaling. In this study, we examine the role of PTPa in the pathogenesis of FP-ARDS in a preclinical murine model of acid (HCl)-induced acute lung injury. We demonstrate that while mice genetically deficient in PTPa (Ptpra-/-) are susceptible to early HCl-induced lung injury, they exhibit markedly attenuated fibroproliferative responses. Additionally, early pro-fibrotic gene expression is reduced in lung tissue after acute lung injury in Ptpra-/- mice, and stimulation of naïve lung fibroblasts with the BAL fluid from these mice results in attenuated fibrotic outcomes compared to wild type littermate controls. Transcriptomic analyses demonstrates reduced Extracellular Matrix (ECM) deposition and remodeling in mice genetically deficient in PTPa. Importantly, human lung fibroblasts modified with a CRISPR-targeted deletion of PTPRA exhibit reduced expression of profibrotic genes in response to TGF-β stimulation, demonstrating the importance of PTPa in human lung fibroblasts. Together, these findings demonstrate that PTPa is a key regulator of fibroproliferative processes following acute lung injury and could serve as a therapeutic target for patients at risk for poor long-term outcomes in ARDS.
Collapse
Affiliation(s)
- Yael Aschner
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, United States.,Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Kelly A Correll
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Keriann Beke
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Daniel G Foster
- Department of Medicine, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Helen M Roybal
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Meghan R Nelson
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Carly L Meador
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Matthew Strand
- Division of Biostatistics, National Jewish Health, Denver, CO, United States
| | - Kelsey C Anderson
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
| | - Camille M Moore
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| | - Paul R Reynolds
- Department of Medicine, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Katrina W Kopf
- Office of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Ellen L Burnham
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Gregory P Downey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, United States.,Department of Medicine, National Jewish Health, Denver, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States.,Office of Academic Affairs, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| |
Collapse
|