1
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Romaszko-Wojtowicz A, Dragańska E, Doboszyńska A, Glińska-Lewczuk K. Impact of seasonal biometeorological conditions and particulate matter on asthma and COPD hospital admissions. Sci Rep 2025; 15:450. [PMID: 39747992 PMCID: PMC11696462 DOI: 10.1038/s41598-024-84739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
Climate change and air pollution are pressing public health concerns, necessitating monitoring of their impact, particularly on respiratory diseases like obstructive lung diseases. This retrospective study analyzed medical records of patients hospitalized at the Warmia and Mazury Centre for Pulmonary Diseases in Olsztyn, Poland (2012-2021) for asthma and chronic obstructive pulmonary disease (COPD) exacerbations. Data included meteorological factors such as temperature, humidity, wind speed, precipitation, and levels of PM2.5 and PM10. The Humidex was utilized to assess thermal discomfort, considering various meteorological and thermal seasons. Findings indicated seasonal variability in asthma and COPD exacerbations. During winter, poorer air quality due to higher PM2.5 and PM10 levels correlated with increased exacerbations (r = 0.283, p < 0.05; r = 0.491, p < 0.001). In summer, discomfort from meteorological conditions led to more hospital admissions. Humidex values strongly correlated with admissions for obstructive diseases (R2 = 0.956 for asthma; R2 = 0.659 for COPD), with July and August showing statistically higher admission rates (p < 0.05). The study highlights the significant impact of air pollution and meteorological conditions on exacerbations of asthma and COPD, with Humidex serving as a valuable predictor during summer months.
Collapse
Affiliation(s)
- Anna Romaszko-Wojtowicz
- Department of Pulmonology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Jagiellońska 78, 10-357, Olsztyn, Poland.
| | - Ewa Dragańska
- Department of Water Resources, Climatology and Environmental Management, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anna Doboszyńska
- Department of Pulmonology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Jagiellońska 78, 10-357, Olsztyn, Poland
| | - Katarzyna Glińska-Lewczuk
- Department of Water Resources, Climatology and Environmental Management, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
3
|
Gao F, Lei J, Zhu H, Zhao L. Small airway dysfunction links asthma exacerbations with asthma control and health-related quality of life. Respir Res 2024; 25:306. [PMID: 39135076 PMCID: PMC11321084 DOI: 10.1186/s12931-024-02937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Small airway dysfunction not only affects asthma control, but also has adverse effects on the psychological and/or social activities of asthma patients. However, few long-term observational studies have explored the complex relationship between small airway dysfunction and asthma control and health-related quality of life in patients with asthma exacerbations. METHODS The study recruited 223 patients with exacerbations of asthma (i.e. those with at least one asthma attack over the past year) and 228 patients without exacerbations of asthma (i.e. those without asthma attacks over the past year). We evaluated SAD in patients with asthma exacerbations using impulse oscillometry method. At each evaluation time point within one year of follow-up, the attending physician conducts a case investigation of the patients. We analyzed the correlation between SAD and general characteristics (age, obesity, smoking history), type 2 inflammation (blood eosinophils, exhaled nitric oxide), FEV1, as well as asthma control (ACT) and health-related quality of life (mini-AQLQ) in patients with asthma exacerbations, and constructed a structural equation model to evaluate the causality of these clinical variables. RESULTS The SAD prevalence in patients with asthma exacerbation is as high as 75%. SAD is connected with poor asthma control and poor health-related quality of life. The structural equation model indicates that age, obesity, FeNO, and FEV1 are independent predictive factors of SAD. SAD is the main determinant factor of asthma control, which in turn affected health-related quality of life. FEV1 and age directly affect asthma control and affect health-related quality of life through asthma control. In addition, there is a bidirectional relationship between FEV1 and small airway dysfunction and between asthma control and health-related quality of life. CONCLUSIONS Small airways are involved from an early stage in asthma. Abnormal function of the small airways can significantly increase airway resistance in asthma patients, while worsening their clinical symptoms. In addition, aging is also a key risk factor for asthma control. Especially, small airway dysfunction links asthma control with health-related quality of life.
Collapse
Affiliation(s)
- Fan Gao
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jiahui Lei
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - He Zhu
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Limin Zhao
- Department of Pulmonary and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
4
|
Labaki WW, Agusti A, Bhatt SP, Bodduluri S, Criner GJ, Fabbri LM, Halpin DMG, Lynch DA, Mannino DM, Miravitlles M, Papi A, Sin DD, Washko GR, Kazerooni EA, Han MK. Leveraging Computed Tomography Imaging to Detect Chronic Obstructive Pulmonary Disease and Concomitant Chronic Diseases. Am J Respir Crit Care Med 2024; 210:281-287. [PMID: 38843079 PMCID: PMC11348973 DOI: 10.1164/rccm.202402-0407pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024] Open
Affiliation(s)
| | - Alvar Agusti
- Cathedra Salut Respiratoria, University of Barcelona, Barcelona, Spain
- Pulmonary Service, Respiratory Institute, Clinic Barcelona, Barcelona, Spain
- Fundació Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Barcelona, Spain
| | - Surya P. Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sandeep Bodduluri
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gerard J. Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | | | - David M. G. Halpin
- Respiratory Medicine, University of Exeter Medical School, Exeter, United Kingdom
| | - David A. Lynch
- Department of Radiology, National Jewish Health, Denver, Colorado
| | - David M. Mannino
- Department of Medicine, University of Kentucky, Lexington, Kentucky
| | - Marc Miravitlles
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Barcelona, Spain
- Neumología, Hospital Universitari Vall d’Hebron/Vall d’Hebron Institut de Recerca, Barcelona, Spain
| | - Alberto Papi
- Section of Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Don D. Sin
- Centre for Heart Lung Innovation, St. Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
- Division of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - George R. Washko
- Division of Pulmonary and Critical Care Medicine and
- Applied Chest Imaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ella A. Kazerooni
- Division of Pulmonary and Critical Care Medicine and
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - MeiLan K. Han
- Division of Pulmonary and Critical Care Medicine and
| |
Collapse
|
5
|
Arias-González L, Rodríguez-Alcolado L, Laserna-Mendieta EJ, Navarro P, Lucendo AJ, Grueso-Navarro E. Fibrous Remodeling in Eosinophilic Esophagitis: Clinical Facts and Pathophysiological Uncertainties. Int J Mol Sci 2024; 25:927. [PMID: 38256003 PMCID: PMC10815180 DOI: 10.3390/ijms25020927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic, progressive, type 2 inflammatory disease with increasing global prevalence. An eosinophil-predominant inflammation that permeates the epithelium and deeper esophageal layers characterizes the disease. Several cytokines, mainly derived from inflammatory T-helper 2 (Th2) cells and epithelial cells, are involved in perpetuating inflammatory responses by increasing surface permeability and promoting tissue remodeling characterized by epithelial-mesenchymal transition (EMT) and collagen deposition. This leads to esophageal strictures and narrow caliber esophagi, which are proportional a patient's age and untreated disease length. Pathophysiological mechanisms leading to EoE have been described in recent years, and transforming growth factor beta (TGF)-beta have been involved in fibrotic phenomena in EoE. However, evidence on the dependence of these phenomena on TGF-beta is scarce and contradictory. This review provides state-of-the art knowledge on intimate mechanisms of esophageal fibrosis in EoE and its clinical consequences.
Collapse
Affiliation(s)
- Laura Arias-González
- Department of Gastroenterology, Hospital General de Tomelloso, Vereda de Socuéllamos s/n, 13700 Tomelloso, Spain; (L.A.-G.); (L.R.-A.); (E.J.L.-M.); (P.N.); (E.G.-N.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
- Instituto de Investigación Sanitaria Princesa, 28006 Madrid, Spain
| | - Leticia Rodríguez-Alcolado
- Department of Gastroenterology, Hospital General de Tomelloso, Vereda de Socuéllamos s/n, 13700 Tomelloso, Spain; (L.A.-G.); (L.R.-A.); (E.J.L.-M.); (P.N.); (E.G.-N.)
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Emilio J. Laserna-Mendieta
- Department of Gastroenterology, Hospital General de Tomelloso, Vereda de Socuéllamos s/n, 13700 Tomelloso, Spain; (L.A.-G.); (L.R.-A.); (E.J.L.-M.); (P.N.); (E.G.-N.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
- Instituto de Investigación Sanitaria Princesa, 28006 Madrid, Spain
| | - Pilar Navarro
- Department of Gastroenterology, Hospital General de Tomelloso, Vereda de Socuéllamos s/n, 13700 Tomelloso, Spain; (L.A.-G.); (L.R.-A.); (E.J.L.-M.); (P.N.); (E.G.-N.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Alfredo J. Lucendo
- Department of Gastroenterology, Hospital General de Tomelloso, Vereda de Socuéllamos s/n, 13700 Tomelloso, Spain; (L.A.-G.); (L.R.-A.); (E.J.L.-M.); (P.N.); (E.G.-N.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
- Instituto de Investigación Sanitaria Princesa, 28006 Madrid, Spain
| | - Elena Grueso-Navarro
- Department of Gastroenterology, Hospital General de Tomelloso, Vereda de Socuéllamos s/n, 13700 Tomelloso, Spain; (L.A.-G.); (L.R.-A.); (E.J.L.-M.); (P.N.); (E.G.-N.)
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| |
Collapse
|
6
|
Alsharairi NA. Antioxidant Intake and Biomarkers of Asthma in Relation to Smoking Status-A Review. Curr Issues Mol Biol 2023; 45:5099-5117. [PMID: 37367073 DOI: 10.3390/cimb45060324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Asthma is considered a chronic inflammatory disorder associated with airway hyperresponsiveness (AHR). Increased oxidative stress (OS) is a clinical feature of asthma, which promotes the inflammatory responses in bronchial/airway epithelial cells. Smokers and nonsmokers with asthma have been shown to have increases in several OS and inflammatory biomarkers. However, studies suggest significant differences in OS and inflammation biomarkers between smokers and nonsmokers. A few studies suggest associations between antioxidant intake from diet/supplements and asthma in patients with different smoking status. Evidence is lacking on the protective role of antioxidant vitamin and/or mineral consumption against asthma by smoking status with respect to inflammation and OS biomarkers. Therefore, the aim of this review is to highlight current knowledge regarding the relations between antioxidant intake, asthma, and its associated biomarkers, according to smoking status. This paper can be used to guide future research directions towards the health consequences of antioxidant intake in smoking and nonsmoking asthmatics.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind & Body Research Group, Griffith University, Gold Coast P.O. Box 4222, QLD, Australia
| |
Collapse
|
7
|
Ma H, Yang L, Liu L, Zhou Y, Guo X, Wu S, Zhang X, Xu X, Ti X, Qu S. Using inflammatory index to distinguish asthma, asthma-COPD overlap and COPD: A retrospective observational study. Front Med (Lausanne) 2022; 9:1045503. [PMID: 36465915 PMCID: PMC9714673 DOI: 10.3389/fmed.2022.1045503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Although asthma and chronic obstructive pulmonary disease (COPD) are two well-defined and distinct diseases, some patients present combined clinical features of both asthma and COPD, particularly in smokers and the elderly, a condition termed as asthma-COPD overlap (ACO). However, the definition of ACO is yet to be established and clinical guidelines to identify and manage ACO remain controversial. Therefore, in this study, inflammatory biomarkers were established to distinguish asthma, ACO, and COPD, and their relationship with the severity of patients' symptoms and pulmonary function were explored. MATERIALS AND METHODS A total of 178 patients, diagnosed with asthma (n = 38), ACO (n = 44), and COPD (n = 96) between January 2021 to June 2022, were enrolled in this study. The patients' pulmonary function was examined and routine blood samples were taken for the analysis of inflammatory indexes. Logistic regression analysis was used to establish inflammatory biomarkers for distinguishing asthma, ACO, and COPD; linear regression analysis was used to analyze the relationship between inflammatory indexes and symptom severity and pulmonary function. RESULT The results showed that, compared with ACO, the higher the indexes of platelet, neutrophil-lymphocyte ratio (NLR) and eosinophil-basophil ratio (EBR), the more likely the possibility of asthma and COPD in patients, while the higher the eosinophils, the less likely the possibility of asthma and COPD. Hemoglobin and lymphocyte-monocyte ratio (LMR) were negatively correlated with the severity of patients' symptoms, while platelet-lymphocyte ratio (PLR) was negatively correlated with forced expiratory volume in the 1 s/forced vital capacity (FEV1/FVC) and FEV1 percent predicted (% pred), and EBR was positively correlated with FEV1% pred. CONCLUSION Inflammatory indexes are biomarkers for distinguishing asthma, ACO, and COPD, which are of clinical significance in therapeutic strategies and prognosis evaluation.
