1
|
Wang KCW, James AL, Donovan GM, Noble PB. Prenatal Origins of Obstructive Airway Disease: Starting on the Wrong Trajectory? Compr Physiol 2024; 14:5729-5762. [PMID: 39699087 DOI: 10.1002/cphy.c230019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
From the results of well-performed population health studies, we now have excellent data demonstrating that deficits in adult lung function may be present early in life, possibly as a result of developmental disorders, incurring a lifelong risk of obstructive airway diseases such as asthma and chronic obstructive pulmonary disease. Suboptimal fetal development results in intrauterine growth restriction and low birth weight at term (an outcome distinct from preterm complications), which are associated with subsequent obstructive disease. Numerous prenatal exposures and disorders compromise fetal development and these are summarized herein. Various physiological, structural, and mechanical abnormalities may result from prenatal disruption, including changes to airway smooth muscle structure-function, goblet cell biology, airway stiffness, geometry of the bronchial tree, lung parenchymal structure and mechanics, respiratory skeletal muscle contraction, and pulmonary inflammation. The literature therefore supports the need for early life intervention to prevent or correct growth defects, which may include simple nutritional or antioxidant therapy. © 2024 American Physiological Society. Compr Physiol 14:5729-5762, 2024.
Collapse
Affiliation(s)
- Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
2
|
Chen Y, Latisenko R, Lynch DA, Ciet P, Charbonnier JP, Tiddens HAWM. Effect of inspiratory lung volume on bronchial and arterial dimensions and ratios on chest computed tomography in patients with chronic obstructive pulmonary disease. Eur Radiol 2024:10.1007/s00330-024-11126-3. [PMID: 39613958 DOI: 10.1007/s00330-024-11126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND The assessment of bronchus-artery (BA) metrics on chest CT is important for detecting airway abnormalities. It is less clear how BA metrics are dependent on lung volume. METHODS CTs were obtained from a COPDGene substudy investigating the impact of radiation dose on lung density. Patients with chronic obstructive pulmonary disease underwent a full-dose and a reduced-dose CT in the same imaging session. CTs were automatically analyzed by measuring diameters of the bronchial outer edge (Bout), bronchial inner wall (Bin), artery (A), and bronchial wall thickness (Bwt) from segmental (G0) and distal generations. BA ratios were computed: Bout/A, Bin/A, Bwt/A, and bronchial wall area/bronchial outer area (Bwa/Boa). The total lung volume of the CT (TLC-CT) was computed. Differences between the volumes between the two CTs were expressed as % of the highest TLC-CT (ΔTLC-CT%). For the BA metrics of each CT, we computed the median of measurements in G1-6. Mixed-effect models were used to investigate the influence of TLC-CT on BA metrics adjusted for dose protocol. RESULTS One thousand three hundred nineteen patients with a mean (SD) age of 64.4 (8.7) years were included. Three hundred twenty-nine (124) BA pairs were analyzed per CT. No significant difference was found for TLC-CT in relation to dose (p = 0.17). A ΔTLC-CT% of >10% (found in 121, 9%) led to 0.03 and 0.05 decreases in Bout/A and Bin/A and 0.008 and 0.11 decrease in log (Bwt/A) and log (Bwa/Boa), and a 0.03 increase in Bin and 0.06, 0.12, and 0.04 decrease in Bout, log (Bwt), and log (A) (all p < 0.001). CONCLUSIONS Variations in TLC over 10% between time points significantly influence bronchial dimensions, affecting BA metrics. Standardizing volumes is recommended for sensitive tracking of airway disease changes over time. KEY POINTS Question Are BA metrics dependent on total lung capacity (TLC), and if so, how? Findings TLC variations over 10% between time points significantly influence bronchial dimensions, affecting BA metrics. Variations below 10% between CT scans have little effect on BA metrics. Clinical relevance Small lung volume differences between chest CTs have little impact on bronchus and artery metrics; it is imperative to standardize chest CT lung volumes to ensure precise diagnosis and monitoring of airway disease.
Collapse
Affiliation(s)
- Yuxin Chen
- Division of Respiratory Medicine and Allergology, Department of Paediatrics, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, CO, USA
| | - Pierluigi Ciet
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology and Medical Science, University of Cagliari, Cagliari, Italy
| | | | - Harm A W M Tiddens
- Division of Respiratory Medicine and Allergology, Department of Paediatrics, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands.
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
- Thirona, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Mettler SK, Nath HP, Grumley S, Orejas JL, Dolliver WR, Nardelli P, Yen AC, Kligerman SJ, Jacobs K, Manapragada PP, Abozeed M, Aziz MU, Zahid M, Ahmed AN, Terry NL, Elalami R, Estépar RSJ, Sonavane S, Billatos E, Wang W, Estépar RSJ, Richards JB, Cho MH, Diaz AA. Silent Airway Mucus Plugs in COPD and Clinical Implications. Chest 2024; 166:1010-1019. [PMID: 38013161 PMCID: PMC11562650 DOI: 10.1016/j.chest.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Airway mucus plugs are frequently identified on CT scans of patients with COPD with a smoking history without mucus-related symptoms (ie, cough, phlegm [silent mucus plugs]). RESEARCH QUESTION In patients with COPD, what are the risk and protective factors associated with silent airway mucus plugs? Are silent mucus plugs associated with functional, structural, and clinical measures of disease? STUDY DESIGN AND METHODS We identified mucus plugs on chest CT scans of participants with COPD from the COPDGene study. The mucus plug score was defined as the number of pulmonary segments with mucus plugs, ranging from 0 to 18, and categorized into three groups (0, 1-2, and ≥ 3). We determined risk and protective factors for silent mucus plugs and the associations of silent mucus plugs with measures of disease severity using multivariable linear and logistic regression models. RESULTS Of 4,363 participants with COPD, 1,739 had no cough or phlegm. Among the 1,739 participants, 627 (36%) had airway mucus plugs identified on CT scan. Risk factors of silent mucus plugs (compared with symptomatic mucus plugs) were older age (OR, 1.02), female sex (OR, 1.40), and Black race (OR, 1.93) (all P values < .01). Among those without cough or phlegm, silent mucus plugs (vs absence of mucus plugs) were associated with worse 6-min walk distance, worse resting arterial oxygen saturation, worse FEV1 % predicted, greater emphysema, thicker airway walls, and higher odds of severe exacerbation in the past year in adjusted models. INTERPRETATION Mucus plugs are common in patients with COPD without mucus-related symptoms. Silent mucus plugs are associated with worse functional, structural, and clinical measures of disease. CT scan-identified mucus plugs can complement the evaluation of patients with COPD.
Collapse
Affiliation(s)
- Sofia K Mettler
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| | - Hrudaya P Nath
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Scott Grumley
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - José L Orejas
- Harvard Medical School, Boston, MA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| | - Wojciech R Dolliver
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| | - Pietro Nardelli
- Harvard Medical School, Boston, MA; Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Andrew C Yen
- Department of Radiology, University of California San Diego, San Diego, CA
| | | | - Kathleen Jacobs
- Department of Radiology, University of California San Diego, San Diego, CA
| | - Padma P Manapragada
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Mostafa Abozeed
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Muhammad Usman Aziz
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Mohd Zahid
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Asmaa N Ahmed
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Nina L Terry
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Rim Elalami
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| | - Ruben San José Estépar
- Harvard Medical School, Boston, MA; Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | | | - Ehab Billatos
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Wei Wang
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, MA
| | - Raúl San José Estépar
- Harvard Medical School, Boston, MA; Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Jeremy B Richards
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA; Harvard Medical School, Boston, MA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| | - Alejandro A Diaz
- Harvard Medical School, Boston, MA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
4
|
Gill R, Boucher M, Henry C, Bossé Y. A Quick Method to Assess Airway Distensibility in Mice. Ann Biomed Eng 2024; 52:2193-2202. [PMID: 38619723 PMCID: PMC11247055 DOI: 10.1007/s10439-024-03518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Airway distensibility is defined as the ease whereby airways are dilating in response to inflating lung pressure. If measured swiftly and accurately, airway distensibility would be a useful readout to parse the various elements contributing to airway wall stiffening, such as smooth muscle contraction, surface tension, and airway remodeling. The goal of the present study was to develop a method for measuring airway distensibility in mice. Lungs of BALB/c and C57BL/6 mice from either sex were subjected to stepwise changes in pressure. At each pressure step, an oscillometric perturbation was used to measure the impedance spectrum, on which the constant-phase model was fitted to deduce a surrogate for airway caliber called Newtonian conductance (GN). The change in GN over the change in pressure was subsequently used as an index of airway distensibility. An additional group of mice was infused with methacholine to confirm that smooth muscle contraction changes airway distensibility. GN increased with increasing steps in pressure, suggesting that the extent to which this occurs can be used as an index of airway distensibility. Airway distensibility was greater in BALB/c than C57BL/6 mice, and its variation by sex was mouse strain dependent, being greater in female than male in BALB/c mice with an inverse trend in C57BL/6 mice. Airway distensibility was also decreased by methacholine. This novel method swiftly measures airway distensibility in mice. Airway distensibility was also shown to vary with sex and mouse strain and to be sensitive to the contraction of smooth muscle.
Collapse
Affiliation(s)
- Rebecka Gill
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ)-Université Laval, 2725, Chemin Sainte-Foy, Quebec, QC, G1V 4G5, Canada
| | - Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ)-Université Laval, 2725, Chemin Sainte-Foy, Quebec, QC, G1V 4G5, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ)-Université Laval, 2725, Chemin Sainte-Foy, Quebec, QC, G1V 4G5, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ)-Université Laval, 2725, Chemin Sainte-Foy, Quebec, QC, G1V 4G5, Canada.
| |
Collapse
|
5
|
Genkin D, Zanette B, Grzela P, Benkert T, Subbarao P, Moraes TJ, Katz S, Ratjen F, Santyr G, Kirby M. Semiautomated Segmentation and Analysis of Airway Lumen in Pediatric Patients Using Ultra Short Echo Time MRI. Acad Radiol 2024; 31:648-659. [PMID: 37550154 DOI: 10.1016/j.acra.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
RATIONALE AND OBJECTIVES Ultra short echo time (UTE) magnetic resonance imaging (MRI) pulse sequences have shown promise for airway assessment, but the feasibility and repeatability in the pediatric lung are unknown. The purpose of this work was to develop a semiautomated UTE MRI airway segmentation pipeline from the trachea-to-tertiary airways in pediatric participants and assess repeatability and lumen diameter correlations to lung function. MATERIALS AND METHODS A total of 29 participants (n = 7 healthy, n = 11 cystic fibrosis, n = 6 asthma, and n = 5 ex-preterm), aged 7-18 years, were imaged using a 3D stack-of-spirals UTE examination at 3 T. Two independent observers performed airway segmentations using a pipeline developed in-house; observer 1 repeated segmentations 1 month later. Segmentations were extracted using region-growing with leak detection, then manually edited if required. The airway trees were skeletonized, pruned, and labeled. Airway lumen diameter measurements were extracted using ray casting. Intra- and interobserver variability was assessed using the Sørensen-Dice coefficient (DSC) and intra-class correlation coefficient (ICC). Correlations between lumen diameter and pulmonary function were assessed using Spearman's correlation coefficient. RESULTS For airway segmentations and lumen diameter, intra- and interobserver DSCs were 0.88 and 0.80, while ICCs were 0.95 and 0.89, respectively. The variability increased from the trachea-to-tertiary airways for intra- (DSC: 0.91-0.64; ICC: 0.91-0.49) and interobserver (DSC: 0.84-0.51; ICC: 0.89-0.21) measurements. Lumen diameter was significantly correlated with forced expiratory volume in 1 second and forced vital capacity (P < .05). CONCLUSION UTE MRI airway segmentation from the trachea-to-tertiary airways in pediatric participants across a range of diseases is feasible. The UTE MRI-derived lumen measurements were repeatable and correlated with lung function.
Collapse
Affiliation(s)
- Daniel Genkin
- Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON, Canada (D.G.)
| | - Brandon Zanette
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada (B.Z., P.G., P.S., T.J.M., F.R., G.S.)
| | - Patrick Grzela
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada (B.Z., P.G., P.S., T.J.M., F.R., G.S.)
