1
|
Hong K, Cheng H, Zhuang Y, Yu Y. Sex-specific associations of the endocrine-disrupting chemicals with serum neurofilament light chain among US adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118272. [PMID: 40367613 DOI: 10.1016/j.ecoenv.2025.118272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 04/11/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025]
Abstract
OBJECTIVE Endocrine-disrupting chemicals (EDCs) can interfere with endocrine function and lead to neurological damage. Neurofilament light chain (NfL) is a protein released into the blood after neuroaxonal damage, and it has become a dependable biomarker for neurological conditions. The study aimed to investigate the associations between single or combined EDCs exposure and serum NfL levels in adults. METHODS The 1372 participants included in the study were from the 2013-2014 National Health and Nutrition Examination Survey. Due to the difference in types of EDCs, participants were divided into two populations. Multiple linear regression models were used to assess the association between 32 EDCs and NfL. The least absolute shrinkage and selection operator regression model was used for EDCs selection and the weighted quantile sum (WQS) regression was used for examining the association of EDCs mixture with NfL and identify the predominant exposure. RESULTS Levels of urinary bisphenol S, mono(2-ethylhexyl) phthalate, dibutyl phosphate, glyphosate, and 3,5,6-trichloropyridinol were positively associated with serum NfL levels, while benzophenone-3, methylparaben, and propylparaben showed negative associations. In the WQS regression model, the changes of NfL were 0.154 (95 % CI: 0.014-0.294) and 0.164 (95 % CI: 0.033-0.296) for each quartile increase in WQS index of EDCs mixture in the two populations, respectively. Analysis of the subgroup with gender stratification suggested that the association between EDCs mixture and NfL was only significant in men. The positive mixture β was 0.219 (95 % CI: 0.056-0.380) and 0.257 (95 % CI: 0.082-0.433) in the two population, respectively. CONCLUSION The study suggested a potential association between single or combined exposure to EDCs and NfL levels. High-level EDCs exposure might be associated with more severe neurological damage, particularly in men.
Collapse
Affiliation(s)
- Kaiting Hong
- Zhoushan Women and Children Hospital, Zhoushan, China.
| | - Haoyue Cheng
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Yan Zhuang
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Yunxian Yu
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Ben Amor M, Hamdaoui L, Daoud S, Ammar M, Louati N, Elleuch A, Badraoui R, Ben Mahmoud L, Ben Amor I, Sellami A, Rebai T. Impact of sub-chronic exposure to Kalach on male reproductive system and sperm function: In silico modelling and in vivo study in rats. Reprod Toxicol 2025; 132:108853. [PMID: 39922324 DOI: 10.1016/j.reprotox.2025.108853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Kalach 360 SL (KL), a glyphosate-based herbicide, is among the most widely used herbicides in Tunisia. This study aimed to evaluate the impact of sub-chronic exposure to KL on the male reproductive system and sperm parameters in adult rats after one and two cycles of spermatogenesis. 15 rats were randomly divided into three groups: a control group (G1) and two experimental groups (G2 and G3), exposed to KL at a dose of 102.2 mg/kg each day for 48 days. Treated groups G2 and G3 were sacrificed at day 48 and at day 96, respectively. We measured serum levels of testosterone and oestradiol, oxidative stress markers in testis, epididymal sperm parameters, sperm mitochondrial membrane potential (MMP), as well as testicular histopathology and morphometry as diagnostic markers of reproductive dysfunction. Additionally, we complemented the in vivo study with in silico modelling. Kl impaired sperm parameters, altered MMP, promoted oxidative stress, and affected testicular morphology, leading to reduced seminiferous epithelium height and delayed spermatogenesis arrest. KL caused significant declines in serum testosterone levels after 48 days (G2 group), supporting the herbicide's anti-androgenic activity. Notably, following cessation of exposure, testosterone levels increased and sperm concentration returned to normal by day 96 (G3 group). The computational approach revealed that glyphosate binds to the androgen receptor (2Q7K and 3QKM) with good affinities and strong molecular interactions, corroborating the in vivo results. We conclude that KL may interfere with spermatogenesis, impair male fertility, and function as a potential endocrine disruptor with anti-androgenic activity.
Collapse
Affiliation(s)
- Marwa Ben Amor
- Laboratory of Histophysiology of Developmental and Induced Pathologies (LR19ES12), Faculty of Medicine of Sfax, University of Sfax, Tunisia; Laboratory of Histology-Embryology and Reproductive Biology, Faculty of Medicine of Sfax, University of Sfax, Tunisia.
| | - Latifa Hamdaoui
- Laboratory of Histophysiology of Developmental and Induced Pathologies (LR19ES12), Faculty of Medicine of Sfax, University of Sfax, Tunisia; Laboratory of Histology-Embryology and Reproductive Biology, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Salima Daoud
- Laboratory of Histophysiology of Developmental and Induced Pathologies (LR19ES12), Faculty of Medicine of Sfax, University of Sfax, Tunisia; Laboratory of Histology-Embryology and Reproductive Biology, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Mariem Ammar
- Pharmacology Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Nour Louati
- Sfax Regional Center of Blood Transfusion, Sfax, Tunisia
| | - Aida Elleuch
- Department of Biochemistry, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Riadh Badraoui
- Laboratory of General Biology, Department of Biology, University of Ha'il, Ha'il, 81451, Saudi Arabia; Section of Histology-Cytology & Cytogenetics, Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 La Rabta-Tunis, Tunisia
| | - Lobna Ben Mahmoud
- Pharmacology Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Ikram Ben Amor
- Sfax Regional Center of Blood Transfusion, Sfax, Tunisia
| | - Afifa Sellami
- Laboratory of Histophysiology of Developmental and Induced Pathologies (LR19ES12), Faculty of Medicine of Sfax, University of Sfax, Tunisia; Laboratory of Histology-Embryology and Reproductive Biology, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Tarek Rebai
- Laboratory of Histophysiology of Developmental and Induced Pathologies (LR19ES12), Faculty of Medicine of Sfax, University of Sfax, Tunisia; Laboratory of Histology-Embryology and Reproductive Biology, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| |
Collapse
|
3
|
Yilmaz B, Erdogan CS, Sandal S, Kelestimur F, Carpenter DO. Obesogens and Energy Homeostasis: Definition, Mechanisms of Action, Exposure, and Adverse Effects on Human Health. Neuroendocrinology 2024; 115:72-100. [PMID: 39622213 DOI: 10.1159/000542901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/28/2024] [Indexed: 02/26/2025]
Abstract
BACKGROUND Obesity is a major risk factor for noncommunicable diseases and is associated with a reduced life expectancy of up to 20 years, as well as with other consequences such as unemployment and increased economic burden for society. It is a multifactorial disease, and physiopathology of obesity involves dysregulated calorie utilization and energy balance, disrupted homeostasis of appetite and satiety, lifestyle factors including sedentary lifestyle, lower socioeconomic status, genetic predisposition, epigenetics, and environmental factors. Some endocrine-disrupting chemicals (EDCs) have been proposed as "obesogens" that stimulate adipogenesis leading to obesity. In this review, definition of obesogens, their adverse effects, underlying mechanisms, and metabolic implications will be updated and discussed. SUMMARY Disruption of lipid homeostasis by EDCs involves multiple mechanisms including increase in the number and size of adipocytes, disruption of endocrine-regulated adiposity and metabolism, alteration of hypothalamic regulation of appetite, satiety, food preference and energy balance, and modification of insulin sensitivity in the liver, skeletal muscle, pancreas, gastrointestinal system, and the brain. At a cellular level, obesogens can exert their endocrine disruptive effects by interfering with peroxisome proliferator-activated receptors and steroid receptors. Human exposure to chemical obesogens mainly occurs by ingestion and, to some extent, by inhalation and dermal uptake, usually in an unconscious manner. Persistent pollutants are lipophilic features; thus, they bioaccumulate in adipose tissue. KEY MESSAGES Although there are an increasing number of reports studying the effects of obesogens, their mechanisms of action remain to be elucidated. In addition, epidemiological studies are needed in order to evaluate human exposure to obesogens.
