1
|
Nygrén P, Bouhlal J, Jokinen E, Forstén S, Laajala E, Dias D, Adnan-Awad S, Ianevski A, Klievink J, Lähteenmäki H, Kuusanmäki H, Myllymäki M, Kasanen T, Saeed K, Lee DA, iCAN Study Group, Hjorth-Hansen H, Aittokallio T, Dufva O, Mustjoki S. High-throughput drug screening identifies SMAC mimetics as enhancers of NK-cell cytotoxicity in chronic myeloid leukemia. Blood 2025; 145:1670-1686. [PMID: 39792962 PMCID: PMC12000656 DOI: 10.1182/blood.2024025286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/31/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT Natural killer (NK) cells have proven to be safe and effective immunotherapies, associated with favorable treatment responses in chronic myeloid leukemia (CML). Augmenting NK-cell function with oncological drugs could improve NK-cell-based immunotherapies. Here, we used a high-throughput drug screen consisting of >500 small-molecule compounds, to systematically evaluate the effects of oncological drugs on primary NK cells against CML cells. We identified second mitochondrially derived activator of caspases (SMAC) mimetics as potent enhancers of NK-cell cytotoxicity in both cell lines and primary patient samples. In contrast, several drug classes, including glucocorticoids and tyrosine kinase inhibitors such as dasatinib, inhibited NK-cell cytotoxicity. Single-cell RNA sequencing revealed drug-induced transcriptomic changes in both NK and target CML cells. SMAC mimetics upregulated NF-κB target genes in NK cells, potentially contributing to their enhanced cytotoxicity. Inhibitory drugs dexamethasone, dasatinib, and sotrastaurin prevented NK-cell transition to an activated state and suppressed the expression of interferon gamma (IFN-γ) by NK cells, thus preventing IFN-γ-mediated target cell transcriptomic response. In conclusion, we discovered that SMAC mimetics sensitize cancer cells to NK-cell-mediated killing, with potential clinical applications especially in patients with advanced phase CML.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- High-Throughput Screening Assays
- Cytotoxicity, Immunologic/drug effects
- Antineoplastic Agents/pharmacology
- Mitochondrial Proteins
- Apoptosis Regulatory Proteins
- Cell Line, Tumor
- Intracellular Signaling Peptides and Proteins
Collapse
Affiliation(s)
- Petra Nygrén
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Jonas Bouhlal
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Emmi Jokinen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Sofia Forstén
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Essi Laajala
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Diogo Dias
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Shady Adnan-Awad
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Aleksandr Ianevski
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Jay Klievink
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Hanna Lähteenmäki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Heikki Kuusanmäki
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Mikko Myllymäki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Tiina Kasanen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Khalid Saeed
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Dean A. Lee
- Division of Hematology, Oncology, and Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH
| | - iCAN Study Group
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
- Division of Hematology, Oncology, and Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH
- Department of Hematology, St. Olavs Hospital, Trondheim, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | | | - Tero Aittokallio
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Olli Dufva
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Guzeloglu-Kayisli O, Ozmen A, Un BC, Un B, Blas J, Johnson I, Thurman A, Walters M, Friend D, Kayisli UA, Lockwood CJ. Targeting FKBP51 prevents stress-induced preterm birth. EMBO Mol Med 2025; 17:775-796. [PMID: 40097636 PMCID: PMC11982339 DOI: 10.1038/s44321-025-00211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Preterm birth (PTB) is a leading cause of perinatal morbidity and mortality, with maternal stress-related disorders, such as depression and anxiety, linked to idiopathic PTB (iPTB). At the maternal-fetal interface, decidualized stromal cells (DSCs) exclusively express the progesterone receptor (PR) and play pivotal roles in maintaining pregnancy and initiating labor. DSCs also express FKBP51, a protein that binds to and inhibits transcriptional activity of glucocorticoid and PR receptors and is associated with stress-related diseases. We previously found that iPTB specimens exhibit increased FKBP51 levels and enhanced FKBP51-PR interactions in DSC nuclei. Additionally, we demonstrated that Fkbp5-deficient mice have prolonged gestation and are resistant to stress-induced PTB, suggesting that FKBP51 contributes to iPTB pathogenesis. Since no FDA-approved therapy exists for PTB, we hypothesized that inhibiting FKBP51 could prevent iPTB. Our current results show that the endogenous prostaglandin D2 derivative 15dPGJ2 reduces FKBP51 levels and FKBP51-PR interactions in cultured cells. Maternal stress increases uterine expression of Fkbp5, Oxtr, and Akr1c18, leading to shortened gestation. However, treatment with 15dPGJ2 lowers uterine Fkbp51, Oxtr, and Ptgs2 levels and prevents stress-induced PTB. Notably, co-treatment with 15dPGJ2 and either P4 or R5020 produced the most significant effects, highlighting the potential of 15dPGJ2 alone or in combination with progestins as a promising therapeutic strategy to prevent PTB.
Collapse
Affiliation(s)
- Ozlem Guzeloglu-Kayisli
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Asli Ozmen
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Busra Cetinkaya Un
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Burak Un
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jacqueline Blas
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | | | | | | | - Umit A Kayisli
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Charles J Lockwood
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
3
|
Sasse SK, Dahlin A, Sanford L, Gruca MA, Gupta A, Gally F, Wu AC, Iribarren C, Dowell RD, Weiss ST, Gerber AN. Enhancer RNA transcription pinpoints functional genetic variants linked to asthma. Nat Commun 2025; 16:2750. [PMID: 40164603 PMCID: PMC11958640 DOI: 10.1038/s41467-025-57693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Bidirectional enhancer RNA (eRNA) transcription is a widespread response to environmental signals and glucocorticoids. We investigated whether single nucleotide polymorphisms (SNPs) within dynamically regulated eRNA-transcribing regions contribute to genetic variation in asthma. Through applying multivariate regression modeling with permutation-based significance thresholding to a large clinical cohort, we identified novel associations between asthma and 35 SNPs located in eRNA-transcribing regions implicated in regulating cellular processes relevant to asthma, including rs258760 (mean allele frequency = 0.34, asthma odds ratio = 0.95; P = 5.04E-03). We show that rs258760 disrupts an active aryl hydrocarbon receptor (AHR) response element linked to transcriptional regulation of the glucocorticoid receptor gene by AHR ligands, which are commonly found in combusted air pollution. The role of rs258760 as a protective variant for asthma was independently validated using UK Biobank data. Our findings establish eRNA signatures as a tool for discovery of functional genetic variants and define a novel association between air pollution, glucocorticoid signaling and asthma.
Collapse
Affiliation(s)
- Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Amber Dahlin
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lynn Sanford
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Margaret A Gruca
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Arnav Gupta
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Fabienne Gally
- Department of Medicine, University of Colorado, Aurora, CO, USA
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Ann Chen Wu
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Carlos Iribarren
- Kaiser Permanente Division of Research, Kaiser Permanente, Oakland, CA, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
- Computer Science, University of Colorado, Boulder, CO, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, CO, USA.
- Department of Medicine, University of Colorado, Aurora, CO, USA.
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
4
|
Chen M, Zhang C, Wu Z, Guo S, Lv W, Song J, Hao B, Bai J, Zhang X, Xu H, Xia G. Bta-miR-365-3p-targeted FK506-binding protein 5 participates in the AMPK/mTOR signaling pathway in the regulation of preadipocyte differentiation in cattle. Anim Biosci 2024; 37:1156-1167. [PMID: 38665092 PMCID: PMC11222839 DOI: 10.5713/ab.23.0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 02/18/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE MicroRNAs (miRNAs) are endogenous non-coding RNAs that can play a role in the post-transcriptional regulation of mammalian preadipocyte differentiation. However, the precise functional mechanism of its regulation of fat metabolism is not fully understood. METHODS We identified bta-miR-365-3p, which specifically targets the 3' untranslated region (3'UTR) of the FK506-binding protein 5 (FKBP5), and verified its mechanisms for regulating expression and involvement in adipogenesis. RESULTS In this study, we found that the overexpression of bta-miR-365-3p significantly decreased the lipid accumulation and triglyceride content in the adipocytes. Compared to inhibiting bta-miR-36 5-3p group, overexpression of bta-miR-365-3p can inhibit the expression of adipocyte differentiation-related genes C/EBPα and PPARγ. The dualluciferase reporter system further validated the targeting relationship between bta-miR-365-3p and FKBP5. FKBP5 mRNA and protein expression were detected by quantitative real-time polymerase chain reaction and Western blot. Overexpression of bta-miR-365-3p significantly down-regulated FKBP5 expression, while inhibition of bta-miR-365-3p showed the opposite, indicating that bta-miR-365-3p negatively regulates FKBP5. Adenosine 5'-monophosphate (AMP)-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) signaling pathway is closely related to the regulation of cell growth and is involved in the development of bovine adipocytes. In this study, overexpression of bta-miR-365-3p significantly inhibited mRNA and protein expression of AMPK, mTOR, and SREBP1 genes, while the inhibition of bta-miR-365-3p expression was contrary to these results. Overexpression of FKBP5 significantly upregulated AMPK, mTOR, and SREBP1 gene expression, while inhibition of FKBP5 expression was contrary to the above experimental results. CONCLUSION In conclusion, these results indicate that bta-miR-365-3p may be involved in the AMPK/mTOR signaling pathway in regulating Yanbian yellow cattle preadipocytes differentiation by targeting the FKBP5 gene.
Collapse
Affiliation(s)
- Mengdi Chen
- College of Agriculture, Yanbian University, Yanji 133000,
China
- College of Integration Science, Yanbian University, Yanji 133000,
China
| | - Congcong Zhang
- Institute of Animal Science, Jilin Academy of Agricultural Science, Changchun 136100,
China
| | - Zewen Wu
- College of Agriculture, Yanbian University, Yanji 133000,
China
| | - Siwei Guo
- College of Agriculture, Yanbian University, Yanji 133000,
China
| | - Wenfa Lv
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118,
China
| | - Jixuan Song
- College of Agriculture, Yanbian University, Yanji 133000,
China
| | - Beibei Hao
- College of Agriculture, Yanbian University, Yanji 133000,
China
- College of Integration Science, Yanbian University, Yanji 133000,
China
| | - Jinhui Bai
- College of Agriculture, Yanbian University, Yanji 133000,
China
| | - Xinxin Zhang
- College of Agriculture, Yanbian University, Yanji 133000,
China
- College of Integration Science, Yanbian University, Yanji 133000,
China
| | - Hongyan Xu
- College of Agriculture, Yanbian University, Yanji 133000,
China
- College of Integration Science, Yanbian University, Yanji 133000,
China
| | - Guangjun Xia
- College of Agriculture, Yanbian University, Yanji 133000,
China
- College of Integration Science, Yanbian University, Yanji 133000,
China
- Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Yanbian University, Yanji, Jilin 133000,
China
| |
Collapse
|
5
|
Ma J, Yang Z, Gao H, Huda N, Jiang Y, Liangpunsakul S. FK-binding protein 5: Possible relevance to the pathogenesis of metabolic dysfunction and alcohol-associated liver disease. J Investig Med 2024; 72:128-138. [PMID: 37807186 DOI: 10.1177/10815589231207793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The FK506-binding protein (FKBP5) plays significant roles in mediating stress responses by interacting with glucocorticoids, participating in adipogenesis, and influencing various cellular pathways throughout the body. In this review, we described the potential role of FKBP5 in the pathogenesis of two common chronic liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD), and alcohol-associated liver disease (ALD). We provided an overview of the FK-binding protein family and elucidated their roles in cellular stress responses, metabolic diseases, and adipogenesis. We explored how FKBP5 may mechanistically influence the pathogenesis of MASLD and ALD and provided insights for further investigation into the role of FKBP5 in these two diseases.