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany (T.B.)
| | - Padmaja Subbarao
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada (B.Z., P.G., P.S., T.J.M., F.R., G.S.); Department of Pediatrics, University of Toronto, Toronto, ON, Canada (P.S., T.J.M., F.R.)
| | - Theo J Moraes
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada (B.Z., P.G., P.S., T.J.M., F.R., G.S.); Department of Pediatrics, University of Toronto, Toronto, ON, Canada (P.S., T.J.M., F.R.)
| | - Sherri Katz
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada (S.K.); Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada (S.K.)
| | - Felix Ratjen
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada (B.Z., P.G., P.S., T.J.M., F.R., G.S.); Department of Pediatrics, University of Toronto, Toronto, ON, Canada (P.S., T.J.M., F.R.)
| | - Giles Santyr
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada (B.Z., P.G., P.S., T.J.M., F.R., G.S.); Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada (G.S.)
| | - Miranda Kirby
- Department of Physics, Toronto Metropolitan University, Kerr Hall South Bldg., Room KHS-344, 350 Victoria St., Toronto, ON M5B 2K3, Canada (M.K.).
| |
Collapse
|
6
|
Hu WT, Chen W, Zhou M, Fan J, Yan F, Liu B, Lu FY, Chen R, Guo Y, Yang W. Quantitative analyzes of the variability in airways via four-dimensional dynamic ventilation CT in patients with chronic obstructive pulmonary disease: correlation with spirometry data and severity of airflow limitation. J Thorac Dis 2023; 15:4775-4786. [PMID: 37868900 PMCID: PMC10586961 DOI: 10.21037/jtd-23-573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/04/2023] [Indexed: 10/24/2023]
Abstract
Background In chronic obstructive pulmonary disease (COPD) patients, the diagnosis and assessment of disease severity are mainly based on spirometry, which may lead to misjudgments due to poor patient compliance. Thoracic four-dimensional dynamic ventilation computed tomography (4D-CT) provides more airway data approximating true physiological function than conventional CT. We aimed to determine dynamic changes in airways to elucidate the pathological mechanism underlying COPD and predict the severity of airflow limitation in patients. Methods Forty-two COPD patients underwent 4D-CT and spirometry. The minimum lumen diameter changed with the breathing cycle in 4th-generation airways and was continuously measured in the apical (RB1), lateral (RB4) and posterior basal segments (RB10) of the right lung. The minimum lumen diameter in the peak inspiration and peak expiration as well as the peak expiratory/peak inspiratory ratio (E/I ratio), and dynamic coefficient of variance (CV) were calculated. Results Correlations of FEV1% with the CV of minimum lumen diameter in RB1 (ρ=-0.473, P=0.002) and in RB10 (ρ=-0.480, P=0.005) were observed, suggesting that the dynamic variability in 4th-generation airways was associated with airflow limitation in COPD patients. The CV of the minimum lumen diameter in RB1 significantly differed between the GOLD I + II and GOLD III + IV groups {8.59 [interquartile range (IQR), 6.63-14.86] vs. 14.64 (10.65-25.88), respectively; P=0.016}, suggesting that the dynamic CV in RB1 increased significantly in the GOLD III + IV group, which had worse pulmonary ventilation function. Based on the receiver operating characteristic (ROC) curve analysis, CV-RB1 predicted FEV1% <50% with an optimal cut-off of 9.43% [sensitivity 85.7%, specificity 57.1%, area under the curve (AUC) 0.717]. Conclusions 4D-CT might be an available method to help diagnose and evaluate the severity of COPD.
Collapse
Affiliation(s)
- Wei-Ting Hu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Wei Chen
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Min Zhou
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Jing Fan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Liu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Fang-Ying Lu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Rong Chen
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Yi Guo
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Wenjie Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Costa JA, Rodriguez-Trabal C, Pareja I, Tur A, Mambié M, Fernandez-Hidalgo M, Verd S. P-Wave Axis of Schoolchildren Who Were Once Breastfed. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1255. [PMID: 37508752 PMCID: PMC10378181 DOI: 10.3390/children10071255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND It has been known for decades that breastfeeding leads to a lower risk of asthma, respiratory infections, or metabolic syndrome at school age. In addition, evidence is now accumulating on the influence of breast milk on the shape, volume, or function of the heart and lungs. Within this field of research into the effects of breast milk on the structure of the heart and lungs, we have set out to analyze the differential electrocardiographic characteristics of schoolchildren who were once breastfed. METHOD This was an observational cross-sectional study, including 138 children aged 6 or 12 consecutively presenting to a well-child clinic between May and December 2022. INCLUSION CRITERIA The ability to perform reproducible ECG records, the feasibility of weighing and measuring patient, and breastfeeding data collected from birth were used as the inclusion criteria. RESULTS Using the 40° cut-off value for the mean P-wave axis among schoolchildren, 76% of never-breastfed children in our sample have a P-wave axis in a more vertical position than the mean as compared to 58% of ever-breastfed children (OR: 2.25; 95% CI: 3.13-1.36); there was no other significant difference between infant feeding groups in somatometric characteristics or ECG parameters. CONCLUSION We found a significant difference of the mean values of the P-wave axis between never- and ever-breastfed children. Although this report should be approached cautiously, these findings add to the renewed interest in discerning developmental interventions to improve cardiovascular health.
Collapse
Affiliation(s)
- Juan-Antonio Costa
- Department of Paediatrics, Ca'n Misses District Hospital, Corona Street, 07800 Eivissa, Spain
| | - Carla Rodriguez-Trabal
- Department of Pediatrics, Son Espases University Hospital, Valldemossa Road, 07120 Palma de Mallorca, Spain
| | - Ignacio Pareja
- La Vileta Surgery, Paediatric Unit, Department of Primary Care, Matamusinos Street, 07013 Palma de Mallorca, Spain
| | - Alicia Tur
- La Vileta Surgery, Paediatric Unit, Department of Primary Care, Matamusinos Street, 07013 Palma de Mallorca, Spain
| | - Marianna Mambié
- La Vileta Surgery, Paediatric Unit, Department of Primary Care, Matamusinos Street, 07013 Palma de Mallorca, Spain
| | - Mercedes Fernandez-Hidalgo
- La Vileta Surgery, Paediatric Unit, Department of Primary Care, Matamusinos Street, 07013 Palma de Mallorca, Spain
| | - Sergio Verd
- La Vileta Surgery, Paediatric Unit, Department of Primary Care, Matamusinos Street, 07013 Palma de Mallorca, Spain
- Balearic Institute of Medical Research (IdISBa), Valldemossa Road, 07120 Palma de Mallorca, Spain
| |
Collapse
|
8
|
Early Diagnosis and Real-Time Monitoring of Regional Lung Function Changes to Prevent Chronic Obstructive Pulmonary Disease Progression to Severe Emphysema. J Clin Med 2021; 10:jcm10245811. [PMID: 34945107 PMCID: PMC8708661 DOI: 10.3390/jcm10245811] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 02/04/2023] Open
Abstract
First- and second-hand exposure to smoke or air pollutants is the primary cause of chronic obstructive pulmonary disease (COPD) pathogenesis, where genetic and age-related factors predispose the subject to the initiation and progression of obstructive lung disease. Briefly, airway inflammation, specifically bronchitis, initiates the lung disease, leading to difficulty in breathing (dyspnea) and coughing as initial symptoms, followed by air trapping and inhibition of the flow of air into the lungs due to damage to the alveoli (emphysema). In addition, mucus obstruction and impaired lung clearance mechanisms lead to recurring acute exacerbations causing progressive decline in lung function, eventually requiring lung transplant and other lifesaving interventions to prevent mortality. It is noteworthy that COPD is much more common in the population than currently diagnosed, as only 16 million adult Americans were reported to be diagnosed with COPD as of 2018, although an additional 14 million American adults were estimated to be suffering from COPD but undiagnosed by the current standard of care (SOC) diagnostic, namely the spirometry-based pulmonary function test (PFT). Thus, the main issue driving the adverse disease outcome and significant mortality for COPD is lack of timely diagnosis in the early stages of the disease. The current treatment regime for COPD emphysema is most effective when implemented early, on COPD onset, where alleviating symptoms and exacerbations with timely intervention(s) can prevent steep lung function decline(s) and disease progression to severe emphysema. Therefore, the key to efficiently combatting COPD relies on early detection. Thus, it is important to detect early regional pulmonary function and structural changes to monitor modest disease progression for implementing timely interventions and effectively eliminating emphysema progression. Currently, COPD diagnosis involves using techniques such as COPD screening questionnaires, PFT, arterial blood gas analysis, and/or lung imaging, but these modalities are limited in their capability for early diagnosis and real-time disease monitoring of regional lung function changes. Hence, promising emerging techniques, such as X-ray phase contrast, photoacoustic tomography, ultrasound computed tomography, electrical impedance tomography, the forced oscillation technique, and the impulse oscillometry system powered by robust artificial intelligence and machine learning analysis capability are emerging as novel solutions for early detection and real time monitoring of COPD progression for timely intervention. We discuss here the scope, risks, and limitations of current SOC and emerging COPD diagnostics, with perspective on novel diagnostics providing real time regional lung function monitoring, and predicting exacerbation and/or disease onset for prognosis-based timely intervention(s) to limit COPD–emphysema progression.
Collapse
|
9
|
Cairncross A, Jones RL, Elliot JG, McFawn PK, James AL, Noble PB. Airway narrowing and response to simulated deep inspiration in bronchial segments from subjects with fixed airflow obstruction. J Appl Physiol (1985) 2020; 128:757-767. [PMID: 32105523 DOI: 10.1152/japplphysiol.00439.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The volume fraction of extracellular matrix (ECM) within the layer of airway smooth muscle (ASM) is increased in subjects with fixed airflow obstruction. We postulated that changes in ECM within the ASM layer will impact force transmission during induced contraction and/or in response to externally applied stresses like a deep inspiration (DI). Subjects were patients undergoing lung resection surgery who were categorized as unobstructed (n = 12) or "fixed" obstructed (n = 6) on the basis of preoperative spirometry. The response to a DI, assessed by the ratio of isovolumic flows from maximal and partial inspirations (M/P), was also measured preoperatively. M/P was reduced in the obstructed group (P = 0.02). Postoperatively, bronchial segments were obtained from resected tissue, and luminal narrowing to acetylcholine and bronchodilation to simulated DI were assessed in vitro. Airway wall dimensions and the volume fraction of ECM within the ASM were quantified. Maximal airway narrowing to acetylcholine (P = 0.01) and the volume fraction of ECM within the ASM layer (P = 0.02) were increased in the obstructed group, without a change in ASM thickness. Whereas bronchodilation to simulated DI in vitro was not different between obstructed and unobstructed groups, it was correlated with increased M/P (bronchodilation/less bronchoconstriction) in vivo (P = 0.03). The volume fraction of ECM was inversely related to forced expiratory volume in 1 s FEV1 %predicted (P = 0.04) and M/P (P = 0.01). Results show that in subjects with fixed airflow obstruction the mechanical behavior of the airway wall is altered and there is a contemporaneous shift in the structural composition of the ASM layer.NEW & NOTEWORTHY Cartilaginous airways from subjects with fixed airflow obstruction have an increase in the volume fraction of extracellular matrix within the airway smooth muscle layer. These airways are also intrinsically more reactive to a contractile stimulus, which is expected to contribute to airway hyperresponsiveness in this population, often attributed to geometric mechanisms. In view of these results, we speculate on how changes in extracellular matrix may impact airway mechanics.