Collapse
Affiliation(s)
- Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Physiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | | | - Suleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Fahrettin Kelestimur
- Department of Clinical Endocrinology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - David O Carpenter
- Institute for Health and the Environment, 5 University Place, University at Albany, Rensselaer, New York, USA
| |
Collapse
|
4
|
Lori G, Coppola L, Casella M, Tinari A, Masciola I, Tait S. Chlorpyrifos induces autophagy by suppressing the mTOR pathway in immortalized GnRH neurons. CHEMOSPHERE 2024; 362:142723. [PMID: 38945228 DOI: 10.1016/j.chemosphere.2024.142723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Chlorpyrifos (CPF) is a widely used pesticide inducing adverse neurodevelopmental and reproductive effects. However, knowledge of the underlying mechanisms is limited, particularly in the hypothalamus. We investigated the mode of action of CPF at human relevant concentrations (1 nM-100 nM) in immortalized mouse hypothalamic GnRH neurons (GT1-7), an elective model for studying disruption of the hypothalamus-pituitary-gonads (HPG) axis. We firstly examined cell vitality, proliferation, and apoptosis/necrosis. At not-cytotoxic concentrations, we evaluated neuron functionality, gene expression, Transmission Electron Microscopy (TEM) and proteomics profiles, validating results by immunofluorescence and western blotting (WB). CPF decreased cell vitality with a dose-response but did not affect cell proliferation. At 100 nM, CPF inhibited gene expression and secretion of GnRH; in addition, CPF reduced the immunoreactivity of the neuronal marker Map2 in a dose-dependent manner. The gene expression of Estrogen Receptor α and β (Erα, Erβ), Androgen Receptor (Ar), aromatase and oxytocin receptor was induced by CPF with different trends. Functional analysis of differentially expressed proteins identified Autophagy, mTOR signaling and Neutrophil extracellular traps (NETs) formation as significant pathways affected at all concentrations. This finding was phenotypically supported by the TEM analysis, showing marked autophagy and damage of mitochondria, as well as by protein analysis demonstrating a dose-dependent decrease of mTOR and its direct target pUlk1 (Ser 757). The bioinformatics network analysis identified a core module of interacting proteins, including Erα, Ar, mTOR and Sirt1, whose down-regulation was confirmed by WB analysis. Overall, our results demonstrate that CPF is an inhibitor of the mTOR pathway leading to autophagy in GnRH neurons; a possible involvement of the Erα/Ar signaling is also suggested. The evidence for adverse effects of CPF in the hypothalamus in the nanomolar range, as occurs in human exposure, increases concern on potential adverse outcomes induced by this pesticide on the HPG axis.
Collapse
Affiliation(s)
- Gabriele Lori
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Lucia Coppola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | | | - Antonella Tinari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Irene Masciola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
5
|
Ayagirwe R, Baruti F, Kahindo H, Mugumaarhahama Y, Shukuru D, Kamgang V, Mutwedu V. Therapeutic effects of avocado ( Persea americana Mill.) seed powder against reproductive toxicity induced by Mancozeb (herbicide) in female rabbits. Heliyon 2023; 9:e18057. [PMID: 37483832 PMCID: PMC10362231 DOI: 10.1016/j.heliyon.2023.e18057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Pesticides like Mancozeb are being increasingly indispensable in the control of crop pests. Unfortunately, they have been implicated in genotoxicity due to their ubiquity, toxicological properties, persistence and presence in the food chain. This study sought to evaluate the efficacy of powdered avocado seed on reproductive parameters in the management of oxidative stress in female rabbits caused by the herbicide Mancozeb. Twenty-eight female rabbits aged 7-8 months and weighing between 2780.4 g and 3143.7 g were randomly divided into four groups of seven rabbits each. Each group received for 90 consecutive days distilled water or Mancozeb associated or not with avocado seed powder orally as follows: T1: 10 ml distilled water; T2, T3 and T4: 100 mg/kg bw Mancozeb. This was followed by oral administration of 250, 500, and 0 mg/kg of avocado seed powder for T2, T3, and T4, respectively. Water and feed were distributed ad libitum. Collected data concerned growth, carcass and reproductive performances, hematological and biochemistry characteristics. Results demonstrated that pregnant and lactating female rabbits administered Mancozeb exhibited a significant decrease (P < 0.05) in food intake, body weight, and body weight gain. Female rabbits exposed to Mancozeb had a decrease in litter size and weight from birth to weaning, as well as in weaning body weight and weight increase, fertility and prolificacy rate, milk yield, and daily milk efficiency. However, administration of avocado seed powder reversed (P < 0.05) the trends in these parameters in a dose-dependent manner. The increase in relative weight of the kidney and liver, concentrations of urea, creatinine, alanine and aspartate aminotransferases, mean cell volume, white blood cells, and lymphocytes were all associated with increased Mancozeb rates (P < 0.05). On the contrary, administration of the Mancozeb caused decrease in hemoglobin (Hb), Red blood Cell (RBC) and protein content. Administration of avocado seed powder significantly (P < 0.05) ameliorated the Mancozeb effects on these parameters. Applying 500 mg/kg b.w Avocado seed powder may be suggested as an alternative therapy for reproductive defects induced by Mancozeb in female rabbits.
Collapse
Affiliation(s)
- R.B.B. Ayagirwe
- Department of Animal Production, Faculty of Agriculture and Environmental Studies, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of Congo
- Departement of Rural Development, Institut Supérieur de Développement Rural de Bukavu (ISDR/Bukavu), Bukavu, Democratic Republic of Congo
| | - F. Baruti
- Department of Animal Production, Faculty of Agriculture and Environmental Studies, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of Congo
| | - H.S. Kahindo
- Department of Animal Production, Faculty of Agriculture and Environmental Studies, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of Congo
| | - Y. Mugumaarhahama
- Department of Animal Production, Faculty of Agriculture and Environmental Studies, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of Congo
- Departement of Rural Development, Institut Supérieur de Développement Rural de Kaziba (ISDR/Kaziba), Bukavu, Democratic Republic of Congo
| | - D.W. Shukuru
- Department of Animal Production, Faculty of Agriculture and Environmental Studies, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of Congo
| | - V.W. Kamgang
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, 0028, South Africa
| | - V.B. Mutwedu
- Department of Animal Production, Faculty of Agriculture and Environmental Studies, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of Congo
- Departement of Rural Development, Institut Supérieur de Développement Rural de Kaziba (ISDR/Kaziba), Bukavu, Democratic Republic of Congo
| |
Collapse
|
6
|
Yadav SK, Bijalwan V, Yadav S, Sarkar K, Das S, Singh DP. Susceptibility of male reproductive system to bisphenol A, an endocrine disruptor: Updates from epidemiological and experimental evidence. J Biochem Mol Toxicol 2023; 37:e23292. [PMID: 36527247 DOI: 10.1002/jbt.23292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Bisphenol A (BPA) is an omnipresent environmental pollutant. Despite being restrictions in-force for its utilization, it is widely being used in the production of polycarbonate plastics and epoxy resins. Direct, low-dose, and long-term exposure to BPA is expected when they are used in the packaging of food products and are used as containers for food consumption. Occupationally, workers are typically exposed to BPA at higher levels and for longer periods during the manufacturing process. BPA is a known endocrine disruptor chemical (EDC), that causes male infertility, which has a negative impact on human life from emotional, physical, and societal standpoints. To minimize the use of BPA in numerous consumer products, efforts and regulations are being made. Despite legislative limits in numerous nations, BPA is still found in consumer products. This paper examines BPA's overall male reproductive toxicity, including its impact on the hypothalamic-pituitary-testicular (HPT) axis, hormonal homeostasis, testicular steroidogenesis, sperm parameters, reproductive organs, and antioxidant defense system. Furthermore, this paper highlighted the role of non-monotonic dose-response (NMDR) in BPA exposure, which will help to improve the overall understanding of the harmful effects of BPA on the male reproductive system.