Collapse
Affiliation(s)
- Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hui Gao
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
6
|
Winkler R, Lu H. Cell-Specific Regulation of Inflammatory Cytokines and Acute-Phase Proteins by the Glucocorticoid Receptor. Mediators Inflamm 2023; 2023:4399998. [PMID: 39619227 PMCID: PMC11606692 DOI: 10.1155/2023/4399998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 10/24/2023] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Literature and data mining found abnormal induction of chemokine (C-X-C motif) ligand 1 (CXCL1) and CXCL8 and down-regulation of CXCL2 in inflammatory liver diseases. This study was performed to understand the glucocorticoid receptor's (GR's) effects on chemokine and acute-phase protein expression in human liver, in settings of bacterial infection (modeled using LPS) or inflammation (modeled using TNFα). METHODS Primary human hepatocytes (PHH) were treated with combinations of tumor necrosis factor alpha (TNFα), lipopolysaccharide (LPS), and dexamethasone (DEX) for 24 h, following which chemokine mRNA and protein expression were analyzed using qPCR and enzyme-linked immunosorbent assay assays. Dual luciferase assays were performed on transfected cell lines. Mutant CXCL2 promoters were used in dual luciferase assays to identify specific regions of the CXCL2 promoter affected by GR, TNFα, or hepatocyte nuclear factor 4α (HNF4α, a liver-enriched transcription factor). RESULTS In PHH from donor 1, GR strongly inhibited LPS-induced CXCL1 and CXCL8 translation and transcription, whereas CXCL2 transcription tended to increase with DEX treatment. In PHH from donor 2, DEX treatment inhibited protein expression and secretion of CXCL1 and CXCL8 induced by TNFα and/or LPS, whereas CXCL2 upregulation was largely unaffected by DEX treatment. In nonliver HEK293T cells GR activity inhibited CXCL2 promoter activity. However, in liver-derived HEPG2 cells, GR induced CXCL2 promoter activity. A 407-base pair region upstream of CXCL2 promoter is necessary for full GR functionality in HEPG2 cells. TNFα synergized with HNF4α in inducing CXCL2 promoter activity in HEPG2 cells. CONCLUSIONS GR's effects on chemokine expression are cell-type specific and chemokine specific. GR down-regulated CXCL1 and CXCL8 in different cell types, whereas the specific activation of CXCL2 in hepatocytes and down-regulation of CXCL2 in nonhepatocytes by GR appears due to cell-specific utilization of CXCL2 promoter. By specifically increasing GR activity in the liver, we may normalize chemokine imbalances and prevent sepsis in inflammatory liver diseases.
Collapse
Affiliation(s)
- Rebecca Winkler
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
7
|
Bergsten TM, Li K, Lantvit DD, Murphy BT, Burdette JE. Kaempferol, a Phytoprogestin, Induces a Subset of Progesterone-Regulated Genes in the Uterus. Nutrients 2023; 15:1407. [PMID: 36986136 PMCID: PMC10051346 DOI: 10.3390/nu15061407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Progesterone functions as a steroid hormone involved in female reproductive physiology. While some reproductive disorders manifest with symptoms that can be treated by progesterone or synthetic progestins, recent data suggest that women also seek botanical supplements to alleviate these symptoms. However, botanical supplements are not regulated by the U.S. Food and Drug Administration and therefore it is important to characterize and quantify the inherent active compounds and biological targets of supplements within cellular and animal systems. In this study, we analyzed the effect of two natural products, the flavonoids, apigenin and kaempferol, to determine their relationship to progesterone treatment in vivo. According to immunohistochemical analysis of uterine tissue, kaempferol and apigenin have some progestogenic activity, but do not act in exactly the same manner as progesterone. More specifically, kaempferol treatment did not induce HAND2, did not change proliferation, and induced ZBTB16 expression. Additionally, while apigenin treatment did not appear to dramatically affect transcripts, kaempferol treatment altered some transcripts (44%) in a similar manner to progesterone treatment but had some unique effects as well. Kaempferol regulated primarily unfolded protein response, androgen response, and interferon-related transcripts in a similar manner to progesterone. However, the effects of progesterone were more significant in regulating thousands of transcripts making kaempferol a selective modifier of signaling in the mouse uterus. In summary, the phytoprogestins, apigenin and kaempferol, have progestogenic activity in vivo but also act uniquely.
Collapse
Affiliation(s)
| | | | | | | | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
8
|
Womersley JS, Roeh S, Martin L, Ahmed-Leitao F, Sauer S, Rex-Haffner M, Hemmings SMJ, Binder EB, Seedat S. FKBP5 intron 7 methylation is associated with higher anxiety proneness and smaller right thalamus volume in adolescents. Brain Struct Funct 2022; 227:2809-2820. [PMID: 36197505 DOI: 10.1007/s00429-022-02577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
Abstract
Dysregulation of stress response systems may mediate the detrimental effects of childhood trauma (CT) on mental health. FKBP5 regulates glucocorticoid receptor sensitivity and exerts pleiotropic effects on intracellular signaling, neurobiology and behavior. We investigated whether CT, alone and in combination with rs1360780 genotype, is associated with altered FKBP5 methylation and whether CT-associated methylation profiles are associated with anxiety proneness (AP) and structural brain volumes. Ninety-four adolescents completed the Childhood Trauma Questionnaire, and a composite AP score was generated from the Childhood Anxiety Sensitivity Index and the State-Trait Anxiety Inventory-Trait measure. Mean methylation values for 12 regulatory regions and 25 individual CpG sites were determined using high-accuracy measurement via targeted bisulfite sequencing. FKBP5 rs1360780 genotype and structural MRI data were available for a subset of participants (n = 71 and n = 75, respectively). Regression models revealed an inverse association between methylation of three intron 7 CpG sites (35558438, 35558566 and 35558710) and right thalamus volume. CpG35558438 methylation was positively associated with AP scores. Our data indicate that an intron 7 methylation profile, consistent with lower FKBP5 expression and elevated high sensitivity glucocorticoid receptor levels, is associated with higher AP and smaller right thalamus volume. Research into the mechanisms underlying the intron 7 methylation-thalamus volume relationship, and whether it confers increased risk for long-term psychopathology by altering the regulatory threshold of stress responding, is required.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa. .,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa. .,Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
| | - Simone Roeh
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lindi Martin
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Fatima Ahmed-Leitao
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Susann Sauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Monika Rex-Haffner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Research Chairs Initiative (SARChI) in PTSD, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
9
|
Ma X, Wang Z, Zhang C, Bian Y, Zhang X, Liu X, Cao Y, Zhao Y. Association of SNPs in the FK-506 binding protein (FKBP5) gene among Han Chinese women with polycystic ovary syndrome. BMC Med Genomics 2022; 15:149. [PMID: 35787810 PMCID: PMC9254403 DOI: 10.1186/s12920-022-01301-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a common endocrine disorder in premenopausal women, whose etiology remains uncertain, although it is known to be highly heterogeneous and genetically complex. PCOS often presents with hyperandrogenism symptoms. The present study aimed to determine whether polymorphisms in the FK-506 binding protein 5 (FKBP5) gene (androgen target gene) are associated with an association for PCOS and hyperandrogenism. Methods This is a case–control study, and association analyses were conducted. A total of 13 single-nucleotide polymorphisms (SNPs) in the FKBP5 gene were evaluated in 775 PCOS patients who were diagnosed based on the Rotterdam Standard and 783 healthy Chinese Han women. Associations between FKBP5 SNPs and hormone levels were investigated. These 13 SNPs were genotyped using the Sequenom MassARRAY system, and an association analysis between the phenotype and alleles and genotypes were conducted. Results The genotype frequencies for the rs1360780 and rs3800373 SNPs differed significantly between the PCOS cases and healthy controls (p = 0.025, OR is 1.63 (1.05–2.53) and p = 0.029, OR is 1.59 (1.03–2.45) respectively under co-dominant model). Moreover, the genotype frequencies and genetic model analysis for the SNPs rs1360780, rs9470080, rs9296158, rs1043805 and rs7757037 differed significantly between the hyperandrogenism and non-hyperandrogenism groups of PCOS patients. The TT genotype of rs1360780, the TT genotype of rs9470080, the TT genotype of rs1043805 or the GG genotype of rs7705037 (ORs are 2.13 (1.03–4.39), 1.81 (1.03–3.17), 2.94 (1.32–6.53) and 1.72 (1.04–2.84) respectively) were correlated with androgen level of PCOS patients. Conclusion Our study showed that FKBP5 gene polymorphisms are associated with PCOS generally (rs1360780 and rs3800373) and with the hyperandrogenism subtype specifically (rs1360780, rs9470080, rs9296158, rs1043805 and rs7757037).
Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01301-0.
Collapse
Affiliation(s)
- Xinyue Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Zhao Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Changming Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Yuehong Bian
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Xin Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Xin Liu
- Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Yongzhi Cao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China. .,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
| | - Yueran Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China. .,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China. .,Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
10
|
Marcolongo F, Scarlata S, Tomino C, De Dominicis C, Giacconi R, Malavolta M, Bonassi S, Russo P, Prinzi G. Psycho-cognitive assessment and quality of life in older adults with chronic obstructive pulmonary disease-carrying the rs4713916 gene polymorphism (G/A) of gene FKBP5 and response to pulmonary rehabilitation: a proof of concept study. Psychiatr Genet 2022; 32:116-124. [PMID: 35102127 DOI: 10.1097/ypg.0000000000000308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Chronic obstructive pulmonary disease (COPD) is characterized by pulmonary and extra-pulmonary multi-morbidity including depression, anxiety and cognitive disorders. Several studies investigated the association of the FKBP5 gene polymorphisms with susceptibility to anxiety, depression, and behavioral disorders. The FKBP5 gene codifies the FKBP51 protein which modulates the glucocorticoid receptor in the adaptive stress response. Genetic variants of the FKBP5 gene have been associated to a higher risk of developing mental disorders. We analyzed the association of genetic variants and stress exposure investigating the susceptibility to psychological distress and the impact on cognitive balance and quality of life (QoL) of COPD patients carrying the rs4713916 polymorphism (G/A) and we examined its association, with COPD rehabilitative outcomes. MATERIALS AND METHODS A pilot study evaluated cognitive, psychological, clinical alterations/disorders, QoL, and coping strategies in 70 older adults with COPD, undergoing pulmonary rehabilitation, stratified according to the FKBP5 rs4713916 genotype (GG or GA). RESULTS Carriers of rs4713916 polymorphisms (G/A) show better cognitive performances, a higher degree of independence in the daily living activities, better QoL, no presence of depressive mood and anxiety symptoms, no family history of psychiatric disorders, more ability to cope with stressors by avoiding emotions but demanding emotional support, and lesser use of anti-anxiety, anti-depressant, anti-psychotic, hypnotic-sedative drugs. No difference was found in the number of comorbidities. CONCLUSION These results offer valuable insights into the role of FKBP5 in the complex network of mechanisms associated to clinical, psychological and behavioral features of COPD patients.
Collapse
Affiliation(s)
- Federica Marcolongo
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Via di Val Cannuta
| | - Simone Scarlata
- Unit of Geriatrics, Campus Bio-Medico di Roma, University, Via Alvaro del Portillo
| | - Carlo Tomino
- Scientific Direction, IRCCS San Raffaele Roma, Via di Val Cannuta
| | - Chiara De Dominicis
- Molecular and Cellular Neurobiology, IRCCS San Raffaele Roma, Via di Val Cannuta, Rome
| | - Robertina Giacconi
- Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Via Giuseppe Birarelli, Ancona
| | - Marco Malavolta
- Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Via Giuseppe Birarelli, Ancona
| | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Via di Val Cannuta
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Via di Val Cannuta, Rome, Italy
| | - Patrizia Russo
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Via di Val Cannuta
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Via di Val Cannuta, Rome, Italy
| | - Giulia Prinzi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Via di Val Cannuta
| |
Collapse
|
11
|
Headland SE, Dengler HS, Xu D, Teng G, Everett C, Ratsimandresy RA, Yan D, Kang J, Ganeshan K, Nazarova EV, Gierke S, Wedeles CJ, Guidi R, DePianto DJ, Morshead KB, Huynh A, Mills J, Flanagan S, Hambro S, Nunez V, Klementowicz JE, Shi Y, Wang J, Bevers J, Ramirez-Carrozzi V, Pappu R, Abbas A, Vander Heiden J, Choy DF, Yadav R, Modrusan Z, Panettieri RA, Koziol-White C, Jester WF, Jenkins BJ, Cao Y, Clarke C, Austin C, Lafkas D, Xu M, Wolters PJ, Arron JR, West NR, Wilson MS. Oncostatin M expression induced by bacterial triggers drives airway inflammatory and mucus secretion in severe asthma. Sci Transl Med 2022; 14:eabf8188. [PMID: 35020406 DOI: 10.1126/scitranslmed.abf8188] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Exacerbations of symptoms represent an unmet need for people with asthma. Bacterial dysbiosis and opportunistic bacterial infections have been observed in, and may contribute to, more severe asthma. However, the molecular mechanisms driving these exacerbations remain unclear. We show here that bacterial lipopolysaccharide (LPS) induces oncostatin M (OSM) and that airway biopsies from patients with severe asthma present with an OSM-driven transcriptional profile. This profile correlates with activation of inflammatory and mucus-producing pathways. Using primary human lung tissue or human epithelial and mesenchymal cells, we demonstrate that OSM is necessary and sufficient to drive pathophysiological features observed in severe asthma after exposure to LPS or Klebsiella pneumoniae. These findings were further supported through blockade of OSM with an OSM-specific antibody. Single-cell RNA sequencing from human lung biopsies identified macrophages as a source of OSM. Additional studies using Osm-deficient murine macrophages demonstrated that macrophage-derived OSM translates LPS signals into asthma-associated pathologies. Together, these data provide rationale for inhibiting OSM to prevent bacterial-associated progression and exacerbation of severe asthma.