Collapse
Affiliation(s)
- Alvenia Cairncross
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Robyn L Jones
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Peter K McFawn
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
10
|
Tanabe N, Sato S, Muro S, Shima H, Oguma T, Tanimura K, Sato A, Hirai T. Regional lung deflation with increased airway volume underlies the functional response to bronchodilators in chronic obstructive pulmonary disease. Physiol Rep 2019; 7:e14330. [PMID: 31880096 PMCID: PMC6933023 DOI: 10.14814/phy2.14330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bronchodilators, including long-acting muscarinic antagonists (LAMAs), improve airflow limitation and lung hyperinflation in patients with chronic obstructive pulmonary disease (COPD). While bronchodilators increase airway caliber and deflate the lungs, little is known about the effects of the local interaction between airway dilation and lung deflation on functional improvements resulting from bronchodilator therapy. This study aimed to explore whether lung deflation with increased airway volume in the upper and lower lung regions would produce different physiological responses to LAMA therapy. Using the clinical data of 41 patients with COPD who underwent spirometry and inspiratory computed tomography (CT) before and 1 year after LAMA treatment, we measured the 1-year change in the airway tree to lung volume percentage ratio (AWV%) for the right upper, middle, and lower lobes (RUL, RML, and RLL) and the left upper and lower lobes (LUL and LLL), and total airway count (TAC) identifiable on CT in relation to the forced expiratory volume in 1 s (FEV1 ). The results showed that LAMA treatment significantly increased the FEV1 and AWV% of the RUL, RML, RLL, LUL, and LLL. Increased AWV% in the RLL and LLL, but not in the RUL and LUL, was correlated with increased FEV1 . In the multivariate analysis, the increased AWV% in the RLL was associated with the increased FEV1 independent of the change in TAC in the RLL after treatment. This is the first study to show that the physiological improvements after bronchodilator treatment in COPD could be mainly due to the combination of regional deflation and increased airway volume of the lower lobes.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Susumu Sato
- Department of Respiratory MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Shigeo Muro
- Department of Respiratory MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
- Department of Respiratory MedicineNara Medical UniversityNaraJapan
| | - Hiroshi Shima
- Department of Respiratory MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Tsuyoshi Oguma
- Department of Respiratory MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Kazuya Tanimura
- Department of Respiratory MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Atsuyasu Sato
- Department of Respiratory MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Toyohiro Hirai
- Department of Respiratory MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
11
|
Díaz AA. The Case of Missing Airways in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2019; 197:4-6. [PMID: 28930479 DOI: 10.1164/rccm.201708-1585ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Alejandro A Díaz
- 1 Brigham and Women's Hospital Harvard Medical School Boston, Massachusetts
| |
Collapse
|
12
|
Tanabe N, Sato S, Oguma T, Shima H, Sato A, Muro S, Hirai T. Associations of airway tree to lung volume ratio on computed tomography with lung function and symptoms in chronic obstructive pulmonary disease. Respir Res 2019; 20:77. [PMID: 30999912 PMCID: PMC6471860 DOI: 10.1186/s12931-019-1047-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/08/2019] [Indexed: 01/06/2023] Open
Abstract
Background Decreased airway lumen size and increased lung volume are major structural changes in chronic obstructive pulmonary disease (COPD). However, even though the outer wall of the airways is connected with lung parenchyma and the mechanical properties of the parenchyma affect the behaviour of the airways, little is known about the interactions between airway and lung sizes on lung function and symptoms. The present study examined these effects by establishing a novel computed tomography (CT) index, namely, airway volume percent (AWV%), which was defined as a percentage ratio of the airway tree to lung volume. Methods Inspiratory chest CT, pulmonary function, and COPD Assessment Tests (CAT) were analysed in 147 stable males with COPD. The whole airway tree was automatically segmented, and the percentage ratio of the airway tree volume in the right upper and middle-lower lobes to right lung volume was calculated as the AWV% for right lung. Low attenuation volume % (LAV%), total airway count (TAC), luminal area (Ai), and wall area percent (WA%) were also measured. Results AWV% decreased as the Global Initiative for Chronic Obstructive Lung Disease (GOLD) spirometric grade increased (p < 0.0001). AWV% was lower in symptomatic (CAT score ≥ 10) subjects than in non-symptomatic subjects (p = 0.036). AWV% was more closely correlated with forced expiratory volume in 1 s (FEV1) and ratio of residual volume to total lung capacity (RV/TLC) than Ai, Ai to lung volume ratio, and volume of either the lung or the airway tree. Multivariate analyses showed that lower AWV% was associated with lower FEV1 and higher RV/TLC, independent of LAV%, WA%, and TAC. Conclusions A disproportionally small airway tree with a relatively large lung could lead to airflow obstruction and gas trapping in COPD. AWV% is an easily measured CT biomarker that may elucidate the clinical impacts of the airway-lung interaction in COPD. Electronic supplementary material The online version of this article (10.1186/s12931-019-1047-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Shima
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shigeo Muro
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
13
|
Bossé Y. The Strain on Airway Smooth Muscle During a Deep Inspiration to Total Lung Capacity. JOURNAL OF ENGINEERING AND SCIENCE IN MEDICAL DIAGNOSTICS AND THERAPY 2019; 2:0108021-1080221. [PMID: 32328568 PMCID: PMC7164505 DOI: 10.1115/1.4042309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/06/2018] [Indexed: 02/05/2023]
Abstract
The deep inspiration (DI) maneuver entices a great deal of interest because of its ability to temporarily ease the flow of air into the lungs. This salutary effect of a DI is proposed to be mediated, at least partially, by momentarily increasing the operating length of airway smooth muscle (ASM). Concerningly, this premise is largely derived from a growing body of in vitro studies investigating the effect of stretching ASM by different magnitudes on its contractility. The relevance of these in vitro findings remains uncertain, as the real range of strains ASM undergoes in vivo during a DI is somewhat elusive. In order to understand the regulation of ASM contractility by a DI and to infer on its putative contribution to the bronchodilator effect of a DI, it is imperative that in vitro studies incorporate levels of strains that are physiologically relevant. This review summarizes the methods that may be used in vivo in humans to estimate the strain experienced by ASM during a DI from functional residual capacity (FRC) to total lung capacity (TLC). The strengths and limitations of each method, as well as the potential confounders, are also discussed. A rough estimated range of ASM strains is provided for the purpose of guiding future in vitro studies that aim at quantifying the regulatory effect of DI on ASM contractility. However, it is emphasized that, owing to the many limitations and confounders, more studies will be needed to reach conclusive statements.
Collapse
Affiliation(s)
- Ynuk Bossé
- Université Laval, Faculty of Medicine, Department of Medicine, IUCPQ, M2694, Pavillon Mallet, Chemin Sainte-Foy, Québec, QC G1V 4G5, Canada e-mail:
| |
Collapse
|
14
|
Bhatt SP, Washko GR, Hoffman EA, Newell JD, Bodduluri S, Diaz AA, Galban CJ, Silverman EK, San José Estépar R. Imaging Advances in Chronic Obstructive Pulmonary Disease. Insights from the Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) Study. Am J Respir Crit Care Med 2019; 199:286-301. [PMID: 30304637 PMCID: PMC6363977 DOI: 10.1164/rccm.201807-1351so] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/02/2018] [Indexed: 12/27/2022] Open
Abstract
The Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) study, which began in 2007, is an ongoing multicenter observational cohort study of more than 10,000 current and former smokers. The study is aimed at understanding the etiology, progression, and heterogeneity of chronic obstructive pulmonary disease (COPD). In addition to genetic analysis, the participants have been extensively characterized by clinical questionnaires, spirometry, volumetric inspiratory and expiratory computed tomography, and longitudinal follow-up, including follow-up computed tomography at 5 years after enrollment. The purpose of this state-of-the-art review is to summarize the major advances in our understanding of COPD resulting from the imaging findings in the COPDGene study. Imaging features that are associated with adverse clinical outcomes include early interstitial lung abnormalities, visual presence and pattern of emphysema, the ratio of pulmonary artery to ascending aortic diameter, quantitative evaluation of emphysema, airway wall thickness, and expiratory gas trapping. COPD is characterized by the early involvement of the small conducting airways, and the addition of expiratory scans has enabled measurement of small airway disease. Computational advances have enabled indirect measurement of nonemphysematous gas trapping. These metrics have provided insights into the pathogenesis and prognosis of COPD and have aided early identification of disease. Important quantifiable extrapulmonary findings include coronary artery calcification, cardiac morphology, intrathoracic and extrathoracic fat, and osteoporosis. Current active research includes identification of novel quantitative measures for emphysema and airway disease, evaluation of dose reduction techniques, and use of deep learning for phenotyping COPD.
Collapse
Affiliation(s)
- Surya P. Bhatt
- UAB Lung Imaging Core and UAB Lung Health Center, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | | | - Eric A. Hoffman
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - John D. Newell
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Sandeep Bodduluri
- UAB Lung Imaging Core and UAB Lung Health Center, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | | | - Craig J. Galban
- Department of Radiology and Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan; and
| | | | - Raúl San José Estépar
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - for the COPDGene Investigators
- UAB Lung Imaging Core and UAB Lung Health Center, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
- Division of Pulmonary and Critical Care Medicine
- Channing Division of Network Medicine, and
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Department of Radiology and Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan; and
- Department of Radiology, National Jewish Health, Denver, Colorado
| |
Collapse
|
15
|
Osorio-Valencia JS, Wongviriyawong C, Winkler T, Kelly VJ, Harris RS, Venegas JG. Elevation in lung volume and preventing catastrophic airway closure in asthmatics during bronchoconstriction. PLoS One 2018; 13:e0208337. [PMID: 30566496 PMCID: PMC6300269 DOI: 10.1371/journal.pone.0208337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/15/2018] [Indexed: 01/17/2023] Open
Abstract
Background Asthma exacerbations cause lung hyperinflation, elevation in load to inspiratory muscles, and decreased breathing capacity that, in severe cases, may lead to inspiratory muscle fatigue and respiratory failure. Hyperinflation has been attributed to a passive mechanical origin; a respiratory system time-constant too long for full exhalation. However, because the increase in volume is also concurrent with activation of inspiratory muscles during exhalation it is unclear whether hyperinflation in broncho-constriction is a passive phenomenon or is actively controlled to avoid airway closure. Methods Using CT scanning, we measured the distensibility of individual segmental airways relative to that of their surrounding parenchyma in seven subjects with asthma and nine healthy controls. With this data we tested whether the elevation of lung volume measured after methacholine (MCh) provocation was associated with airway narrowing, or to the volume required to preventing airway closure. We also tested whether the reduction in FVC post-MCh could be attributed to gas trapped behind closed segmental airways. Findings The changes in lung volume by MCh in subjects with and without asthma were inversely associated with their reduction in average airway lumen. This finding would be inconsistent with hyperinflation by passive elevation of airway resistance. In contrast, the change in volume of each subject was associated with the lung volume estimated to cause the closure of the least stable segmental airway of his/her lungs. In addition, the measured drop in FVC post MCh was associated with the estimated volume of gas trapped behind closed segmental airways at RV. Conclusions Our data supports the concept that hyperinflation caused by MCh-induced bronchoconstriction is the result of an actively controlled process where parenchymal distending forces on airways are increased to counteract their closure. To our knowledge, this is the first imaging-based study that associates inter-subject differences in whole lung behavior with the interdependence between individual airways and their surrounding parenchyma.
Collapse
Affiliation(s)
- Juan S. Osorio-Valencia
- Department of Computer Science, Graduate Program in Biomedical Computing, Technical University of Munich, Munich, Germany
- Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (JSO); (JGV)
| | - Chanikarn Wongviriyawong
- Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Tilo Winkler
- Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vanessa J. Kelly
- Department of Medicine, Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert S. Harris
- Department of Medicine, Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jose G. Venegas
- Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (JSO); (JGV)
| |
Collapse
|
16
|
Kinney GL, Santorico SA, Young KA, Cho MH, Castaldi PJ, San José Estépar R, Ross JC, Dy JG, Make BJ, Regan EA, Lynch DA, Everett DC, Lutz SM, Silverman EK, Washko GR, Crapo JD, Hokanson JE. Identification of Chronic Obstructive Pulmonary Disease Axes That Predict All-Cause Mortality: The COPDGene Study. Am J Epidemiol 2018; 187:2109-2116. [PMID: 29771274 DOI: 10.1093/aje/kwy087] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/13/2018] [Indexed: 11/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a syndrome caused by damage to the lungs that results in decreased pulmonary function and reduced structural integrity. Pulmonary function testing (PFT) is used to diagnose and stratify COPD into severity groups, and computed tomography (CT) imaging of the chest is often used to assess structural changes in the lungs. We hypothesized that the combination of PFT and CT phenotypes would provide a more powerful tool for assessing underlying morphologic differences associated with pulmonary function in COPD than does PFT alone. We used factor analysis of 26 variables to classify 8,157 participants recruited into the COPDGene cohort between January 2008 and June 2011 from 21 clinical centers across the United States. These factors were used as predictors of all-cause mortality using Cox proportional hazards modeling. Five factors explained 80% of the covariance and represented the following domains: factor 1, increased emphysema and decreased pulmonary function; factor 2, airway disease and decreased pulmonary function; factor 3, gas trapping; factor 4, CT variability; and factor 5, hyperinflation. After more than 46,079 person-years of follow-up, factors 1 through 4 were associated with mortality and there was a significant synergistic interaction between factors 1 and 2 on death. Considering CT measures along with PFT in the assessment of COPD can identify patients at particularly high risk for death.