Collapse
Affiliation(s)
- Shiv K Yadav
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India
| | - Vandana Bijalwan
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India
| | - Suresh Yadav
- ICMR-National Institute for Implementation Research on Non-Communicable Disease (NIIRNCD), Jodhpur, Rajasthan, India
| | - Kamalesh Sarkar
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India
- ICMR-National Institute of Cholera & Enteric Diseases (NICED), Kolkata, West Bengal, India
| | - Santasabuj Das
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India
- ICMR-National Institute of Cholera & Enteric Diseases (NICED), Kolkata, West Bengal, India
| | - Dhirendra P Singh
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India
| |
Collapse
|
7
|
Reshi MS, Mustafa RA, Javaid D, Haque S. Pesticide Toxicity Associated with Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:59-69. [PMID: 36472816 DOI: 10.1007/978-3-031-12966-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pesticides have benefited mankind in many ways like agriculture, industrial and health sectors. On the other hand, conversely their deleterious effects in both, humans and animals are also alarming. Pesticides including organophosphates, organochlorines, carbamates, pyrethrins and pyrethroids are found sufficiently in the environment resulting in everyday human exposure. This is of a huge concern because most of the pesticides are known to target all the physiological functions of both humans and animals. Indeed, reproduction, being one of the most important physiological processes, that is affected by the daily exposure to pesticides and leading to infertility issues. The present study summarizes the exposure of men and women to certain pesticides resulting in different infertility concerns like sperm abnormalities, decreased fertility, abnormal sperm count and motility, testicular atrophy, ovarian dysfunction, spontaneous abortions, disruption of hypothalamic-pituitary-gonadal axis, etc. So, this article will be helpful in perceiving the mechanism of reproductive toxicity of different pesticides and their management before any alarm of danger.
Collapse
Affiliation(s)
- Mohd Salim Reshi
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| | - Rashaid Ali Mustafa
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| | - Darakhshan Javaid
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
8
|
McCann MS, Fernandez HR, Flowers SA, Maguire-Zeiss KA. Polychlorinated biphenyls induce oxidative stress and metabolic responses in astrocytes. Neurotoxicology 2021; 86:59-68. [PMID: 34265337 PMCID: PMC8440398 DOI: 10.1016/j.neuro.2021.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Exposure to environmental toxicants is prevalent, hazardous and linked to varied detrimental health outcomes and disease. Polychlorinated biphenyls (PCBs), a class of hazardous organic chlorines once widely used for industrial purposes, are associated with neurodegenerative disease and oxidative stress in both in vitro and in vivo models. Here, we investigated the impact of Aroclor 1254, a commercially available PCB mixture, on primary murine astrocytes to determine the response to this once ubiquitously used toxicant on the most numerous cells of the central nervous system (CNS). Astrocytes are a critical component of homeostasis throughout the CNS, including at the blood-brain barrier, where they serve as the primary defense against xenobiotics entering the CNS, and at the synapse, where they are closely coupled to neurons through several metabolic pathways. We hypothesized that PCBs cause astrocytic oxidative stress and related dysfunction including altered metabolism. We exposed primary murine cortical astrocytes to PCBs and report an increased expression of antioxidant genes (Prdx1, Gsta2, Gfap, Amigo2) in response to oxidative stress. Our data show increased ATP production and spare respiratory capacity in astrocytes exposed to 10 μM (∼ 3 ppm) PCBs. This dose also causes an increase in glucose uptake that is not seen at a higher dose (50 μM) suggesting that, at a lower dose, astrocytes are able to engage compensatory mechanisms to promote survival. Together, these data suggest that exposure to PCBs impact astrocytic metabolism, which is important to consider both in the context of human health and disease and in in vitro and in vivo disease models.
Collapse
Affiliation(s)
- Mondona S McCann
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C., United States; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington D.C., United States
| | - Harvey R Fernandez
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C., United States
| | - Sarah A Flowers
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C., United States
| | - Kathleen A Maguire-Zeiss
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C., United States; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington D.C., United States.
| |
Collapse
|
9
|
Patisaul HB. Endocrine disrupting chemicals (EDCs) and the neuroendocrine system: Beyond estrogen, androgen, and thyroid. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:101-150. [PMID: 34452685 DOI: 10.1016/bs.apha.2021.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hundreds of anthropogenic chemicals occupy our bodies, a situation that threatens the health of present and future generations. This chapter focuses on endocrine disrupting compounds (EDCs), both naturally occurring and man-made, that affect the neuroendocrine system to adversely impact health, with an emphasis on reproductive and metabolic pathways. The neuroendocrine system is highly sexually dimorphic and essential for maintaining homeostasis and appropriately responding to the environment. Comprising both neural and endocrine components, the neuroendocrine system is hormone sensitive throughout life and touches every organ system in the body. The integrative nature of the neuroendocrine system means that EDCs can have multi-system effects. Additionally, because gonadal hormones are essential for the sex-specific organization of numerous neuroendocrine pathways, endocrine disruption of this programming can lead to permanent deficits. Included in this review is a brief history of the neuroendocrine disruption field and a thorough discussion of the most common and less well understood neuroendocrine disruption modes of action. Also provided are extensive examples of how EDCs are likely contributing to neuroendocrine disorders such as obesity, and evidence that they have the potential for multi-generational effects.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
10
|
Mutwedu VB, Nyongesa AW, Azine PC, Chiregereza DK, Ngoumtsop VH, Mugumaarhahama Y, Ayagirwe RBB. Growth performance and reproductive function impairment of glyphosate-based herbicide in male guinea pig (Cavia porcellus). Vet Med Sci 2021; 7:1047-1055. [PMID: 33555111 PMCID: PMC8136967 DOI: 10.1002/vms3.443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 01/26/2023] Open
Abstract
Glyphosate formulations, widely applied non-selective systemic herbicides, are progressively becoming the most controversial pesticides on the market due the adverse effects they pose to humans and environment. The information on these potential hazardous effects to the handlers of the pesticide remains obscure. This study investigated effects of glyphosate-based herbicide on growth performance, seminal parameters and hemato-biochemical profiles in male guinea pig. Forty sexually mature male guinea pigs weighing between 393.3 and 418.4 g were divided into four groups of 10 animals each and orally administered 0, 186, 280 and 560 mg/kg body weight of WILLOSATE daily for 60 days. Daily feed intake and body weight gain were recorded. At the end of experimental period all animals were humanely sacrificed, and blood samples and vital organs were collected for appropriate analysis. Results showed a significant decrease (p < 0.05) in body weight gain (-102.2%), final body weight (-9.8%) and feed intake (-13.1%) of animals following sub-chronic exposure of WILLOSATE. The weights of the liver and kidney increased significantly (p < 0.05) by 25.4% and 28.8%, respectively, while testicular weights decreased (p < 0.05) by 24% with increasing doses of WILLOSATE. A decrease in sperm motility (-67.9%), viability (-52.7%) and concentration per vas deferens (-40.7%), and an increase in sperm major (28.1%) and minor (45.3%) morphological aberrations were recorded in WILLOSATE - exposed guinea pigs when compared to controls. There was a dose-dependent increase (p < 0.05) in MCV and WBC and a decrease in Hb content and RBC, as well as serum content in total protein (-11.8%). The serum content of cholesterol (37.8%), urea (87.1%), creatinine (22.4%), ALAT (74.2%) and ASAT (88.7%) were significantly higher in treated groups compared to controls. These results point toward the toxic effects of WILLOSATE on vital organs and reproductive function of the body at high doses and long-term exposure.
