1
|
Zhu W, Han L, He L, Peng W, Li Y, Tian W, Qi H, Wei S, Shen J, Song Y, Shen Y, Zhu Q, Zhou J. Lsm2 is critical to club cell proliferation and its inhibition aggravates COPD progression. Respir Res 2025; 26:71. [PMID: 40022153 PMCID: PMC11871738 DOI: 10.1186/s12931-025-03126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory condition, with its severity inversely related to the levels of Club cell 10 kDa secretory protein (CC10). The gene Lsm2, involved in RNA metabolism and cell proliferation, has an unclear role in COPD development. METHODS An in vitro COPD model was developed by stimulating 16HBE cells with cigarette smoke extract (CSE). To establish an in vivo COPD model, mice with defective Lsm2 gene expression in lung or club cells were exposed to cigarette smoke for 3 months. Multiplexed immunohistochemistry (mIHC) was employed to identify the specific cells where Lsm2 gene expression is predominant. RNA sequencing and single-nucleus RNA sequencing were conducted to investigate the role of Lsm2 in the pathogenesis of COPD. RESULTS In this study, we found that cigarette smoke extract increases Lsm2 expression, and knocking down Lsm2 in 16HBE cells significantly reduces cell viability in vitro. mIHC showed that Lsm2 is primarily expressed in Club cells. Knockout of Lsm2, either in the lungs or specifically in Club cells, exacerbated lung injury and inflammation caused by cigarette smoke exposure in vivo. Single-nucleus RNA sequencing analysis revealed that Club cell-specific knockout of Lsm2 leads to a reduction in the Club cell population, particularly those expressing Chia1+/Crb1+. This decrease in Club cells subsequently reduces the number of ciliated epithelial cells. CONCLUSION Knocking out Lsm2 in Club cells results in a significant decrease in Club cell numbers, which subsequently leads to a reduction in ciliated epithelial cells. This increased lung vulnerability to cigarette smoke and accelerating the progression of COPD. Our findings highlight that Lsm2 is critical to club cell proliferation and its inhibition aggravates COPD progression.
Collapse
Affiliation(s)
- Wensi Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Linxiao Han
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Ludan He
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Wenjun Peng
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Ying Li
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Weibin Tian
- Department of Respiratory and Critial Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China
| | - Hui Qi
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050091, Hebei, China
| | - Shuoyan Wei
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Jie Shen
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Fudan University, Shanghai, 200540, China
| | - Yuanlin Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Yao Shen
- Department of Respiratory and Critial Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China.
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Shanghai Geriatric Medical Center, 2560 Chunshen Road, Shanghai, 201104, China.
| | - Jian Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China.
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Fudan University, Shanghai, 200540, China.
| |
Collapse
|
2
|
Martin J, Rittersberger R, Treitler S, Kopp P, Ibraimi A, Koslowski G, Sickinger M, Dabbars A, Schindowski K. Characterization of a primary cellular airway model for inhalative drug delivery in comparison with the established permanent cell lines CaLu3 and RPMI 2650. IN VITRO MODELS 2024; 3:183-203. [PMID: 39872698 PMCID: PMC11756470 DOI: 10.1007/s44164-024-00079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 01/30/2025]
Abstract
Purpose For optimization of respiratory drug delivery, the selection of suitable in vitro cell models plays an important role in predicting the efficacy and safety of (bio)pharmaceutics and pharmaceutical formulations. Therefore, an in-depth comparison of different primary and permanent in vitro cellular airway models was performed with a focus on selecting a suitable model for inhalative antibodies. Methods Primary cells isolated from the porcine trachea were compared with the established human cell lines CaLu3 and RPMI 2650. The in vitro models were characterized for different epithelial markers by real-time quantitative polymerase chain reaction, which provides insight into the cellular composition of each model. For a few selected markers, the results from RT-qPCR were confirmed via immunofluorescence. Barrier integrity was assessed by transepithelial electrical resistance measurements and FITC-dextran permeability. Results Primary cell models retain key features of the respiratory epithelium, e.g., the formation of a tight epithelial barrier, mucin production, and the presence of club/basal cells. Furthermore, the expression of Fc receptors in the primary cell models closely resembles that in respiratory mucosal tissue, an essential parameter to consider when developing therapeutic antibodies for inhalation. Conclusion The study underlines the importance of selecting wisely appropriate in vitro models. Despite the greater effort and variability in cultivating primary airway cells, they are far superior to permanent cells and a suitable model for drug development. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-024-00079-y.