Collapse
Affiliation(s)
- Gregory L Kinney
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Stephanie A Santorico
- Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, Colorado
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado
- Division of Biostatistics and Bioinformatics, Office of Academic Affairs, National Jewish Health, Denver, Colorado
| | - Kendra A Young
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Raul San José Estépar
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - James C Ross
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Jennifer G Dy
- Department of Electrical & Computer Engineering, Northeastern University, Boston, Massachusetts
| | - Barry J Make
- Department of Medicine, National Jewish Health, Denver, Colorado
| | | | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, Colorado
| | - Douglas C Everett
- Division of Biostatistics and Bioinformatics, Office of Academic Affairs, National Jewish Health, Denver, Colorado
| | - Sharon M Lutz
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - George R Washko
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - James D Crapo
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | |
Collapse
|
17
|
Diaz AA, Martinez CH, Harmouche R, Young TP, McDonald ML, Ross JC, Han ML, Bowler R, Make B, Regan EA, Silverman EK, Crapo J, Boriek AM, Kinney GL, Hokanson JE, Estepar RSJ, Washko GR. Pectoralis muscle area and mortality in smokers without airflow obstruction. Respir Res 2018; 19:62. [PMID: 29636050 PMCID: PMC5894181 DOI: 10.1186/s12931-018-0771-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
Abstract
Background Low muscle mass is associated with increased mortality in the general population but its prognostic value in at-risk smokers, those without expiratory airflow obstruction, is unknown. We aimed to test the hypothesis that reduced muscle mass is associated with increased mortality in at-risk smokers. Methods Measures of both pectoralis and paravertebral erector spinae muscle cross-sectional area (PMA and PVMA, respectively) as well as emphysema on chest computed tomography (CT) scans were performed in 3705 current and former at-risk smokers (≥10 pack-years) aged 45–80 years enrolled into the COPDGene Study between 2008 and 2013. Vital status was ascertained through death certificate. The association between low muscle mass and mortality was assessed using Cox regression analysis. Results During a median of 6.5 years of follow-up, 212 (5.7%) at-risk smokers died. At-risk smokers in the lowest (vs. highest) sex-specific quartile of PMA but not PVMA had 84% higher risk of death in adjusted models for demographics, smoking, dyspnea, comorbidities, exercise capacity, lung function, emphysema on CT, and coronary artery calcium content (hazard ratio [HR] 1.85 95% Confidence interval [1.14–3.00] P = 0.01). Results were consistent when the PMA index (PMA/height2) was used instead of quartiles. The association between PMA and death was modified by smoking status (P = 0.04). Current smokers had a significantly increased risk of death (lowest vs. highest PMA quartile, HR 2.25 [1.25–4.03] P = 0.007) while former smokers did not. Conclusions Low muscle mass as measured on chest CT scans is associated with increased mortality in current smokers without airflow obstruction. Trial registration NCT00608764 Electronic supplementary material The online version of this article (10.1186/s12931-018-0771-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro A Diaz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| | - Carlos H Martinez
- Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Rola Harmouche
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas P Young
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Merry-Lynn McDonald
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James C Ross
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mei Lan Han
- Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Russell Bowler
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, CO, USA
| | - Barry Make
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, CO, USA
| | - Elizabeth A Regan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, CO, USA
| | - Edwin K Silverman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James Crapo
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, CO, USA
| | - Aladin M Boriek
- Division of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Gregory L Kinney
- Colorado School of Public Health, University of Colorado-Denver, Aurora, CO, USA
| | - John E Hokanson
- Colorado School of Public Health, University of Colorado-Denver, Aurora, CO, USA
| | - Raul San Jose Estepar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| |
Collapse
|
18
|
Agustí A, Celli B. Natural history of COPD: gaps and opportunities. ERJ Open Res 2017; 3:00117-2017. [PMID: 29255718 PMCID: PMC5731770 DOI: 10.1183/23120541.00117-2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/13/2017] [Indexed: 02/04/2023] Open
Abstract
Understanding the natural history of a disease is as important as knowing its cause(s) for effective disease prevention and treatment. Yet, our current understanding of the natural history of chronic obstructive pulmonary disease (COPD) is incomplete and often controversial. This article discusses the current gaps, and hence opportunities for research, in this field. In particular, it discusses the following six specific questions. 1) Is COPD a “single” disease? 2) Is COPD “only” a lung disease? 3) When does COPD begin or what is “early” COPD? 4) How does COPD “progress”? 5) How do we assess disease “severity”? 6) Can COPD be prevented (beyond smoking cessation) or its course be modified once detected? A new review series starts in ERJ Open Research: “Gaps in our understanding of COPD”http://ow.ly/CFSD30gpXs8
Collapse
Affiliation(s)
- Alvar Agustí
- Respiratory Institute, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain.,CIBER Enfermedades Respiratorias, Spain
| | - Bartolomé Celli
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Montesantos S, Katz I, Venegas J, Pichelin M, Caillibotte G. The effect of disease and respiration on airway shape in patients with moderate persistent asthma. PLoS One 2017; 12:e0182052. [PMID: 28759656 PMCID: PMC5536319 DOI: 10.1371/journal.pone.0182052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/11/2017] [Indexed: 12/03/2022] Open
Abstract
Computational models of gas transport and aerosol deposition frequently utilize idealized models of bronchial tree structure, where airways are considered a network of bifurcating cylinders. However, changes in the shape of the lung during respiration affect the geometry of the airways, especially in disease conditions. In this study, the internal airway geometry was examined, concentrating on comparisons between mean lung volume (MLV) and total lung capacity (TLC). A set of High Resolution CT images were acquired during breath hold on a group of moderate persistent asthmatics at MLV and TLC after challenge with a broncho-constrictor (methacholine) and the airway trees were segmented and measured. The airway hydraulic diameter (Dh) was calculated through the use of average lumen area (Ai) and average internal perimeter (Pi) at both lung volumes and was found to be systematically higher at TLC by 13.5±9% on average, with the lower lobes displaying higher percent change in comparison to the lower lobes. The average internal diameter (Din) was evaluated to be 12.4±6.8% (MLV) and 10.8±6.3% (TLC) lower than the Dh, for all the examined bronchi, a result displaying statistical significance. Finally, the airway distensibility per bronchial segment and per generation was calculated to have an average value of 0.45±0.28, exhibiting high variability both between and within lung regions and generations. Mixed constriction/dilation patterns were recorded between the lung volumes, where a number of airways either failed to dilate or even constricted when observed at TLC. We conclude that the Dh is higher than Din, a fact that may have considerable effects on bronchial resistance or airway loss at proximal regions. Differences in caliber changes between lung regions are indicative of asthma-expression variability in the lung. However, airway distensibility at generation 3 seems to predict distensibility more distally.
Collapse
Affiliation(s)
| | - Ira Katz
- Medical R&D, Air Liquide Santé International, Paris Saclay, France.,Department of Mechanical Engineering, Lafayette College, Easton, PA, United States of America
| | - Jose Venegas
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Marine Pichelin
- Medical R&D, Air Liquide Santé International, Paris Saclay, France
| | | |
Collapse
|
20
|
Brown RH, Henderson RJ, Sugar EA, Holbrook JT, Wise RA. Reproducibility of airway luminal size in asthma measured by HRCT. J Appl Physiol (1985) 2017; 123:876-883. [PMID: 28705995 DOI: 10.1152/japplphysiol.00307.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/16/2017] [Accepted: 07/10/2017] [Indexed: 11/22/2022] Open
Abstract
Brown RH, Henderson RJ, Sugar EA, Holbrook JT, Wise RA, on behalf of the American Lung Association Airways Clinical Research Centers. Reproducibility of airway luminal size in asthma measured by HRCT. J Appl Physiol 123: 876-883, 2017. First published July 13, 2017; doi:10.1152/japplphysiol.00307.2017.-High-resolution CT (HRCT) is a well-established imaging technology used to measure lung and airway morphology in vivo. However, there is a surprising lack of studies examining HRCT reproducibility. The CPAP Trial was a multicenter, randomized, three-parallel-arm, sham-controlled 12-wk clinical trial to assess the use of a nocturnal continuous positive airway pressure (CPAP) device on airway reactivity to methacholine. The lack of a treatment effect of CPAP on clinical or HRCT measures provided an opportunity for the current analysis. We assessed the reproducibility of HRCT imaging over 12 wk. Intraclass correlation coefficients (ICCs) were calculated for individual airway segments, individual lung lobes, both lungs, and air trapping. The ICC [95% confidence interval (CI)] for airway luminal size at total lung capacity ranged from 0.95 (0.91, 0.97) to 0.47 (0.27, 0.69). The ICC (95% CI) for airway luminal size at functional residual capacity ranged from 0.91 (0.85, 0.95) to 0.32 (0.11, 0.65). The ICC measurements for airway distensibility index and wall thickness were lower, ranging from poor (0.08) to moderate (0.63) agreement. The ICC for air trapping at functional residual capacity was 0.89 (0.81, 0.94) and varied only modestly by lobe from 0.76 (0.61, 0.87) to 0.95 (0.92, 0.97). In stable well-controlled asthmatic subjects, it is possible to reproducibly image unstimulated airway luminal areas over time, by region, and by size at total lung capacity throughout the lungs. Therefore, any changes in luminal size on repeat CT imaging are more likely due to changes in disease state and less likely due to normal variability.NEW & NOTEWORTHY There is a surprising lack of studies examining the reproducibility of high-resolution CT in asthma. The current study examined reproducibility of airway measurements. In stable well-controlled asthmatic subjects, it is possible to reproducibly image airway luminal areas over time, by region, and by size at total lung capacity throughout the lungs. Therefore, any changes in luminal size on repeat CT imaging are more likely due to changes in disease state and less likely due to normal variability.
Collapse
Affiliation(s)
- Robert H Brown
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland; .,Department of Radiology, The Johns Hopkins Medical Institutions, Baltimore, Maryland.,Division of Pulmonary Medicine, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland.,Department of Environmental Health and Engineering, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Robert J Henderson
- Department of Epidemiology, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Elizabeth A Sugar
- Department of Biostatistics, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Janet T Holbrook
- Department of Epidemiology, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Robert A Wise
- Division of Pulmonary Medicine, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
21
|
Kuo W, de Bruijne M, Petersen J, Nasserinejad K, Ozturk H, Chen Y, Perez-Rovira A, Tiddens HAWM. Diagnosis of bronchiectasis and airway wall thickening in children with cystic fibrosis: Objective airway-artery quantification. Eur Radiol 2017; 27:4680-4689. [PMID: 28523349 PMCID: PMC5635089 DOI: 10.1007/s00330-017-4819-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 02/06/2017] [Accepted: 03/17/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To quantify airway and artery (AA)-dimensions in cystic fibrosis (CF) and control patients for objective CT diagnosis of bronchiectasis and airway wall thickness (AWT). METHODS Spirometer-guided inspiratory and expiratory CTs of 11 CF and 12 control patients were collected retrospectively. Airway pathways were annotated semi-automatically to reconstruct three-dimensional bronchial trees. All visible AA-pairs were measured perpendicular to the airway axis. Inner, outer and AWT (outer-inner) diameter were divided by the adjacent artery diameter to compute AinA-, AoutA- and AWTA-ratios. AA-ratios were predicted using mixed-effects models including disease status, lung volume, gender, height and age as covariates. RESULTS Demographics did not differ significantly between cohorts. Mean AA-pairs CF: 299 inspiratory; 82 expiratory. CONTROLS 131 inspiratory; 58 expiratory. All ratios were significantly larger in inspiratory compared to expiratory CTs for both groups (p<0.001). AoutA- and AWTA-ratios were larger in CF than in controls, independent of lung volume (p<0.01). Difference of AoutA- and AWTA-ratios between patients with CF and controls increased significantly for every following airway generation (p<0.001). CONCLUSION Diagnosis of bronchiectasis is highly dependent on lung volume and more reliably diagnosed using outer airway diameter. Difference in bronchiectasis and AWT severity between the two cohorts increased with each airway generation. KEY POINTS • More peripheral airways are visible in CF patients compared to controls. • Structural lung changes in CF patients are greater with each airway generation. • Number of airways visualized on CT could quantify CF lung disease. • For objective airway disease quantification on CT, lung volume standardization is required.
Collapse
Affiliation(s)
- Wieying Kuo
- Department of Pediatric Pulmonology and Allergology, Erasmus MC - Sophia Children's Hospital, Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.,Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Marleen de Bruijne
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus MC, Rotterdam, The Netherlands.,Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Jens Petersen
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Kazem Nasserinejad
- HOVON Data Center, Clinical Trial Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.,Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands
| | - Hadiye Ozturk
- Department of Pediatric Pulmonology and Allergology, Erasmus MC - Sophia Children's Hospital, Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Yong Chen
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Adria Perez-Rovira
- Department of Pediatric Pulmonology and Allergology, Erasmus MC - Sophia Children's Hospital, Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.,Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Harm A W M Tiddens
- Department of Pediatric Pulmonology and Allergology, Erasmus MC - Sophia Children's Hospital, Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands. .,Department of Radiology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Schivo M, Albertson TE, Haczku A, Kenyon NJ, Zeki AA, Kuhn BT, Louie S, Avdalovic MV. Paradigms in chronic obstructive pulmonary disease: phenotypes, immunobiology, and therapy with a focus on vascular disease. J Investig Med 2017; 65:953-963. [PMID: 28258130 DOI: 10.1136/jim-2016-000358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 12/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous syndrome that represents a major global health burden. COPD phenotypes have recently emerged based on large cohort studies addressing the need to better characterize the syndrome. Though comprehensive phenotyping is still at an early stage, factors such as ethnicity and radiographic, serum, and exhaled breath biomarkers have shown promise. COPD is also an immunological disease where innate and adaptive immune responses to the environment and tobacco smoke are altered. The frequent overlap between COPD and other systemic diseases, such as cardiovascular disease, has influenced COPD therapy, and treatments for both conditions may lead to improved patient outcomes. Here, we discuss current paradigms that center on improving the definition of COPD, understanding the immunological overlap between COPD and vascular inflammation, and the treatment of COPD-with a focus on comorbid cardiovascular disease.