Collapse
Affiliation(s)
- Sarah E Headland
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | - Hart S Dengler
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | - Daqi Xu
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | - Grace Teng
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | - Christine Everett
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Donghong Yan
- Translational Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jing Kang
- Translational Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Kirthana Ganeshan
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Sarah Gierke
- Center for Advanced Light Microscopy, Genentech Inc., South San Francisco, CA 94080, USA
- Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Riccardo Guidi
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | - Daryle J DePianto
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Alison Huynh
- Necropsy, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jessica Mills
- Necropsy, Genentech Inc., South San Francisco, CA 94080, USA
| | - Sean Flanagan
- Necropsy, Genentech Inc., South San Francisco, CA 94080, USA
| | - Shannon Hambro
- Necropsy, Genentech Inc., South San Francisco, CA 94080, USA
| | - Victor Nunez
- Necropsy, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Yongchang Shi
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jianyong Wang
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jack Bevers
- Antibody Discovery, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Rajita Pappu
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | - Alex Abbas
- OMNI Bioinformatics, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - David F Choy
- Biomarker Discovery OMNI, Genentech Inc., South San Francisco, CA 94080, USA
| | - Rajbharan Yadav
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Cynthia Koziol-White
- Rutgers Institute for Translational Medicine and Science, State University of New Jersey, New Brunswick, NJ 08901, USA
| | - William F Jester
- Rutgers Institute for Translational Medicine and Science, State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular Translational Science, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Yi Cao
- OMNI Bioinformatics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Christine Clarke
- OMNI Bioinformatics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Cary Austin
- Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Daniel Lafkas
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | - Min Xu
- Translational Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Paul J Wolters
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Joseph R Arron
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | - Nathaniel R West
- Cancer Immunology Discovery, Genentech Inc., South San Francisco, CA 94080, USA
| | - Mark S Wilson
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
12
|
Gehrand AL, Phillips J, Welhouse KD, Siddiqui H, Schulgit M, Hoffman J, Hunt H, Raff H. Glucocorticoid Receptor Antagonist Alters Corticosterone and Receptor-sensitive mRNAs in the Hypoxic Neonatal Rat. Endocrinology 2022; 163:6429713. [PMID: 34791109 DOI: 10.1210/endocr/bqab232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 11/19/2022]
Abstract
Hypoxia, a common stressor with preterm birth, increases morbidity and mortality associated with prematurity. Glucocorticoids (GCs) are administered to the preterm infant to improve oxygenation; prolonged use of GCs remains controversial. We evaluated a selective glucocorticoid receptor (GR) antagonist (CORT113176) in our neonatal rat model of human prematurity to assess how fasting and hypoxia-induced increases in neonatal corticosterone affects endogenous hormones and endocrine pancreas function. Neonatal rat pups at postnatal day (PD) 2, PD8, and PD15 were pretreated with CORT113176 and, after 60 minutes of separation and fasting, exposed to hypoxia (8% O2) or control (normoxia) for 30 or 60 minutes while fasting was continued. Plasma corticosterone, ACTH, glucose, and insulin were measured and fasting Homeostatic Model Assessment of Insulin Resistance was calculated. Glucocorticoid and insulin receptor-sensitive gene mRNAs were analyzed in liver, muscle, and adipose to evaluate target tissue biomarkers. CORT113176 pretreatment augmented baseline and hypoxia-induced increases in corticosterone and attenuated hypoxia-induced increases in insulin resistance at PD2. Normoxic and hypoxic stress increased the hepatic GR-sensitive gene mRNAs, Gilz and Per1; this was eliminated by pretreatment with CORT113176. CORT113176 pretreatment decreased baseline insulin receptor-sensitive gene mRNAs Akt2, Irs1, Pik3r1, and Srebp1c at PD2. We show that CORT113176 variably augments the stress-induced increases in corticosterone concentrations (attenuation of negative feedback) and that GR is critical for hepatic responses to stress in the hypoxic neonate. We also propose that measurement of Gilz and Per1 mRNA expression may be useful to evaluate the effectiveness of GR antagonism.
Collapse
Affiliation(s)
- Ashley L Gehrand
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, WI 53215, USA
| | - Jonathan Phillips
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, WI 53215, USA
| | - Kyle D Welhouse
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hana Siddiqui
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, WI 53215, USA
| | - Matthew Schulgit
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, WI 53215, USA
| | | | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, CA 94025, USA
| | - Hershel Raff
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, WI 53215, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
13
|
Interaction Between Glucocorticoid Receptors and FKBP5 in Regulating Neurotransmission of the Hippocampus. Neuroscience 2021; 483:95-103. [PMID: 34923037 DOI: 10.1016/j.neuroscience.2021.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/19/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022]
Abstract
FK501 binding protein 51 (FKBP5) is a stress response prolyl isomerase that inhibits the translocation of the glucocorticoid receptor (GR) heterocomplex to the nucleus. Previous studies have shown that the expression levels of FKBP5 are positively correlated with psychiatric disorders, including depression and post-traumatic stress disorder. In rodents, FKBP5 deletion in the brain leads to be resilient to stress-induced depression. The hippocampus is known to be one of the primary locations mediating stress responses in the brain by providing negative feedback signals to the hypothalamus-pituitaryadrenal gland axis. Therefore, we aimed to investigate the role of FKBP5 and its interaction with GRs in the hippocampus. We observed that FKBP5 deletion in the hippocampus resulted in a minimal change in synaptic transmission. In the hippocampus, GR activation alters the release probability in inhibitory synapses as well as the postsynaptic contribution of glutamate receptors in excitatory synapses; however, no such alterations were induced in the absence of FKBP5. FKBP5 deficiency causes insensitivity to activated GRs in the hippocampus suggesting that FKBP5 mediates synaptic changes caused by GR activation. Our study provides electrophysiological evidence of stress resilience observed in FKBP5-deficient mice.
Collapse
|
14
|
Knoedler JR, Sáenz de Miera C, Subramani A, Denver RJ. An Intact Krüppel-like factor 9 Gene Is Required for Acute Liver Period 1 mRNA Response to Restraint Stress. Endocrinology 2021; 162:6255381. [PMID: 33904929 PMCID: PMC8312639 DOI: 10.1210/endocr/bqab083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 12/14/2022]
Abstract
The clock protein period 1 (PER1) is a central component of the core transcription-translation feedback loop governing cell-autonomous circadian rhythms in animals. Transcription of Per1 is directly regulated by the glucocorticoid (GC) receptor (GR), and Per1 mRNA is induced by stressors or injection of GC. Circulating GCs may synchronize peripheral clocks with the central pacemaker located in the suprachiasmatic nucleus of the brain. Krüppel-like factor 9 (KLF9) is a zinc finger transcription factor that, like Per1, is directly regulated by liganded GR, and it associates in chromatin at clock and clock-output genes, including at Per1. We hypothesized that KLF9 modulates stressor-dependent Per1 transcription. We exposed wild-type (WT) and Klf9 null mice (Klf9-/-) of both sexes to 1 hour restraint stress, which caused similar 2- to 2.5-fold increases in plasma corticosterone (B) in each genotype and sex. Although WT mice of both sexes showed a 2-fold increase in liver Per1 mRNA level after restraint stress, this response was absent in Klf9-/- mice. However, injection of B in WT and Klf9-/- mice induced similar increases in Per1 mRNA. Our findings support that an intact Klf9 gene is required for liver Per1 mRNA responses to an acute stressor, but a possible role for GCs in this response requires further investigation.
Collapse
Affiliation(s)
- Joseph R Knoedler
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109-2215, USA
- Current Affiliation: J. R. Knoedler’s current affiliation is the Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Cristina Sáenz de Miera
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085, USA
- Current Affiliation: C. Sáenz de Miera’s current affiliation is the Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2800, USA
| | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085, USA
| | - Robert J Denver
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109-2215, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085, USA
- Correspondence: Robert J. Denver, PhD, Department of Molecular, Cellular and Developmental Biology, 1105 North University Avenue, University of Michigan, Ann Arbor, MI 48109-1085, USA.
| |
Collapse
|
15
|
Han JT, Zhu Y, Pan DB, Xue HX, Wang S, Peng Y, Liu H, He YX, Yao X. Discovery of pentapeptide-inhibitor hits targeting FKBP51 by combining computational modeling and X-ray crystallography. Comput Struct Biotechnol J 2021; 19:4079-4091. [PMID: 34401048 PMCID: PMC8329522 DOI: 10.1016/j.csbj.2021.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 01/30/2023] Open
Abstract
FKBP51 is well-known as a cochaperone of Hsp90 machinery and implicated in many human diseases including stress-related diseases, tau-mediated neurodegeneration and cancers, which makes FKBP51 an attractive drug target for the therapy of FKBP51-associated diseases. However, it has been reported that only nature product rapamycin, cyclosporine A, FK506 and its derivatives exhibit good binding affinities when bound to FKBP51 by now. Given the advantages of peptide-inhibitors, we designed and obtained 20 peptide-inhibitor hits through structure-based drug design. We further characterized the interaction modes of the peptide-inhibitor hits on the FK1 domain of FKBP51 by biochemical and structural biology methods. Structural analysis revealed that peptide-inhibitor hits form U-shaped conformations and occupy the FK506 binding pocket and share similar interaction modes with FK506. Using molecular dynamics simulations, we delved into the interaction dynamics and found that hits are anchored to the FK506 binding pocket in a quite stable conformation. Meanwhile, it was shown that interactions between FK1 and peptide-inhibitor hits are mainly attributed to the hydrogen bond networks comprising I87 and Y113 and FPF cores of peptide-inhibitors involved extensive hydrophobic interactions. We presumed that the peptide design strategy based on the small molecule structure probably shed new lights on the peptide-inhibitor discovery of other targets. The findings presented here could also serve as a structural basis and starting point facilitating the optimization and generation of FKBP51 peptide-inhibitors with better bio-activities.