Collapse
Affiliation(s)
- Haiman Ma
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Liu Yang
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Lingli Liu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Ying Zhou
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xiaoya Guo
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shuo Wu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xiaoxiao Zhang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xi Xu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xinyu Ti
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shuoyao Qu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
8
|
Weikert T, Friebe L, Wilder-Smith A, Yang S, Sperl JI, Neumann D, Balachandran A, Bremerich J, Sauter AW. Automated quantification of airway wall thickness on chest CT using retina U-Nets - Performance evaluation and application to a large cohort of chest CTs of COPD patients. Eur J Radiol 2022; 155:110460. [PMID: 35963191 DOI: 10.1016/j.ejrad.2022.110460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/17/2022] [Accepted: 07/31/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Airway wall thickening is a consequence of chronic inflammatory processes and usually only qualitatively described in CT radiology reports. The purpose of this study is to automatically quantify airway wall thickness in multiple airway generations and assess the diagnostic potential of this parameter in a large cohort of patients with Chronic Obstructive Pulmonary Disease (COPD). MATERIALS AND METHODS This retrospective, single-center study included a series of unenhanced chest CTs. Inclusion criteria were the mentioning of an explicit COPD GOLD stage in the written radiology report and time period (01/2019-12/2021). A control group included chest CTs with completely unremarkable lungs according to the report. The DICOM images of all cases (axial orientation; slice-thickness: 1 mm; soft-tissue kernel) were processed by an AI algorithm pipeline consisting of (A) a 3D-U-Net for det detection and tracing of the bronchial tree centerlines (B) extraction of image patches perpendicular to the centerlines of the bronchi, and (C) a 2D U-Net for segmentation of airway walls on those patches. The performance of centerline detection and wall segmentation was assessed. The imaging parameter average wall thickness was calculated for bronchus generations 3-8 (AWT3-8) across the lungs. Mean AWT3-8 was compared between five groups (control, COPD Gold I-IV) using non-parametric statistics. Furthermore, the established emphysema score %LAV-950 was calculated and used to classify scans (normal vs. COPD) alone and in combination with AWT3-8. RESULTS: A total of 575 chest CTs were processed. Algorithm performance was very good (airway centerline detection sensitivity: 86.9%; airway wall segmentation Dice score: 0.86). AWT3-8 was statistically significantly greater in COPD patients compared to controls (2.03 vs. 1.87 mm, p < 0.001) and increased with COPD stage. The classifier that combined %LAV-950 and AWT3-8 was superior to the classifier using only %LAV-950 (AUC = 0.92 vs. 0.79). CONCLUSION Airway wall thickness increases in patients suffering from COPD and is automatically quantifiable. AWT3-8 could become a CT imaging parameter in COPD complementing the established emphysema biomarker %LAV-950. CLINICAL RELEVANCE STATEMENT Quantitative measurements considering the complete visible bronchial tree instead of qualitative description could enhance radiology reports, allow for precise monitoring of disease progression and diagnosis of early stages of disease.
Collapse
Affiliation(s)
- Thomas Weikert
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland.
| | - Liene Friebe
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Adrian Wilder-Smith
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Shan Yang
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | | | - Dominik Neumann
- Siemens Healthineers, Henkestrasse 127, 91052 Erlangen, Germany
| | | | - Jens Bremerich
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Alexander W Sauter
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| |
Collapse
|
9
|
Qiao X, Hou G, He YL, Song DF, An Y, Altawil A, Zhou XM, Wang QY, Kang J, Yin Y. The Novel Regulatory Role of the lncRNA–miRNA–mRNA Axis in Chronic Inflammatory Airway Diseases. Front Mol Biosci 2022; 9:927549. [PMID: 35769905 PMCID: PMC9234692 DOI: 10.3389/fmolb.2022.927549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/19/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammatory airway diseases, characterized by airway inflammation and airway remodelling, are increasing as a cause of morbidity and mortality for all age groups and races across the world. The underlying molecular mechanisms involved in chronic inflammatory airway diseases have not been fully explored. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have recently attracted much attention for their roles in the regulation of a variety of biological processes. A number of studies have confirmed that both lncRNAs and miRNAs can regulate the initiation and progression of chronic airway diseases by targeting mRNAs and regulating different cellular processes, such as proliferation, apoptosis, inflammation, migration, and epithelial–mesenchymal transition (EMT). Recently, accumulative evidence has shown that the novel regulatory mechanism underlying the interaction among lncRNAs, miRNAs and messenger RNAs (mRNAs) plays a critical role in the pathophysiological processes of chronic inflammatory airway diseases. In this review, we comprehensively summarized the regulatory roles of the lncRNA–miRNA–mRNA network in different cell types and their potential roles as biomarkers, indicators of comorbidities or therapeutic targets for chronic inflammatory airway diseases, particularly chronic obstructive pulmonary disease (COPD) and asthma.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yu-Lin He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong-Fang Song
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi An
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Abdullah Altawil
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Ming Zhou
- Respiratory Department, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| | - Qiu-Yue Wang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| |
Collapse
|
10
|
Wei C, Huang L, Zheng Y, Cai X. Selective activation of cannabinoid receptor 2 regulates Treg/Th17 balance to ameliorate neutrophilic asthma in mice. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1015. [PMID: 34277815 PMCID: PMC8267324 DOI: 10.21037/atm-21-2778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Background The cannabinoid receptor 2 (CNR2) plays a critical role in relieving asthma, with the mechanism still unclear. We aimed to investigate the mechanism of the CNR2 agonist (β-caryophyllene, β-Car) in regulating the balance of regulatory T cells (Treg) and T helper cell 17 (Th17) and thus its role in asthma. Methods The study group of 50 pathogen-free female BALB/c mice were randomly divided at 6–8 weeks old into five groups of Control, Asthma, Asthma + β-Car (10 mg/kg), Asthma + β-Car + SR144528 (specific CNR2 antagonist, 3 mg/kg), and Asthma + β-Car + CMD178 (inhibitor of Treg cell, 10 mg/kg). ELISA was conducted to evaluate the main inflammatory cytokines [interleukin (IL)-6, IL-8, and tumor necrosis factor-α], and those secreted by Treg (transforming growth factor-β and IL-10), and Th17 (IL-17A and IL-22). Markers of Treg and Th17 cells were assessed by flow cytometry. In vitro, the CD4+ T cells were sorted and directed to differentiate to Treg and Th17 cells. The expression levels of CNR2, STAT5 and JNK1/2 were investigated by western blot and immunofluorescence assay. Results β-Car relieved neutrophilic asthma severity in mice by elevating the marker genes’ expression of Treg and inhibiting those of Th17, causing an increased proportion of Treg to Th17. β-Car also promoted the directed differentiation of CD4+ T cells into Treg, but not Th17. Activation of the CNR2 regulated the Treg/Th17 balance and relieved neutrophilic asthma possibly through promotion of phosphorylation of STAT5 and JNK1/2. Conclusions The effect of the selective CNR2 agonist activating STAT5 and JNK1/2 signaling was to change the Treg/Th17 balance and reduce the inflammatory reaction, thus ameliorating neutrophilic asthma in a mouse model.
Collapse
Affiliation(s)
- Chaochao Wei
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Haikou, China
| | - Linhui Huang
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Haikou, China
| | - Yamei Zheng
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Haikou, China
| | - Xingjun Cai
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Haikou, China
| |
Collapse
|
11
|
Li Y, Zhang L, Polverino F, Guo F, Hao Y, Lao T, Xu S, Li L, Pham B, Owen CA, Zhou X. Hedgehog interacting protein (HHIP) represses airway remodeling and metabolic reprogramming in COPD-derived airway smooth muscle cells. Sci Rep 2021; 11:9074. [PMID: 33907231 PMCID: PMC8079715 DOI: 10.1038/s41598-021-88434-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/07/2021] [Indexed: 02/05/2023] Open
Abstract
Although HHIP locus has been consistently associated with the susceptibility to COPD including airway remodeling and emphysema in genome-wide association studies, the molecular mechanism underlying this genetic association remains incompletely understood. By utilizing Hhip+/- mice and primary human airway smooth muscle cells (ASMCs), here we aim to determine whether HHIP haploinsufficiency increases airway smooth muscle mass by reprogramming glucose metabolism, thus contributing to airway remodeling in COPD pathogenesis. The mRNA levels of HHIP were compared in normal and COPD-derived ASMCs. Mitochondrial oxygen consumption rate and lactate levels in the medium were measured in COPD-derived ASMCs with or without HHIP overexpression as readouts of glucose oxidative phosphorylation and aerobic glycolysis rates. The proliferation rate was measured in healthy and COPD-derived ASMCs treated with or without 2-DG. Smooth muscle mass around airways was measured by immunofluorescence staining for α-smooth muscle actin (α-SMA) in lung sections from Hhip+/- mice and their wild type littermates, Hhip+/+ mice. Airway remodeling was assessed in Hhip+/- and Hhip+/- mice exposed to 6 months of cigarette smoke. Our results show HHIP inhibited aerobic glycolysis and represses cell proliferation in COPD-derived ASMCs. Notably, knockdown of HHIP in normal ASMCs increased PKM2 activity. Importantly, Hhip+/- mice demonstrated increased airway remodeling and increased intensity of α-SMA staining around airways compared to Hhip+/+ mice. In conclusion, our findings suggest that HHIP represses aerobic glycolysis and ASMCs hyperplasia, which may contribute to the increased airway remodeling in Hhip+/- mice.
Collapse
Affiliation(s)
- Yan Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, China.
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, China.
| | - Li Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Francesca Polverino
- Asthma and Airway Disease Research Center, University of Arizona, Medicine, Tucson, AZ, 85724, USA
| | - Feng Guo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yuan Hao
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Taotao Lao
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Shuang Xu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Lijia Li
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Betty Pham
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Mochizuki E, Kawai Y, Morikawa K, Ito Y, Kagoo N, Kubota T, Ichijyo K, Uehara M, Harada M, Matsuura S, Tsukui M, Koshimizu N. Difference in Local Lung Movement During Tidal Breathing Between COPD Patients and Asthma Patients Assessed by Four-dimensional Dynamic-ventilation CT Scan. Int J Chron Obstruct Pulmon Dis 2020; 15:3013-3023. [PMID: 33244227 PMCID: PMC7685382 DOI: 10.2147/copd.s273425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/27/2020] [Indexed: 11/23/2022] Open
Abstract
Background The validity of four-dimensional dynamic-ventilation CT scan for distinguishing COPD from asthma has not been established. Purpose To assess whether four-dimensional dynamic-ventilation CT scan can aid in the diagnosis of COPD by comparing local lung movement during tidal breathing between COPD and asthma. Patients and Methods Thirty-three COPD patients (30 males and three females; median age 74; range 44-89 years) and 11 asthma patients (five males and six females; median age 55; range: 32-75 years) underwent whole-lung dynamic-ventilation CT scan. CT data were reconstructed, one respiratory cycle to 10 phases, and in addtion we reconstructed threefold new phase data sets. We then analyzed local lung movement during tidal breathing using unpaired t-tests and chi-squared tests. Results The local lung movement in COPD patients was significantly smaller than in asthma patients, especially in the ventral part of the lung. This was so even in patients who had mild emphysema (Goddard score <8). Conclusion Quantitative evaluation using four-dimensional dynamic-ventilation CT scan demonstrated that local lung movement during tidal breathing, particularly in the ventral lung, was smaller in COPD than in asthma patients, which may help distinguish COPD from asthma.