Collapse
Affiliation(s)
- Michael Schivo
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, USA.,Center for Comparative Respiratory Biology and Medicine, Genome and Biomedical Sciences Facility, University of California Davis, Davis, California, USA
| | - Timothy E Albertson
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, USA.,Department of Medicine, Veterans Administration Northern California Healthcare System, Mather, California, USA
| | - Angela Haczku
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, USA.,Center for Comparative Respiratory Biology and Medicine, Genome and Biomedical Sciences Facility, University of California Davis, Davis, California, USA
| | - Nicholas J Kenyon
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, USA.,Center for Comparative Respiratory Biology and Medicine, Genome and Biomedical Sciences Facility, University of California Davis, Davis, California, USA
| | - Amir A Zeki
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, USA.,Center for Comparative Respiratory Biology and Medicine, Genome and Biomedical Sciences Facility, University of California Davis, Davis, California, USA
| | - Brooks T Kuhn
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, USA
| | - Samuel Louie
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, USA.,Center for Comparative Respiratory Biology and Medicine, Genome and Biomedical Sciences Facility, University of California Davis, Davis, California, USA
| | - Mark V Avdalovic
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, USA.,Department of Medicine, Veterans Administration Northern California Healthcare System, Mather, California, USA
| |
Collapse
|
23
|
Matin TN, Rahman N, Nickol AH, Chen M, Xu X, Stewart NJ, Doel T, Grau V, Wild JM, Gleeson FV. Chronic Obstructive Pulmonary Disease: Lobar Analysis with Hyperpolarized 129Xe MR Imaging. Radiology 2017; 282:857-868. [PMID: 27732160 DOI: 10.1148/radiol.2016152299] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
Purpose To compare lobar ventilation and apparent diffusion coefficient (ADC) values obtained with hyperpolarized xenon 129 (129Xe) magnetic resonance (MR) imaging to quantitative computed tomography (CT) metrics on a lobar basis and pulmonary function test (PFT) results on a whole-lung basis in patients with chronic obstructive pulmonary disease (COPD). Materials and Methods The study was approved by the National Research Ethics Service Committee; written informed consent was obtained from all patients. Twenty-two patients with COPD (Global Initiative for Chronic Obstructive Lung Disease stage II-IV) underwent hyperpolarized 129Xe MR imaging at 1.5 T, quantitative CT, and PFTs. Whole-lung and lobar 129Xe MR imaging parameters were obtained by using automated segmentation of multisection hyperpolarized 129Xe MR ventilation images and hyperpolarized 129Xe MR diffusion-weighted images after coregistration to CT scans. Whole-lung and lobar quantitative CT-derived metrics for emphysema and bronchial wall thickness were calculated. Pearson correlation coefficients were used to evaluate the relationship between imaging measures and PFT results. Results Percentage ventilated volume and average ADC at lobar 129Xe MR imaging showed correlation with percentage emphysema at lobar quantitative CT (r = -0.32, P < .001 and r = 0.75, P < .0001, respectively). The average ADC at whole-lung 129Xe MR imaging showed moderate correlation with PFT results (percentage predicted transfer factor of the lung for carbon monoxide [Tlco]: r = -0.61, P < .005) and percentage predicted functional residual capacity (r = 0.47, P < .05). Whole-lung quantitative CT percentage emphysema also showed statistically significant correlation with percentage predicted Tlco (r = -0.65, P < .005). Conclusion Lobar ventilation and ADC values obtained from hyperpolarized 129Xe MR imaging demonstrated correlation with quantitative CT percentage emphysema on a lobar basis and with PFT results on a whole-lung basis. © RSNA, 2016.
Collapse
Affiliation(s)
- Tahreema N Matin
- From the Department of Radiology (T.N.M., M.C., X.X., F.V.G.) and Oxford Centre for Respiratory Medicine (N.R., A.H.N.), The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Rd, Headington, OX3 7LE, England; Unit of Academic Radiology, Royal Hallamshire Hospital, University of Sheffield, Sheffield, England (N.J.S., J.M.W.); and Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, England (T.D., V.G.)
| | - Najib Rahman
- From the Department of Radiology (T.N.M., M.C., X.X., F.V.G.) and Oxford Centre for Respiratory Medicine (N.R., A.H.N.), The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Rd, Headington, OX3 7LE, England; Unit of Academic Radiology, Royal Hallamshire Hospital, University of Sheffield, Sheffield, England (N.J.S., J.M.W.); and Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, England (T.D., V.G.)
| | - Annabel H Nickol
- From the Department of Radiology (T.N.M., M.C., X.X., F.V.G.) and Oxford Centre for Respiratory Medicine (N.R., A.H.N.), The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Rd, Headington, OX3 7LE, England; Unit of Academic Radiology, Royal Hallamshire Hospital, University of Sheffield, Sheffield, England (N.J.S., J.M.W.); and Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, England (T.D., V.G.)
| | - Mitchell Chen
- From the Department of Radiology (T.N.M., M.C., X.X., F.V.G.) and Oxford Centre for Respiratory Medicine (N.R., A.H.N.), The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Rd, Headington, OX3 7LE, England; Unit of Academic Radiology, Royal Hallamshire Hospital, University of Sheffield, Sheffield, England (N.J.S., J.M.W.); and Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, England (T.D., V.G.)
| | - Xiaojun Xu
- From the Department of Radiology (T.N.M., M.C., X.X., F.V.G.) and Oxford Centre for Respiratory Medicine (N.R., A.H.N.), The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Rd, Headington, OX3 7LE, England; Unit of Academic Radiology, Royal Hallamshire Hospital, University of Sheffield, Sheffield, England (N.J.S., J.M.W.); and Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, England (T.D., V.G.)
| | - Neil J Stewart
- From the Department of Radiology (T.N.M., M.C., X.X., F.V.G.) and Oxford Centre for Respiratory Medicine (N.R., A.H.N.), The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Rd, Headington, OX3 7LE, England; Unit of Academic Radiology, Royal Hallamshire Hospital, University of Sheffield, Sheffield, England (N.J.S., J.M.W.); and Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, England (T.D., V.G.)
| | - Tom Doel
- From the Department of Radiology (T.N.M., M.C., X.X., F.V.G.) and Oxford Centre for Respiratory Medicine (N.R., A.H.N.), The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Rd, Headington, OX3 7LE, England; Unit of Academic Radiology, Royal Hallamshire Hospital, University of Sheffield, Sheffield, England (N.J.S., J.M.W.); and Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, England (T.D., V.G.)
| | - Vicente Grau
- From the Department of Radiology (T.N.M., M.C., X.X., F.V.G.) and Oxford Centre for Respiratory Medicine (N.R., A.H.N.), The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Rd, Headington, OX3 7LE, England; Unit of Academic Radiology, Royal Hallamshire Hospital, University of Sheffield, Sheffield, England (N.J.S., J.M.W.); and Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, England (T.D., V.G.)
| | - James M Wild
- From the Department of Radiology (T.N.M., M.C., X.X., F.V.G.) and Oxford Centre for Respiratory Medicine (N.R., A.H.N.), The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Rd, Headington, OX3 7LE, England; Unit of Academic Radiology, Royal Hallamshire Hospital, University of Sheffield, Sheffield, England (N.J.S., J.M.W.); and Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, England (T.D., V.G.)
| | - Fergus V Gleeson
- From the Department of Radiology (T.N.M., M.C., X.X., F.V.G.) and Oxford Centre for Respiratory Medicine (N.R., A.H.N.), The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Rd, Headington, OX3 7LE, England; Unit of Academic Radiology, Royal Hallamshire Hospital, University of Sheffield, Sheffield, England (N.J.S., J.M.W.); and Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, England (T.D., V.G.)
| |
Collapse
|
24
|
Kinsey CM, San José Estépar R, van der Velden J, Cole BF, Christiani DC, Washko GR. Lower Pectoralis Muscle Area Is Associated with a Worse Overall Survival in Non-Small Cell Lung Cancer. Cancer Epidemiol Biomarkers Prev 2017; 26:38-43. [PMID: 27197281 PMCID: PMC5116279 DOI: 10.1158/1055-9965.epi-15-1067] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 04/18/2016] [Accepted: 05/10/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Muscle wasting is a component of the diagnosis of cancer cachexia and has been associated with poor prognosis. However, recommended tools to measure sarcopenia are limited by poor sensitivity or the need to perform additional scans. We hypothesized that pectoralis muscle area (PMA) measured objectively on chest CT scan may be associated with overall survival (OS) in non-small cell lung cancer (NSCLC). METHODS We evaluated 252 cases from a prospectively enrolling lung cancer cohort. Eligible cases had CT scans performed prior to the initiation of surgery, radiation, or chemotherapy. PMA was measured in a semi-automated fashion while blinded to characteristics of the tumor, lung, and patient outcomes. RESULTS Men had a significantly greater PMA than women (37.59 vs. 26.19 cm2, P < 0.0001). In univariate analysis, PMA was associated with age and body mass index (BMI). A Cox proportional hazards model was constructed to account for confounders associated with survival. Lower pectoralis area (per cm2) at diagnosis was associated with an increased hazard of death of 2% (HRadj, 0.98; confidence interval, 0.96-0.99; P = 0.044) while adjusting for age, sex, smoking, chronic bronchitis, emphysema, histology, stage, chemotherapy, radiation, surgery, BMI, and ECOG performance status. CONCLUSIONS Lower PMA measured from chest CT scans obtained at the time of diagnosis of NSCLC is associated with a worse OS. IMPACT PMA may be a valuable CT biomarker for sarcopenia-associated lung cancer survival. Cancer Epidemiol Biomarkers Prev; 26(1); 38-43. ©2016 AACR SEE ALL THE ARTICLES IN THIS CEBP FOCUS SECTION, "THE OBESITY PARADOX IN CANCER EVIDENCE AND NEW DIRECTIONS".
Collapse
Affiliation(s)
- C Matthew Kinsey
- Division of Pulmonary and Critical Care, University of Vermont Medical Center, Burlington, Vermont.
| | | | - Jos van der Velden
- Department of Pathology, University of Vermont Medical Center, Burlington, Vermont
| | - Bernard F Cole
- College of Engineering and Mathematics, University of Vermont, Burlington, Vermont
| | - David C Christiani
- Department of Environmental Health and Epidemiology, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard School of Public Health, Boston, Massachusetts
| | - George R Washko
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
25
|
Bauer C, Eberlein M, Beichel RR. Airway tree reconstruction in expiration chest CT scans facilitated by information transfer from corresponding inspiration scans. Med Phys 2016; 43:1312-23. [PMID: 26936716 DOI: 10.1118/1.4941692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Analysis and comparison of airways imaged in pairs of inspiration and expiration lung CT scans provides important information for quantitative assessment of lung diseases like chronic obstructive pulmonary disease. However, airway tree reconstruction in expiration CT scans is a challenging problem. Typically, only a low number of airway branches are found in expiration scans, compared to inspiration scans. To detect more airways in expiration CT scans, the authors introduce a novel airway reconstruction approach and assess its performance. METHODS The method requires a pair of inspiration and expiration CT scans and utilizes information from the inspiration scan to facilitate reconstructing the airway tree in the expiration lung CT scan. First, an initial airway tree (high confidence) and airway candidates (limited confidence) are reconstructed in the expiration scan by utilizing a 3D graph-based reconstruction method. Then, the 3D airway tree is reconstructed in the inspiration scan. Second, correspondences between expiration and inspiration tree structures are identified by utilizing a novel hierarchical tree matching algorithm that utilizes a local CT image-based similarity criterion. Third, the tree information from the inspiration airway tree is used to select expiration candidates, resulting in the final expiration tree structure. The approach was evaluated on a diverse set of 40 scan pairs and compared to the baseline method, which utilizes only the expiration CT scan. RESULTS The proposed method produced a significant (p < 0.05) increase in airway tree length by 13.35 cm, on average, which represents an 11.21% increase relative to the baseline result using only the expiration CT scan. A detailed analysis of all additionally identified airways resulted in a true and false positive rate of 94.8% and 5.2%, respectively. The true positive rate was found to be significantly higher than the false positive rate (p < 0.05). CONCLUSIONS The proposed method allowed increasing the number of found airways in expiration scans significantly. In addition, the algorithm establishes correspondence between inspiration and expiration airway trees, which can facilitate label transfer between airway trees and quantitative assessment of change in airways. The approach can be adapted to facilitate airway reconstruction in several longitudinal lung CT scans by means of mutual information transfer.