Collapse
Affiliation(s)
- Valence Bwana Mutwedu
- Department of Animal ProductionFaculty of Agriculture and Environmental StudiesUniversité Evangélique en Afrique (UEA)BukavuDR Congo
| | | | - Pascaline Ciza Azine
- Department of Animal ProductionFaculty of Agriculture and Environmental StudiesUniversité Evangélique en Afrique (UEA)BukavuDR Congo
| | - Daniel Katulanya Chiregereza
- Department of Animal ProductionFaculty of Agriculture and Environmental StudiesUniversité Evangélique en Afrique (UEA)BukavuDR Congo
| | | | - Yannick Mugumaarhahama
- Department of Animal ProductionFaculty of Agriculture and Environmental StudiesUniversité Evangélique en Afrique (UEA)BukavuDR Congo
| | | |
Collapse
|
11
|
Abdel-Emam RA, Ahmed EA. Ameliorative effect of L-carnitine on chronic lead-induced reproductive toxicity in male rats. Vet Med Sci 2021; 7:1426-1435. [PMID: 33724722 PMCID: PMC8294385 DOI: 10.1002/vms3.473] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 02/02/2021] [Accepted: 02/27/2021] [Indexed: 11/14/2022] Open
Abstract
Lead toxicity is one of the causative agents of male infertility that raised concern from environmental contamination worldwide. L‐carnitine, a biologically active amino acid, present in high concentration in the reproductive organs such as the epididymis, is involved in sperm maturation. The possible protective effect of L‐carnitine in experimentally lead‐induced male reproductive toxicity in rats was evaluated in this study. Thirty adult male Wistar rats were divided into three groups. Group 1: the negative control group was treated with normal saline; Group 2: exposed to 50 mg/kg lead acetate (2% solution in saline); and Group 3: treated with lead acetate 50 mg/kg (2% solution in saline) + L‐carnitine 100 mg/kg. At the end of the experimental period, body and testicular weights were determined, blood samples were withdrawn for hormonal assays of FSH, LH and testosterone. Sperm parameters as sperm count, morphology, viability and motility were measured. Testicular tissue homogenates were prepared for enzymatic assays and for measuring oxidative stress parameters. Lead significantly increased both oxidative stress and the concentration of lactate dehydrogenase‐C in the testicular tissues with a decrease in sperm count, motility and viability. Lead acetate treatment, induced alteration in sperms with normal morphology together with reductions in the serum FSH, LH, testosterone, body and testicular weights. The concentration of 17β‐hydroxysteroid dehydrogenase was significantly reduced. Co‐administration of L‐carnitine significantly reduced testicular oxidative stress, improved sperm parameters, elevated serum FSH, LH and testosterone with an insignificant reduction in the testicular weight. The concentrations of 17β‐hydroxysteroid dehydrogenase and lactate dehydrogenase‐C were significantly improved by L‐carnitine. The overall results indicate that L‐carnitine is expected to improve the lead acetate‐induced male reproductive toxicity.
Collapse
Affiliation(s)
- Rania A Abdel-Emam
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Esraa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Hassan MA, El Bohy KM, El Sharkawy NI, Imam TS, El-Metwally AE, Hamed Arisha A, Mohammed HA, Abd-Elhakim YM. Iprodione and chlorpyrifos induce testicular damage, oxidative stress, apoptosis and suppression of steroidogenic- and spermatogenic-related genes in immature male albino rats. Andrologia 2021; 53:e13978. [PMID: 33586219 DOI: 10.1111/and.13978] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 12/30/2022] Open
Abstract
The fungicide iprodione (IPR) and the insecticide chlorpyrifos (CPF) are concurrently applied for early disease control in fruits and other crops. However, there are no available data about the impacts of their co-exposure. Additionally, IPR and CPF are known as endocrine disruptors that can cause reproductive toxicity. The outcomes of their co-exposure on the development of male reproductive organs are still unknown. Therefore, this study aimed to assess the risk of exposure to these pesticides, particularly on the postnatal development of the male albino rat reproductive system from postnatal days 23-60. The results revealed that a single IPR or CPF exposure has harmful consequences on the reproductive development and function manifested by reduced testicular weight, serious changes in sperm characteristics, reproductive hormone level imbalance, testicular enzymes, oxidative stress and apoptosis-related enzymes, which correlated with transcription levels of steroidogenic- and spermatogenic-related genes. Histopathologically, both compounds caused severe damage in the testis and accessory glands architecture. Notably, co-exposure to IPR and CPF in rats caused more serious damage, indicative of an additive effect than individual exposure, so concurrent exposure should be avoided as it is more hazardous, especially on male fertility.
Collapse
Affiliation(s)
- Mona A Hassan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Khlood M El Bohy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nabela I El Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tamer S Imam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer E El-Metwally
- Department of Pathology, Animal Reproduction Research Institute, Giza, Egypt
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr city, Egypt.,Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Haiam A Mohammed
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Ubaid Ur Rahman H, Asghar W, Nazir W, Sandhu MA, Ahmed A, Khalid N. A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: Evidence of mechanisms, exposures and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142649. [PMID: 33059141 DOI: 10.1016/j.scitotenv.2020.142649] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 04/15/2023]
Abstract
Chlorpyrifos (CPF) is a broad-spectrum chlorinated organophosphate (OP) pesticide used for the control of a variety of insects and pathogens in crops, fruits, vegetables, as well as households, and various other locations. The toxicity of CPF has been associated with neurological dysfunctions, endocrine disruption, and cardiovascular diseases (CVDs). It can also induce developmental and behavioral anomalies, hematological malignancies, genotoxicity, histopathological aberrations, immunotoxicity, and oxidative stress as evidenced by animal modeling. Moreover, eye irritation and dermatological defects are also reported due to CPF toxicity. The mechanism of action of CPF involves blocking the active sites of the enzyme, acetylcholinesterase (AChE), thereby producing adverse nervous system effects. Although CPF has low persistence in the body, its active metabolites, 3,5,6-trichloro-2-pyridinol (TCP), and chlorpyrifos-oxon (CPO) are comparatively more persistent, albeit equally toxic, and thus produce serious health complications. The present review has been compiled taking into account the work related to CPF toxicity and provides a brief compilation of CPF-induced defects in animals and humans, emphasizing the abnormalities leading to endocrine disruption, neurotoxicity, reproductive carcinogenesis, and disruptive mammary gland functionality. Moreover, the clinical signs and symptoms associated with the CPF exposure along with the possible pharmacological treatment are reported in this treatise. Additionally, the effect of food processing methods in reducing CPF residues from different agricultural commodities and dietary interventions to curtail the toxicity of CPF has also been discussed.
Collapse
Affiliation(s)
- Hafiz Ubaid Ur Rahman
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Waqas Asghar
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Wahab Nazir
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Mansur Abdullah Sandhu
- Department of Biomedical Sciences, Faculty of Veterinary & Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Anwaar Ahmed
- Institute of Food and Nutrition Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Nauman Khalid
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan.
| |
Collapse
|
14
|
Organophosphate Pesticide Exposure and Breast Cancer Risk: A Rapid Review of Human, Animal, and Cell-Based Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17145030. [PMID: 32668751 PMCID: PMC7399930 DOI: 10.3390/ijerph17145030] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Organophosphate pesticides (OPs) are one of the most commonly used classes of insecticides in the U.S., and metabolites of OPs have been detected in the urine of >75% of the U.S. POPULATION While studies have shown that OP exposure is associated with risk of neurological diseases and some cancers, the relationship between OP exposure and breast cancer risk is not well understood. METHODS The aim of this rapid review was to systematically evaluate published literature on the relationship between OP exposure and breast cancer risk, including both epidemiologic and laboratory studies. Twenty-seven full-text articles were reviewed by searching on Pubmed, EMBASE, and Cochrane databases. RESULTS Some human studies showed that malathion, terbufos, and chlorpyrifos were positively associated with human breast cancer risk, and some laboratory studies demonstrated that malathion and chlorpyrifos have estrogenic potential and other cancer-promoting properties. However, the human studies were limited in number, mostly included agricultural settings in several geographical areas in the U.S., and did not address cumulative exposure. CONCLUSIONS Given the mixed results found in both human and laboratory studies, more research is needed to further examine the relationship between OP exposure and breast cancer risk, especially in humans in non-agricultural settings.