Collapse
Affiliation(s)
- Eisuke Mochizuki
- Department of Respiratory Medicine, Fujieda Municipal Hospital, Fujieda 426-8677, Japan
| | - Yoshiihiro Kawai
- Department of Radiology, Fujieda Municipal Hospital, Fujieda 426-8677, Japan
| | - Keisuke Morikawa
- Department of Respiratory Medicine, Fujieda Municipal Hospital, Fujieda 426-8677, Japan
| | - Yutaro Ito
- Department of Respiratory Medicine, Fujieda Municipal Hospital, Fujieda 426-8677, Japan
| | - Namio Kagoo
- Department of Respiratory Medicine, Fujieda Municipal Hospital, Fujieda 426-8677, Japan
| | - Tsutomu Kubota
- Department of Respiratory Medicine, Fujieda Municipal Hospital, Fujieda 426-8677, Japan
| | - Koshiro Ichijyo
- Department of Respiratory Medicine, Fujieda Municipal Hospital, Fujieda 426-8677, Japan
| | - Masahiro Uehara
- Department of Respiratory Medicine, Fujieda Municipal Hospital, Fujieda 426-8677, Japan
| | - Masanori Harada
- Department of Respiratory Medicine, Fujieda Municipal Hospital, Fujieda 426-8677, Japan
| | - Shun Matsuura
- Department of Respiratory Medicine, Fujieda Municipal Hospital, Fujieda 426-8677, Japan
| | - Masaru Tsukui
- Department of Respiratory Medicine, Fujieda Municipal Hospital, Fujieda 426-8677, Japan
| | - Naoki Koshimizu
- Department of Respiratory Medicine, Fujieda Municipal Hospital, Fujieda 426-8677, Japan
| |
Collapse
|
13
|
Kim MH, Lee SH, Jin SC, Choi IY, Song EH, Ham SH, Yang WM. Anti-inflammatory effects of Samsoeum, a Korean medicine for health insurance, on chronic bronchitis caused by lipopolysaccharide in rats. Food Funct 2020; 11:6866-6874. [PMID: 32667370 DOI: 10.1039/d0fo01171a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Samsoeum (SSE), a Korean medicine, has been used to treat upper respiratory infection including residual coughs after catching a cold, and colds in patients with gastrointestinal disorder. In this study, we investigated the inhibitory effect of SSE against lipopolysaccharide (LPS)-induced bronchitis and characterized its optimal dosing range based on the improvement of SSE concentrations. MATERIALS AND METHODS Male Sprague Dawley rats were intra-nasally administered LPS on day 0, 3 and 6. 2 g kg-1 dose of SSE for rat was determined by the human equivalent dose formula and orally administered once a day from day 3 to day 6. To clarify the optimal administration dose of SSE, various doses including 0.5 (1/4 fold), 1 (1/2 fold), 6 (3 fold), 12 (6 fold), 24 (12 fold) and 36 g kg-1 (18 fold) were also orally administered. In addition, the molecular mechanism of SSE in mucin hyperproduction was investigated in LPS-sensitized A549 cells. RESULTS Oral administration of SSE ameliorated alveolar wall thickening and inflammatory cell infiltration of lung tissues in LPS-induced bronchitis at doses of 1/4 fold, 1/2 fold and 1 fold. The total cell and neutrophil numbers in bronchoalveolar lavage fluid (BALF) were reduced in the SSE-treated groups compared with the LPS group. In addition, 0.5, 1 and 2 g kg-1 of SSE suppressed LPS-induced mucin glycoprotein 5AC (MUC5AC) production in BALF. Furthermore, SSE treatment significantly inhibited the pro-inflammatory cytokines, resulting in the decrease of MUC5AC production by the JAK1/STAT6 signaling pathway. CONCLUSIONS 1, 2 and 6 g kg-1 of SSE ameliorated chronic bronchitis by inhibiting LPS-induced neutrophil infiltration and MUC5AC release in BALF. These findings suggested that SSE with 0.5-3-fold of general daily intake dose would be a therapeutic agent for chronic bronchitis.
Collapse
Affiliation(s)
- Mi Hye Kim
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Sun Haeng Lee
- Department of Clinical Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Seong Chul Jin
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - In Yeong Choi
- National Institute for Korean Medicine Development, 94 Hwarang-ro, Gyeongsan-si, Gyeongsangbuk-do, 38540, Republic of Korea
| | - Eun Hye Song
- National Institute for Korean Medicine Development, 94 Hwarang-ro, Gyeongsan-si, Gyeongsangbuk-do, 38540, Republic of Korea
| | - Seong Ho Ham
- National Institute for Korean Medicine Development, 94 Hwarang-ro, Gyeongsan-si, Gyeongsangbuk-do, 38540, Republic of Korea
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
14
|
Bu T, Wang LF, Yin YQ. How Do Innate Immune Cells Contribute to Airway Remodeling in COPD Progression? Int J Chron Obstruct Pulmon Dis 2020; 15:107-116. [PMID: 32021149 PMCID: PMC6966950 DOI: 10.2147/copd.s235054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Recently, the therapeutic potential of immune-modulation during the progression of chronic obstructive pulmonary disease (COPD) has been attracting increasing interest. However, chronic inflammatory response has been over-simplified in descriptions of the mechanism of COPD progression. As a form of first-line airway defense, epithelial cells exhibit phenotypic alteration, and participate in epithelial layer disorganization, mucus hypersecretion, and extracellular matrix deposition. Dendritic cells (DCs) exhibit attenuated antigen-presenting capacity in patients with advanced COPD. Immature DCs migrate into small airways, where they promote a pro-inflammatory microenvironment and bacterial colonization. In response to damage-associated molecular patterns (DAMPs) in lung tissue affected by COPD, neutrophils are excessively recruited and activated, where they promote a proteolytic microenvironment and fibrotic repair in small airways. Macrophages exhibit decreased phagocytosis in the large airways, while they demonstrate high pro-inflammatory potential in the small airways, and mediate alveolar destruction and chronic airway inflammation. Natural killer T (NKT) cells, eosinophils, and mast cells also play supplementary roles in COPD progression; however, their cellular activities are not yet entirely clear. Overall, during COPD progression, “exhausted” innate immune responses can be observed in the large airways. On the other hand, the innate immune response is enhanced in the small airways. Approaches that inhibit the inflammatory cascade, chemotaxis, or the activation of inflammatory cells could possibly delay the progression of airway remodeling in COPD, and may thus have potential clinical significance.
Collapse
Affiliation(s)
- Tegeleqi Bu
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Li Fang Wang
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Yi Qing Yin
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
15
|
Tensin1 expression and function in chronic obstructive pulmonary disease. Sci Rep 2019; 9:18942. [PMID: 31831813 PMCID: PMC6908681 DOI: 10.1038/s41598-019-55405-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/25/2019] [Indexed: 11/18/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) constitutes a major cause of morbidity and mortality. Genome wide association studies have shown significant associations between airflow obstruction or COPD with a non-synonymous SNP in the TNS1 gene, which encodes tensin1. However, the expression, cellular distribution and function of tensin1 in human airway tissue and cells are unknown. We therefore examined these characteristics in tissue and cells from controls and people with COPD or asthma. Airway tissue was immunostained for tensin1. Tensin1 expression in cultured human airway smooth muscle cells (HASMCs) was evaluated using qRT-PCR, western blotting and immunofluorescent staining. siRNAs were used to downregulate tensin1 expression. Tensin1 expression was increased in the airway smooth muscle and lamina propria in COPD tissue, but not asthma, when compared to controls. Tensin1 was expressed in HASMCs and upregulated by TGFβ1. TGFβ1 and fibronectin increased the localisation of tensin1 to fibrillar adhesions. Tensin1 and α-smooth muscle actin (αSMA) were strongly co-localised, and tensin1 depletion in HASMCs attenuated both αSMA expression and contraction of collagen gels. In summary, tensin1 expression is increased in COPD airways, and may promote airway obstruction by enhancing the expression of contractile proteins and their localisation to stress fibres in HASMCs.
Collapse
|
16
|
Novel phosphodiesterases inhibitors from the group of purine-2,6-dione derivatives as potent modulators of airway smooth muscle cell remodelling. Eur J Pharmacol 2019; 865:172779. [PMID: 31705904 DOI: 10.1016/j.ejphar.2019.172779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
Airway remodelling (AR) is an important pathological feature of chronic asthma and chronic obstructive pulmonary disease. The etiology of AR is complex and involves both lung structural and immune cells. One of the main contributors to airway remodelling is the airway smooth muscle (ASM), which is thickened by asthma, becomes more contractile and produces more extracellular matrix. As a second messenger, adenosine 3',5'-cyclic monophosphate (cAMP) has been shown to contribute to ASM cell (ASMC) relaxation as well as to anti-remodelling effects in ASMC. Phosphodiesterase (PDE) inhibitors have drawn attention as an interesting new group of potential anti-inflammatory and anti-remodelling drugs. Recently, new hydrazide and amide purine-2,6-dione derivatives with anti-inflammatory properties have been synthesized by our team (compounds 1 and 2). We expanded our study of their PDE selectivity profile, ability to increase intracellular cAMP levels, metabolic stability and, above all, their capacity to modulate cell responses associated with ASMC remodelling. The results show that both compounds have subtype specificity for several PDE isoforms (including inhibition of PDE1, PDE3, PDE4 and PDE7). Interestingly, such combined PDE subtype inhibition exerts improved anti-remodelling efficacies against several ASMC-induced responses such as proliferation, contractility, extracellular matrix (ECM) protein expression and migration when compared to other non-selective and selective PDE inhibitors. Our findings open novel perspectives in the search for new chemical entities with dual anti-inflammatory and anti-remodelling profiles in the group of purine-2,6-dione derivatives as broad-spectrum PDE inhibitors.