Collapse
Affiliation(s)
- Christian Bauer
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, Iowa 52242 and The Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, Iowa 52242
| | - Michael Eberlein
- Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Reinhard R Beichel
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, Iowa 52242; The Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, Iowa 52242; and Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| |
Collapse
|
26
|
Perez-Rovira A, Kuo W, Petersen J, Tiddens HAWM, de Bruijne M. Automatic airway-artery analysis on lung CT to quantify airway wall thickening and bronchiectasis. Med Phys 2016; 43:5736. [DOI: 10.1118/1.4963214] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
27
|
Jones RL, Noble PB, Elliot JG, James AL. Airway remodelling in COPD: It's not asthma! Respirology 2016; 21:1347-1356. [PMID: 27381663 DOI: 10.1111/resp.12841] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/03/2016] [Accepted: 04/30/2016] [Indexed: 11/29/2022]
Abstract
COPD is defined as airflow limitation that is not reversed by treatment. In asthma, airflow limitation is not only reversible, but also inducible. This is called 'airway hyperresponsiveness' (AHR) and is associated with thickening of the airway wall, predominantly the layer of airway smooth muscle, due to more cells, bigger cells and more extracellular matrix (ECM) in proportion to the increase in smooth muscle. AHR is also observed in COPD if the changes in airflow are expressed as a percent of the baseline lung function. However, the absolute change in baseline lung function that can be induced in COPD is actually less than that seen in normal subjects, suggesting that the airways in COPD are resistant not only to opening, but also to closing. This observation agrees with physiological measures showing increased airway wall stiffness in COPD. Like asthma, airway wall thickness is increased in COPD, including the layer of smooth muscle. Unlike asthma, however, fixed airflow obstruction appears to be characterized by a disproportionate increase in the ECM within the smooth muscle layer. In this review, we summarize the studies of airway matrix deposition in COPD and put forward the proposal that the airway remodelling in COPD is different from that in asthma and call for a systematic analysis of airway matrix deposition in COPD.
Collapse
Affiliation(s)
- Robyn L Jones
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia. .,School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Western Australia, Australia.
| | - Peter B Noble
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Western Australia, Australia.,Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
| | - John G Elliot
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
28
|
Regional Emphysema of a Non-Small Cell Tumor Is Associated with Larger Tumors and Decreased Survival Rates. Ann Am Thorac Soc 2016; 12:1197-205. [PMID: 26039412 DOI: 10.1513/annalsats.201411-539oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease is associated with a worse overall survival in non-small cell lung cancer. Lung emphysema is one component of chronic obstructive pulmonary disease. We hypothesized that emphysema of the tumor region may result in larger tumors and a poorer overall survival. METHODS We evaluated 304 cases of non-small cell lung cancer from a prospectively enrolled cohort. The lung was divided into equal volumetric thirds (upper, middle, or lower region). Emphysema was defined as percentage of low-attenuation areas less than -950 Hounsfield units (%LAA-950) and measured for each region. Whole-lung %LAA-950 was defined as the emphysema score of the entire lung parenchyma, whereas regional %LAA-950 was the score within that particular region (upper, middle, or lower). The emphysema score of the region in which the tumor occurred was defined as the tumor %LAA-950. Tumor diameter was measured while blinded to characteristics of the lung parenchyma. A proportional hazards model was used to control for multiple factors associated with survival. MEASUREMENTS AND MAIN RESULTS Increasing tumor %LAA-950 was associated with larger tumors (P = 0.024). Survival, stratified by stage, was significantly worse in those with tumor %LAA-950 greater than or equal to the 50th percentile versus less than the 50th percentile (P = 0.046). Whole-lung %LAA-950 and regional %LAA-950 (e.g., regional emphysema without tumor occurring in the region) were not significantly associated with survival. There were no differences in presenting symptoms or locations of mediastinal or distant metastasis by emphysema score. Increasing tumor %LAA-950 was associated with an increased risk of death (adjusted hazard ratio, 1.36; confidence interval, 1.09-1.68; P = 0.006) after adjustment for age, sex, smoking status, histology, stage, performance status, chemotherapy, radiation, and surgery. Sensitivity analyses revealed no significant difference in the effect size or test of significance for each of the following conditions: (1) exclusion of cases with central tumor location, (2) exclusion of cases where surgery was performed, (3) exclusion of cases where radiation therapy was performed, (4) exclusion of cases where epidermal growth factor receptor tyrosine kinase inhibitors were administered, and (5) inclusion of only stage IV disease. CONCLUSIONS Increasing emphysema of the region in which a non-small cell lung cancer tumor occurs is associated with increasing tumor size and worse overall survival.
Collapse
|
29
|
Hardin M, Foreman M, Dransfield MT, Hansel N, Han MK, Cho MH, Bhatt SP, Ramsdell J, Lynch D, Curtis JL, Silverman EK, Washko G, DeMeo D. Sex-specific features of emphysema among current and former smokers with COPD. Eur Respir J 2015; 47:104-12. [PMID: 26541532 DOI: 10.1183/13993003.00996-2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/05/2015] [Indexed: 12/16/2022]
Abstract
Recent studies suggest that males with chronic obstructive pulmonary disease (COPD) have more emphysema than females. It is not known if these differences persist across degrees of COPD severity. Our aim was to identify sex-specific differences in quantitative emphysema within COPD subgroups based on COPD severity.We included non-Hispanic white and African-American subjects from the COPDGene study with at least 10 pack-years of smoking and COPD Global Initiative for Chronic Obstructive Lung Disease (GOLD) spirometry grade II or greater. We examined sex-specific differences in log-transformed emphysema (log per cent low-attenuation area (%LAA)) by GOLD spirometry grade among subjects with early-onset COPD (<55 years old) and advanced emphysema (>25% emphysema).Compared with females, males had higher log %LAA: overall (1.97±1.4 versus 1.69±1.6, β=0.32 (0.04), p=1.34×10(-14)), and among non-Hispanic white (p=8.37×10(-14)) and African-American subjects (p=0.002). Females with early-onset COPD, severe emphysema and GOLD grade IV COPD had similar emphysema as males, but markedly fewer pack-years smoking (early-onset, p=0.01; severe emphysema and GOLD grade IV, p<0.001).This study identifies subsets of female smokers with COPD who are particularly susceptible to parenchymal destruction.
Collapse
Affiliation(s)
- Megan Hardin
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marilyn Foreman
- Morehouse School of Medicine, Department of Internal Medicine, Atlanta, GA, USA
| | - Mark T Dransfield
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nadia Hansel
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - MeiLan K Han
- University of Michigan Health System, Ann Arbor, MI, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Joe Ramsdell
- Division of Internal Medicine, University of California, San Diego, CA, USA
| | - David Lynch
- Dept of Radiology, National Jewish Health, Denver, CO, USA
| | - Jeffrey L Curtis
- University of Michigan Health System, Ann Arbor, MI, USA VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
30
|
Cho MH, Castaldi PJ, Hersh CP, Hobbs BD, Barr RG, Tal-Singer R, Bakke P, Gulsvik A, San José Estépar R, Van Beek EJR, Coxson HO, Lynch DA, Washko GR, Laird NM, Crapo JD, Beaty TH, Silverman EK. A Genome-Wide Association Study of Emphysema and Airway Quantitative Imaging Phenotypes. Am J Respir Crit Care Med 2015; 192:559-69. [PMID: 26030696 PMCID: PMC4595690 DOI: 10.1164/rccm.201501-0148oc] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 05/28/2015] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) is defined by the presence of airflow limitation on spirometry, yet subjects with COPD can have marked differences in computed tomography imaging. These differences may be driven by genetic factors. We hypothesized that a genome-wide association study (GWAS) of quantitative imaging would identify loci not previously identified in analyses of COPD or spirometry. In addition, we sought to determine whether previously described genome-wide significant COPD and spirometric loci were associated with emphysema or airway phenotypes. OBJECTIVES To identify genetic determinants of quantitative imaging phenotypes. METHODS We performed a GWAS on two quantitative emphysema and two quantitative airway imaging phenotypes in the COPDGene (non-Hispanic white and African American), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints), NETT (National Emphysema Treatment Trial), and GenKOLS (Genetics of COPD, Norway) studies and on percentage gas trapping in COPDGene. We also examined specific loci reported as genome-wide significant for spirometric phenotypes related to airflow limitation or COPD. MEASUREMENTS AND MAIN RESULTS The total sample size across all cohorts was 12,031, of whom 9,338 were from COPDGene. We identified five loci associated with emphysema-related phenotypes, one with airway-related phenotypes, and two with gas trapping. These loci included previously reported associations, including the HHIP, 15q25, and AGER loci, as well as novel associations near SERPINA10 and DLC1. All previously reported COPD and a significant number of spirometric GWAS loci were at least nominally (P < 0.05) associated with either emphysema or airway phenotypes. CONCLUSIONS Genome-wide analysis may identify novel risk factors for quantitative imaging characteristics in COPD and also identify imaging features associated with previously identified lung function loci.
Collapse
Affiliation(s)
- Michael H. Cho
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Craig P. Hersh
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Brian D. Hobbs
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - R. Graham Barr
- Department of Medicine, College of Physicians and Surgeons, and
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Ruth Tal-Singer
- GlaxoSmithKline Research and Development, King of Prussia, Pennsylvania
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amund Gulsvik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Raúl San José Estépar
- Laboratory of Mathematics in Imaging, Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Edwin J. R. Van Beek
- Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Radiology and
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Harvey O. Coxson
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David A. Lynch
- Department of Radiology, National Jewish Health, Denver, Colorado
| | - George R. Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Nan M. Laird
- Harvard School of Public Health, Boston, Massachusetts; and
| | - James D. Crapo
- Department of Radiology, National Jewish Health, Denver, Colorado
| | - Terri H. Beaty
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Edwin K. Silverman
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| |
Collapse
|
31
|
Chupp GL, Washko GR. The promise and peril of functional genomics in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2015; 191:497-9. [PMID: 25723821 DOI: 10.1164/rccm.201501-0104ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
32
|
Hasegawa K, Sato S, Tanimura K, Fuseya Y, Uemasu K, Sato A, Hirai T, Mishima M, Muro S. Emphysema and airway disease affect within-breath changes in respiratory resistance in COPD patients. Respirology 2015; 20:775-81. [DOI: 10.1111/resp.12535] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/22/2015] [Accepted: 01/24/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Koichi Hasegawa
- Department of Respiratory Medicine, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Kazuya Tanimura
- Department of Respiratory Medicine, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Yoshinori Fuseya
- Department of Respiratory Medicine, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Kiyoshi Uemasu
- Department of Respiratory Medicine, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Michiaki Mishima
- Department of Respiratory Medicine, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Shigeo Muro
- Department of Respiratory Medicine, Graduate School of Medicine; Kyoto University; Kyoto Japan
| |
Collapse
|
33
|
Ansell TK, McFawn PK, McLaughlin RA, Sampson DD, Eastwood PR, Hillman DR, Mitchell HW, Noble PB. Does smooth muscle in an intact airway undergo length adaptation during a sustained change in transmural pressure? J Appl Physiol (1985) 2015; 118:533-43. [DOI: 10.1152/japplphysiol.00724.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In isolated airway smooth muscle (ASM) strips, an increase or decrease in ASM length away from its current optimum length causes an immediate reduction in force production followed by a gradual time-dependent recovery in force, a phenomenon termed length adaptation. In situ, length adaptation may be initiated by a change in transmural pressure (Ptm), which is a primary physiological determinant of ASM length. The present study sought to determine the effect of sustained changes in Ptm and therefore, ASM perimeter, on airway function. We measured contractile responses in whole porcine bronchial segments in vitro before and after a sustained inflation from a baseline Ptm of 5 cmH2O to 25 cmH2O, or deflation to −5 cmH2O, for ∼50 min in each case. In one group of airways, lumen narrowing and stiffening in response to electrical field stimulation (EFS) were assessed from volume and pressure signals using a servo-controlled syringe pump with pressure feedback. In a second group of airways, lumen narrowing and the perimeter of the ASM in situ were determined by anatomical optical coherence tomography. In a third group of airways, active tension was determined under isovolumic conditions. Both inflation and deflation reduced the contractile response to EFS. Sustained Ptm change resulted in a further decrease in contractile response, which returned to baseline levels upon return to the baseline Ptm. These findings reaffirm the importance of Ptm in regulating airway narrowing. However, they do not support a role for ASM length adaptation in situ under physiological levels of ASM lengthening and shortening.