Collapse
|
15
|
Yilmaz B, Terekeci H, Sandal S, Kelestimur F. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev Endocr Metab Disord 2020; 21:127-147. [PMID: 31792807 DOI: 10.1007/s11154-019-09521-z] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endocrine Disrupting Chemicals (EDCs) are a global problem for environmental and human health. They are defined as "an exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action". It is estimated that there are about 1000 chemicals with endocrine-acting properties. EDCs comprise pesticides, fungicides, industrial chemicals, plasticizers, nonylphenols, metals, pharmaceutical agents and phytoestrogens. Human exposure to EDCs mainly occurs by ingestion and to some extent by inhalation and dermal uptake. Most EDCs are lipophilic and bioaccumulate in the adipose tissue, thus they have a very long half-life in the body. It is difficult to assess the full impact of human exposure to EDCs because adverse effects develop latently and manifest at later ages, and in some people do not present. Timing of exposure is of importance. Developing fetus and neonates are the most vulnerable to endocrine disruption. EDCs may interfere with synthesis, action and metabolism of sex steroid hormones that in turn cause developmental and fertility problems, infertility and hormone-sensitive cancers in women and men. Some EDCs exert obesogenic effects that result in disturbance in energy homeostasis. Interference with hypothalamo-pituitary-thyroid and adrenal axes has also been reported. In this review, potential EDCs, their effects and mechanisms of action, epidemiological studies to analyze their effects on human health, bio-detection and chemical identification methods, difficulties in extrapolating experimental findings and studying endocrine disruptors in humans and recommendations for endocrinologists, individuals and policy makers will be discussed in view of the relevant literature.
Collapse
Affiliation(s)
- Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Hakan Terekeci
- Department of Internal Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Suleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
16
|
Otênio JK, Souza KD, Alberton O, Alberton LR, Moreno KGT, Gasparotto Junior A, Palozi RAC, Lourenço ELB, Jacomassi E. Thyroid-disrupting effects of chlorpyrifos in female Wistar rats. Drug Chem Toxicol 2019; 45:387-392. [DOI: 10.1080/01480545.2019.1701487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Joice Karina Otênio
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
| | - Karine Delgado Souza
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
| | - Odair Alberton
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
| | - Luiz Rômulo Alberton
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
| | - Karyne Garcia Tafarelo Moreno
- Laboratory of Electrophysiology and Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Electrophysiology and Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Rhanany Alan Calloi Palozi
- Laboratory of Electrophysiology and Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | | | - Ezilda Jacomassi
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
| |
Collapse
|
17
|
Wahab OA, Princely AC, Oluwadamilare AA, Ore-Oluwapo DO, Blessing AO, Alfred EF. Clomiphene citrate ameliorated lead acetate-induced reproductive toxicity in male Wistar rats. JBRA Assist Reprod 2019; 23:336-343. [PMID: 31173495 PMCID: PMC6798595 DOI: 10.5935/1518-0557.20190038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Objective: The current study investigated the effects of clomiphene citrate on the
hypothalamic-pituitary-testicular axis, steroidogenesis, sperm parameters,
and testicular antioxidant enzyme activity of male Wistar rats submitted to
lead acetate (Pb)-induced reproductive toxicity. Methods: Twenty adult male Wistar rats were divided into four groups of equal size as
follows: Control; Clomid (0.35 mg/kg); Pb (10 mg/kg); and Clomid + Pb. Serum
levels of follicle stimulating hormone (FSH), luteinizing hormone (LH),
testosterone, testicular 17-β hydroxysteroid dehydrogenase
(17-β HSD) activity, androgen receptors, catalase activity,
superoxide dismutase (SOD), malondialdehyde (MDA), sperm motility,
viability, counts and morphology were estimated after oral administration of
Clomid and/or lead acetate for 35 consecutive days. Data were analyzed using
ANOVA at p<0.05. Results: Lead acetate significantly decreased (p<0.05) serum LH
and testosterone levels, testicular 17β-HSD activity, androgen
receptor expression, sperm motility, viability, counts, catalase activity,
and SOD when compared with controls. Abnormal sperm morphology and MDA were
significantly increased (p<0.05) in the Pb group
compared with controls. Clomid co-administrated with lead acetate
significantly increased (p<0.05) serum LH, testosterone
levels, testicular 17β-HSD, androgen receptor expression, sperm
motility and viability when compared with the group given lead acetate. Conclusions: The present study suggests that clomiphene citrate may stimulate testicular
testosterone synthesis, sperm motility and viability via luteinizing hormone
in a context of lead acetate-induced reproductive toxicity.
Collapse
Affiliation(s)
- Oyeyemi A Wahab
- Department of Physiology, Igbinedion University, Okada, Edo State, Nigeria
| | - Anyanwu C Princely
- Department of Physiology, Igbinedion University, Okada, Edo State, Nigeria
| | | | | | - Alli O Blessing
- Department of Physiology, Igbinedion University, Okada, Edo State, Nigeria
| | - Ehiaghe F Alfred
- Department of Haematology, Igbinedion University, Okada, Edo State, Nigeria
| |
Collapse
|
18
|
Associations of maternal exposure to organophosphate and pyrethroid insecticides and the herbicide 2,4-D with birth outcomes and anogenital distance at 3 months in the Odense Child Cohort. Reprod Toxicol 2018; 76:53-62. [DOI: 10.1016/j.reprotox.2017.12.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 11/23/2022]
|
19
|
Altun S, Özdemir S, Arslan H. Histopathological effects, responses of oxidative stress, inflammation, apoptosis biomarkers and alteration of gene expressions related to apoptosis, oxidative stress, and reproductive system in chlorpyrifos-exposed common carp (Cyprinus carpio L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:432-443. [PMID: 28675853 DOI: 10.1016/j.envpol.2017.06.085] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/25/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
In this study, we aimed to identify the toxic effects of chlorpyrifos exposure on the tissues of common carp. For this purpose, we evaluated histopathological changes in the brain, gills, liver, kidney, testis, and ovaries after 21 days of chlorpyrifos exposure. Activation of 8-OHdG, cleaved caspase-3, and iNOS were assesed by immunofluorescence assay in chlorpyrifos-exposed brain and liver tissue. Additionally, we measured the expression levels of caspase-3, caspase-8, iNOS, MT1, CYP1A, and CYP3A genes in chlorpyrifos-exposed brain tissue, as well as the expression levels of FSH and LH genes in chlorpyrifos-exposed ovaries, using qRT-PCR. We observed severe histopathological lesions, including inflammation, degeneration, necrosis, and hemorrhage, in the evaluated tissues of common carp after both high and low levels of exposure to chlorpyrifos. We detected strong and diffuse signs of immunofluorescence reaction for 8-OHdG, iNOS, and cleaved caspase-3 in the chlorpyrifos-exposed brain and liver tissues. Furthermore, we found that chlorpyrifos exposure significantly upregulated the expressions of caspase-3, caspase-8, iNOS, and MT1, and also moderately upregulated CYP1A and CYP3A in the brain tissue of exposed carp. We also noted downregulation of FSH and LH gene expressions in chlorpyrifos-exposed ovary tissues. Based on our results, chlorpyrifos toxication caused crucial histopathological lesions in vital organs, induced oxidative stress, inflammation, and apoptosis in liver and brain tissues, and triggered reproductive sterility in common carp. Therefore, we can propose that chlorpyrifos toxication is highly dangerous to the health of common carp. Moreover, chlorpyrifos pollution in the water could threaten the common carp population. Use of chlorpyrifos should be restricted, and aquatic systems should be monitored for chlorpyrifos pollution.
Collapse
Affiliation(s)
- Serdar Altun
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Yakutiye, 25240, Erzurum, Turkey.