Collapse
Affiliation(s)
- Janik Martin
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Rebecca Rittersberger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Simon Treitler
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Patrick Kopp
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Anit Ibraimi
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Justus-Von-Liebig-Schule, Von-Kilian-Straße 5, 79762 Waldshut-Tiengen, Germany
| | - Gabriel Koslowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Max Sickinger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Annabelle Dabbars
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| |
Collapse
|
3
|
Kraik K, Tota M, Laska J, Łacwik J, Paździerz Ł, Sędek Ł, Gomułka K. The Role of Transforming Growth Factor-β (TGF-β) in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Cells 2024; 13:1271. [PMID: 39120302 PMCID: PMC11311642 DOI: 10.3390/cells13151271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) represent chronic inflammatory respiratory disorders that, despite having distinct pathophysiological underpinnings, both feature airflow obstruction and respiratory symptoms. A critical component in the pathogenesis of each condition is the transforming growth factor-β (TGF-β), a multifunctional cytokine that exerts varying influences across these diseases. In asthma, TGF-β is significantly involved in airway remodeling, a key aspect marked by subepithelial fibrosis, hypertrophy of the smooth muscle, enhanced mucus production, and suppression of emphysema development. The cytokine facilitates collagen deposition and the proliferation of fibroblasts, which are crucial in the structural modifications within the airways. In contrast, the role of TGF-β in COPD is more ambiguous. It initially acts as a protective agent, fostering tissue repair and curbing inflammation. However, prolonged exposure to environmental factors such as cigarette smoke causes TGF-β signaling malfunction. Such dysregulation leads to abnormal tissue remodeling, marked by excessive collagen deposition, enlargement of airspaces, and, thus, accelerated development of emphysema. Additionally, TGF-β facilitates the epithelial-to-mesenchymal transition (EMT), a process contributing to the phenotypic alterations observed in COPD. A thorough comprehension of the multifaceted role of TGF-β in asthma and COPD is imperative for elaborating precise therapeutic interventions. We review several promising approaches that alter TGF-β signaling. Nevertheless, additional studies are essential to delineate further the specific mechanisms of TGF-β dysregulation and its potential therapeutic impacts in these chronic respiratory diseases.
Collapse
Affiliation(s)
- Krzysztof Kraik
- Student Scientific Group of Internal Medicine and Allergology, Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Maciej Tota
- Student Scientific Group of Internal Medicine and Allergology, Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Laska
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Julia Łacwik
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Paździerz
- Student Scientific Group of Internal Medicine and Allergology, Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
4
|
Raby KL, Michaeloudes C, Tonkin J, Chung KF, Bhavsar PK. Mechanisms of airway epithelial injury and abnormal repair in asthma and COPD. Front Immunol 2023; 14:1201658. [PMID: 37520564 PMCID: PMC10374037 DOI: 10.3389/fimmu.2023.1201658] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
The airway epithelium comprises of different cell types and acts as a physical barrier preventing pathogens, including inhaled particles and microbes, from entering the lungs. Goblet cells and submucosal glands produce mucus that traps pathogens, which are expelled from the respiratory tract by ciliated cells. Basal cells act as progenitor cells, differentiating into different epithelial cell types, to maintain homeostasis following injury. Adherens and tight junctions between cells maintain the epithelial barrier function and regulate the movement of molecules across it. In this review we discuss how abnormal epithelial structure and function, caused by chronic injury and abnormal repair, drives airway disease and specifically asthma and chronic obstructive pulmonary disease (COPD). In both diseases, inhaled allergens, pollutants and microbes disrupt junctional complexes and promote cell death, impairing the barrier function and leading to increased penetration of pathogens and a constant airway immune response. In asthma, the inflammatory response precipitates the epithelial injury and drives abnormal basal cell differentiation. This leads to reduced ciliated cells, goblet cell hyperplasia and increased epithelial mesenchymal transition, which contribute to impaired mucociliary clearance and airway remodelling. In COPD, chronic oxidative stress and inflammation trigger premature epithelial cell senescence, which contributes to loss of epithelial integrity and airway inflammation and remodelling. Increased numbers of basal cells showing deregulated differentiation, contributes to ciliary dysfunction and mucous hyperproduction in COPD airways. Defective antioxidant, antiviral and damage repair mechanisms, possibly due to genetic or epigenetic factors, may confer susceptibility to airway epithelial dysfunction in these diseases. The current evidence suggests that a constant cycle of injury and abnormal repair of the epithelium drives chronic airway inflammation and remodelling in asthma and COPD. Mechanistic understanding of injury susceptibility and damage response may lead to improved therapies for these diseases.