Collapse
Affiliation(s)
- Jian-Ting Han
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yongchang Zhu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Da-Bo Pan
- Department of Medical Technology, Qiandongnan Vocational & Technical College for Nationalities, Kaili, Guizhou 556000, China
| | - Hong-Xiang Xue
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Shuang Wang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yali Peng
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yong-Xing He
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
16
|
Womersley JS, Nothling J, Toikumo S, Malan-Müller S, van den Heuvel LL, McGregor NW, Seedat S, Hemmings SMJ. Childhood trauma, the stress response and metabolic syndrome: A focus on DNA methylation. Eur J Neurosci 2021; 55:2253-2296. [PMID: 34169602 DOI: 10.1111/ejn.15370] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/13/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022]
Abstract
Childhood trauma (CT) is well established as a potent risk factor for the development of mental disorders. However, the potential of adverse early experiences to exert chronic and profound effects on physical health, including aberrant metabolic phenotypes, has only been more recently explored. Among these consequences is metabolic syndrome (MetS), which is characterised by at least three of five related cardiometabolic traits: hypertension, insulin resistance/hyperglycaemia, raised triglycerides, low high-density lipoprotein and central obesity. The deleterious effects of CT on health outcomes may be partially attributable to dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, which coordinates the response to stress, and the consequent fostering of a pro-inflammatory environment. Epigenetic tags, such as DNA methylation, which are sensitive to environmental influences provide a means whereby the effects of CT can be biologically embedded and persist into adulthood to affect health and well-being. The methylome regulates the transcription of genes involved in the stress response, metabolism and inflammation. This narrative review examines the evidence for DNA methylation in CT and MetS in order to identify shared neuroendocrine and immune correlates that may mediate the increased risk of MetS following CT exposure. Our review specifically highlights differential methylation of FKBP5, the gene that encodes FK506-binding protein 51 and has pleiotropic effects on stress responding, inflammation and energy metabolism, as a central candidate to understand the molecular aetiology underlying CT-associated MetS risk.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jani Nothling
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Sylvanus Toikumo
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stefanie Malan-Müller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nathaniel W McGregor
- Systems Genetics Working Group, Department of Genetics, Faculty of Agriculture, Stellenbosch University, Stellenbosch, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sîan M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
17
|
Hartmann J, Bajaj T, Klengel C, Chatzinakos C, Ebert T, Dedic N, McCullough KM, Lardenoije R, Joëls M, Meijer OC, McCann KE, Dudek SM, Sarabdjitsingh RA, Daskalakis NP, Klengel T, Gassen NC, Schmidt MV, Ressler KJ. Mineralocorticoid receptors dampen glucocorticoid receptor sensitivity to stress via regulation of FKBP5. Cell Rep 2021; 35:109185. [PMID: 34077736 PMCID: PMC8244946 DOI: 10.1016/j.celrep.2021.109185] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/04/2021] [Accepted: 05/05/2021] [Indexed: 01/23/2023] Open
Abstract
Responding to different dynamic levels of stress is critical for mammalian survival. Disruption of mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) signaling is proposed to underlie hypothalamic-pituitary-adrenal (HPA) axis dysregulation observed in stress-related psychiatric disorders. In this study, we show that FK506-binding protein 51 (FKBP5) plays a critical role in fine-tuning MR:GR balance in the hippocampus. Biotinylated-oligonucleotide immunoprecipitation in primary hippocampal neurons reveals that MR binding, rather than GR binding, to the Fkbp5 gene regulates FKBP5 expression during baseline activity of glucocorticoids. Notably, FKBP5 and MR exhibit similar hippocampal expression patterns in mice and humans, which are distinct from that of the GR. Pharmacological inhibition and region- and cell type-specific receptor deletion in mice further demonstrate that lack of MR decreases hippocampal Fkbp5 levels and dampens the stress-induced increase in glucocorticoid levels. Overall, our findings demonstrate that MR-dependent changes in baseline Fkbp5 expression modify GR sensitivity to glucocorticoids, providing insight into mechanisms of stress homeostasis.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Gene Deletion
- Gene Expression Regulation
- Hippocampus/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Models, Biological
- Neurons/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Stress, Physiological
- Tacrolimus Binding Proteins/genetics
- Tacrolimus Binding Proteins/metabolism
- Mice
Collapse
Affiliation(s)
- Jakob Hartmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA.
| | - Thomas Bajaj
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127 Bonn, Germany
| | - Claudia Klengel
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Chris Chatzinakos
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tim Ebert
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127 Bonn, Germany
| | - Nina Dedic
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Kenneth M McCullough
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Roy Lardenoije
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Marian Joëls
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht, 3584 CG Utrecht, the Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Katharine E McCann
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - R Angela Sarabdjitsingh
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht, 3584 CG Utrecht, the Netherlands
| | - Nikolaos P Daskalakis
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Torsten Klengel
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Nils C Gassen
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127 Bonn, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA.
| |
Collapse
|
18
|
Differential Effects of Fkbp4 and Fkbp5 on Regulation of the Proopiomelanocortin Gene in Murine AtT-20 Corticotroph Cells. Int J Mol Sci 2021; 22:ijms22115724. [PMID: 34072036 PMCID: PMC8199270 DOI: 10.3390/ijms22115724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
The hypothalamic-pituitary-adrenal axis is stimulated in response to stress. When activated, it is suppressed by the negative feedback effect of glucocorticoids. Glucocorticoids directly inhibit proopiomelanocortin (Pomc) gene expression in the pituitary. Glucocorticoid signaling is mediated via glucocorticoid receptors, 11β-hydroxysteroid dehydrogenases, and the FK506-binding immunophilins, Fkbp4 and Fkbp5. Fkbp4 and Fkbp5 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor, resulting in modulation of the glucocorticoid action. Here, we explored the regulation of Fkbp4 and Fkbp5 genes and their proteins with dexamethasone, a major synthetic glucocorticoid drug, in murine AtT-20 corticotroph cells. To elucidate further roles of Fkbp4 and Fkbp5, we examined their effects on Pomc mRNA levels in corticotroph cells. Dexamethasone decreased Pomc mRNA levels as well as Fkpb4 mRNA levels in mouse corticotroph cells. Dexamethasone tended to decrease Fkbp4 protein levels, while it increased Fkpb5 mRNA and its protein levels. The dexamethasone-induced decreases in Pomc mRNA levels were partially canceled by Fkbp4 knockdown. Alternatively, Pomc mRNA levels were further decreased by Fkbp5 knockdown. Thus, Fkbp4 contributes to the negative feedback of glucocorticoids, and Fkbp5 reduces the efficiency of the glucocorticoid effect on Pomc gene expression in pituitary corticotroph cells.
Collapse
|
19
|
Decidual cell FKBP51-progesterone receptor binding mediates maternal stress-induced preterm birth. Proc Natl Acad Sci U S A 2021; 118:2010282118. [PMID: 33836562 PMCID: PMC7980401 DOI: 10.1073/pnas.2010282118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Depression and posttraumatic stress disorder increase the risk of idiopathic preterm birth (iPTB); however, the exact molecular mechanism is unknown. Depression and stress-related disorders are linked to increased FK506-binding protein 51 (FKBP51) expression levels in the brain and/or FKBP5 gene polymorphisms. Fkbp5-deficient (Fkbp5 -/-) mice resist stress-induced depressive and anxiety-like behaviors. FKBP51 binding to progesterone (P4) receptors (PRs) inhibits PR function. Moreover, reduced PR activity and/or expression stimulates human labor. We report enhanced in situ FKBP51 expression and increased nuclear FKBP51-PR binding in decidual cells of women with iPTB versus gestational age-matched controls. In Fkbp5 +/+ mice, maternal restraint stress did not accelerate systemic P4 withdrawal but increased Fkbp5, decreased PR, and elevated AKR1C18 expression in uteri at E17.25 followed by reduced P4 levels and increased oxytocin receptor (Oxtr) expression at 18.25 in uteri resulting in PTB. These changes correlate with inhibition of uterine PR function by maternal stress-induced FKBP51. In contrast, Fkbp5 -/- mice exhibit prolonged gestation and are completely resistant to maternal stress-induced PTB and labor-inducing uterine changes detected in stressed Fkbp5 +/+ mice. Collectively, these results uncover a functional P4 withdrawal mechanism mediated by maternal stress-induced enhanced uterine FKBP51 expression and FKPB51-PR binding, resulting in iPTB.
Collapse
|
20
|
Cox OH, Song HY, Garrison-Desany HM, Gadiwalla N, Carey JL, Menzies J, Lee RS. Characterization of glucocorticoid-induced loss of DNA methylation of the stress-response gene Fkbp5 in neuronal cells. Epigenetics 2021; 16:1377-1397. [PMID: 33319620 DOI: 10.1080/15592294.2020.1864169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Exposure to stress or glucocorticoids (GCs) is associated with epigenetic and transcriptional changes in genes that either mediate or are targets of GC signalling. FKBP5 (FK506 binding protein 5) is one such gene that also plays a central role in negative feedback regulation of GC signalling and several stress-related psychiatric disorders. In this study, we sought to examine how the mouse Fkbp5 gene is regulated in a neuronal context and identify requisite factors that can mediate the epigenetic sequelae of excess GC exposure. Mice treated with GCs were used to establish the widespread changes in DNA methylation (DNAm) and expression of Fkbp5 across four brain regions. Then two cell lines were used to test the persistence, decay, and functional significance of GC-induced methylation changes near two GC response elements (GREs) in the fifth intron of Fkbp5. We also tested the involvement of DNMT1, cell proliferation, and MeCP2 in mediating the effect of GCs on DNAm and gene activation. DNAm changes at some CpGs persist while others decay, and reduced methylation states are associated with a more robust transcriptional response. Importantly, the ability to undergo GC-induced DNAm loss is tied to DNMT1 function during cell division. Further, GC-induced DNAm loss is associated with reduced binding of MeCP2 at intron 5 and a physical interaction between the fifth intron and promoter of Fkbp5. Our results highlight several key factors at the Fkbp5 locus that may have important implications for GC- or stress-exposure during early stages of neurodevelopment.
Collapse
Affiliation(s)
- Olivia H Cox
- The Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ha Young Song
- The Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Henri M Garrison-Desany
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nuriya Gadiwalla
- The Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jenny L Carey
- The Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julia Menzies
- The Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard S Lee
- The Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
TIAN X, CAO Y, ZHANG W. The influence of maternal negative parenting, peer victimization and <italic>FKBP5</italic> gene on adolescent depressive symptoms. ACTA PSYCHOLOGICA SINICA 2020. [DOI: 10.3724/sp.j.1041.2020.01407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Kniss DA, Summerfield TL. Progesterone Receptor Signaling Selectively Modulates Cytokine-Induced Global Gene Expression in Human Cervical Stromal Cells. Front Genet 2020; 11:883. [PMID: 33061933 PMCID: PMC7517718 DOI: 10.3389/fgene.2020.00883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/17/2020] [Indexed: 01/09/2023] Open
Abstract
Preterm birth (PTB) is the leading cause of morbidity and mortality in infants <1 year of age. Intrauterine inflammation is a hallmark of preterm and term parturition; however, this alone cannot fully explain the pathobiology of PTB. For example, the cervix undergoes a prolonged series of biochemical and biomechanical events, including extracellular matrix (ECM) remodeling and mechanochemical changes, culminating in ripening. Vaginal progesterone (P4) prophylaxis demonstrates great promise in preventing PTB in women with a short cervix (<25 mm). We used a primary culture model of human cervical stromal fibroblasts to investigate gene expression signatures in cells treated with interleukin-1β (IL-1β) in the presence or absence of P4 following 17β-estradiol (17β-E2) priming for 7–10 days. Microarrays were used to measure global gene expression in cells treated with cytokine or P4 alone or in combination, followed by validation of select transcripts by semiquantitative polymerase chain reactions (qRT-PCR). Primary/precursor (MIR) and mature microRNAs (miR) were quantified by microarray and NanoString® platforms, respectively, and validated by qRT-PCR. Differential gene expression was computed after data normalization followed by pathway analysis using Kyoto Encyclopedia Genes and Genomes (KEGG), Panther, Gene Ontology (GO), and Ingenuity Pathway Analysis (IPA) upstream regulator algorithm tools. Treatment of fibroblasts with IL-1β alone resulted in the differential expression of 1432 transcripts (protein coding and non-coding), while P4 alone led to the expression of only 43 transcripts compared to untreated controls. Cytokines, chemokines, and their cognate receptors and prostaglandin endoperoxide synthase-2 (PTGS-2) were among the most highly upregulated transcripts following either IL-1β or IL-1β + P4. Other prominent differentially expressed transcripts were those encoding ECM proteins, ECM-degrading enzymes, and enzymes involved in glycosaminoglycan (GAG) biosynthesis. We also detected differential expression of bradykinin receptor-1 and -2 transcripts, suggesting (prominent in tissue injury/remodeling) a role for the kallikrein–kinin system in cervical responses to cytokine and/or P4 challenge. Collectively, this global gene expression study provides a rich database to interrogate stromal fibroblasts in the setting of a proinflammatory and endocrine milieu that is relevant to cervical remodeling/ripening during preparation for parturition.