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Yakutiye, 25240, Erzurum, Turkey
| | - Harun Arslan
- Department of Basic Sciences, Faculty of Fisheries, Atatürk University, Yakutiye, 25240, Erzurum, Turkey
| |
Collapse
|
20
|
Ferdinand N, Herman NV, Omer Bebe NK, Augustave K, Valence M, Ghislaine NT, Herve T, Dorice AK, Sorelle D, Yacouba M. Antouka Super ® induced oxidative stress and reproductive toxicity in male Japanese quail ( Coturnix coturnix japonica). Heliyon 2017; 3:e00410. [PMID: 29057334 PMCID: PMC5639044 DOI: 10.1016/j.heliyon.2017.e00410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/27/2017] [Accepted: 09/14/2017] [Indexed: 11/26/2022] Open
Abstract
Background Antouka Super® (AS), a combination of insecticide (Pirimiphos-methyl 16% and Permethrin 3%), is one of the most widely used pesticides in agriculture, public health, home and garden, with high potential for human and animal exposure. Objective The present study was undertaken to evaluate the effect of AS on the serum testosterone, oxidative stress biomarkers, testis histology and fertility of male Japanese quail. Methods Thirty-two (32) male Japanese quails twenty-eight (28) days were randomly divided into four groups: C0 (control), T1, T2 and T3, exposed daily (gavage) to 0, 37.5, 56.25 and 75 mg of AS/kg body weight (b.w), respectively, for 49 consecutive days and were analysed for fertility. Control and experimental male quails were cohabited, for two days, with untreated female quails and sperm positive female quail were analysed for paternal-mediated toxicity. After completion of fertility studies quails were sacrificed and analysed for reproductive endpoints. Results There was a dose dependent decrease of the relative weight of testis, epididymis and vas deferens. Additionally, testis total proteins and serum testosterone levels were decreased in AS treated quails (p < 0.05). A decrease of sperm motility, viability and concentration per vas deferens, and an increase of sperm anomalies were recorded in AS exposed quails with respect to the controls. The embryonic and post-embryonic mortality rate were significantly (p < 0.05) higher in group T3 (25.00 ± 3.40% and 31.66 ± 10.22% respectively) than in control group (6.25 ± 3.98% and 9.54 ± 3.72% respectively). The superoxide dismutase (SOD), total peroxidase (POD) and catalase activity (CAT) were significantly (p < 0.05) lower treated than control quails, while the level of malondialdehyde (MDA) was significantly (p < 0.05) higher in groups T1, T2 and T3 (13.00 ± 0.96, 23.50 ± 1.35 and 29.08 ± 1.58 nmol/mg tissues respectively) compared to the control one (9.32 ± 0.67nmol/mg tissues). Histopathological examination of the testes of AS treated quails revealed testicular lesions characterized by moderate to severe degenerative changes of seminiferous tubules, incomplete spermatogenesis and depletion in the germ layers of seminiferous tubules in which immature spermatozoa were hardly seen. Conclusion From the above study, it can be inferred that AS (56.25 and 75) mg/kg b.w decrease body and relative organ weights and induces testicular lesions. Also, AS increases the level of MDA while it reduces the levels of enzymatic antioxidant biomarkers, serum testosterone and reproductive indices of intoxicated quails and their offspring. However, further work is needed to establish the genetic toxicology and immunohistochemistry of caspase-3 and claudin-1.
Collapse
Affiliation(s)
- Ngoula Ferdinand
- Laboratory of Animal Physiology and Health, Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 188, Dschang, Cameroon
| | - Ngoumtsop Victor Herman
- Laboratory of Animal Physiology and Health, Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 188, Dschang, Cameroon
| | - Ngouateu Kenfack Omer Bebe
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Kenfack Augustave
- Laboratory of Animal Physiology and Health, Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 188, Dschang, Cameroon
| | - Mutwedu Valence
- Laboratory of Animal Physiology and Health, Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 188, Dschang, Cameroon
| | - Nguemmogne Tamdem Ghislaine
- Laboratory of Animal Physiology and Health, Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 188, Dschang, Cameroon
| | - Tchoffo Herve
- Laboratory of Animal Physiology and Health, Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 188, Dschang, Cameroon
| | - Azafack Kana Dorice
- Laboratory of Animal Physiology and Health, Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 188, Dschang, Cameroon
| | - Deutcheu Sorelle
- Laboratory of Animal Physiology and Health, Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 188, Dschang, Cameroon
| | - Manjeli Yacouba
- Laboratory of Animal Physiology and Health, Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 188, Dschang, Cameroon
| |
Collapse
|
21
|
Gao N, Hu R, Huang Y, Dao L, Zhang C, Liu Y, Wu L, Wang X, Yin W, Gore AC, Sun Z. Specific effects of prenatal DEHP exposure on neuroendocrine gene expression in the developing hypothalamus of male rats. Arch Toxicol 2017; 92:501-512. [PMID: 28871463 DOI: 10.1007/s00204-017-2049-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/28/2017] [Indexed: 12/29/2022]
Abstract
Endocrine disrupting chemicals may disrupt developing neuroendocrine systems, especially when the exposure occurs during a critical period. This study aimed to investigate whether prenatal exposure to di-(2-ethylhexyl) phthalate (DEHP), a major component of plasticizers used worldwide, disrupted the development of a network of genes important for neuroendocrine function in male rats. Pregnant rats were treated with corn oil (vehicle control), 2, 10 or 50 mg/kg DEHP by gavage from gestational day 14 to 19. The neuroendocrine gene expressions were quantified using a 48-gene Taqman qPCR array in the whole hypothalamus of neonatal rats (postnatal day 1) and in the anteroventral periventricular nucleus (AVPV), medial preoptic nucleus (MPN) and arcuate nucleus (ARC) of adult rats (postnatal day 70). Immunofluorescent signals of ERα and CYP19 were detected using the confocal microscopy in adult AVPV, MPN and ARC. The results showed that prenatal DEHP exposure perturbed somatic and reproductive development of offspring. Eleven genes were down-regulated in neonatal hypothalamus and showed non-monotonic dose-response relationships, that the 10 mg/kg DEHP dosage was associated with the greatest number of gene expression changes. Different from this, 14 genes were altered in adult AVPV, MPN and ARC and most of alterations were found in the 50 mg/kg DEHP group. Also, 50 mg/kg DEHP reduced ERα expression in the ARC, but no alterations were observed in CYP19 expression. These results indicated that prenatal DEHP exposure may perturb hypothalamic gene programming and the influences are permanent. The effects showed dependence on developmental stages and nuclei region.
Collapse
Affiliation(s)
- Na Gao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Rd., Heping Dist., Tianjin, 300070, People's Republic of China
| | - Ruixia Hu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Rd., Heping Dist., Tianjin, 300070, People's Republic of China
| | - Yujing Huang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Rd., Heping Dist., Tianjin, 300070, People's Republic of China
| | - Long Dao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Rd., Heping Dist., Tianjin, 300070, People's Republic of China
| | - Caifeng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Rd., Heping Dist., Tianjin, 300070, People's Republic of China
| | - Yongzhe Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Rd., Heping Dist., Tianjin, 300070, People's Republic of China
| | - Lina Wu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Rd., Heping Dist., Tianjin, 300070, People's Republic of China
| | - Xutong Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Weiling Yin
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Zengrong Sun
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Rd., Heping Dist., Tianjin, 300070, People's Republic of China.
| |
Collapse
|
22
|
Rattan S, Zhou C, Chiang C, Mahalingam S, Brehm E, Flaws JA. Exposure to endocrine disruptors during adulthood: consequences for female fertility. J Endocrinol 2017; 233:R109-R129. [PMID: 28356401 PMCID: PMC5479690 DOI: 10.1530/joe-17-0023] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/29/2017] [Indexed: 01/10/2023]
Abstract
Endocrine disrupting chemicals are ubiquitous chemicals that exhibit endocrine disrupting properties in both humans and animals. Female reproduction is an important process, which is regulated by hormones and is susceptible to the effects of exposure to endocrine disrupting chemicals. Disruptions in female reproductive functions by endocrine disrupting chemicals may result in subfertility, infertility, improper hormone production, estrous and menstrual cycle abnormalities, anovulation, and early reproductive senescence. This review summarizes the effects of a variety of synthetic endocrine disrupting chemicals on fertility during adult life. The chemicals covered in this review are pesticides (organochlorines, organophosphates, carbamates, pyrethroids, and triazines), heavy metals (arsenic, lead, and mercury), diethylstilbesterol, plasticizer alternatives (di-(2-ethylhexyl) phthalate and bisphenol A alternatives), 2,3,7,8-tetrachlorodibenzo-p-dioxin, nonylphenol, polychlorinated biphenyls, triclosan, and parabens. This review focuses on the hypothalamus, pituitary, ovary, and uterus because together they regulate normal female fertility and the onset of reproductive senescence. The literature shows that several endocrine disrupting chemicals have endocrine disrupting abilities in females during adult life, causing fertility abnormalities in both humans and animals.