Collapse
Affiliation(s)
- Katie Louise Raby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - James Tonkin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| | - Pankaj Kumar Bhavsar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| |
Collapse
|
5
|
Mao Y, Patial S, Saini Y. Airway epithelial cell-specific deletion of HMGB1 exaggerates inflammatory responses in mice with muco-obstructive airway disease. Front Immunol 2023; 13:944772. [PMID: 36741411 PMCID: PMC9892197 DOI: 10.3389/fimmu.2022.944772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023] Open
Abstract
High mobility group box 1 (HMGB1), a ubiquitous chromatin-binding protein required for gene transcription regulation, is released into the extracellular microenvironment by various structural and immune cells, where it is known to act as an alarmin. Here, we investigated the role of airway epithelium-specific HMGB1 in the pathogenesis of muco-obstructive lung disease in Scnn1b-transgenic (Tg+) mouse, a model of human cystic fibrosis (CF)-like lung disease. We hypothesized that airway epithelium-derived HMGB1 modulates muco-inflammatory lung responses in the Tg+ mice. The airway epithelium-specific HMGB1-deficient mice were generated and the effects of HMGB1 deletion on immune cell recruitment, airway epithelial cell composition, mucous cell metaplasia, and bacterial clearance were determined. The airway epithelium-specific deletion of HMGB1 in wild-type (WT) mice did not result in any morphological alterations in the airway epithelium. The deficiency of HMGB1 in airway epithelial cells in the Tg+ mice, however, resulted in significantly increased infiltration of macrophages, neutrophils, and eosinophils which was associated with significantly higher levels of inflammatory mediators, including G-CSF, KC, MIP-2, MCP-1, MIP-1α, MIP-1β, IP-10, and TNF-α in the airspaces. Furthermore, as compared to the HMGB1-sufficient Tg+ mice, the airway epithelial cell-specific HMGB1-deficient Tg+ mice exhibited poor resolution of spontaneous bacterial infection. The HMGB1 deficiency in the airway epithelial cells of Tg+ mice did not alter airway epithelial cell-specific responses including epithelial cell proliferation, mucous cell metaplasia, and mucus obstruction. Collectively, our findings provide novel insights into the role of airway epithelial cell-derived HMGB1 in the pathogenesis of CF-like lung disease in Tg+ mice.
Collapse
|
6
|
Predictive Value of Serum Markers SFRP1 and CC16 in Acute Exacerbation of Chronic Obstructive Pulmonary Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6488935. [PMID: 35958937 PMCID: PMC9363185 DOI: 10.1155/2022/6488935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
Background Chronic obstructive pulmonary disease (COPD) patients are particularly vulnerable to acute exacerbation, resulting in a huge socioeconomic burden. Objective In this study, we evaluated the value of serum secreted frizzled-related protein 1 (SFRP1) and Clara cell-secreted protein (CC16) in predicting the risk of acute exacerbations in patients with COPD. Methods The study included 123 COPD patients admitted to our hospital from May 2020 to June 2021, including 65 patients in stable stage (STCOPD group), 58 patients in acute exacerbation stage (AECOPD group), and 60 healthy volunteers (control group). Serum SFRP1 and CC16 levels were detected by enzyme-linked immunosorbent assay (ELISA). The receiver operating characteristics curve (ROC) analysis was performed to evaluate the sensitivity and specificity of serum SFRP1 and CC16 for predicting the risk of acute exacerbation in COPD patients. Results The age among groups is significantly different, but there is no difference in the gender and body mass index (BMI). The level of serum SFRP1 in the AECOPD group was significantly higher than that in the STCOPD group and the control group, and the level of serum CC16 was lower than that in the STCOPD group and the control group. Serum SFRP1 was negatively correlated with forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) (r = −0.473, P < 0.001). Serum CC16 was positively correlated with FEV1/FVC (r = 0.457, P < 0.001). The area under the curve (AUC), sensitivity, and specificity of SFRP1 for predicting the risk of exacerbation was 0.847 (95% CI: 0.775 to 0.920), 86.20%, and 80.00%. The AUC, sensitivity, and specificity of CC16 for predicting the risk of exacerbation were 0.795 (95% CI: 0.711 to 0.879), 74.10%, and 86.20%. Conclusions These findings suggest that SFRP1 and CC16 may be useful serum markers for predicting the risk of exacerbation in COPD patients.