Collapse
Affiliation(s)
- Douglas A Kniss
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, College of Medicine and Wexner Medical Center, Columbus, OH, United States.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Taryn L Summerfield
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, College of Medicine and Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
23
|
Connelly KL, Wolsh CC, Barr JL, Bauder M, Hausch F, Unterwald EM. Sex differences in the effect of the FKBP5 inhibitor SAFit2 on anxiety and stress-induced reinstatement following cocaine self-administration. Neurobiol Stress 2020; 13:100232. [PMID: 33344688 PMCID: PMC7739032 DOI: 10.1016/j.ynstr.2020.100232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/14/2020] [Accepted: 05/05/2020] [Indexed: 01/30/2023] Open
Abstract
Cocaine use and withdrawal prompt stress system responses. Stress and the negative affective state produced by cocaine withdrawal are major triggers for relapse. FKBP5 is a co-chaperone of the glucocorticoid receptor and regulates HPA axis negative feedback. The role of FKBP5 in cocaine-related behaviors has not been studied. The FKBP5 inhibitor SAFit2 was used to examine the role of FKBP5 in anxiety-like behavior during early cocaine withdrawal and in stress-induced reinstatement following cocaine self-administration in male and female rats. Withdrawal from cocaine self-administration resulted in heightened anxiety-like behavior in female rats, which was significantly attenuated by SAFit2 administration. SAFit2 pretreatment prior to stress-induced reinstatement to cocaine seeking significantly reduced active lever presses of males. In female rats, SAFit2 administration prevented stress-induced reinstatement for rats in metestrus or diestrus, but not proestrus or estrus phases at the time of reinstatement. These data suggest an important role for FKBP5 in stress-related behaviors following cocaine self-administration, particularly in females.
Collapse
Affiliation(s)
- Krista L Connelly
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St. Philadelphia, PA, 19140, USA
| | - Cassandra C Wolsh
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St. Philadelphia, PA, 19140, USA
| | - Jeffrey L Barr
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St. Philadelphia, PA, 19140, USA
| | - Michael Bauder
- Clemens Schöpf Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss Str. 4, 64287, Darmstadt, Germany
| | - Felix Hausch
- Clemens Schöpf Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss Str. 4, 64287, Darmstadt, Germany
| | - Ellen M Unterwald
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St. Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St. Philadelphia, PA, 19140, USA
| |
Collapse
|
24
|
Srikanth K, Park JE, Ji SY, Kim KH, Lee YK, Kumar H, Kim M, Baek YC, Kim H, Jang GW, Choi BH, Lee SD. Genome-Wide Transcriptome and Metabolome Analyses Provide Novel Insights and Suggest a Sex-Specific Response to Heat Stress in Pigs. Genes (Basel) 2020; 11:genes11050540. [PMID: 32403423 PMCID: PMC7291089 DOI: 10.3390/genes11050540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
Heat stress (HS) negatively impacts pig production and swine health. Therefore, to understand the genetic and metabolic responses of pigs to HS, we used RNA-Seq and high resolution magic angle spinning (HR-MAS) NMR analyses to compare the transcriptomes and metabolomes of Duroc pigs (n = 6, 3 barrows and 3 gilts) exposed to heat stress (33 °C and 60% RH) with a control group (25 °C and 60% RH). HS resulted in the differential expression of 552 (236 up, 316 down) and 879 (540 up, 339 down) genes and significant enrichment of 30 and 31 plasma metabolites in female and male pigs, respectively. Apoptosis, response to heat, Toll-like receptor signaling and oxidative stress were enriched among the up-regulated genes, while negative regulation of the immune response, ATP synthesis and the ribosomal pathway were enriched among down-regulated genes. Twelve and ten metabolic pathways were found to be enriched (among them, four metabolic pathways, including arginine and proline metabolism, and three metabolic pathways, including pantothenate and CoA biosynthesis), overlapping between the transcriptome and metabolome analyses in the female and male group respectively. The limited overlap between pathways enriched with differentially expressed genes and enriched plasma metabolites between the sexes suggests a sex-specific response to HS in pigs.
Collapse
Affiliation(s)
- Krishnamoorthy Srikanth
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Jong-Eun Park
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Sang Yun Ji
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Ki Hyun Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Yoo Kyung Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Himansu Kumar
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Minji Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Youl Chang Baek
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Hana Kim
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Gul-Won Jang
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Bong-Hwan Choi
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Sung Dae Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
- Correspondence: ; Tel.: +82-63-238-7454; Fax: +82-63-238-7497
| |
Collapse
|
25
|
Post-translational modifications and stress adaptation: the paradigm of FKBP51. Biochem Soc Trans 2020; 48:441-449. [PMID: 32318709 PMCID: PMC7200631 DOI: 10.1042/bst20190332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/22/2023]
Abstract
Adaptation to stress is a fundamental requirement to cope with changing environmental conditions that pose a threat to the homeostasis of cells and organisms. Post-translational modifications (PTMs) of proteins represent a possibility to quickly produce proteins with new features demanding relatively little cellular resources. FK506 binding protein (FKBP) 51 is a pivotal stress protein that is involved in the regulation of several executers of PTMs. This mini-review discusses the role of FKBP51 in the function of proteins responsible for setting the phosphorylation, ubiquitination and lipidation of other proteins. Examples include the kinases Akt1, CDK5 and GSK3β, the phosphatases calcineurin, PP2A and PHLPP, and the ubiquitin E3-ligase SKP2. The impact of FKBP51 on PTMs of signal transduction proteins significantly extends the functional versatility of this protein. As a stress-induced protein, FKBP51 uses re-setting of PTMs to relay the effect of stress on various signaling pathways.
Collapse
|
26
|
Jiang S, Postovit L, Cattaneo A, Binder EB, Aitchison KJ. Epigenetic Modifications in Stress Response Genes Associated With Childhood Trauma. Front Psychiatry 2019; 10:808. [PMID: 31780969 PMCID: PMC6857662 DOI: 10.3389/fpsyt.2019.00808] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Adverse childhood experiences (ACEs) may be referred to by other terms (e.g., early life adversity or stress and childhood trauma) and have a lifelong impact on mental and physical health. For example, childhood trauma has been associated with posttraumatic stress disorder (PTSD), anxiety, depression, bipolar disorder, diabetes, and cardiovascular disease. The heritability of ACE-related phenotypes such as PTSD, depression, and resilience is low to moderate, and, moreover, is very variable for a given phenotype, which implies that gene by environment interactions (such as through epigenetic modifications) may be involved in the onset of these phenotypes. Currently, there is increasing interest in the investigation of epigenetic contributions to ACE-induced differential health outcomes. Although there are a number of studies in this field, there are still research gaps. In this review, the basic concepts of epigenetic modifications (such as methylation) and the function of the hypothalamic-pituitary-adrenal (HPA) axis in the stress response are outlined. Examples of specific genes undergoing methylation in association with ACE-induced differential health outcomes are provided. Limitations in this field, e.g., uncertain clinical diagnosis, conceptual inconsistencies, and technical drawbacks, are reviewed, with suggestions for advances using new technologies and novel research directions. We thereby provide a platform on which the field of ACE-induced phenotypes in mental health may build.
Collapse
Affiliation(s)
- Shui Jiang
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Lynne Postovit
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Annamaria Cattaneo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Elisabeth B. Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine J. Aitchison
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
27
|
Lu Q, Davel AP, McGraw AP, Rao SP, Newfell BG, Jaffe IZ. PKCδ Mediates Mineralocorticoid Receptor Activation by Angiotensin II to Modulate Smooth Muscle Cell Function. Endocrinology 2019; 160:2101-2114. [PMID: 31373631 PMCID: PMC6735772 DOI: 10.1210/en.2019-00258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/28/2019] [Indexed: 01/30/2023]
Abstract
Angiotensin II (AngII) and the mineralocorticoid receptor (MR) ligand aldosterone both contribute to cardiovascular disorders, including hypertension and adverse vascular remodeling. We previously demonstrated that AngII activates MR-mediated gene transcription in human vascular smooth muscle cells (SMCs), yet the mechanism and the impact on SMC function are unknown. Using an MR-responsive element-driven transcriptional reporter assay, we confirm that AngII induces MR transcriptional activity in vascular SMCs and endothelial cells, but not in Cos1 or human embryonic kidney-293 cells. AngII activation of MR was blocked by the MR antagonist spironolactone or eplerenone and the protein kinase C-δ (PKCδ) inhibitor rottlerin, implicating both in the mechanism. Similarly, small interfering RNA knockdown of PKCδ in SMCs prevented AngII-mediated MR activation, whereas knocking down of MR blocked both aldosterone- and AngII-induced MR function. Coimmunoprecipitation studies reveal that endogenous MR and PKCδ form a complex in SMCs that is enhanced by AngII treatment in association with increased serine phosphorylation of the MR N terminus. AngII increased mRNA expression of the SMC-MR target gene, FKBP51, via an MR-responsive element in intron 5 of the FKBP51 gene. The impact of AngII on FKBP51 reporter activity and gene expression in SMCs was inhibited by spironolactone and rottlerin. Finally, the AngII-induced increase in SMC number was also blocked by the MR antagonist spironolactone and the PKCδ inhibitor rottlerin. These data demonstrate that AngII activates MR transcriptional regulatory activity, target gene regulation, and SMC proliferation in a PKCδ-dependent manner. This new mechanism may contribute to synergy between MR and AngII in driving SMC dysfunction and to the cardiovascular benefits of MR and AngII receptor blockade in humans.
Collapse
Affiliation(s)
- Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Ana P Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Adam P McGraw
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Sitara P Rao
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Brenna G Newfell
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
- Correspondence: Iris Z. Jaffe, MD, PhD, Tufts Medical Center, Molecular Cardiology Research Institute, 800 Washington Street, Box 80, Boston, Massachusetts 02111. E-mail:
| |
Collapse
|
28
|
Seow BKL, McDougall ARA, Short KL, Wallace MJ, Hooper SB, Cole TJ. Identification of Betamethasone-Regulated Target Genes and Cell Pathways in Fetal Rat Lung Mesenchymal Fibroblasts. Endocrinology 2019; 160:1868-1884. [PMID: 31107524 DOI: 10.1210/en.2018-01071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
Preterm birth is characterized by severe lung immaturity that is frequently treated antenatally or postnatally with the synthetic steroid betamethasone. The underlying cellular targets and pathways stimulated by betamethasone in the fetal lung are poorly defined. In this study, betamethasone was compared with corticosterone in steroid-treated primary cultures of fetal rat lung fibroblasts stimulated for 6 hours and analyzed by whole-cell transcriptome sequencing and glucocorticoid (GC) receptor (GR) chromatin immunoprecipitation sequencing (ChIP-Seq) analysis. Strikingly, betamethasone stimulated a much stronger transcriptional response compared with corticosterone for both induced and repressed genes. A total of 483 genes were significantly stimulated by betamethasone or corticosterone, with 476 stimulated by both steroids, indicating a strong overlap in regulation. Changes in mRNA levels were confirmed by quantitative PCR for eight induced and repressed target genes. Pathway analysis identified cell proliferation and cytoskeletal/cell matrix remodeling pathways as key processes regulated by both steroids. One target, transglutaminase 2 (Tgm2), was localized to fetal lung mesenchymal cells. Tgm2 mRNA and protein levels were strongly increased in fibroblasts by both steroids. Whole-genome GR ChIP-Seq analysis with betamethasone identified GC response element-binding sites close to the previously characterized GR target genes Per1, Dusp1, Fkbp5, and Sgk1 and near the genes identified by transcriptome sequencing encoding Crispld2, Tgm2, Hif3α, and Kdr, defining direct genomic induction of expression in fetal lung fibroblasts via the GR. These results demonstrate that betamethasone stimulates specific genes and cellular pathways controlling cell proliferation and extracellular matrix remodeling in lung mesenchymal fibroblasts, providing a basis for betamethasone's treatment efficacy in preterm birth.