Collapse
Affiliation(s)
- Saniya Rattan
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Changqing Zhou
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Catheryne Chiang
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sharada Mahalingam
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Emily Brehm
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jodi A Flaws
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
23
|
Bellingham M, Fowler PA, MacDonald ES, Mandon‐Pepin B, Cotinot C, Rhind S, Sharpe RM, Evans NP. Timing of Maternal Exposure and Foetal Sex Determine the Effects of Low-level Chemical Mixture Exposure on the Foetal Neuroendocrine System in Sheep. J Neuroendocrinol 2016; 28:10.1111/jne.12444. [PMID: 27870155 PMCID: PMC5621486 DOI: 10.1111/jne.12444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/21/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023]
Abstract
We have shown that continuous maternal exposure to the complex mixture of environmental chemicals (ECs) found in human biosolids (sewage sludge), disrupts mRNA expression of genes crucial for development and long-term regulation of hypothalamic-pituitary gonadal (HPG) function in sheep. The present study investigated whether exposure to ECs only during preconceptional period or only during pregnancy perturbed key regulatory genes within the hypothalamus and pituitary gland and whether these effects were different from chronic (life-long) exposure to biosolid ECs. The findings demonstrate that the timing and duration of maternal EC exposure influences the subsequent effects on the foetal neuroendocrine system in a sex-specific manner. Maternal exposure prior to conception, or during pregnancy only, altered the expression of key foetal neuroendocrine regulatory systems such as gonadotrophin-releasing hormone and kisspeptin to a greater extent than when maternal exposure was 'life-long'. Furthermore, hypothalamic gene expression was affected to a greater extent in males than in females and, following EC exposure, male foetuses expressed more 'female-like' mRNA levels for some key neuroendocrine genes. This is the first study to show that 'real-life' maternal exposure to low levels of a complex cocktail of chemicals prior to conception can subsequently affect the developing foetal neuroendocrine system. These findings demonstrate that the developing neuroendocrine system is sensitive to EC mixtures in a sex-dimorphic manner likely to predispose to reproductive dysfunction in later life.
Collapse
Affiliation(s)
- M. Bellingham
- Institute of BiodiversityAnimal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - P. A. Fowler
- Division of Applied MedicineCentre for Reproductive Endocrinology and MedicineInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - E. S. MacDonald
- Institute of BiodiversityAnimal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | | | - C. Cotinot
- UMR BDRUniversite Paris SaclayParisFrance
| | - S. Rhind
- James Hutton InstituteAberdeenUK
| | - R. M. Sharpe
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | - N. P. Evans
- Institute of BiodiversityAnimal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
24
|
Mokarizadeh A, Faryabi MR, Rezvanfar MA, Abdollahi M. A comprehensive review of pesticides and the immune dysregulation: mechanisms, evidence and consequences. Toxicol Mech Methods 2016; 25:258-78. [PMID: 25757504 DOI: 10.3109/15376516.2015.1020182] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nowadays, in many communities, there is a growing concern about possible adverse effects of pesticides on human health. Reports indicate that during environmental or occupational exposure, pesticides can exert some intense adverse effects on human health through transient or permanent alteration of the immune system. There is evidence on the relation between pesticide-induced immune alteration and prevalence of diseases associated with alterations of the immune response. In the present study, direct immunotoxicity, endocrine disruption and antigenicity have been introduced as the main mechanisms working with pesticides-induced immune dysregulation. Moreover, the evidence on the relationship between pesticide exposure, dysregulation of the immune system and predisposition to different types of psychiatric disorders, cancers, allergies, autoimmune and infectious diseases are criticized.
Collapse
Affiliation(s)
- Aram Mokarizadeh
- a Department of Immunology, Faculty of Medicine , Cellular and Molecular Research Center, Kurdistan University of Medical Sciences , Sanandaj , Iran and
| | | | | | | |
Collapse
|
25
|
Derouiche L, Keller M, Martini M, Duittoz AH, Pillon D. Developmental Exposure to Ethinylestradiol Affects Reproductive Physiology, the GnRH Neuroendocrine Network and Behaviors in Female Mouse. Front Neurosci 2015; 9:463. [PMID: 26696819 PMCID: PMC4673314 DOI: 10.3389/fnins.2015.00463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/23/2015] [Indexed: 01/10/2023] Open
Abstract
During development, environmental estrogens are able to induce an estrogen mimetic action that may interfere with endocrine and neuroendocrine systems. The present study investigated the effects on the reproductive function in female mice following developmental exposure to pharmaceutical ethinylestradiol (EE2), the most widespread and potent synthetic steroid present in aquatic environments. EE2 was administrated in drinking water at environmentally relevant (ENVIR) or pharmacological (PHARMACO) doses [0.1 and 1 μg/kg (body weight)/day respectively], from embryonic day 10 until postnatal day 40. Our results show that both groups of EE2-exposed females had advanced vaginal opening and shorter estrus cycles, but a normal fertility rate compared to CONTROL females. The hypothalamic population of GnRH neurons was affected by EE2 exposure with a significant increase in the number of perikarya in the preoptic area of the PHARMACO group and a modification in their distribution in the ENVIR group, both associated with a marked decrease in GnRH fibers immunoreactivity in the median eminence. In EE2-exposed females, behavioral tests highlighted a disturbed maternal behavior, a higher lordosis response, a lack of discrimination between gonad-intact and castrated males in sexually experienced females, and an increased anxiety-related behavior. Altogether, these results put emphasis on the high sensitivity of sexually dimorphic behaviors and neuroendocrine circuits to disruptive effects of EDCs.
Collapse
Affiliation(s)
- Lyes Derouiche
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Matthieu Keller
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Mariangela Martini
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Anne H Duittoz
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Delphine Pillon
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| |
Collapse
|
26
|
Omoike OE, Lewis RC, Meeker JD. Association between urinary biomarkers of exposure to organophosphate insecticides and serum reproductive hormones in men from NHANES 1999-2002. Reprod Toxicol 2015; 53:99-104. [PMID: 25908234 DOI: 10.1016/j.reprotox.2015.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/07/2015] [Indexed: 01/06/2023]
Abstract
Exposure to organophosphate (OP) insecticides may alter reproductive hormone levels in men and increase the risk for poor reductive health and other adverse health outcomes. However, relevant epidemiology studies in men are limited. We evaluated urinary concentrations of OP metabolites (3,5,6-trichloro-2-pyridinol and six dialkyl phosphates) in relation to serum concentrations of testosterone (T) and estradiol among 356 men aged 20-55 years old from the U.S. National Health and Nutrition Examination Survey. Biomarkers were detected in greater than 50% of the samples, except for diethyldithiophosphate, dimethylphosphate, and dimethyldithiophosphate. In adjusted regression models, we observed a statistically significant inverse relationship between diethyl phosphate (DEP) and T when DEP was modeled as either a continuous or categorical variable. These findings add to the limited evidence that exposure to certain OP insecticides is linked to altered T in men, which may have important implications for male health.