Collapse
|
7
|
Santos J, Calabrese DR, Greenland JR. Lymphocytic Airway Inflammation in Lung Allografts. Front Immunol 2022; 13:908693. [PMID: 35911676 PMCID: PMC9335886 DOI: 10.3389/fimmu.2022.908693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Lung transplant remains a key therapeutic option for patients with end stage lung disease but short- and long-term survival lag other solid organ transplants. Early ischemia-reperfusion injury in the form of primary graft dysfunction (PGD) and acute cellular rejection are risk factors for chronic lung allograft dysfunction (CLAD), a syndrome of airway and parenchymal fibrosis that is the major barrier to long term survival. An increasing body of research suggests lymphocytic airway inflammation plays a significant role in these important clinical syndromes. Cytotoxic T cells are observed in airway rejection, and transcriptional analysis of airways reveal common cytotoxic gene patterns across solid organ transplant rejection. Natural killer (NK) cells have also been implicated in the early allograft damage response to PGD, acute rejection, cytomegalovirus, and CLAD. This review will examine the roles of lymphocytic airway inflammation across the lifespan of the allograft, including: 1) The contribution of innate lymphocytes to PGD and the impact of PGD on the adaptive immune response. 2) Acute cellular rejection pathologies and the limitations in identifying airway inflammation by transbronchial biopsy. 3) Potentiators of airway inflammation and heterologous immunity, such as respiratory infections, aspiration, and the airway microbiome. 4) Airway contributions to CLAD pathogenesis, including epithelial to mesenchymal transition (EMT), club cell loss, and the evolution from constrictive bronchiolitis to parenchymal fibrosis. 5) Protective mechanisms of fibrosis involving regulatory T cells. In summary, this review will examine our current understanding of the complex interplay between the transplanted airway epithelium, lymphocytic airway infiltration, and rejection pathologies.
Collapse
Affiliation(s)
- Jesse Santos
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
| | - Daniel R. Calabrese
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| | - John R. Greenland
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| |
Collapse
|
8
|
Podguski S, Kaur G, Muthumalage T, McGraw MD, Rahman I. Noninvasive systemic biomarkers of e-cigarette or vaping use-associated lung injury: a pilot study. ERJ Open Res 2022; 8:00639-2021. [PMID: 35386827 PMCID: PMC8977595 DOI: 10.1183/23120541.00639-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background Electronic cigarette (e-cigarette) vaping, containing nicotine and/or Δ8, Δ9 or Δ10 or Δo tetrahydrocannabinol (Δn-THC), is associated with an outbreak of e-cigarette, or vaping, product use-associated lung injury (EVALI). Despite thousands being hospitalised with EVALI, much remains unknown about diagnosis, treatment and disease pathogenesis. Biomarkers of inflammation, oxidative stress and lipid mediators may help identify e-cigarette users with EVALI. Methods We collected plasma and urine along with demographic and vaping-related data of EVALI subjects (age 18-35 years) and non-users matched for sex and age in a pilot study. Biomarkers were assessed by ELISA/EIA and Luminex-based assays. Results Elevated levels of THC metabolite (11-nor-9-carboxy-Δ9-THC) were found in plasma from EVALI subjects compared to non-users. Levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), an oxidative DNA damage biomarker, and 8-isoprostane, an oxidative stress marker, were slightly increased in urine samples from EVALI subjects compared to non-users. Conversely, plasma levels of lipid mediators, including resolvin D1 (RvD1) and prostaglandin E2 (PGE2), were significantly lower in EVALI subjects compared to non-users. Both pro-inflammatory biomarkers, such as tumour necrosis factor-α, macrophage inflammatory protein-1β, RANTES (regulated on activation, normal T-cell expressed and secreted) and granulocyte-macrophage colony-stimulating factor, as well as anti-inflammatory biomarkers, such as interleukin-9 and CC10/16, were decreased in plasma from EVALI subjects compared to non-users, supportive of a possible dysregulated inflammatory response in EVALI subjects. Conclusions Significant elevations in urine and plasma biomarkers of oxidative stress, as well as reductions in lipid mediators, were shown in EVALI subjects. These noninvasive biomarkers (8-OHdG, 8-isoprostane, RvD1 and CC10/16), either individually or collectively, may serve as tools in diagnosing future EVALI subjects.