Collapse
Affiliation(s)
- Thomas K. Ansell
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Peter K. McFawn
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - Robert A. McLaughlin
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, University of Western Australia, Crawley, Western Australia, Australia
| | - David D. Sampson
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, University of Western Australia, Crawley, Western Australia, Australia
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Crawley, Western Australia, Australia
| | - Peter R. Eastwood
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia
- West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; and
| | - David R. Hillman
- West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; and
| | - Howard W. Mitchell
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B. Noble
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
34
|
Elliot JG, Jones RL, Abramson MJ, Green FH, Mauad T, McKay KO, Bai TR, James AL. Distribution of airway smooth muscle remodelling in asthma: relation to airway inflammation. Respirology 2014; 20:66-72. [PMID: 25257809 DOI: 10.1111/resp.12384] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 06/20/2014] [Accepted: 07/16/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Pathological phenotypes of asthma have been based predominantly on inflammation, rather than airway wall remodelling. Differences in the distribution of airway smooth muscle (ASM) remodelling between large and small airways may affect clinical outcomes in asthma. The aim of this study was to examine the distribution of ASM remodelling and its relation to airway inflammation. METHODS Post-mortem cases of asthma (n = 68) were categorized by the distribution of increased thickness of the ASM layer (relative to nonasthmatic controls, n = 37), into 'large only' (LO, n = 15), 'small only' (SO, n = 4) 'large/small' (LS, n = 24) or no increase (NI, n = 25). Subject characteristics, ASM and airway wall dimensions and inflammatory cell numbers were compared between groups. RESULTS Apart from reduced clinical severity of asthma in NI cases (P = 0.002), subject characteristics did not distinguish asthma groups. Compared with control subjects, ASM cell number, reticular basement membrane thickness, airway wall thickness, percent muscle shortening and eosinophil number were increased (P < 0.05) in both large and small airways in LS cases and only the large airways in LO cases. Increased numbers of neutrophils were observed only in the small airways of LO cases. CONCLUSIONS Distinct distributions of ASM remodelling are seen in asthma. Pathology limited to the small airways was uncommon. Increased thickness of the ASM layer was associated with airway remodelling and eosinophilia, but not neutrophilia. These data support the presence of distinct pathological phenotypes based on the site of increased ASM.
Collapse
Affiliation(s)
- John G Elliot
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Effect of inspiration on airway dimensions measured in maximal inspiration CT images of subjects without airflow limitation. Eur Radiol 2014; 24:2319-25. [PMID: 24903230 DOI: 10.1007/s00330-014-3261-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/14/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVES To study the effect of inspiration on airway dimensions measured in voluntary inspiration breath-hold examinations. METHODS 961 subjects with normal spirometry were selected from the Danish Lung Cancer Screening Trial. Subjects were examined annually for five years with low-dose CT. Automated software was utilized to segment lungs and airways, identify segmental bronchi, and match airway branches in all images of the same subject. Inspiration level was defined as segmented total lung volume (TLV) divided by predicted total lung capacity (pTLC). Mixed-effects models were used to predict relative change in lumen diameter (ALD) and wall thickness (AWT) in airways of generation 0 (trachea) to 7 and segmental bronchi (R1-R10 and L1-L10) from relative changes in inspiration level. RESULTS Relative changes in ALD were related to relative changes in TLV/pTLC, and this distensibility increased with generation (p < 0.001). Relative changes in AWT were inversely related to relative changes in TLV/pTLC in generation 3--7 (p < 0.001). Segmental bronchi were widely dispersed in terms of ALD (5.7 ± 0.7 mm), AWT (0.86 ± 0.07 mm), and distensibility (23.5 ± 7.7%). CONCLUSIONS Subjects who inspire more deeply prior to imaging have larger ALD and smaller AWT. This effect is more pronounced in higher-generation airways. Therefore, adjustment of inspiration level is necessary to accurately assess airway dimensions. KEY POINTS Airway lumen diameter increases and wall thickness decreases with inspiration. The effect of inspiration is greater in higher-generation (more peripheral) airways. Airways of generation 5 and beyond are as distensible as lung parenchyma. Airway dimensions measured from CT should be adjusted for inspiration level.
Collapse
|
36
|
Kinsey CM, Estepar RSJ, Zhao Y, Yu X, Diao N, Heist RS, Wain JC, Mark EJ, Washko G, Christiani DC. Invasive adenocarcinoma of the lung is associated with the upper lung regions. Lung Cancer 2014; 84:145-50. [PMID: 24598367 PMCID: PMC4004700 DOI: 10.1016/j.lungcan.2014.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 02/03/2014] [Indexed: 01/15/2023]
Abstract
OBJECTIVES We postulated that ventilation-perfusion (V/Q) relationships within the lung might influence where lung cancer occurs. To address this hypothesis we evaluated the location of lung adenocarcinoma, by both tumor lobe and superior-inferior regional distribution, and associated variables such as emphysema. MATERIALS AND METHODS One hundred fifty-nine cases of invasive adenocarcinoma and adenocarcinoma with lepidic features were visually evaluated to identify lobar or regional tumor location. Regions were determined by automated division of the lungs into three equal volumes: (upper region, middle region, or lower region). Automated densitometry was used to measure radiographic emphysema. RESULTS The majority of invasive adenocarcinomas occurred in the upper lobes (69%), with 94% of upper lobe adenocarcinomas occurring in the upper region of the lung. The distribution of adenocarcinoma, when classified as upper or lower lobe, was not different between invasive adenocarcinoma and adenocarcinoma with lepidic features (formerly bronchioloalveolar cell carcinoma, P = 0.08). Regional distribution of tumor was significantly different between invasive adenocarcinoma and adenocarcinoma with lepidic features (P = 0.001). Logistic regression analysis with the outcome of invasive adenocarcinoma histology was used to adjust for confounders. Tumor region continued to be a significant predictor (OR 8.5, P = 0.008, compared to lower region), whereas lobar location of tumor was not (P = 0.09). In stratified analysis, smoking was not associated with region of invasive adenocarcinoma occurrence (P = 0.089). There was no difference in total emphysema scores between invasive adenocarcinoma cases occurring in each of the three regions (P = 0.155). There was also no difference in the distribution of region of adenocarcinoma occurrence between quartiles of emphysema (P = 0.217). CONCLUSION Invasive adenocarcinoma of the lung is highly associated with the upper lung regions. This association is not related to smoking, history of COPD, or total emphysema. The regional distribution of invasive adenocarcinoma may be due to V/Q relationships or other local factors.
Collapse
Affiliation(s)
- C Matthew Kinsey
- Division of Pulmonary and Critical Care, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington VT 05405, United States
| | - Raul San Jose Estepar
- Department of Environmental Health and Epidemiology, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, United States; Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, United States
| | - Yang Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojin Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Nancy Diao
- Department of Environmental Health and Epidemiology, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, United States
| | - Rebecca Suk Heist
- Division of Hematology and Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States
| | - John C Wain
- Division of Thoracic Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States
| | - Eugene J Mark
- Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States
| | - George Washko
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, United States
| | - David C Christiani
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States; Departments of Environmental Health and Epidemiology, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, United States.
| |
Collapse
|
37
|
Yahaba M, Kawata N, Iesato K, Matsuura Y, Sugiura T, Kasai H, Sakurai Y, Terada J, Sakao S, Tada Y, Tanabe N, Tatsumi K. The effects of emphysema on airway disease: correlations between multi-detector CT and pulmonary function tests in smokers. Eur J Radiol 2014; 83:1022-1028. [PMID: 24703520 DOI: 10.1016/j.ejrad.2014.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/18/2013] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation caused by emphysema and small airway narrowing. Quantitative evaluation of airway dimensions by multi-detector computed tomography (MDCT) has revealed a correlation between airway dimension and airflow limitation. However, the effect of emphysema on this correlation is unclear. OBJECTIVE The goal of this study was to determine whether emphysematous changes alter the relationships between airflow limitation and airway dimensions as measured by inspiratory and expiratory MDCT. METHODS Ninety-one subjects underwent inspiratory and expiratory MDCT. Images were evaluated for mean airway luminal area (Ai), wall area percentage (WA%) from the third to the fifth generation of three bronchi (B1, B5, B8) in the right lung, and low attenuation volume percent (LAV%). Correlations between each airway index and airflow limitation were determined for each patient and compared between patients with and without evidence of emphysema. RESULTS In patients without emphysema, Ai and WA% from both the inspiratory and expiratory scans were significantly correlated with FEV1. No correlation was detected in patients with emphysema. In addition, emphysematous COPD patients with GOLD stage 1 or 2 disease had significantly lower changes in B8 Ai than non-emphysematous patients. CONCLUSIONS A significant correlation exists between airway parameters and FEV1 in patients without emphysema. Emphysema may influence airway dimensions even in patients with mild to moderate COPD.
Collapse
Affiliation(s)
- Misuzu Yahaba
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | - Naoko Kawata
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | - Ken Iesato
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | - Yukiko Matsuura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | - Toshihiko Sugiura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | - Hajime Kasai
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | - Yoriko Sakurai
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | - Jiro Terada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | - Seiichiro Sakao
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | - Nobuhiro Tanabe
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| |
Collapse
|
38
|
Effect of lung volume on airway luminal area assessed by computed tomography in chronic obstructive pulmonary disease. PLoS One 2014; 9:e90040. [PMID: 24587205 PMCID: PMC3938549 DOI: 10.1371/journal.pone.0090040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 01/31/2014] [Indexed: 11/19/2022] Open
Abstract
Background Although airway luminal area (Ai) is affected by lung volume (LV), how is not precisely understood. We hypothesized that the effect of LV on Ai would differ by airway generation, lung lobe, and chronic obstructive pulmonary disease (COPD) severity. Methods Sixty-seven subjects (15 at risk, 18, 20, and 14 for COPD stages 1, 2, and 3) underwent pulmonary function tests and computed tomography scans at full inspiration and expiration (at functional residual capacity). LV and eight selected identical airways were measured in the right lung. Ai was measured at the mid-portion of the 3rd, the segmental bronchus, to 6th generation of the airways, leading to 32 measurements per subject. Results The ratio of expiratory to inspiratory LV (LV E/I ratio) and Ai (Ai E/I ratio) was defined for evaluation of changes. The LV E/I ratio increased as COPD severity progressed. As the LV E/I ratio was smaller, the Ai E/I ratio was smaller at any generation among the subjects. Overall, the Ai E/I ratios were significantly smaller at the 5th (61.5%) and 6th generations (63.4%) and than at the 3rd generation (73.6%, p<0.001 for each), and also significantly lower in the lower lobe than in the upper or middle lobe (p<0.001 for each). And, the Ai E/I ratio decreased as COPD severity progressed only when the ratio was corrected by the LV E/I ratio (at risk v.s.stage3 p<0.001, stage1 v.s.stage3 p<0.05). Conclusions From full inspiration to expiration, the airway luminal area shrinks more at the distal airways compared with the proximal airways and in the lower lobe compared with the other lobes. Generally, the airways shrink more as COPD severity progresses, but this phenomenon becomes apparent only when lung volume change from inspiration to expiration is taken into account.