Collapse
Affiliation(s)
- Bennet K L Seow
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Annie R A McDougall
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Kelly L Short
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Megan J Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Timothy J Cole
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
- Division of Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
29
|
Adzic M, Glavonic E, Nesic MJ, Milosavljevic M, Mihaljevic M, Petrovic Z, Pavlovic Z, Brkic Z, Francija E, Soldatovic I, Mitic M, Radulovic J, Maric NP. Glucocorticoid receptor alpha translational isoforms as mediators of early adversities and negative emotional states. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:288-299. [PMID: 30580022 PMCID: PMC6383671 DOI: 10.1016/j.pnpbp.2018.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/20/2018] [Accepted: 12/19/2018] [Indexed: 01/30/2023]
Abstract
Childhood trauma (CT) increases the risk for psychopathology through disturbed acquisition and extinction of fear. The effects of CT are mediated by abnormalities of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor (GR). Since, the alterations in GRα translational isoforms have been documented in psychiatric disorders we sought to: 1) explore whether multiple GRα isoforms in the human peripheral blood mononuclear cells of two independent cohorts (whole cell n = 40; and nuclear extracts n = 43, adult subjects) mediate the effect of CT on negative affectivity (NA) measured by Depression, Anxiety and Stress Scales (DASS), and 2) examine their role/function during fear extinction in the animal model. In multiple regression analysis, CT, nuclear 40-kDa GRα, their interactions and FKBP5 explained 22%-35% of variance in DASS scores. Structural equation modeling showed that CT had a significant direct effect on 40-kDa and DASS in both cohorts, and on the nuclear 25-kDa GRα. The association between 40-kDa and total DASS was significantly mediated by nuclear FKBP5, whereas on DASS anxiety, over FKBP5 in both cohorts and nuclear full length GRα. Nuclear 40-kDa GRα and its interaction with CT had a significant direct effect on DASS anxiety. In mice, the successful extinction learning was followed by nuclear translocation of 40-kDa GRα and induction of BDNF exon IV expression. Our data revealed that the association between CT and adult NA in non-clinical subjects is mediated by the GRα translational isoforms, in particular 40-kDa GRα, and emphasized its role in fear extinction and neural plasticity.
Collapse
Affiliation(s)
- Miroslav Adzic
- VINČA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| | - Emilija Glavonic
- VINČA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Milica J Nesic
- Clinical Centre of Serbia, Clinic for Psychiatry, Belgrade, Serbia
| | - Minja Milosavljevic
- VINČA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Marina Mihaljevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Clinical Centre of Serbia, Clinic for Psychiatry, Belgrade, Serbia
| | - Zorica Petrovic
- VINČA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Zorana Pavlovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Clinical Centre of Serbia, Clinic for Psychiatry, Belgrade, Serbia
| | - Zeljka Brkic
- VINČA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Ester Francija
- VINČA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Ivan Soldatovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute of Medical Statistics and Informatics, Belgrade, Serbia
| | - Milos Mitic
- VINČA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | | | - Nadja P Maric
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Clinical Centre of Serbia, Clinic for Psychiatry, Belgrade, Serbia
| |
Collapse
|
30
|
Potamitis C, Siakouli D, Papavasileiou KD, Boulaka A, Ganou V, Roussaki M, Calogeropoulou T, Zoumpoulakis P, Alexis MN, Zervou M, Mitsiou DJ. Discovery of New non-steroidal selective glucocorticoid receptor agonists. J Steroid Biochem Mol Biol 2019; 186:142-153. [PMID: 30321666 DOI: 10.1016/j.jsbmb.2018.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 09/19/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022]
Abstract
Glucocorticoids (GCs) are widely used as potent anti-inflammatory drugs; however, GC therapy is often accompanied by adverse side effects. The anti-inflammatory action of GCs is exerted through the glucocorticoid receptor (GR) in part by antagonizing the pro-inflammatory nuclear factor k B (NF-kB) whereas the majority of side effects are assumed to be mediated by transactivation of GR target genes. We set out to identify novel non-steroidal selective GR agonists (SEGRA) favoring transrepression of NF-kB target genes over transactivation of genes associated with undesirable effects. Our virtual screening protocol was driven by a pharmacophore model based on a pyrrolidinone amide analogue (named as 'compound 12' in Biggadike et al 2009, PNAS USA 106, 18,114) bound to the extended binding pocket of the GR ligand binding domain (GR-LBD). Ambinter library (7.8 million compounds) was queried by our validated pharmacophore hypothesis and the prioritized compounds were biologically evaluated using a series of well-established screening assays. Two structurally similar hits (1 and 13) were identified that bind to GR, induce its translocation to the nucleus, do not mediate transactivation of GR target genes whereas partially repress a number of pro-inflammatory NF-kB target genes, in a GR-dependent manner. Explanatory molecular dynamics (MD) calculations could detail the per-residue interactions accounting for the binding of 1 and 13 to the extended binding pocket of GR. The discovered 1,3-benzothiazole analogs introduce a new class of genuine SEGRA paving the way for hit-to-lead optimization.
Collapse
Affiliation(s)
- Constantinos Potamitis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Dimitra Siakouli
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Konstantinos D Papavasileiou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece; National Center for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, Molecular Thermodynamics and Modelling of Materials Laboratory, GR-15310 Aghia Paraskevi Attikis, Greece
| | - Athina Boulaka
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Vassiliki Ganou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Marina Roussaki
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Theodora Calogeropoulou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Panagiotis Zoumpoulakis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Michael N Alexis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Maria Zervou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece.
| | - Dimitra J Mitsiou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
31
|
Abstract
The FK506-binding protein 51 (FKBP51) has emerged as a key regulator of endocrine stress responses in mammals and as a potential therapeutic target for stress-related disorders (depression, post-traumatic stress disorder), metabolic disorders (obesity and diabetes) and chronic pain. Recently, FKBP51 has been implicated in several cellular pathways and numerous interacting protein partners have been reported. However, no consensus on the underlying molecular mechanisms has yet emerged. Here, we review the protein interaction partners reported for FKBP51, the proposed pathways involved, their relevance to FKBP51’s physiological function(s), the interplay with other FKBPs, and implications for the development of FKBP51-directed drugs.
Collapse
|
32
|
Huang K, Hu Y, Sun Y, Yu Z, Liu W, Zhu P, Tao F. Elective caesarean delivery and offspring’s cognitive impairment: Implications of methylation alteration in hippocampus glucocorticoid signaling genes. Brain Res Bull 2019; 144:108-121. [DOI: 10.1016/j.brainresbull.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022]
|
33
|
Papadopoulou Z, Vlaikou AM, Theodoridou D, Markopoulos GS, Tsoni K, Agakidou E, Drosou-Agakidou V, Turck CW, Filiou MD, Syrrou M. Stressful Newborn Memories: Pre-Conceptual, In Utero, and Postnatal Events. Front Psychiatry 2019; 10:220. [PMID: 31057437 PMCID: PMC6482218 DOI: 10.3389/fpsyt.2019.00220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/26/2019] [Indexed: 12/15/2022] Open
Abstract
Early-life stressful experiences are critical for plasticity and development, shaping adult neuroendocrine response and future health. Stress response is mediated by the autonomous nervous system and the hypothalamic-pituitary-adrenal (HPA) axis while various environmental stimuli are encoded via epigenetic marks. The stress response system maintains homeostasis by regulating adaptation to the environmental changes. Pre-conceptual and in utero stressors form the fetal epigenetic profile together with the individual genetic profile, providing the background for individual stress response, vulnerability, or resilience. Postnatal and adult stressful experiences may act as the definitive switch. This review addresses the issue of how preconceptual in utero and postnatal events, together with individual differences, shape future stress responses. Putative markers of early-life adverse effects such as prematurity and low birth weight are emphasized, and the epigenetic, mitochondrial, and genomic architecture regulation of such events are discussed.
Collapse
Affiliation(s)
- Zoe Papadopoulou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Angeliki-Maria Vlaikou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Daniela Theodoridou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Georgios S Markopoulos
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Konstantina Tsoni
- 1st Department of Neonatology and Neonatal Intensive Care Unit, Medical Faculty, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Eleni Agakidou
- 1st Department of Neonatology and Neonatal Intensive Care Unit, Medical Faculty, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Vasiliki Drosou-Agakidou
- 1st Department of Neonatology and Neonatal Intensive Care Unit, Medical Faculty, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | | | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Max Planck Institute of Psychiatry, Munich, Germany
| | - Maria Syrrou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
34
|
Abstract
INTRODUCTION Depression and posttraumatic stress disorder (PTSD) are two complex and debilitating psychiatric disorders that result in poor life and destructive behaviors against self and others. Currently, diagnosis is based on subjective rather than objective determinations leading to misdiagnose and ineffective treatments. Advances in novel neurobiological methods have allowed assessment of promising biomarkers to diagnose depression and PTSD, which offers a new means of appropriately treating patients. Areas covered: Biomarkers discovery in blood represents a fundamental tool to predict, diagnose, and monitor treatment efficacy in depression and PTSD. The potential role of altered HPA axis, epigenetics, NPY, BDNF, neurosteroid biosynthesis, the endocannabinoid system, and their function as biomarkers for mood disorders is discussed. Insofar, we propose the identification of a biomarker axis to univocally identify and discriminate disorders with large comorbidity and symptoms overlap, so as to provide a base of support for development of targeted treatments. We also weigh in on the feasibility of a future blood test for early diagnosis. Expert commentary: Potential biomarkers have already been assessed in patients' blood and need to be further validated through multisite large clinical trial stratification. Another challenge is to assess the relation among several interdependent biomarkers to form an axis that identifies a specific disorder and secures the best-individualized treatment. The future of blood-based tests for PTSD and depression is not only on the horizon but, possibly, already around the corner.
Collapse
Affiliation(s)
- Dario Aspesi
- a The Psychiatric Institute, Department of Psychiatry , University of Illinois at Chicago , Chicago , IL , USA
| | - Graziano Pinna
- a The Psychiatric Institute, Department of Psychiatry , University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
35
|
Lee RS, Mahon PB, Zandi PP, McCaul ME, Yang X, Bali U, Wand GS. DNA methylation and sex-specific expression of FKBP5 as correlates of one-month bedtime cortisol levels in healthy individuals. Psychoneuroendocrinology 2018; 97:164-173. [PMID: 30036794 PMCID: PMC6366448 DOI: 10.1016/j.psyneuen.2018.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/17/2018] [Accepted: 07/03/2018] [Indexed: 11/30/2022]
Abstract
Chronic exposure to cortisol is associated with cardiovascular, metabolic, and psychiatric disorders. Although cortisol can be readily measured from peripheral sources such as blood, urine, or saliva, multiple samplings spanning several days to weeks are necessary to reliably assess chronic cortisol exposure levels (referred to as cortisol load). Although cortisol levels in hair have been proposed as a measure of cortisol load, measurement is cumbersome and many people are not candidates due to short hair length and use of hair dyes. To date, there are no blood biomarkers that capture cortisol load. To identify a blood biomarker capable of integrating one-month cortisol exposure levels, 75 healthy participants provided 30+ days of awakening and bedtime saliva cortisol and completed psychosocial measures of anxiety, depression, and stress. Mean daily awakening and bedtime cortisol levels were then compared to CpG methylation levels, gene expression, and genotypes of the stress response gene FKBP5 obtained from blood drawn on the last day of the study. We found a correlation between FKBP5 methylation levels and mean 30+day awakening and bedtime cortisol levels (|r|≥0.32, p ≤ 0.006). We also observed a sex-specific correlation between bedtime cortisol levels and FKBP5 mRNA expression in female participants (r = 0.42, p = 0.005). Dividing the 30-day sampling period into four weekly bins showed that the correlations for both methylation and expression were not being driven by cortisol levels in the week preceding the blood draw. We also identified a female-specific association between FKBP5 mRNA expression and scores on the Beck Anxiety Inventory (r = 0.37, p = 0.013) and Beck Depression Inventory-II (r = 0.32, p = 0.033). Finally, DNA was genotyped at four SNPs, and variation in rs4713902 was shown to have an effect on FKBP5 expression under a codominant model (f = 3.41, p = 0.048) for females only. Our results suggest that blood FKBP5 DNA methylation and mRNA expression levels may be a useful marker for determining general or sex-specific 30-day cortisol load and justifies genome-wide approaches that can potentially identify additional cortisol markers with broader clinical utility.