Collapse
Affiliation(s)
- Stephanie Podguski
- Dept of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
- These authors contributed equally
| | - Gagandeep Kaur
- Dept of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
- These authors contributed equally
| | - Thivanka Muthumalage
- Dept of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew D. McGraw
- Division of Pediatric Pulmonology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Dept of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
9
|
Wang HC, Liu KY, Wang LT, Hsu SH, Wang SC, Huang SK. Aryl hydrocarbon receptor promotes lipid droplet biogenesis and metabolic shift in respiratory Club cells. Hum Cell 2021; 34:785-799. [PMID: 33683656 DOI: 10.1007/s13577-021-00491-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Club cells are critical in maintaining airway integrity via, in part, secretion of immunomodulatory Club cell 10 kd protein (CC10) and xenobiotic detoxification. Aryl hydrocarbon receptor (AhR) is important in xenobiotic metabolism, but its role in Club cell function is unclear. To this end, an AhR ligand, 6-formylindolo[3,2-b]carbazole (FICZ, 10 nM) was found to induce, in a ligand and AhR-dependent manner, endoplasmic reticulum stress, phospholipid remodeling, free fatty acid and triglyceride synthesis, leading to perilipin 2-dependent lipid droplet (LD) biogenesis in a Club cell-like cell line, NL20. The increase in LDs was due, in part, to the blockade of adipose triglyceride lipase to LDs, while perilipin 5 facilitated LDs-mitochondria connection, leading to the breakdown of LDs via mitochondrial β-oxidation and acetyl-coA generation. In FICZ-treated cells, increased CC10 secretion and its intracellular association with LDs were noted. Administration of low (0.28 ng), medium (1.42 ng), and high (7.10 ng) doses of FICZ in C57BL/6 mice significantly enhanced lipopolysaccharide (LPS, 0.1 μg)-induced airway inflammation, mucin secretion, pro-inflammatory cytokines and CC10 in the bronchoalveolar lavage fluids, as compared to those seen in mice receiving LPS alone, suggesting the importance of AhR signaling in controlling the metabolic homeostasis and functions of Club cells.