Collapse
|
17
|
Sotty J, Garçon G, Denayer FO, Alleman LY, Saleh Y, Perdrix E, Riffault V, Dubot P, Lo-Guidice JM, Canivet L. Toxicological effects of ambient fine (PM 2.5-0.18) and ultrafine (PM 0.18) particles in healthy and diseased 3D organo-typic mucocilary-phenotype models. ENVIRONMENTAL RESEARCH 2019; 176:108538. [PMID: 31344532 DOI: 10.1016/j.envres.2019.108538] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/17/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
The knowledge of the underlying mechanisms by which particulate matter (PM) exerts its health effects is still incomplete since it may trigger various symptoms as some persons may be more susceptible than others. Detailed studies realized in more relevant in vitro models are highly needed. Healthy normal human bronchial epithelial (NHBE), asthma-diseased human bronchial epithelial (DHBE), and COPD-DHBE cells, differentiated at the air-liquid interface, were acutely or repeatedly exposed to fine (i.e., PM2.5-0.18, also called FP) and quasi-ultrafine (i.e., PM0.18, also called UFP) particles. Immunofluorescence labelling of pan-cytokeratin, MUC5AC, and ZO-1 confirmed their specific cell-types. Baselines of the inflammatory mediators secreted by all the cells were quite similar. Slight changes of TNFα, IL-1β, IL-6, IL-8, GM-CSF, MCP-1, and/or TGFα, and of H3K9 histone acetylation supported a higher inflammatory response of asthma- and especially COPD-DHBE cells, after exposure to FP and especially UFP. At baseline, 35 differentially expressed genes (DEG) in asthma-DHBE, and 23 DEG in COPD-DHBE, compared to NHBE cells, were reported. They were involved in biological processes implicated in the development of asthma and COPD diseases, such as cellular process (e.g., PLA2G4C, NLRP1, S100A5, MUC1), biological regulation (e.g., CCNE1), developmental process (e.g., WNT10B), and cell component organization and synthesis (e.g., KRT34, COL6A1, COL6A2). In all the FP or UFP-exposed cell models, DEG were also functionally annotated to the chemical metabolic process (e.g., CYP1A1, CYP1B1, CYP1A2) and inflammatory response (e.g., EREG). Another DEG, FGF-1, was only down-regulated in asthma and specially COPD-DHBE cells repeatedly exposed. While RAB37 could help to counteract the down-regulation of FGF-1 in asthma-DHBE cells, the deregulation of FGR, WNT7B, VIPR1, and PPARGC1A could dramatically contribute to make it worse in COPD-DHBE cells. Taken together, these data contributed to support the highest effects of UFP versus FP and highest sensitivity of asthma- and notably COPD-DHBE versus NHBE cells.
Collapse
Affiliation(s)
- J Sotty
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - G Garçon
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - F-O Denayer
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - L-Y Alleman
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - Y Saleh
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - E Perdrix
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - V Riffault
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - P Dubot
- MCMC - ICMPE UMR 7182, Rue H. Dunant, 94320 Thiais, France
| | - J-M Lo-Guidice
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - L Canivet
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| |
Collapse
|
18
|
Hao W, Li M, Zhang C, Zhang Y, Wang P. Inflammatory mediators in exhaled breath condensate and peripheral blood of healthy donors and stable COPD patients. Immunopharmacol Immunotoxicol 2019; 41:224-230. [PMID: 31046512 DOI: 10.1080/08923973.2019.1609496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/04/2019] [Accepted: 04/14/2019] [Indexed: 01/09/2023]
Abstract
Objective: The aim of this work was to compare matrix metalloproteinase-9 and -12, tissue inhibitor of metalloproteinase-1 and -4, and neutrophil elastase in exhaled breath condensate (EBC) and peripheral blood of patients with COPD. Methods: Peripheral blood and EBC samples from COPD patients and healthy donors were collected. In serum and EBC, MMP-9, MMP-12, NE, TIMP-1, and TIMP-4 proteins were detected by ELISA. The mRNA expression levels of MMP-9, MMP-12, NE, TIMP-1, and TIMP-4 in peripheral blood mononuclear cells (PBMCs) were analyzed by qRT-PCR. Results: The protein levels of MMP-9 (p=.034) and MMP-12 (p=.041) in the EBC of COPD smokers were higher than those of COPD never-smokers. The concentrations of TIMP-1 (p=.072) and TIMP-4 (p=.084) in the EBC of COPD smokers were higher than those of COPD never-smokers; however, the difference was not statistically significant. MMP-9 (r=-0.78, p<.0001) and TIMP-1 (r=-0.71, p<.0001) levels in EBC were significantly negatively correlated with pulmonary function FEV1%pred. The protein levels of MMP-12 (r=-0.37, p=.034) and TIMP-4 (r=-0.34, p=.041) were also negatively correlated with FEV1%pred. The expression of MMP-9, MMP-12, NE, TIMP-1, and TIMP-4 in PBMCs and serum of COPD smokers were significantly higher than those of control never-smokers (p<.05). Conclusions: Exhaled MMP-9, MMP-12, TIMP-1, and TIMP-4 levels increased in stable COPD patients and were negatively correlated with FEV1%pred, which suggests the usefulness of their measurement in EBC for the monitoring of airway inflammation. However, to better assess their diagnostic or prognostic value, larger studies are necessary.
Collapse
Affiliation(s)
- Wendong Hao
- a Department of Respiratory Medicine , The Affiliated Hospital of Yan'an University , Yan'an , People's Republic of China
- b Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Manxiang Li
- b Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Cailian Zhang
- a Department of Respiratory Medicine , The Affiliated Hospital of Yan'an University , Yan'an , People's Republic of China
| | - Yunqing Zhang
- a Department of Respiratory Medicine , The Affiliated Hospital of Yan'an University , Yan'an , People's Republic of China
| | - Ping Wang
- a Department of Respiratory Medicine , The Affiliated Hospital of Yan'an University , Yan'an , People's Republic of China
| |
Collapse
|
19
|
Bhatt SP, Washko GR, Hoffman EA, Newell JD, Bodduluri S, Diaz AA, Galban CJ, Silverman EK, San José Estépar R. Imaging Advances in Chronic Obstructive Pulmonary Disease. Insights from the Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) Study. Am J Respir Crit Care Med 2019; 199:286-301. [PMID: 30304637 PMCID: PMC6363977 DOI: 10.1164/rccm.201807-1351so] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/02/2018] [Indexed: 12/27/2022] Open
Abstract
The Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) study, which began in 2007, is an ongoing multicenter observational cohort study of more than 10,000 current and former smokers. The study is aimed at understanding the etiology, progression, and heterogeneity of chronic obstructive pulmonary disease (COPD). In addition to genetic analysis, the participants have been extensively characterized by clinical questionnaires, spirometry, volumetric inspiratory and expiratory computed tomography, and longitudinal follow-up, including follow-up computed tomography at 5 years after enrollment. The purpose of this state-of-the-art review is to summarize the major advances in our understanding of COPD resulting from the imaging findings in the COPDGene study. Imaging features that are associated with adverse clinical outcomes include early interstitial lung abnormalities, visual presence and pattern of emphysema, the ratio of pulmonary artery to ascending aortic diameter, quantitative evaluation of emphysema, airway wall thickness, and expiratory gas trapping. COPD is characterized by the early involvement of the small conducting airways, and the addition of expiratory scans has enabled measurement of small airway disease. Computational advances have enabled indirect measurement of nonemphysematous gas trapping. These metrics have provided insights into the pathogenesis and prognosis of COPD and have aided early identification of disease. Important quantifiable extrapulmonary findings include coronary artery calcification, cardiac morphology, intrathoracic and extrathoracic fat, and osteoporosis. Current active research includes identification of novel quantitative measures for emphysema and airway disease, evaluation of dose reduction techniques, and use of deep learning for phenotyping COPD.
Collapse
Affiliation(s)
- Surya P. Bhatt
- UAB Lung Imaging Core and UAB Lung Health Center, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | | | - Eric A. Hoffman
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - John D. Newell
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Sandeep Bodduluri
- UAB Lung Imaging Core and UAB Lung Health Center, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | | | - Craig J. Galban
- Department of Radiology and Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan; and
| | | | - Raúl San José Estépar
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - for the COPDGene Investigators
- UAB Lung Imaging Core and UAB Lung Health Center, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
- Division of Pulmonary and Critical Care Medicine
- Channing Division of Network Medicine, and
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Department of Radiology and Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan; and
- Department of Radiology, National Jewish Health, Denver, Colorado
| |
Collapse
|
20
|
Chakraborty A, Boer JC, Selomulya C, Plebanski M, Royce SG. Insights into endotoxin-mediated lung inflammation and future treatment strategies. Expert Rev Respir Med 2018; 12:941-955. [PMID: 30221563 DOI: 10.1080/17476348.2018.1523009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Airway inflammatory disorders are prevalent diseases in need of better management and new therapeutics. Immunotherapies offer a solution to the problem of corticosteroid resistance. Areas covered: The current review focuses on lipopolysaccharide (Gram-negative bacterial endotoxin)-mediated inflammation in the lung and the animal models used to study related diseases. Endotoxin-induced lung pathology is usually initiated by antigen presenting cells (APC). We will discuss different subsets of APC including lung dendritic cells and macrophages, and their role in responding to endotoxin and environmental challenges. Expert commentary: The pharmacotherapeutic considerations to combat airway inflammation should cost-effectively improve quality of life with sustainable and safe strategies. Selectively targeting APCs in the lung offer the potential for a promising new strategy for the better management and treatment of inflammatory lung disease.
Collapse
Affiliation(s)
- Amlan Chakraborty
- a Department of Chemical Engineering , Monash University , Clayton , Australia.,b Department of Immunology and Pathology , Central Clinical School, Monash University , Melbourne , Australia
| | - Jennifer C Boer
- b Department of Immunology and Pathology , Central Clinical School, Monash University , Melbourne , Australia
| | - Cordelia Selomulya
- a Department of Chemical Engineering , Monash University , Clayton , Australia
| | - Magdalena Plebanski
- b Department of Immunology and Pathology , Central Clinical School, Monash University , Melbourne , Australia.,c School of Health and Biomedical Sciences and Enabling Capability platforms, Biomedical and Health Innovation , RMIT University , Melbourne , Australia
| | - Simon G Royce
- d Central Clinical School , Monash University , Clayton , Victoria , Australia.,e Department of Pharmacology , Monash University , Clayton , Australia
| |
Collapse
|
21
|
Wang Z, Li R, Zhong R. Extracellular matrix promotes proliferation, migration and adhesion of airway smooth muscle cells in a rat model of chronic obstructive pulmonary disease via upregulation of the PI3K/AKT signaling pathway. Mol Med Rep 2018; 18:3143-3152. [PMID: 30066869 PMCID: PMC6102654 DOI: 10.3892/mmr.2018.9320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Extracellular matrix (ECM) creates the tissue microenvironment and serves a role in airway wall remodeling in chronic obstructive pulmonary disease (COPD). However, the biological function of ECM in COPD remains to be elucidated. In the present study, 24 healthy Sprague Dawley rats were randomized to normal and COPD groups. COPD was established by intratracheal injection with lipopolysaccharide over 30 days. Subsequently, airway smooth muscle cells (ASMCs) were isolated from rats and served as a model to assess the effects of three ECM components, including collagen type I, laminin and collagen type III (COL‑3). Functional analysis in vitro, using cell counting kit‑8, flow cytometry, wound healing and cell adhesion assays indicated that the ECM components could promote cell proliferation, cell cycle progression, migration and adhesion ability, respectively. Furthermore, as demonstrated by ELISA, treatment with ECM components increased levels of C‑X‑C motif chemokine ligand 1 (CXCL1), CXCL8 and interleukin‑6 in ASMCs. Expression of transforming growth factor β1 (TGFβ1), fibroblast growth factor‑1 (FGF‑1) and tissue inhibitor of metalloproteinase 1 (TIMP1) was increased, and expression of matrix metalloproteinase‑9 (MMP‑9) was decreased following treatment with ECM components, as demonstrated by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. Additionally, specific activation of phosphoinositide 3‑kinase (PI3K) signaling, using insulin‑like growth factor‑1 (IGF‑1), promoted cell proliferation and cell cycle progression, increased expression of TGFβ1, FGF‑1, PI3K, AKT, phospho‑AKT, serine/threonine‑protein kinase mTOR (mTOR), phospho‑mTOR and TIMP1, promoted cell migration capacity and reduced the expression level of MMP‑9 in cells from COPD rats. Consistently, PI3K inhibitor LY294002 exerted the opposite effect to IGF‑1. In conclusion, ECM proteins promoted proliferation, migration and adhesion of ASMCs form rat models of COPD through activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Zhengyan Wang
- Department of Respiratory Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| | - Rui Li
- Department of Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| | - Rui Zhong
- Second Affiliated Hospital of Hubei University of Medicine, Suizhou, Hubei 442000, P.R. China
| |
Collapse
|
22
|
Borghardt JM, Kloft C, Sharma A. Inhaled Therapy in Respiratory Disease: The Complex Interplay of Pulmonary Kinetic Processes. Can Respir J 2018; 2018:2732017. [PMID: 30018677 PMCID: PMC6029458 DOI: 10.1155/2018/2732017] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/26/2018] [Accepted: 05/10/2018] [Indexed: 11/18/2022] Open
Abstract
The inhalation route is frequently used to administer drugs for the management of respiratory diseases such as asthma or chronic obstructive pulmonary disease. Compared with other routes of administration, inhalation offers a number of advantages in the treatment of these diseases. For example, via inhalation, a drug is directly delivered to the target organ, conferring high pulmonary drug concentrations and low systemic drug concentrations. Therefore, drug inhalation is typically associated with high pulmonary efficacy and minimal systemic side effects. The lung, as a target, represents an organ with a complex structure and multiple pulmonary-specific pharmacokinetic processes, including (1) drug particle/droplet deposition; (2) pulmonary drug dissolution; (3) mucociliary and macrophage clearance; (4) absorption to lung tissue; (5) pulmonary tissue retention and tissue metabolism; and (6) absorptive drug clearance to the systemic perfusion. In this review, we describe these pharmacokinetic processes and explain how they may be influenced by drug-, formulation- and device-, and patient-related factors. Furthermore, we highlight the complex interplay between these processes and describe, using the examples of inhaled albuterol, fluticasone propionate, budesonide, and olodaterol, how various sequential or parallel pulmonary processes should be considered in order to comprehend the pulmonary fate of inhaled drugs.