Collapse
|
39
|
Topalovic M, Exadaktylos V, Peeters A, Coolen J, Dewever W, Hemeryck M, Slagmolen P, Janssens K, Berckmans D, Decramer M, Janssens W. Computer quantification of airway collapse on forced expiration to predict the presence of emphysema. Respir Res 2013; 14:131. [PMID: 24251975 PMCID: PMC3870969 DOI: 10.1186/1465-9921-14-131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/18/2013] [Indexed: 11/16/2022] Open
Abstract
Background Spirometric parameters are the mainstay for diagnosis of COPD, but cannot distinguish airway obstruction from emphysema. We aimed to develop a computer model that quantifies airway collapse on forced expiratory flow–volume loops. We then explored and validated the relationship of airway collapse with computed tomography (CT) diagnosed emphysema in two large independent cohorts. Methods A computer model was developed in 513 Caucasian individuals with ≥15 pack-years who performed spirometry, diffusion capacity and CT scans to quantify emphysema presence. The model computed the two best fitting regression lines on the expiratory phase of the flow-volume loop and calculated the angle between them. The collapse was expressed as an Angle of collapse (AC) which was then correlated with the presence of emphysema. Findings were validated in an independent group of 340 individuals. Results AC in emphysema subjects (N = 251) was significantly lower (131° ± 14°) compared to AC in subjects without emphysema (N = 223), (152° ± 10°) (p < 0.0001). Multivariate regression analysis revealed AC as best indicator of visually scored emphysema (R2 = 0.505, p < 0.0001) with little significant contribution of KCO, %predicted and FEV1, %predicted to the total model (total R2 = 0.626, p < 0.0001). Similar associations were obtained when using CT-automated density scores for emphysema assessment. Receiver operating characteristic (ROC) curves pointed to 131° as the best cut-off for emphysema (95.5% positive predictive value, 97% specificity and 51% sensitivity). Validation in a second group confirmed the significant difference in mean AC between emphysema and non-emphysema subjects. When applying the 131° cut-off, a positive predictive value of 95.6%, a specificity of 96% and a sensitivity of 59% were demonstrated. Conclusions Airway collapse on forced expiration quantified by a computer model correlates with emphysema. An AC below 131° can be considered as a specific cut-off for predicting the presence of emphysema in heavy smokers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wim Janssens
- Respiratory Division, University Hospital Leuven, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
40
|
Come CE, Diaz AA, Curran-Everett D, Muralidhar N, Hersh CP, Zach JA, Schroeder J, Lynch DA, Celli B, Washko GR. Characterizing functional lung heterogeneity in COPD using reference equations for CT scan-measured lobar volumes. Chest 2013; 143:1607-1617. [PMID: 23699785 DOI: 10.1378/chest.12-1616] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND CT scanning is increasingly used to characterize COPD. Although it is possible to obtain CT scan-measured lung lobe volumes, normal ranges remain unknown. Using COPDGene data, we developed reference equations for lobar volumes at maximal inflation (total lung capacity [TLC]) and relaxed exhalation (approximating functional residual capacity [FRC]). METHODS Linear regression was used to develop race-specific (non-Hispanic white [NHW], African American) reference equations for lobar volumes. Covariates included height and sex. Models were developed in a derivation cohort of 469 subjects with normal pulmonary function and validated in 546 similar subjects. These cohorts were combined to produce final prediction equations, which were applied to 2,191 subjects with old GOLD (Global Initiative for Chronic Obstructive Lung Disease) stage II to IV COPD. RESULTS In the derivation cohort, women had smaller lobar volumes than men. Height positively correlated with lobar volumes. Adjusting for height, NHWs had larger total lung and lobar volumes at TLC than African Americans; at FRC, NHWs only had larger lower lobes. Age and weight had no effect on lobar volumes at TLC but had small effects at FRC. In subjects with COPD at TLC, upper lobes exceeded 100% of predicted values in GOLD II disease; lower lobes were only inflated to this degree in subjects with GOLD IV disease. At FRC, gas trapping was severe irrespective of disease severity and appeared uniform across the lobes. CONCLUSIONS Reference equations for lobar volumes may be useful in assessing regional lung dysfunction and how it changes in response to pharmacologic therapies and surgical or endoscopic lung volume reduction.
Collapse
Affiliation(s)
- Carolyn E Come
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Alejandro A Diaz
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Douglas Curran-Everett
- Division of Biostatistics and Bioinformatics, National Jewish Health, Department of Biostatistics and Informatics, Colorado School of Public Health, Denver, CO
| | - Nivedita Muralidhar
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Craig P Hersh
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jordan A Zach
- Division of Radiology, National Jewish Health, University of Colorado School of Medicine, Denver, CO
| | - Joyce Schroeder
- Division of Radiology, National Jewish Health, University of Colorado School of Medicine, Denver, CO
| | - David A Lynch
- Division of Radiology, National Jewish Health, University of Colorado School of Medicine, Denver, CO
| | - Bartolome Celli
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - George R Washko
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | |
Collapse
|
41
|
Diaz AA, Han MK, Come CE, San José Estépar R, Ross JC, Kim V, Dransfield MT, Curran-Everett D, Schroeder JD, Lynch DA, Tschirren J, Silverman EK, Washko GR. Effect of emphysema on CT scan measures of airway dimensions in smokers. Chest 2013; 143:687-693. [PMID: 23460155 DOI: 10.1378/chest.12-0039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND In CT scans of smokers with COPD, the subsegmental airway wall area percent (WA%) is greater and more strongly correlated with FEV1 % predicted than WA% obtained in the segmental airways. Because emphysema is linked to loss of airway tethering and may limit airway expansion, increases in WA% may be related to emphysema and not solely to remodeling. We aimed to first determine whether the stronger association of subsegmental vs segmental WA% with FEV1 % predicted is mitigated by emphysema and, second, to assess the relationships among emphysema, WA%, and total bronchial area (TBA). METHODS We analyzed CT scan segmental and subsegmental WA% (WA% = 100 × wall area/TBA) of six bronchial paths and corresponding lobar emphysema, lung function, and clinical data in 983 smokers with COPD. RESULTS Compared with segmental WA%, the subsegmental WA% had a greater effect on FEV1% predicted (-0.8% to -1.7% vs -1.9% to -2.6% per 1-unit increase in WA%, respectively; P < .05 for most bronchial paths). After adjusting for emphysema, the association between subsegmental WA% and FEV1 % predicted was weakened in two bronchial paths. Increases in WA% between bronchial segments correlated directly with emphysema in all bronchial paths (P < .05). In multivariate regression models, emphysema was directly related to subsegmental WA% in most bronchial paths and inversely related to subsegmental TBA in all bronchial paths. CONCLUSION The greater effect of subsegmental WA% on airflow obstruction is mitigated by emphysema. Part of the emphysema effect might be due to loss of airway tethering, leading to a reduction in TBA and an increase in WA%.
Collapse
Affiliation(s)
- Alejandro A Diaz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Pulmonary Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - MeiLan K Han
- University of Michigan School of Medicine, Ann Arbor, MI
| | - Carolyn E Come
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Raúl San José Estépar
- Surgical Planning Laboratory, Laboratory of Mathematics in Imaging, Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - James C Ross
- Surgical Planning Laboratory, Laboratory of Mathematics in Imaging, Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Victor Kim
- School of Medicine, Temple University, Philadelphia, PA
| | - Mark T Dransfield
- Division of Pulmonary, Allergy, and Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Douglas Curran-Everett
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, CO; Department of Biostatistics and Informatics, Colorado School of Public Health, Denver, CO
| | - Joyce D Schroeder
- Division of Radiology, National Jewish Health, University of Colorado, School of Medicine, Denver, CO
| | - David A Lynch
- Division of Radiology, National Jewish Health, University of Colorado, School of Medicine, Denver, CO
| | | | - Edwin K Silverman
- Channing Laboratory (Dr Silverman), Brigham and Women's Hospital, Boston, MA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
42
|
Brown RH. Registration-based metrics of lung function to describe COPD: the ultimate question of life, the universe, and everything. Acad Radiol 2013; 20:525-6. [PMID: 23570933 DOI: 10.1016/j.acra.2013.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 02/08/2013] [Accepted: 02/08/2013] [Indexed: 01/23/2023]
|
43
|
Hersh CP, Washko GR, Estépar RSJ, Lutz S, Friedman PJ, Han MK, Hokanson JE, Judy PF, Lynch DA, Make BJ, Marchetti N, Newell JD, Sciurba FC, Crapo JD, Silverman EK. Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD. Respir Res 2013; 14:42. [PMID: 23566024 PMCID: PMC3627637 DOI: 10.1186/1465-9921-14-42] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/14/2013] [Indexed: 12/03/2022] Open
Abstract
Background Gas trapping quantified on chest CT scans has been proposed as a surrogate for small airway disease in COPD. We sought to determine if measurements using paired inspiratory and expiratory CT scans may be better able to separate gas trapping due to emphysema from gas trapping due to small airway disease. Methods Smokers with and without COPD from the COPDGene Study underwent inspiratory and expiratory chest CT scans. Emphysema was quantified by the percent of lung with attenuation < −950HU on inspiratory CT. Four gas trapping measures were defined: (1) Exp−856, the percent of lung < −856HU on expiratory imaging; (2) E/I MLA, the ratio of expiratory to inspiratory mean lung attenuation; (3) RVC856-950, the difference between expiratory and inspiratory lung volumes with attenuation between −856 and −950 HU; and (4) Residuals from the regression of Exp−856 on percent emphysema. Results In 8517 subjects with complete data, Exp−856 was highly correlated with emphysema. The measures based on paired inspiratory and expiratory CT scans were less strongly correlated with emphysema. Exp−856, E/I MLA and RVC856-950 were predictive of spirometry, exercise capacity and quality of life in all subjects and in subjects without emphysema. In subjects with severe emphysema, E/I MLA and RVC856-950 showed the highest correlations with clinical variables. Conclusions Quantitative measures based on paired inspiratory and expiratory chest CT scans can be used as markers of small airway disease in smokers with and without COPD, but this will require that future studies acquire both inspiratory and expiratory CT scans.
Collapse
Affiliation(s)
- Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Díaz AA, Morales A, Díaz JC, Ramos C, Klaassen J, Saldías F, Aravena C, Díaz R, Lisboa C, Washko GR, Díaz O. CT and physiologic determinants of dyspnea and exercise capacity during the six-minute walk test in mild COPD. Respir Med 2013; 107:570-9. [DOI: 10.1016/j.rmed.2012.12.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
|
45
|
Abstract
RATIONALE Bronchiolitis obliterans syndrome (BOS) is a late, non-infectious pulmonary complication following hematopoietic stem cell transplantation (HSCT). There is minimal data published on quantitative radiologic characterization of airway remodeling in these subjects. OBJECTIVES To examine quantitative measurements of airway morphology and their correlation with lung function in a cohort of patients who underwent HSCT and developed BOS. METHODS All adult patients who underwent allogeneic HSCT at the Dana-Farber Cancer Institute/Brigham and Women's Hospital (n = 1854) between January 1st 2000 and June 30th 2010 were screened for the development of BOS. Clinically acquired high resolution CT (HRCT) scans of the chest were collected. For each subjects discrete measures of airway wall area were performed and the square root of wall area of a 10-mm luminal perimeter (Pi10) was calculated. MEASUREMENTS AND MAIN RESULTS We identified 88 cases of BOS, and 37 of these patients had available HRCT. On CT scans obtained after BOS diagnosis, the Pi10 decreased (consistent with airway dilation) as compared with pre-BOS values (p < 0.001). After HSCT the Pi10 correlated with FEV(1)% predicted (r = 0.636, p < 0.0001), and RV/TLC% predicted (r = -0.736, p < 0.0001), even after adjusting for age, sex and total lung capacity (p < 0.0001 for both). CONCLUSIONS On HRCT scan BOS is characterized by central airway dilation, the degree of which is correlated to decrements in lung function. This is opposite of what has been previously demonstrated in COPD and asthma that quantitative measure of proximal airway wall thickening directly correlate with pulmonary function. Our data suggests that the pathologic process affecting the central airways is different from the pathology observed in the distal airways. Further work is needed to determine if such change can be used as a sensitive and specific tool for the future diagnosis and staging of BOS.
Collapse
|
46
|
Tanabe N, Muro S, Oguma T, Sato S, Kiyokawa H, Takahashi T, Kudo M, Kinose D, Kubo T, Hoshino Y, Ogawa E, Hirai T, Mishima M. Computed tomography assessment of pharmacological lung volume reduction induced by bronchodilators in COPD. COPD 2012; 9:401-8. [DOI: 10.3109/15412555.2012.674986] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Naoya Tanabe
- 1Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University,
Kyoto, Japan
| | - Shigeo Muro
- 1Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University,
Kyoto, Japan
| | - Tsuyoshi Oguma
- 1Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University,
Kyoto, Japan
| | - Susumu Sato
- 1Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University,
Kyoto, Japan
| | - Hirofumi Kiyokawa
- 1Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University,
Kyoto, Japan
| | - Tamaki Takahashi
- 1Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University,
Kyoto, Japan
| | - Megumi Kudo
- 1Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University,
Kyoto, Japan
| | - Daisuke Kinose
- 1Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University,
Kyoto, Japan
| | - Takeshi Kubo
- 2Department of Diagnostic Imaging and Nuclear Medicine,
Kyoto University, Kyoto, Japan
| | - Yuma Hoshino
- 1Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University,
Kyoto, Japan
| | - Emiko Ogawa
- 1Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University,
Kyoto, Japan
| | - Toyohiro Hirai
- 1Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University,
Kyoto, Japan
| | - Michiaki Mishima
- 1Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University,
Kyoto, Japan
| |
Collapse
|