Collapse
Affiliation(s)
- Richard S Lee
- Department of Psychiatry and Behavioral Sciences and Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States
| | - Pamela B Mahon
- Department of Psychiatry and Behavioral Sciences and Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States; Department of Psychiatry, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences and Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States; Department of Mental Health, Johns Hopkins School of Public Health, Baltimore, MD, 21205, United States
| | - Mary E McCaul
- Department of Psychiatry and Behavioral Sciences and Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States
| | - Xiaoju Yang
- Department of Psychiatry and Behavioral Sciences and Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States
| | - Utsav Bali
- Sygnature Discovery, Nottingham, NG1 1GF, UK
| | - Gary S Wand
- Department of Psychiatry and Behavioral Sciences and Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
36
|
Mifsud KR, Reul JMHM. Mineralocorticoid and glucocorticoid receptor-mediated control of genomic responses to stress in the brain. Stress 2018; 21:389-402. [PMID: 29614900 DOI: 10.1080/10253890.2018.1456526] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Successful coping with stressful events involves adaptive and cognitive processes in the brain that make the individual more resilient to similar stressors in the future. Stressful events result in the secretion of glucocorticoids (GCs) from the adrenal glands into the blood stream. Early work proved instrumental for developing the concept that these hormones act in the brain to coordinate physiological and behavioral responses to stress through binding to two different GC-binding receptors. Once activated these receptors translocate to the nucleus where they act on target genes to facilitate (or sometimes inhibit) transcription. There are two types of receptors in the brain, the mineralocorticoid receptor (MR), and glucocorticoid receptor (GR). This review summarizes recent work which provides new insights regarding the genomic action of these receptors, both under baseline conditions and following exposure to acute stress. This work is discussed alongside the extensive studies undertaken in this field previously and new, and exciting "big data" studies which have generated a wealth of relevant data. The consequence of these new insights will challenge existing assumptions about the role of MRs and GRs and pave the way for the implementation of novel and improved methodologies to identify the role these corticosteroid receptors have in stress-related behavioral adaptation.
Collapse
Affiliation(s)
- Karen R Mifsud
- a Neuro-Epigenetics Research Group, Bristol Medical School , University of Bristol , Bristol , UK
| | - Johannes M H M Reul
- a Neuro-Epigenetics Research Group, Bristol Medical School , University of Bristol , Bristol , UK
| |
Collapse
|
37
|
Matosin N, Halldorsdottir T, Binder EB. Understanding the Molecular Mechanisms Underpinning Gene by Environment Interactions in Psychiatric Disorders: The FKBP5 Model. Biol Psychiatry 2018; 83:821-830. [PMID: 29573791 DOI: 10.1016/j.biopsych.2018.01.021] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 12/21/2022]
Abstract
Epidemiologic and genetic studies suggest common environmental and genetic risk factors for a number of psychiatric disorders, including depression, bipolar disorder, and schizophrenia. Genetic and environmental factors, especially adverse life events, not only have main effects on disease development but also may interact to shape risk and resilience. Such gene by adversity interactions have been described for FKBP5, an endogenous regulator of the stress-neuroendocrine system, conferring risk for a number of psychiatric disorders. In this review, we present a molecular and cellular model of the consequences of FKBP5 by early adversity interactions. We illustrate how altered genetic and epigenetic regulation of FKBP5 may contribute to disease risk by covering evidence from clinical and preclinical studies of FKBP5 dysregulation, known cell-type and tissue-type expression patterns of FKBP5 in humans and animals, and the role of FKBP5 as a stress-responsive molecular hub modulating many cellular pathways. FKBP5 presents the possibility to better understand the molecular and cellular factors contributing to a disease-relevant gene by environment interaction, with implications for the development of biomarkers and interventions for psychiatric disorders.
Collapse
Affiliation(s)
- Natalie Matosin
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Thorhildur Halldorsdottir
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
38
|
De Wolf H, Cougnaud L, Van Hoorde K, De Bondt A, Wegner JK, Ceulemans H, Göhlmann H. High-Throughput Gene Expression Profiles to Define Drug Similarity and Predict Compound Activity. Assay Drug Dev Technol 2018; 16:162-176. [DOI: 10.1089/adt.2018.845] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Hans De Wolf
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Computational Sciences, Discovery Sciences, Beerse, Belgium
| | | | | | - An De Bondt
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Computational Sciences, Discovery Sciences, Beerse, Belgium
| | - Joerg K. Wegner
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Computational Sciences, Discovery Sciences, Beerse, Belgium
| | - Hugo Ceulemans
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Computational Sciences, Discovery Sciences, Beerse, Belgium
| | - Hinrich Göhlmann
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Computational Sciences, Discovery Sciences, Beerse, Belgium
| |
Collapse
|
39
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
40
|
Hamilton CL, Kadeba PI, Vasauskas AA, Solodushko V, McClinton AK, Alexeyev M, Scammell JG, Cioffi DL. Protective role of FKBP51 in calcium entry-induced endothelial barrier disruption. Pulm Circ 2017; 8:2045893217749987. [PMID: 29261039 PMCID: PMC5798693 DOI: 10.1177/2045893217749987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pulmonary artery endothelial cells (PAECs) express a cation current, ISOC (store-operated calcium entry current), which when activated permits calcium entry leading to inter-endothelial cell gap formation. The large molecular weight immunophilin FKBP51 inhibits ISOC but not other calcium entry pathways in PAECs. However, it is unknown whether FKBP51-mediated inhibition of ISOC is sufficient to protect the endothelial barrier from calcium entry-induced disruption. The major objective of this study was to determine whether FKBP51-mediated inhibition of ISOC leads to decreased calcium entry-induced inter-endothelial gap formation and thus preservation of the endothelial barrier. Here, we measured the effects of thapsigargin-induced ISOC on the endothelial barrier in control and FKBP51 overexpressing PAECs. FKBP51 overexpression decreased actin stress fiber and inter-endothelial cell gap formation in addition to attenuating the decrease in resistance observed with control cells using electric cell-substrate impedance sensing. Finally, the thapsigargin-induced increase in dextran flux was abolished in FKBP51 overexpressing PAECs. We then measured endothelial permeability in perfused lungs of FKBP51 knockout (FKBP51–/–) mice and observed increased calcium entry-induced permeability compared to wild-type mice. To begin to dissect the mechanism underlying the FKBP51-mediated inhibition of ISOC, a second goal of this study was to determine the role of the microtubule network. We observed that FKBP51 overexpressing PAECs exhibited increased microtubule polymerization that is critical for inhibition of ISOC by FKBP51. Overall, we have identified FKBP51 as a novel regulator of endothelial barrier integrity, and these findings are significant as they reveal a protective mechanism for endothelium against calcium entry-induced disruption.
Collapse
Affiliation(s)
- Caleb L Hamilton
- 1 5557 Department of Biochemistry and Molecular Biology , University of South Alabama, Mobile, AL, USA.,2 Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Pierre I Kadeba
- 1 5557 Department of Biochemistry and Molecular Biology , University of South Alabama, Mobile, AL, USA.,2 Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Audrey A Vasauskas
- 3 376598 Department of Anatomical Sciences and Molecular Medicine , Alabama College of Osteopathic Medicine, Dothan, AL, USA
| | - Viktoriya Solodushko
- 1 5557 Department of Biochemistry and Molecular Biology , University of South Alabama, Mobile, AL, USA
| | - Anna K McClinton
- 2 Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,4 Department of Pharmacology, University of South Alabama, Mobile, AL, USA
| | - Mikhail Alexeyev
- 2 Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,5 Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA
| | - Jonathan G Scammell
- 6 Department of Comparative Medicine, 5557 University of South Alabama , Mobile, AL, USA
| | - Donna L Cioffi
- 1 5557 Department of Biochemistry and Molecular Biology , University of South Alabama, Mobile, AL, USA.,2 Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
41
|
Fries GR, Gassen NC, Rein T. The FKBP51 Glucocorticoid Receptor Co-Chaperone: Regulation, Function, and Implications in Health and Disease. Int J Mol Sci 2017; 18:ijms18122614. [PMID: 29206196 PMCID: PMC5751217 DOI: 10.3390/ijms18122614] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/27/2022] Open
Abstract
Among the chaperones and co-chaperones regulating the glucocorticoid receptor (GR), FK506 binding protein (FKBP) 51 is the most intensely investigated across different disciplines. This review provides an update on the role of the different co-chaperones of Hsp70 and Hsp90 in the regulation of GR function. The development leading to the focus on FKBP51 is outlined. Further, a survey of the vast literature on the mechanism and function of FKBP51 is provided. This includes its structure and biochemical function, its regulation on different levels—transcription, post-transcription, and post-translation—and its function in signaling pathways. The evidence portraying FKBP51 as a scaffolding protein organizing protein complexes rather than a chaperone contributing to the folding of individual proteins is collated. Finally, FKBP51’s involvement in physiology and disease is outlined, and the promising efforts in developing drugs targeting FKBP51 are discussed.
Collapse
Affiliation(s)
- Gabriel R Fries
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.
| | - Nils C Gassen
- Department of Translational Science in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Theo Rein
- Department of Translational Science in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
42
|
Trollope AF, Mifsud KR, Saunderson EA, Reul JMHM. Molecular and Epigenetic Mechanisms Underlying Cognitive and Adaptive Responses to Stress. EPIGENOMES 2017; 1:17. [PMID: 31921466 PMCID: PMC6952278 DOI: 10.3390/epigenomes1030017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Consolidation of contextual memories after a stressful encounter is essential for the survival of an organism and in allowing a more appropriate response to be elicited should the perceived threat reoccur. Recent evidence has explored the complex role that epigenetic mechanisms play in the formation of such memories, and the underlying signaling pathways are becoming more apparent. The glucocorticoid receptor (GR) has been shown to play a key role in these events having both genomic and non-genomic actions in the brain. GR has been shown to interact with the extracellular signal-regulated kinase mitogen-activated protein kinase (ERK MAPK) signaling pathway which, in concert, drives epigenetic modifications and chromatin remodeling, resulting in gene induction and memory consolidation. Evidence indicates that stressful events can have an effect on the offspring in utero, and that epigenetic marks altered early in life may persist into adulthood. A new and controversial area of research, however, suggests that epigenetic modifications could be inherited through the germline, a concept known as transgenerational epigenetics. This review explores the role that epigenetic processes play in the central nervous system, specifically in the consolidation of stress-induced memories, the concept of transgenerational epigenetic inheritance, and the potential role of epigenetics in revolutionizing the treatment of stress-related disorders through the emerging field of pharmacoepigenetics and personalized medical treatment.
Collapse
Affiliation(s)
- Alexandra F. Trollope
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
- Department of Anatomy, College of Medicine and Dentistry, James Cook University, Townsville 4811, Australia
| | - Karen R. Mifsud
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Emily A. Saunderson
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Johannes M. H. M. Reul
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| |
Collapse
|
43
|
Xu J, Wang R, Liu Y, Liu D, Jiang H, Pan F. FKBP5 and specific microRNAs via glucocorticoid receptor in the basolateral amygdala involved in the susceptibility to depressive disorder in early adolescent stressed rats. J Psychiatr Res 2017; 95:102-113. [PMID: 28826069 DOI: 10.1016/j.jpsychires.2017.08.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/28/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022]
Abstract
Exposure to stressful events induces depressive-like symptoms and increases susceptibility to depression. However, the molecular mechanisms are not fully understood. Studies reported that FK506 binding protein51 (FKBP5), the co-chaperone protein of glucocorticoid receptors (GR), plays a crucial role. Further, miR-124a and miR-18a are involved in the regulation of FKBP5/GR function. However, few studies have referred to effects of early life stress on depressive-like behaviours, GR and FKBP5, as well as miR-124a and miR-18a in the basolateral amygdala (BLA) from adolescence to adulthood. This study aimed to examine the dynamic alternations of depressive-like behaviours, GR and FKBP5, as well as miR-124a and miR-18a expressions in the BLA of chronic unpredictable mild stress (CUMS) rats and dexamethasone administration rats during the adolescent period. Meanwhile, the GR antagonist, RU486, was used as a means of intervention. We found that CUMS and dexamethasone administration in the adolescent period induced permanent depressive-like behaviours and memory impairment, decreased GR expression, and increased FKBP5 and miR-124a expression in the BLA of both adolescent and adult rats. However, increased miR-18a expression in the BLA was found only in adolescent rats. Depressive-like behaviours were positively correlated with the level of miR-124a, whereas GR levels were negatively correlated with those in both adolescent and adult rats. Our results suggested FKBP5/GR and miR-124a in the BLA were associated with susceptibility to depressive disorder in the presence of stressful experiences in early life.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, Shandong, 250012, China.
| | - Rui Wang
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, Shandong, 250012, China.