Collapse
Affiliation(s)
- Jens Markus Borghardt
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Ashish Sharma
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| |
Collapse
|
23
|
Abstract
Activation of TGF-β1 initiates a program of temporary collagen accumulation important to wound repair in many organs. However, the outcome of temporary extracellular matrix strengthening all too frequently morphs into progressive fibrosis, contributing to morbidity and mortality worldwide. To avoid this maladaptive outcome, TGF-β1 signaling is regulated at numerous levels and intimately connected to feedback signals that limit accumulation. Here, we examine the current understanding of the core functions of TGF-β1 in promoting collagen accumulation, parallel pathways that promote physiological repair, and pathological triggers that tip the balance toward progressive fibrosis. Implicit in better understanding of these processes is the identification of therapeutic opportunities that will need to be further advanced to limit or reverse organ fibrosis.
Collapse
Affiliation(s)
- Kevin K Kim
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109
| | - Dean Sheppard
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| | - Harold A Chapman
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
24
|
Yang L, Jiao X, Wu J, Zhao J, Liu T, Xu J, Ma X, Cao L, Liu L, Liu Y, Chi J, Zou M, Li S, Xu J, Dong L. Cordyceps sinensis inhibits airway remodeling in rats with chronic obstructive pulmonary disease. Exp Ther Med 2018; 15:2731-2738. [PMID: 29456676 PMCID: PMC5795554 DOI: 10.3892/etm.2018.5777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022] Open
Abstract
Cordyceps sinensis is a traditional Chinese herbal medicine that has been used for centuries in Asia as a tonic to soothe the lung for the treatment of respiratory diseases. The aim of the present study was to determine the effects of C. sinensis on airway remodeling in chronic obstructive pulmonary disease (COPD) and investigate the underlying molecular mechanisms. Rats with COPD were orally administered C. sinensis at low, moderate or high doses (2.5, 5 or 7.5 g/kg/day, respectively) for 12 weeks. Airway tissue histopathology, lung inflammation and airway remodeling were evaluated. C. sinensis treatment significantly ameliorated airway wall thickening, involving collagen deposition, airway wall fibrosis, smooth muscle hypertrophy and epithelial hyperplasia in model rats with COPD. Additionally, C. sinensis administration in rats with COPD reduced inflammatory cell accumulation and decreased inflammatory cytokine production, including tumor necrosis factor-α, interleukin-8 and transforming growth factor (TGF)-β1 in bronchoalveolar lavage fluid. Meanwhile, the increased levels of α-smooth muscle actin and collagen I in the COPD group were also markedly decreased by C. sinensis treatment. Furthermore, compared with untreated rats with COPD, C. sinensis reduced the expression level of phosphorylated (p)-Smad2, p-Smad3, TGF-β1 and its receptors, with the concomitant increased expression of Smad7 in the lungs of rats with COPD. These results indicated that treatment with C. sinensis may be a useful approach for COPD therapy.
Collapse
Affiliation(s)
- Lei Yang
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Tuberculosis, Shandong Provincial Chest Hospital, Jinan, Shandong 250013, P.R. China
| | - Xingai Jiao
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jinxiang Wu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jiping Zhao
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tian Liu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jianfeng Xu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Pulmonary Medicine, Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Xiaohui Ma
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Tuberculosis, Shandong Provincial Chest Hospital, Jinan, Shandong 250013, P.R. China
| | - Liuzao Cao
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lin Liu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yahui Liu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jingyu Chi
- Department of Tuberculosis, Shandong Provincial Chest Hospital, Jinan, Shandong 250013, P.R. China
| | - Minfang Zou
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shuo Li
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jiawei Xu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Liang Dong
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
25
|
Asthma and COPD: Similarities and Differences in the Pathophysiology, Diagnosis and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 910:31-8. [PMID: 26820733 DOI: 10.1007/5584_2015_206] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are two of the most common chronic lung diseases worldwide. Distinguishing between these different pulmonary diseases can be difficult in practice because of symptomatic similarities. A definitive diagnosis is essential for correct treatment. This review article presents the different symptoms of these two chronic inflammatory lung diseases following a selective search of the PubMed database for relevant literature published between 1996 and 2012. While cough occurs in both diseases, asthmatics often have a dry cough mainly at night, which is often associated with allergies. In contrast, COPD is usually caused by years of smoking. Paroxysmal dyspnea, which occurs in asthma, is characterized by shortness of breath, while in COPD it occurs during physical exertion in early stages and at rest in later stages of the disease. Asthma often begins in childhood or adolescence, whereas COPD occurs mainly in smokers in later life. It is possible to live with asthma into old age, whereas the life expectancy of patients with COPD is significantly limited. Currently, there is no general curative treatment for either disorder.
Collapse
|
26
|
Abstract
Increased levels of tumor necrosis factor (TNF) α have been linked to a number of pulmonary inflammatory diseases including asthma, chronic obstructive pulmonary disease (COPD), acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), sarcoidosis, and interstitial pulmonary fibrosis (IPF). TNFα plays multiple roles in disease pathology by inducing an accumulation of inflammatory cells, stimulating the generation of inflammatory mediators, and causing oxidative and nitrosative stress, airway hyperresponsiveness and tissue remodeling. TNFα-targeting biologics, therefore, present a potentially highly efficacious treatment option. This review summarizes current knowledge on the role of TNFα in pulmonary disease pathologies, with a focus on the therapeutic potential of TNFα-targeting agents in treating inflammatory lung diseases.
Collapse
Affiliation(s)
- Rama Malaviya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
27
|
Kamalaldin NA, Sulaiman SA, Yusop MR, Yahaya B. Does Inhalation of Virgin Coconut Oil Accelerate Reversal of Airway Remodelling in an Allergic Model of Asthma? Int J Inflam 2017; 2017:8741851. [PMID: 28660089 PMCID: PMC5474257 DOI: 10.1155/2017/8741851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/18/2017] [Accepted: 04/30/2017] [Indexed: 11/18/2022] Open
Abstract
Many studies have been done to evaluate the effect of various natural products in controlling asthma symptoms. Virgin coconut oil (VCO) is known to contain active compounds that have beneficial effects on human health and diseases. The objective of this study was to evaluate the effect of VCO inhalation on airway remodelling in a rabbit model of allergic asthma. The effects of VCO inhalation on infiltration of airway inflammatory cells, airway structures, goblet cell hyperplasia, and cell proliferation following ovalbumin induction were evaluated. Allergic asthma was induced by a combination of ovalbumin and alum injection and/or followed by ovalbumin inhalation. The effect of VCO inhalation was then evaluated via the rescue or the preventive route. Percentage of inflammatory cells infiltration, thickness of epithelium and mucosa regions, and the numbers of goblet and proliferative cells were reduced in the rescue group but not in preventive group. Analysis using a gas chromatography-mass spectrometry found that lauric acid and capric acid were among the most abundant fatty acids present in the sample. Significant improvement was observed in rescue route in alleviating the asthma symptoms, which indicates the VCO was able to relieve asthma-related symptoms more than preventing the onset of asthma.
Collapse
Affiliation(s)
- N. A. Kamalaldin
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - S. A. Sulaiman
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - M. R. Yusop
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
- School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - B. Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| |
Collapse
|
28
|
Ben Nasr H, Bchir S, Ben Anes A, Amri A, Sakhana Y, Benzarti M, Garrouch A, Tabka Z, Chahed K. The -786 T/C polymorphism of NOS3 gene is a susceptibility marker of COPD among Tunisians that correlates with nitric oxide levels and airflow obstruction. Cytokine 2017; 93:66-73. [PMID: 28526204 DOI: 10.1016/j.cyto.2017.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The goal of this study was to examine the role of G894T (rs1799983), -786T/C (rs3918161) and a 27 bp variable number of tandem repeats (VNTR) 4B/4A of NOS3 gene on the risk and severity of COPD. METHODS The study included 194 controls and 138 COPD patients. NOS3 G894T, -786T/C and 4B/4A variants were determined by PCR analysis based on the banding pattern on gel electrophoresis. Pulmonary function was evaluated using body plethysmography. The levels of nitric oxide, peroxynitrite and lipid peroxides (T-BARS) were determined using spectrophotometric methods. Levels of serum IL-6, TNF-α and TGFβ were determined by ELISA. RESULTS In case-control studies, both G894T and -786T/C variants were associated with COPD risk. A significantly increased risk of COPD was found with the NOS3894T and -786C alleles (OR:1.93, P=0.001; OR:2.05, P=0.001, respectively). No significant impact of the G894T and 4B/4A SNPs was found on COPD severity, while a significant correlation was retrieved between the NOS3 -786T/C variation and advanced stages (OR: 1.89, P=0.009). In addition, COPD patients with the -786CC genotype exhibited lower FEV1% values in comparison to -786TT carriers (48±3.28 vs. 58.06±2.3, P=0.01, respectively). Patients having the -786CC genotype presented lower plasma levels of nitric oxide and higher T-BARS in comparison to -786TT individuals (173.22±13.4 vs. 228.93±16.8, P=0.01; 1.8±0.15 vs. 1.22±0.15, P=0.01, respectively). CONCLUSION This study provides the first evidence for the association of G894T, -786T/C variants with COPD risk among Tunisians. The -786T/C variation correlates with enhanced airflow limitation. This finding could be related to altered levels of nitric oxide and enhanced lipid peroxides among patients carrying the -786CC genotype.