Collapse
Affiliation(s)
- Hsueh-Chun Wang
- Graduate Institute of Biomedical Sciences, China Medical University, 91 Hsueh-Shih Rd, North District, Taichung, 40402, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| | - Kwei-Yan Liu
- Department of Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518020, China
| | - Li-Ting Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, China Medical University, 91 Hsueh-Shih Rd, North District, Taichung, 40402, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Yang YY, Lin CJ, Wang CC, Chen CM, Kao WJ, Chen YH. Consecutive Hypoxia Decreases Expression of NOTCH3, HEY1, CC10, and FOXJ1 via NKX2-1 Downregulation and Intermittent Hypoxia-Reoxygenation Increases Expression of BMP4, NOTCH1, MKI67, OCT4, and MUC5AC via HIF1A Upregulation in Human Bronchial Epithelial Cells. Front Cell Dev Biol 2020; 8:572276. [PMID: 33015064 PMCID: PMC7500169 DOI: 10.3389/fcell.2020.572276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/17/2020] [Indexed: 01/11/2023] Open
Abstract
Previous studies have shown that the experimental models of hypoxia-reoxygenation (H/R) mimics the physiological conditions of ischemia-reperfusion and induce oxidative stress and injury in various types of organs, tissues, and cells, both in vivo and in vitro, including human lung adenocarcinoma epithelial cells. Nonetheless, it had not been reported whether H/R affected proliferation, apoptosis, and expression of stem/progenitor cell markers in the bronchial epithelial cells. In this study, we investigated differential effects of consecutive hypoxia and intermittent 24/24-h cycles of H/R on human bronchial epithelial (HBE) cells derived from the same-race and age-matched healthy subjects (i.e., NHBE) and subjects with chronic obstructive pulmonary disease (COPD) (i.e., DHBE). To analyze gene/protein expression during differentiation, both the NHBE and DHBE cells at the 2nd passage were cultured at the air-liquid interface (ALI) in the differentiation medium under normoxia for 3 days, followed by either culturing under hypoxia (1% O2) for consecutively 9 days and then returning to normoxia for another 9 days, or culturing under 24/24-h cycles of H/R (i.e., 24 h of 1% O2 followed by 24 h of 21% O2, repetitively) for 18 days in total, so that all differentiating HBE cells were exposed to hypoxia for a total of 9 days. In both the normal and diseased HBE cells, intermittent H/R significantly increased HIF1A, BMP4, NOTCH1, MKI67, OCT4, and MUC5AC expression, while consecutive hypoxia significantly decreased NKX2-1, NOTCH3, HEY1, CC10, and FOXJ1 expression. Inhibition of HIF1A or NKX2-1 expression by siRNA transfection respectively decreased BMP4/NOTCH1/MKI67/OCT4/MUC5AC and NOTCH3/HEY1/CC10/FOXJ1 expression in the HBE cells cultured under intermittent H/R to the same levels under normoxia. Overexpression of NKX2-1 via cDNA transfection caused more than 2.8-fold increases in NOTCH3, HEY1, and FOXJ1 mRNA levels in the HBE cells cultured under consecutive hypoxia compared to the levels under normoxia. Taken together, our results show for the first time that consecutive hypoxia decreased expression of the co-regulated gene module NOTCH3/HEY1/CC10 and the ciliogenesis-inducing transcription factor gene FOXJ1 via NKX2-1 mRNA downregulation, while intermittent H/R increased expression of the co-regulated gene module BMP4/NOTCH1/MKI67/OCT4 and the predominant airway mucin gene MUC5AC via HIF1A mRNA upregulation.
Collapse
Affiliation(s)
- Yung-Yu Yang
- Department of General Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chao-Ju Lin
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chin Wang
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan.,Section of Respiratory Therapy, Rueifang Miner Hospital, New Taipei City, Taiwan
| | - Chieh-Min Chen
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Jen Kao
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
11
|
Grunig G, Baghdassarian A, Park SH, Pylawka S, Bleck B, Reibman J, Berman-Rosenzweig E, Durmus N. Challenges and Current Efforts in the Development of Biomarkers for Chronic Inflammatory and Remodeling Conditions of the Lungs. Biomark Insights 2016; 10:59-72. [PMID: 26917944 PMCID: PMC4756863 DOI: 10.4137/bmi.s29514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 02/06/2023] Open
Abstract
This review discusses biomarkers that are being researched for their usefulness to phenotype chronic inflammatory lung diseases that cause remodeling of the lung's architecture. The review focuses on asthma, chronic obstructive pulmonary disease (COPD), and pulmonary hypertension. Bio-markers of environmental exposure and specific classes of biomarkers (noncoding RNA, metabolism, vitamin, coagulation, and microbiome related) are also discussed. Examples of biomarkers that are in clinical use, biomarkers that are under development, and biomarkers that are still in the research phase are discussed. We chose to present examples of the research in biomarker development by diseases, because asthma, COPD, and pulmonary hypertension are distinct entities, although they clearly share processes of inflammation and remodeling.
Collapse
Affiliation(s)
- Gabriele Grunig
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA.; Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Aram Baghdassarian
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Sung-Hyun Park
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Serhiy Pylawka
- College of Dental Medicine, Columbia University, New York, NY, USA
| | - Bertram Bleck
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Joan Reibman
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | | | - Nedim Durmus
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|