| | - Yuan Liu
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, Shandong, 250012, China.
| | - Dexiang Liu
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, Shandong, 250012, China.
| | - Hong Jiang
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, Shandong, 250012, China.
| | - Fang Pan
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, Shandong, 250012, China.
| |
Collapse
|
44
|
Liu XH, Wang ZJ, Jin L, Huang J, Pu DY, Wang DS, Zhang YG. Effects of subchronic exposure to waterborne cadmium on H-P-I axis hormones and related genes in rare minnows (Gobiocypris rarus). Comp Biochem Physiol C Toxicol Pharmacol 2017; 202:1-11. [PMID: 28743461 DOI: 10.1016/j.cbpc.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 11/21/2022]
Abstract
The H (hypothalamic)-P (pituitary)-I (interrenal) axis is critical in the stress response and other activities of fish. To further investigate cadmium (Cd) toxicity on the H-P-I axis and to identify its potential regulatory genes in fish, the adult female rare minnows (Gobiocypris rarus) were exposed to subchronic (5weeks) levels of waterborne Cd in the present study. This kind of treatment caused dose-dependent decline in fish growth, with significance in the high dose group (100μg/L). Correspondingly, low dose (5-50μg/L) waterborne Cd disrupted the endocrine system of H-P-I axis just at the secretion level, while high dose Cd disrupted both the secretion and synthesis of cortisol and its downstream signals in rare minnows, revealed by the significantly upregulation and positive correlation of corticosteroidogenic genes including MC2R, StAR, CYP11A1, and CYP11B1 in the kidney (including the interrenal tissue) (P<0.05), and the significant alteration of Glcci1, Hsp90AA and Hsp90AB in the hepatopancreas, gill and intestine as well (P<0.05). The expression of Glcci1 was significantly decreased in hepatopancreas, gill and intestine of tested fish following treatment, and its positive correlation with GR (Glucocorticoid receptor) suggested its potential regulation on the cortisol and/or H-P-I axis in fish. The expression of FKBP5 in the intestine was positively and significantly correlated with that of Hsp90AA (P<0.05), and the Hsp90AB transcript in the hepatopancreas was positively correlated with that of Hsp90AA (P<0.05), which indicated that Hsp90AA and Hsp90AB were more likely to serve as cofactors of GR and FKBP5 in response to Cd exposure.
Collapse
Affiliation(s)
- Xiao-Hong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Zhi-Jian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Jing Huang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - De-Yong Pu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - De-Shou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Yao-Guang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China.
| |
Collapse
|
45
|
Gray JD, Kogan JF, Marrocco J, McEwen BS. Genomic and epigenomic mechanisms of glucocorticoids in the brain. Nat Rev Endocrinol 2017; 13:661-673. [PMID: 28862266 DOI: 10.1038/nrendo.2017.97] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Following the discovery of glucocorticoid receptors in the hippocampus and other brain regions, research has focused on understanding the effects of glucocorticoids in the brain and their role in regulating emotion and cognition. Glucocorticoids are essential for adaptation to stressors (allostasis) and in maladaptation resulting from allostatic load and overload. Allostatic overload, which can occur during chronic stress, can reshape the hypothalamic-pituitary-adrenal axis through epigenetic modification of genes in the hippocampus, hypothalamus and other stress-responsive brain regions. Glucocorticoids exert their effects on the brain through genomic mechanisms that involve both glucocorticoid receptors and mineralocorticoid receptors directly binding to DNA, as well as by non-genomic mechanisms. Furthermore, glucocorticoids synergize both genomically and non-genomically with neurotransmitters, neurotrophic factors, sex hormones and other stress mediators to shape an organism's present and future responses to a stressful environment. Here, we discuss the mechanisms of glucocorticoid action in the brain and review how glucocorticoids interact with stress mediators in the context of allostasis, allostatic load and stress-induced neuroplasticity.
Collapse
Affiliation(s)
- Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065. USA
| | - Joshua F Kogan
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065. USA
| | - Jordan Marrocco
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065. USA
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065. USA
| |
Collapse
|
46
|
Abstract
Prenatal stress mediated through the mother can lead to long-term adaptations in stress-related phenotypes in offspring. This study tested the long-lasting effect of prenatal exposure to predator odor, an ethologically relevant and psychogenic stressor, in the second half of pregnancy. As adults, the offspring of predator odor-exposed mothers showed increased anxiety-like behaviors in commonly used laboratory tasks assessing novelty-induced anxiety, increased defensive behavior in males and increased ACTH stress reactivity in females in response to predator odor. Female offspring from predator odor-exposed dams showed increased transcript abundance of glucocorticoid receptor (NR3C1) on the day of birth and FK506 binding protein 5 (FKBP5) in adulthood in the amygdala. The increase in FKBP5 expression was associated with decreased DNA methylation in Fkbp5 intron V. These results indicate a sex-specific response to maternal programming by prenatal predator odor exposure and a potential epigenetic mechanism linking these responses with modifications of the stress axis in females. These results are in accordance with the mismatch hypothesis stating that an animal's response to cues within its life history reflects environmental conditions anticipated during important developmental periods and should be adaptive when these conditions are concurring.
Collapse
Affiliation(s)
- Sophie St-Cyr
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Department of Cell and Systems Biology, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada
| | - Sameera Abuaish
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Department of Cell and Systems Biology, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada
| | - Shathveekan Sivanathan
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Department of Cell and Systems Biology, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada
| | - Patrick O McGowan
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Department of Cell and Systems Biology, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
47
|
Abstract
OBJECTIVE Early life stress (ELS) has been shown to influence health later in life. Functioning of the hypothalamic-pituitary-adrenal axis, regulated partly by FKBP5 gene, may moderate these effects. We examined whether FKBP5 single-nucleotide polymorphisms (SNPs) interact with ELS on Type 2 diabetes, cardiovascular disease, and quantitative glycemic traits. METHODS A total of 1728 Helsinki Birth Cohort Study participants born from 1934 to 1944 were genotyped for FKBP5 SNPs (rs1360780, rs9394309, rs9470080) and were administered a 2-hour (75 g) oral glucose tolerance test and a questionnaire on physician-diagnosed and medication use for chronic diseases at a mean age of 61.5 years. Of the participants, 273 had been exposed to ELS, operationalized as separation from their parents, at a mean age of 4.7 years due to evacuations during World War II. RESULTS ELS interacted with FKBP5 SNPs in the analyses of fasting (rs1360780, p = .015), 30-minute (rs1360780, p = .031; rs9394309, p = .041) and incremental insulin (rs1360780, p = .032; rs9394309, p = .028; rs9470080, p = .043), insulin area under the curve (rs1360780, p = .044), and impaired fasting glucose (rs9470080, p = .049); among carriers of at least one copy of minor allele, but not among major allele homozygotes, insulin values were higher, as were the odds for impaired fasting glucose if they had been separated compared with if they had not. Corresponding associations were found with a haplotype formed by minor alleles in all three SNPs for fasting, 30-minute, and incremental insulin (p < .05). CONCLUSIONS FKBP5 polymorphisms in combination with ELS exposure predict higher insulin and glucose values in midlife. Our findings support the role for hypothalamic-pituitary-adrenal axis dysregulation in health-related metabolic outcomes.
Collapse
|
48
|
Merkulov VM, Merkulova TI, Bondar NP. Mechanisms of Brain Glucocorticoid Resistance in Stress-Induced Psychopathologies. BIOCHEMISTRY (MOSCOW) 2017; 82:351-365. [PMID: 28320277 DOI: 10.1134/s0006297917030142] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exposure to stress activates the hypothalamic-pituitary-adrenal axis and leads to increased levels of glucocorticoid (GC) hormones. Prolonged elevation of GC levels causes neuronal dysfunction, decreases the density of synapses, and impairs neuronal plasticity. Decreased sensitivity to glucocorticoids (glucocorticoid resistance) that develops as a result of chronic stress is one of the characteristic features of stress-induced psychopathologies. In this article, we reviewed the published data on proposed molecular mechanisms that contribute to the development of glucocorticoid resistance in brain, including changes in the expression of the glucocorticoid receptor (GR) gene, biosynthesis of GR isoforms, and GR posttranslational modifications. We also present data on alterations in the expression of the FKBP5 gene encoding the main component of cell ultra-short negative feedback loop of GC signaling regulation. Recent discoveries on stress- and GR-induced changes in epigenetic modification patterns as well as normalizing action of antidepressants are discussed. GR and FKBP5 gene polymorphisms associated with stress-induced psychopathologies are described, and their role in glucocorticoid resistance is discussed.
Collapse
Affiliation(s)
- V M Merkulov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | | | |
Collapse
|
49
|
Jin Z, Lin H, Srinivasan S, Nwachukwu JC, Bruno N, Griffin PR, Nettles KW, Kamenecka TM. Synthesis of novel steroidal agonists, partial agonists, and antagonists for the glucocorticoid receptor. Bioorg Med Chem Lett 2016; 27:347-353. [PMID: 27919657 DOI: 10.1016/j.bmcl.2016.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 01/01/2023]
Abstract
Adverse effects of glucocorticoids could be limited by developing new compounds that selectively modulate anti-inflammatory activity of the glucocorticoid receptor (GR). We have synthesized a novel series of steroidal GR ligands, including potent agonists, partial agonists and antagonists with a wide range of effects on inhibiting secretion of interleukin-6. Some of these new ligands were designed to directly impact conformational stability of helix-12, in the GR ligand-binding domain (LBD). These compounds modulated GR activity and glucocorticoid-induced gene expression in a manner that was inversely correlated to the degree of inflammatory response. In contrast, compounds designed to directly modulate LBD epitopes outside helix-12, led to dissociated levels of GR-mediated gene expression and inflammatory response. Therefore, these new series of compounds and their derivatives will be useful to dissect the ligand-dependent features of GR signaling specificity.
Collapse
Affiliation(s)
- Zhuang Jin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hua Lin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Sathish Srinivasan
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jerome C Nwachukwu
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Nelson Bruno
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Kendall W Nettles
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Theodore M Kamenecka
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
50
|
Maiarù M, Tochiki KK, Cox MB, Annan LV, Bell CG, Feng X, Hausch F, Géranton SM. The stress regulator FKBP51 drives chronic pain by modulating spinal glucocorticoid signaling. Sci Transl Med 2016; 8:325ra19. [PMID: 26865567 DOI: 10.1126/scitranslmed.aab3376] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Polymorphisms in FKBP51 are associated with stress-related psychiatric disorders and influence the severity of pain symptoms experienced after trauma. We report that FKBP51 (FK506 binding protein 51) is crucial for the full development and maintenance of long-term pain states. Indeed, FKBP51 knockout mice, as well as mice in which silencing of FKBP51 is restricted to the spinal cord, showed reduced hypersensitivity in several persistent pain models in rodents. FKBP51 deletion did not compromise the detection of acute painful stimuli, a critical protective mechanism. Moreover, the intrathecal administration of the specific FKBP51 inhibitor SAFit2 reduced the severity of an established pain state, confirming the crucial role of spinal FKBP51 in nociceptive processing. Finally, glucocorticoid signaling, which is known to modulate persistent pain states in rodents, was impaired in FKBP51 knockout mice. This finding suggested that FKBP51 regulates chronic pain by modulation of glucocorticoid signaling. Thus, FKBP51 is a central mediator of chronic pain, likely in humans as well as rodents, and is a new pharmacologically tractable target for the treatment of long-term pain states.
Collapse
Affiliation(s)
- Maria Maiarù
- Cell and Developmental Biology, University College London (UCL), London WC1E 6BT, UK
| | - Keri K Tochiki
- Cell and Developmental Biology, University College London (UCL), London WC1E 6BT, UK
| | - Marc B Cox
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Leonette V Annan
- Cell and Developmental Biology, University College London (UCL), London WC1E 6BT, UK
| | - Christopher G Bell
- Epigenomic Medicine, Centre for Biological Sciences, Institute of Developmental Sciences, S017 1BJ, and MRC (Medical Research Council) Lifecourse Epidemiology Unit, S016 6YD, University of Southampton, Southampton, UK
| | - Xixi Feng
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Felix Hausch
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Sandrine M Géranton
- Cell and Developmental Biology, University College London (UCL), London WC1E 6BT, UK.
| |
Collapse
|