Collapse
Affiliation(s)
- Hela Ben Nasr
- Unité de Recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire "Biologie, Medecine et Santé, Faculté de Medecine Ibn el Jazzar, Sousse, Tunisia; Institut des Sciences Infirmières de Sousse, Tunisia
| | - Sarra Bchir
- Unité de Recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire "Biologie, Medecine et Santé, Faculté de Medecine Ibn el Jazzar, Sousse, Tunisia
| | - Amel Ben Anes
- Unité de Recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire "Biologie, Medecine et Santé, Faculté de Medecine Ibn el Jazzar, Sousse, Tunisia
| | - Asma Amri
- Unité de Recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire "Biologie, Medecine et Santé, Faculté de Medecine Ibn el Jazzar, Sousse, Tunisia
| | - Yosra Sakhana
- Unité de Recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire "Biologie, Medecine et Santé, Faculté de Medecine Ibn el Jazzar, Sousse, Tunisia
| | - Mohamed Benzarti
- Service de Pneumo-Allergologie, CHU Farhat Hached, Sousse, Tunisia
| | | | - Zouhair Tabka
- Unité de Recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire "Biologie, Medecine et Santé, Faculté de Medecine Ibn el Jazzar, Sousse, Tunisia
| | - Karim Chahed
- Unité de Recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire "Biologie, Medecine et Santé, Faculté de Medecine Ibn el Jazzar, Sousse, Tunisia; Département de Biologie, Faculté des Sciences de Sfax, Tunisia.
| |
Collapse
|
29
|
Luettich K, Talikka M, Lowe FJ, Haswell LE, Park J, Gaca MD, Hoeng J. The Adverse Outcome Pathway for Oxidative Stress-Mediated EGFR Activation Leading to Decreased Lung Function. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2016.0032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Karsta Luettich
- Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Neuchâtel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Neuchâtel, Switzerland
| | - Frazer J. Lowe
- British American Tobacco (Investments) Ltd., Southampton, United Kingdom
| | - Linsey E. Haswell
- British American Tobacco (Investments) Ltd., Southampton, United Kingdom
| | | | - Marianna D. Gaca
- British American Tobacco (Investments) Ltd., Southampton, United Kingdom
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Neuchâtel, Switzerland
| |
Collapse
|
30
|
Bchir S, Nasr HB, Bouchet S, Benzarti M, Garrouch A, Tabka Z, Susin S, Chahed K, Bauvois B. Concomitant elevations of MMP-9, NGAL, proMMP-9/NGAL and neutrophil elastase in serum of smokers with chronic obstructive pulmonary disease. J Cell Mol Med 2016; 21:1280-1291. [PMID: 28004483 PMCID: PMC5487915 DOI: 10.1111/jcmm.13057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022] Open
Abstract
A growing body of evidence points towards smoking‐related phenotypic differences in chronic obstructive pulmonary disease (COPD). As COPD is associated with systemic inflammation, we determined whether smoking status is related to serum levels of matrix metalloproteinase‐9 (pro‐ and active MMP‐9), neutrophil gelatinase‐associated lipocalin (NGAL) and the proMMP‐9/NGAL complex in patients with COPD. Serum samples were collected in 100 stable‐phase COPD patients (82 smokers, 18 never‐smokers) and 28 healthy adults (21 smokers, 7 never‐smokers). Serum levels of studied factors were measured in ELISA. Our data provide the first evidence of simultaneously elevated serum levels of MMP‐9, NGAL and proMMP‐9/NGAL in COPD smokers. While the triad discriminated between smokers and non‐smokers in the COPD group, MMP‐9 and proMMP‐9/NGAL (but not NGAL) discriminated between smokers with and without COPD. Adjustment for age and smoking pack‐years did not alter the findings. Serum MMP‐9, NGAL and proMMP‐9/NGAL levels were not correlated with the GOLD stage or FEV1 decline. Furthermore, serum levels of neutrophil elastase (NE) and MMP‐3 (but not of IL‐6 and MMP‐12) were also higher in COPD smokers than in healthy smokers before and after adjustment for age and pack‐years. Among COPD smokers, levels of MMP‐9, NGAL and proMMP‐9/NGAL were positively correlated with NE (P < 0.0001) but not with the remaining factors. Gelatin zymography detected proMMP‐9 in serum samples of healthy and COPD smoking groups. Our results suggest that associated serum levels of proMMP‐9, NGAL, proMMP‐9/NGAL and NE may reflect the state of systemic inflammation in COPD related to cigarette smoking.
Collapse
Affiliation(s)
- Sarra Bchir
- Unité de recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia.,Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia.,Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Universités UPMC Paris 06, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Hela Ben Nasr
- Unité de recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Sandrine Bouchet
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Universités UPMC Paris 06, Université Paris Descartes Sorbonne Paris Cité, Paris, France.,Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Mohamed Benzarti
- Service de Pneumo-Allergologie, CHU Farhat Hached, Sousse, Tunisia
| | | | - Zouhair Tabka
- Unité de recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Santos Susin
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Universités UPMC Paris 06, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Karim Chahed
- Unité de recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia.,Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Universités UPMC Paris 06, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| |
Collapse
|
31
|
Singh B, Jana SK, Ghosh N, Das SK, Joshi M, Bhattacharyya P, Chaudhury K. Metabolomic profiling of doxycycline treatment in chronic obstructive pulmonary disease. J Pharm Biomed Anal 2016; 132:103-108. [PMID: 27697570 DOI: 10.1016/j.jpba.2016.09.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/07/2016] [Accepted: 09/24/2016] [Indexed: 11/24/2022]
Abstract
Serum metabolic profiling can identify the metabolites responsible for discrimination between doxycycline treated and untreated chronic obstructive pulmonary disease (COPD) and explain the possible effect of doxycycline in improving the disease conditions. 1H nuclear magnetic resonance (NMR)-based metabolomics was used to obtain serum metabolic profiles of 60 add-on doxycycline treated COPD patients and 40 patients receiving standard therapy. The acquired data were analyzed using multivariate principal component analysis (PCA), partial least-squares-discriminant analysis (PLS-DA), and orthogonal projection to latent structure with discriminant analysis (OPLS-DA). A clear metabolic differentiation was apparent between the pre and post doxycycline treated group. The distinguishing metabolites lactate and fatty acids were significantly down-regulated and formate, citrate, imidazole and l-arginine upregulated. Lactate and folate are further validated biochemically. Metabolic changes, such as decreased lactate level, inhibited arginase activity and lowered fatty acid level observed in COPD patients in response to add-on doxycycline treatment, reflect the anti-inflammatory action of the drug. Doxycycline as a possible therapeutic option for COPD seems promising.
Collapse
Affiliation(s)
- Brajesh Singh
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Saikat K Jana
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh, India
| | - Nilanjana Ghosh
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Soumen K Das
- Institute of Pulmocare and Research, Kolkata, India
| | - Mamata Joshi
- National Facility for High-field NMR, Tata Institute of Fundamental Research, Mumbai Pin-400005, India
| | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
| |
Collapse
|
32
|
Borghardt JM, Weber B, Staab A, Kunz C, Kloft C. Model-based evaluation of pulmonary pharmacokinetics in asthmatic and COPD patients after oral olodaterol inhalation. Br J Clin Pharmacol 2016; 82:739-53. [PMID: 27145733 PMCID: PMC5338120 DOI: 10.1111/bcp.12999] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/08/2016] [Accepted: 04/28/2016] [Indexed: 12/11/2022] Open
Abstract
AIMS Olodaterol is an orally inhaled β2 -agonist for treatment of chronic obstructive pulmonary disease (COPD). The aims of this population pharmacokinetic (PK) analysis were: (1) to investigate systemic PK and thereby make inferences about pulmonary PK in asthmatic patients, COPD patients and healthy volunteers, and (2) to assess whether differences in pulmonary efficacy might be expected based on pulmonary PK characteristics. METHODS Plasma and urine data after olodaterol inhalation were available from six clinical trials comprising 710 patients and healthy volunteers (single and multiple dosing). To investigate the relevance of covariates, full fixed-effect modelling was applied based on a previously developed healthy volunteer systemic disposition model. RESULTS A pulmonary model with three parallel absorption processes best described PK after inhalation in patients. The pulmonary bioavailable fraction (PBIO) was 48.7% (46.1-51.3%, 95% confidence interval) in asthma, and 53.6% (51.1-56.2%) in COPD. In asthma 87.2% (85.4-88.8%) of PBIO was slowly absorbed with an absorption half-life of 18.5 h (16.3-21.4 h), whereas in COPD 80.1% (78.0-82.2%) was absorbed with a half-life of 37.8 h (31.1-47.8 h). In healthy volunteers absorption was faster, with a half-life of 18.5 h (16.3-21.4 h) of the slowest absorbed process, which characterized 74.6% (69.1-80.2%) of PBIO. CONCLUSIONS The modelling approach successfully described data after olodaterol inhalation in patients and healthy volunteers. Slow pulmonary absorption was demonstrated both in asthma and COPD. Absorption characteristics after olodaterol inhalation indicated even more beneficial lung targeting in patients compared to healthy volunteers.
Collapse
Affiliation(s)
- Jens Markus Borghardt
- Institute of Pharmacy, Department of Clinical Pharmacy and BiochemistryFreie Universität Berlin12169BerlinGermany
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Benjamin Weber
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Alexander Staab
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Christina Kunz
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Charlotte Kloft
- Institute of Pharmacy, Department of Clinical Pharmacy and BiochemistryFreie Universität Berlin12169BerlinGermany
| |
Collapse
|
33
|
The Expression of NOX4 in Smooth Muscles of Small Airway Correlates with the Disease Severity of COPD. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2891810. [PMID: 27656649 PMCID: PMC5021463 DOI: 10.1155/2016/2891810] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/23/2016] [Accepted: 07/18/2016] [Indexed: 12/23/2022]
Abstract
Airway smooth muscle (ASM) remodeling is a hallmark in chronic obstructive pulmonary disease (COPD), and nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases (NOXs) produced reactive oxygen species (ROS) play a crucial role in COPD pathogenesis. In the present study, the expression of NOX4 and its correlation with the ASM hypertrophy/hyperplasia, clinical pulmonary functions, and the expression of transforming growth factor β (TGF-β) in the ASM of COPD small airways were investigated by semiquantitative morphological and/or immunohistochemistry staining methods. The results showed that an elevated expression of NOX4 and TGF-β, along with an increased volume of ASM mass, was found in the ASM of small airways in COPD patients. The abundance of NOX4 protein in the ASM was increased with disease severity and inversely correlated with the pulmonary functions in COPD patients. In addition, the expression of NOX4 and ASM marker α-SMA was colocalized, and the increased NOX4 expression was found to accompany an upregulated expression of TGF-β in the ASM of small airways of COPD lung. These results indicate that NOX4 may be a key regulator in ASM remodeling of small airway, in part through a mechanism interacting with TGF-β signaling in the pathogenesis of COPD, which warrants further investigation.
Collapse
|
34
|
Jang HY, Gu S, Lee SM, Park BH. Overexpression of sirtuin 6 suppresses allergic airway inflammation through deacetylation of GATA3. J Allergy Clin Immunol 2016; 138:1452-1455.e13. [PMID: 27421859 DOI: 10.1016/j.jaci.2016.05.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/25/2016] [Accepted: 05/20/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Hyun-Young Jang
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, Korea
| | - Suna Gu
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk, Korea
| | - Sang-Myeong Lee
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk, Korea.
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, Korea.
| |
Collapse
|
35
|
Chronic obstructive pulmonary disease: A guide for the primary care physician. Dis Mon 2016; 62:164-87. [DOI: 10.1016/j.disamonth.2016.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Khan MA. Dynamics of airway response in lung microsections: a tool for studying airway-extra cellular matrix interactions. J Biomed Sci 2016; 23:43. [PMID: 27176036 PMCID: PMC4865010 DOI: 10.1186/s12929-016-0263-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/06/2016] [Indexed: 01/27/2023] Open
Abstract
The biological configuration of extracellular matrix (ECM) plays a key role in how mechanical interactions of the airway with its parenchymal attachments affect the dynamics of airway responses in different pulmonary disorders including asthma, emphysema and chronic bronchitis. It is now recognized that mechanical interactions between airway tissue and ECM play a key regulatory role on airway physiology and kinetics that can lead to the reorganization and remodeling of airway connective tissue. A connective tissue is composed of airway smooth muscle cells (ASM) and the ECM, which includes variety of glycoproteins and therefore the extent of interactions between ECM and ASM affects airway dynamics during exacerbations of major pulmonary disorders. Measurement of the velocity and magnitude of airway closure or opening provide important insights into the functions of the airway contractile apparatus and the interactions with its surrounding connective tissues. This review highlights suitability of lung microsection technique in studying measurements of airway dynamics (narrowing/opening) and associated structural distortions in airway compartments.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, MBC 03, P.O. Box 3354, Riyadh, 11211, Kingdom of Saudi Arabiana.
| |
Collapse
|
37
|
Chiba S, Tsuchiya K, Nukui Y, Sema M, Tamaoka M, Sumi Y, Miyazaki Y, Inase N. Interstitial changes in asthma-COPD overlap syndrome. CLINICAL RESPIRATORY JOURNAL 2016; 11:1024-1031. [PMID: 26833590 DOI: 10.1111/crj.12461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/12/2015] [Accepted: 01/26/2016] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Asthma-COPD overlap syndrome (ACOS) is the widely recognized syndrome of asthma and COPD coexisting together. Cigarette smoking is a known risk factor for ACOS and is reported to be associated with interstitial lung diseases (ILDs). Subclinical ILDs have been frequently detected in smokers' lungs by radiological and pathological examinations. This finding raises the possibility that unrecognized mild interstitial changes take place in lungs with ACOS. OBJECTIVES We sought to determine whether interstitial changes were present in the lungs of patients with ACOS and to characterize the clinical features of ACOS with interstitial changes. METHODS Thirty patients with ACOS were enrolled in the study (26 men and 4 women, mean age 70.1 years). Interstitial changes in the lungs were estimated by high-resolution computed tomography (HRCT). Clinical findings and airway wall thickness on HRCT were assessed retrospectively and compared between ACOS patients with and without interstitial changes. RESULTS Interstitial changes were found in seven patients (23.3%) with ACOS who had HRCT. The age and smoking amount were significantly higher in ACOS with interstitial changes than in ACOS without interstitial changes. ACOS with interstitial changes tended to have a higher rate of fungal sensitisation. Multivariate analysis showed pack-years were significantly related to the presence of interstitial changes. Airway walls assessed by HRCT were significantly thicker in ACOS with interstitial changes than in ACOS without interstitial changes. CONCLUSIONS The ACOS patients with interstitial changes were heavier smokers and had thicker airway walls on HRCT compared to the ACOS patients without interstitial changes.
Collapse
Affiliation(s)
- Sahoko Chiba
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Kimitake Tsuchiya
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yoshihisa Nukui
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Manabu Sema
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Meiyo Tamaoka
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yuki Sumi
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Naohiko Inase
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| |
Collapse
|
38
|
Muralidharan P, Hayes D, Black SM, Mansour HM. Microparticulate/Nanoparticulate Powders of a Novel Nrf2 Activator and an Aerosol Performance Enhancer for Pulmonary Delivery Targeting the Lung Nrf2/Keap-1 Pathway. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2016; 1:48-65. [PMID: 27774309 PMCID: PMC5072457 DOI: 10.1039/c5me00004a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This systematic and comprehensive study reports for the first time on the successful rational design of advanced inhalable therapeutic dry powders containing dimethyl fumarate, a first-in-class Nrf2 activator drug to treat pulmonary inflammation, using particle engineering design technology for targeted delivery to the lungs as advanced spray dried (SD) one-component DPIs. In addition, two-component co-spray dried (co-SD) DMF:D-Man DPIs with high drug loading were successfully designed for targeted lung delivery as advanced DPIs using organic solution advanced spray drying in closed mode. Regional targeted deposition using design of experiments (DoE) for in vitro predictive lung modeling based on aerodynamic properties was tailored based on composition and spray drying parameters. These findings indicate the significant potential of using D-Man in spray drying to improve particle formation and aerosol performance of small molecule with a relatively low melting point. These respirable microparticles/nanoparticles in the solid-state exhibited excellent aerosol dispersion performance with an FDA-approved human DPI device. Using in vitro predictive lung deposition modeling, the aerosol deposition patterns of these particles show the capability to reach lower airways to treat inflammation in this region in pulmonary diseases such as acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), and pulmonary endothelial disease.
Collapse
Affiliation(s)
- Priya Muralidharan
- College of Pharmacy, Skaggs Pharmaceutical Sciences Center, The University of Arizona, Tucson, AZ, 85721, USA
| | - Don Hayes
- Departments of Pediatrics and Internal Medicine, Lung and Heart-Lung Transplant Programs, The Ohio State University College of Medicine, Columbus, OH 43205, USA; The Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Stephen M Black
- Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, AZ, 85724, USA
| | - Heidi M Mansour
- College of Pharmacy, Skaggs Pharmaceutical Sciences Center, The University of Arizona, Tucson, AZ, 85721, USA; Institute of the Environment, The University of Arizona, Tucson, AZ 85721, USA; National Cancer Institute Comprehensive Cancer Center, The University of Arizona, Tucson, AZ 85721, USA; The BIO5 Research Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
39
|
Shahriary A, Seyedzadeh MH, Ahmadi A, Salimian J. The footprint of TGF-β in airway remodeling of the mustard lung. Inhal Toxicol 2015; 27:745-53. [PMID: 26606948 DOI: 10.3109/08958378.2015.1116645] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mustard lung is a major pulmonary complication in individuals exposed to sulfur mustard (SM) gas during the Iran-Iraq war. It shares common pathological and clinical features with some chronic inflammatory lung disorders, particularly chronic obstructive pulmonary disease (COPD). Airway remodeling, which is one of the main causes of lung dysfunction and the dominant phenomenon of chronic pulmonary diseases, is seen in the mustard lung. Among all mediators involved in the remodeling process, the transforming growth factor (TGF)-β plays a pivotal role in lung fibrosis and consequently in the airway remodeling. Regarding the high levels of this mediator detected in mustard lung patients, in the present study, we have discussed the possible roles of TGF-β in airway remodeling (including epithelial layer damage, subepithelial fibrosis and angiogenesis). Finally, based on TGF-β targeting, we have reviewed new airway remodeling therapeutic approaches.
Collapse
Affiliation(s)
- Alireza Shahriary
- a Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Mir Hadi Seyedzadeh
- b Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran , and
| | - Ali Ahmadi
- c Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Jafar Salimian
- a Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
40
|
Abstract
Submucosal glands contribute to airway surface liquid (ASL), a film that protects all airway surfaces. Glandular mucus comprises electrolytes, water, the gel-forming mucin MUC5B, and hundreds of different proteins with diverse protective functions. Gland volume per unit area of mucosal surface correlates positively with impaction rate of inhaled particles. In human main bronchi, the volume of the glands is ∼ 50 times that of surface goblet cells, but the glands diminish in size and frequency distally. ASL and its trapped particles are removed from the airways by mucociliary transport. Airway glands have a tubuloacinar structure, with a single terminal duct, a nonciliated collecting duct, then branching secretory tubules lined with mucous cells and ending in serous acini. They allow for a massive increase in numbers of mucus-producing cells without replacing surface ciliated cells. Active secretion of Cl(-) and HCO3 (-) by serous cells produces most of the fluid of gland secretions. Glands are densely innervated by tonically active, mutually excitatory airway intrinsic neurons. Most gland mucus is secreted constitutively in vivo, with large, transient increases produced by emergency reflex drive from the vagus. Elevations of [cAMP]i and [Ca(2+)]i coordinate electrolyte and macromolecular secretion and probably occur together for baseline activity in vivo, with cholinergic elevation of [Ca(2+)]i being mainly responsive for transient increases in secretion. Altered submucosal gland function contributes to the pathology of all obstructive diseases, but is an early stage of pathogenesis only in cystic fibrosis.
Collapse
Affiliation(s)
- Jonathan H Widdicombe
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jeffrey J Wine
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| |
Collapse
|
41
|
Bchir S, Nasr HB, Hakim IR, Anes AB, Yacoub S, Garrouch A, Benzarti M, Bauvois B, Tabka Z, Chahed K. Matrix Metalloproteinase-9 (279R/Q) Polymorphism is Associated with Clinical Severity and Airflow Limitation in Tunisian Patients with Chronic Obstructive Pulmonary Disease. Mol Diagn Ther 2015; 19:375-87. [DOI: 10.1007/s40291-015-0163-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Lee CC, Wang CN, Lee YL, Tsai YR, Liu JJ. High mobility group box 1 induced human lung myofibroblasts differentiation and enhanced migration by activation of MMP-9. PLoS One 2015; 10:e0116393. [PMID: 25692286 PMCID: PMC4332862 DOI: 10.1371/journal.pone.0116393] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 12/10/2014] [Indexed: 11/21/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear protein that involves the binding with DNA and influences chromatin regulation and transcription. HMGB1 is also a cytokine that can activate monocytes and neutrophils involved in inflammation. In this study, we investigated the role of HMGB1 on cellular activation using human fibroblast cell line WI-38. After treatment with 1, 10, and 100 ng/mL of HMGB1 for 24 h, we did not find obviously cytotoxicity and cellular proliferation of WI-38 cells by MTT and BrdU incorporation assay, respectively. However, we found that treatment with 10 and 100 ng/mL of HMGB1 induced the differentiation of lung fibroblasts into myofibroblasts and myofibroblasts showed higher migration ability through activation of matrix metalloproteinase (MMP)-9 activation. To delineate the mechanism underlying HMGB1-induced cellular migration, we examined HMGB1-induced mitogen activated protein kinases (MAPKs), including extracellular signal related kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen activated protein kinase (p38) phosphorylation, as well as nuclear factor (NF)-κB nuclear translocation. Using specific inhibitors and shRNAs of protein kinases, we observed that repression of ERK, JNK, p38, and NF-κB all inhibited HMGB1-induced cellular differentiation, migration and MMP-9 activation in WI-38 cells. In addition, knocking down of RAGE but not TLR2 and TLR4 by shRNAs attenuated HMGB1-induced myofibroblast differentiation and migration. In conclusion, our study demonstrated that HMGB1 induced lung fibroblasts’ differentiation into myofibroblasts and enhanced cell migration through induction of MMP-9 activation and the RAGE-MAPK and NF-κB interaction signaling pathways. Targeting HMGB1 might be a potential therapeutic approach for alleviation of airway remodeling seen in chronic airway inflammatory diseases.
Collapse
Affiliation(s)
- Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
- * E-mail:
| | - Chien-Neng Wang
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ru Tsai
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Jau-Jin Liu
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
43
|
Alagappan VKT, de Boer WI, Misra VK, Mooi WJ, Sharma HS. Angiogenesis and vascular remodeling in chronic airway diseases. Cell Biochem Biophys 2014; 67:219-34. [PMID: 23975597 DOI: 10.1007/s12013-013-9713-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asthma and chronic obstructive pulmonary disease remain a global health problem, with increasing morbidity and mortality. Despite differences in the causal agents, both diseases exhibit various degrees of inflammatory changes, structural alterations of the airways leading to airflow limitation. The existence of transient disease phenotypes which overlap both diseases and which progressively decline the lung function has complicated the search for an effective therapy. Important characteristics of chronic airway diseases include airway and vascular remodeling, of which the molecular mechanisms are complex and poorly understood. Recently, we and others have shown that airway smooth muscle (ASM) cells are not only structural and contractile components of airways, rather they bear capabilities of producing large number of pro-inflammatory and mitogenic factors. Increase in size and number of blood vessels both inside and outside the smooth muscle layer as well as hyperemia of bronchial vasculature are contributing factors in airway wall remodeling in patients with chronic airway diseases, proposing for the ongoing mechanisms like angiogenesis and vascular dilatation. We believe that vascular changes directly add to the airway narrowing and hyper-responsiveness by exudation and transudation of proinflammatory mediators, cytokines and growth factors; facilitating trafficking of inflammatory cells; causing oedema of the airway wall and promoting ASM accumulation. One of the key regulators of angiogenesis, vascular endothelial growth factor in concerted action with other endothelial mitogens play pivotal role in regulating bronchial angiogenesis. In this review article we address recent advances in pulmonary angiogenesis and remodelling that contribute in the pathogenesis of chronic airway diseases.
Collapse
|
44
|
Giembycz MA, Maurice DH. Cyclic nucleotide-based therapeutics for chronic obstructive pulmonary disease. Curr Opin Pharmacol 2014; 16:89-107. [PMID: 24810285 DOI: 10.1016/j.coph.2014.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/18/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) defines a group of chronic inflammatory disorders of the airways that are characterised by a progressive and largely irreversible decline in expiratory airflow. Drugs used to treat COPD through actions mediated by cyclic AMP (cAMP) are restricted to long-acting and short-acting β2-adrenoceptor agonists and, in a subset of patients with chronic bronchitis, a phosphodiesterase 4 inhibitor, roflumilast. These agents relax airway smooth muscle and suppress inflammation. At the molecular level, these effects in the airways are mediated by two cAMP effectors, cAMP-dependent protein kinase and exchange proteins activated by cAMP. The pharmacology of newer agents, acting through these systems, is discussed here with an emphasis on their potential to interact and increase therapeutic effectiveness.
Collapse
Affiliation(s)
- Mark A Giembycz
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Donald H Maurice
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
45
|
Hematopoietic and mesenchymal stem cells for the treatment of chronic respiratory diseases: role of plasticity and heterogeneity. ScientificWorldJournal 2014; 2014:859817. [PMID: 24563632 PMCID: PMC3916026 DOI: 10.1155/2014/859817] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/20/2013] [Indexed: 12/21/2022] Open
Abstract
Chronic lung diseases, such as cystic fibrosis (CF), asthma, and chronic obstructive pulmonary disease (COPD) are incurable and represent a very high social burden. Stem cell-based treatment may represent a hope for the cure of these diseases. In this paper, we revise the overall knowledge about the plasticity and engraftment of exogenous marrow-derived stem cells into the lung, as well as their usefulness in lung repair and therapy of chronic lung diseases. The lung is easily accessible and the pathophysiology of these diseases is characterized by injury, inflammation, and eventually by remodeling of the airways. Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal (stem) cells (MSCs), encompass a wide array of cell subsets with different capacities of engraftment and injured tissue regenerating potential. Proof-of-principle that marrow cells administered locally may engraft and give rise to specialized epithelial cells has been given, but the efficiency of this conversion is too limited to give a therapeutic effect. Besides the identification of plasticity mechanisms, the characterization/isolation of the stem cell subpopulations represents a major challenge to improving the efficacy of transplantation protocols used in regenerative medicine for lung diseases.
Collapse
|
46
|
Morton R, Eid N. From Childhood Asthma to Chronic Obstructive Pulmonary Disease: Evidence Supporting a Disease Continuum. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2013; 26:168-174. [PMID: 35923041 DOI: 10.1089/ped.2013.0305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this review, we analyze the available evidence showing a link between asthma and chronic obstructive pulmonary disease (COPD). Many features (epidemiologic, physiologic, and histologic) overlap between these two conditions. Both environmental cigarette smoke exposure and early lung development are risk factors for the development of asthma and COPD. However, recent studies suggest that up to 25% of COPD cases were nonsmokers. Asthma during early childhood, independent of smoking history, may be an independent risk factor for the later development of COPD. One explanation for this phenomenon suggests that early small airway dysfunction (including chronic airway inflammation and airway remodeling) can lead to permanent impairment in lung physiology. Several reasons why control of airway inflammation is difficult in some patients are explored. Finally, we examine the available evidence suggesting overlapping histologic features in both asthma and COPD.
Collapse
Affiliation(s)
- Ronald Morton
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky
| | - Nemr Eid
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
47
|
Jang HY, Lim K, Lee SM, Park BH. Effects of n-3 PUFA on the CD4⁺ type 2 helper T-cell-mediated immune responses in Fat-1 mice. Mol Nutr Food Res 2013; 58:365-75. [PMID: 24019303 DOI: 10.1002/mnfr.201300194] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/01/2013] [Accepted: 07/11/2013] [Indexed: 02/06/2023]
Abstract
SCOPE It has been suggested that n-3 PUFA can be used as a preventive or therapeutic strategy to control allergic asthma. But little is known about the exact mechanisms by which n-3 PUFA modulates it. Here, the effects of elevated n-3 PUFA on ovalbumin (OVA) induced airway inflammation were investigated using Fat-1 transgenic mice that can convert n-6 PUFA to n-3 PUFA endogenously. METHODS AND RESULTS First, we tested whether Fat-1 expression modulates CD4⁺ T-cell activation, proliferation, and differentiation in vitro and found that the Fat-1 expression attenuated all of these CD4⁺ T-cell responses by suppression of T-cell receptor mediated signaling and cytokine-mediated phosphorylation of STATs. When the Fat-1 mice were sensitized and challenged with the OVA, they showed a significant decrease in the recruitment of inflammatory cells into airway, the production of Th2 cytokines, eotaxin, and mucin in the lung, and the concentration of OVA-specific IgE in the serum. Furthermore, the differentiation of CD4⁺ T cells into Th2 was also decreased in the spleen of Fat-1 mice. CONCLUSION Our results showed that an elevated level of n-3 PUFA was effective in preventing allergic airway inflammation by modulating the activation and differentiation of CD4⁺ T cells in Fat-1 mice.
Collapse
Affiliation(s)
- Hyun-Young Jang
- Department of Biochemistry and Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | | | | | | |
Collapse
|
48
|
Abstract
Airway remodeling is a central feature of asthma. It is exemplified by thickening of the lamina reticularis and structural changes to the epithelium, submucosa, smooth muscle, and vasculature of the airway wall. Airway remodeling may result from persistent airway inflammation. Immunoglobulin E (IgE) is an important mediator of allergic reactions and has a central role in airway inflammation and asthma-related symptoms. Anti-IgE therapies (such as omalizumab) have the potential to block an early step in the allergic cascade and therefore have the potential to reduce airway remodeling. The reduction in free IgE levels following anti-IgE therapy leads to reductions in high-affinity IgE receptor (FcεRI) expression on mast cells, basophils, and dendritic cells. This combined effect results in attenuation of several markers of inflammation, including peripheral and bronchial tissue eosinophilia and levels of granulocyte macrophage colony-stimulating factor, interleukin (IL)-2, IL-4, IL-5, and IL-13. Considering the previously demonstrated anti-inflammatory effects of anti-IgE therapy, along with results from a small study showing continued benefit after discontinuation of long-term treatment, a larger study to assess its effect on markers of airway remodeling is underway.
Collapse
Affiliation(s)
- K F Rabe
- Department of Medicine, University Kiel, Kiel, Germany and Krankenhaus Grosshansdorf, Center for Pulmonology and Thoracic Surgery, Wöhrendamm 80, Grosshansdorf, Germany.
| | | | | | | |
Collapse
|
49
|
Tzortzaki EG, Proklou A, Siafakas NM. Asthma in the Elderly: Can We Distinguish It from COPD? J Allergy (Cairo) 2011; 2011:843543. [PMID: 21785614 PMCID: PMC3138061 DOI: 10.1155/2011/843543] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/23/2011] [Accepted: 05/06/2011] [Indexed: 11/18/2022] Open
Abstract
Asthma in older adults affects quality of life and results in a higher hospitalization rate and mortality. In common clinical practice, asthma in the elderly is underdiagnosed and undertreated or overdiagnosed and mistreated. The age-related reduction in perception of shortness of breath and the high incidence of comorbidities make the diagnosis and management more difficult and challenging for the physicians. Chronic obstructive pulmonary disease (COPD) is usually easy to distinguish from asthma, but sometimes the distinction from late-onset asthma in older patients, particularly in cigarette smokers, is difficult and may be impossible. Both diseases are characterized by the presence of airflow obstruction but have distinct pathogenesis, inflammatory pattern, and prognosis. The distinction between Asthma and COPD based simply on spirometric parameters is difficult especially in the elderly asthmatics. The combination of lung function testing, bronchial hyperresponsiveness (BHR) and atopy status, HRCT scans, and the newly developed biological techniques, allowing the assessment of biomarker profiles, could facilitate the distinction between these diseases.
Collapse
Affiliation(s)
- Eleni G. Tzortzaki
- Department of Thoracic Medicine, University Hospital of Heraklion and Medical School, University of Crete, Heraklion 71110, Crete, Greece
| | - Athanasia Proklou
- Department of Thoracic Medicine, University Hospital of Heraklion and Medical School, University of Crete, Heraklion 71110, Crete, Greece
| | - Nikolaos M. Siafakas
- Department of Thoracic Medicine, University Hospital of Heraklion and Medical School, University of Crete, Heraklion 71110, Crete, Greece
| |
Collapse
|
50
|
Royce SG, Dang W, Yuan G, Tran J, El Osta A, Karagiannis TC, Tang MLK. Resveratrol has protective effects against airway remodeling and airway hyperreactivity in a murine model of allergic airways disease. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2011; 1:PBA-1-7134. [PMID: 22953028 PMCID: PMC3417665 DOI: 10.3402/pba.v1i0.7134] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 12/14/2022]
Abstract
Background New therapies for asthma which can address three main interrelated features of the disease, airway inflammation, airway remodeling and airway hyperreactivity, are urgently required. Resveratrol, a well known red wine polyphenol has received much attention due to its potential anti-aging properties. This compound is an agonist of silent information regulator two histone deacetylases and has many effects that are relevant to key aspects of the pathophysiology of asthma including inflammation, cell proliferation and fibrosis. Therefore, resveratrol may offer a novel asthma therapy that simultaneously inhibits airway inflammation, and airway remodeling which are the main contributors to airway hyperreactivity and irreversible lung function loss. Methods We evaluated the effects of systemic resveratrol treatment in a murine model of chronic allergic airways disease which displays most of the clinicopathological features of severe human asthma. Wild-type Balb/c mice with allergic airways disease were treated with 12.5 mg/kg resveratrol or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and histological examination of lung tissue sections. Further, remodeling was assessed by morphometric analysis and lung function was assessed by invasive plethysmography measurement of airway resistance and dynamic compliance. Results Mice treated with resveratrol exhibited reduced tissue inflammation as compared to vehicle treated mice (p<0.05). Additionally, resveratrol treatment resulted in reduced subepithelial collagen deposition as compared to vehicle treated mice (p<0.05) and attenuated airway hyperreactivity (p<0.05). Conclusions These novel findings demonstrate that treatment with resveratrol can reduce structural airway remodeling changes and hyperreactivity. This has important implications for the development of new therapeutic approaches to asthma.
Collapse
Affiliation(s)
- Simon G Royce
- Allergy and Immune Disorders, Murdoch Children's Research Institute, Melbourne, Vic., Australia
| | | | | | | | | | | | | |
Collapse
|