Collapse
Affiliation(s)
- Ogbebor Enaholo Omoike
- University of Michigan School of Public Health, Department of Environmental Health Sciences, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Ryan C Lewis
- University of Michigan School of Public Health, Department of Environmental Health Sciences, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - John D Meeker
- University of Michigan School of Public Health, Department of Environmental Health Sciences, 1415 Washington Heights, Ann Arbor, MI 48109, United States.
| |
Collapse
|
27
|
Ramos AC, H Dos Santos A, Silveira KM, Kiss ACI, Mesquita SFP, Gerardin DCC. Maternal treatment with fluoxetine promotes testicular alteration in male rat pups. Reprod Fertil Dev 2015; 28:RD14199. [PMID: 25582582 DOI: 10.1071/rd14199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/08/2014] [Indexed: 01/23/2023] Open
Abstract
Fluoxetine (FLX) is a selective serotonin reuptake inhibitor (SSRI) antidepressant commonly prescribed during pregnancy and lactation. Pre- and post-partum depression, as well as SSRI treatment during these periods, may change maternal care, interfering with offspring development. Moreover, it is known that SSRIs may alter testes structure and function in offspring. The present study investigated the effects of maternal FLX exposure on maternal behaviour and testes function in offspring. Female Wistar rats were treated with 7.5mgkg-1 FLX or tap water (control group) by gavage from the Day 1 of pregnancy until 21 days after birth (postnatal Day (PND) 21). Maternal behaviour was evaluated and morphofunctional analyses of offspring testes were conducted on PND 21 and 50. There were no significant differences between the FLX-treated and control groups regarding maternal behaviour. Nor did maternal treatment with FLX have any effect on bodyweight gain, anogenital distance, day of preputial separation, testis weight and the gonadosomatic index in male offspring. However, there was a decreased number of Sertoli cells at both PND 21 and 50 in FLX-exposed male offspring. The findings of the present study demonstrate that maternal exposure to FLX can impair testicular function in weanling and pubertal animals.
Collapse
|
28
|
Sharma P, Singh R, Jan M. Dose-dependent effect of deltamethrin in testis, liver, and kidney of wistar rats. Toxicol Int 2014; 21:131-9. [PMID: 25253921 PMCID: PMC4170553 DOI: 10.4103/0971-6580.139789] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objectives: Deltamethrin is a synthetic pyrethroid insecticide used worldwide in agriculture, household pest control, protection of foodstuff, and disease vector control. Although initially thought to be least toxic, a number of recent reports showed its toxic effects in mammalian and non-mammalian animal species. The current study was performed to assess the dose-dependent deltamethrin toxicity on testes, liver, and kidney of male Wistar rats. Materials and Methods: Twenty-four rats were divided in four groups of 6 each. Group A served as normal control. Group B, C, and D were administered with different doses (2 or 3 or 6 mg/kg corresponding to 1/30th or 1/20th or 1/10th of LD50, respectively) of deltamethrin for 28 days. Results: Deltamethrin exposure caused a significant reduction in weight of reproductive organs, decrease in sperm count, sperm motility, serum testosterone (T), follicle stimulating hormones (FSH), and luteinizing hormones (LH) in testis. Glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione S transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) were decreased in testis, liver and kidney of exposed rats. Deltamethrin exposure significantly increased sperm abnormalities in testis. Significant increase in lipid peroxidation (LPO) level was observed in testis, liver and kidney. Deltamethrin also caused histological alterations in testes, liver, and kidney. Conclusions: The results indicated that deltamethrin at a dose of 6 mg/kg exerts significant harmful effects on testes, liver and kidney as compare to 2 mg and 3 mg/kg. The study concluded that the system toxicity induced by deltamethrin was dose dependent.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Zoology, Bundelkhand University, Jhansi, Uttar Pradesh, India
| | - Rambir Singh
- Department of Biomedical Sciences, Bundelkhand University, Jhansi, Uttar Pradesh, India
| | - Mysra Jan
- Department of Zoology, Bundelkhand University, Jhansi, Uttar Pradesh, India
| |
Collapse
|
29
|
Zhao M, Zhang Y, Zhuang S, Zhang Q, Lu C, Liu W. Disruption of the hormonal network and the enantioselectivity of bifenthrin in trophoblast: maternal-fetal health risk of chiral pesticides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8109-8116. [PMID: 24938463 DOI: 10.1021/es501903b] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can interfere with normal hormone signaling to increase health risks to the maternal-fetal system, yet few studies have been conducted on the currently used chiral EDCs. This work tested the hypothesis that pyrethroids could enantioselectively interfere with trophoblast cells. Cell viability, hormone secretion, and steroidogenesis gene expression of a widely used pyrethroid, bifenthrin (BF), were evaluated in vitro, and the interactions of BF enantiomers with estrogen receptor (ER) were predicted. At low or noncytotoxic concentrations, both progesterone and human chorionic gonadotropin secretion were induced. The expression levels of progesterone receptor and human leukocyte antigen G genes were significantly stimulated. The key regulators of the hormonal cascade, GnRH type-I and its receptor, were both upregulated. The expression levels of selected steroidogenic genes were also significantly altered. Moreover, a consistent enantioselective interference of hormone signaling was observed, and S-BF had greater effects than R-BF. Using molecular docking, the enantioselective endocrine disruption of BF was predicted to be partially due to enantiospecific ER binding affinity. Thus, BF could act through ER to enantioselectively disturb the hormonal network in trophoblast cells. These converging results suggest that the currently used chiral pesticides are of significant concern with respect to maternal-fetal health.
Collapse
Affiliation(s)
- Meirong Zhao
- College of Biological and Environmental Engineering, Zhejiang University of Technology , Hangzhou 310032, China
| | | | | | | | | | | |
Collapse
|
30
|
Bourguignon JP, Franssen D, Gérard A, Janssen S, Pinson A, Naveau E, Parent AS. Early neuroendocrine disruption in hypothalamus and hippocampus: developmental effects including female sexual maturation and implications for endocrine disrupting chemical screening. J Neuroendocrinol 2013; 25:1079-87. [PMID: 24028442 DOI: 10.1111/jne.12107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/03/2013] [Accepted: 09/05/2013] [Indexed: 01/25/2023]
Abstract
The timing of puberty has been mainly studied in females for several reasons, including the possible evaluation of a precise timer (i.e. menarcheal age) and concerns with respect to the high prevalence of precocity in females as opposed to males. Human evidence of altered female pubertal timing after exposure to endocrine disrupting chemicals (EDCs) is equivocal. Among the limiting factors, most studies evaluate exposure to single EDCs at the time of puberty and hardly assess the impact of lifelong exposure to mixtures of EDCs. Some rodent and ovine studies indicate a possible role of foetal and neonatal exposure to EDCs, in accordance with the concept of an early origin of health and disease. Such effects possibly involve neuroendocrine mechanisms because the hypothalamus is a site where homeostasis of reproduction, as well as control of energy balance, is programmed and regulated. In our previous studies, pulsatile gonadotrophin-releasing hormone (GnRH) secretion control via oestrogen, glutamate and aryl hydrocarbon receptors was shown to be involved in the mechanism of sexual precocity after early postnatal exposure to the insecticide dichlorodiphenyltrichloroethane. Very recently, we have shown that neonatal exposure to the potent synthetic oestrogen diethylstilbestrol (DES) is followed by early or delayed puberty depending on the dose, with consistent changes in developmental increase of GnRH pulse frequency. Moreover, DES results in reduced leptin stimulation of GnRH secretion in vitro, an effect that is additive with prenatal food restriction. Thus, using puberty as an endpoint of the effects of EDC, it appears necessary to consider pre- and perinatal exposure to low doses and to pay attention to the other conditions of prenatal life, such as energy availability, keeping in mind the possibility that puberty could not only be advanced, but also delayed through neuroendocrine mechanisms.
Collapse
Affiliation(s)
- J-P Bourguignon
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium; Department of Pediatrics, CHU, Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
31
|
Uslu U, Sandal S, Cumbul A, Yildiz S, Aydin M, Yilmaz B. Evaluation of estrogenic effects of polychlorinated biphenyls and organochlorinated pesticides using immature rat uterotrophic assay. Hum Exp Toxicol 2013; 32:476-82. [DOI: 10.1177/0960327112472999] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, we investigated the effects of polychlorinated biphenyls (PCBs) and organochlorinated pesticides on the serum levels of luteinising hormone (LH), follicle stimulating hormone (FSH) and weights and histomorphometry of uterine tissue in immature female rats using uterotrophic assay. A total of 36 rats were randomly divided into six groups ( n = 6 per group) as control, oestradiol (E2, 100 μg/kg), PCB 180, Aroclor 1221, endosulfan and mirex at 10 mg/kg dosage. After 3 days of injections (subcutaneous), animals were decapitated and blood samples were collected. Uteri were dissected, weighed out and then fixed in 10% formaldehyde. They were processed for histomorphometry. The serum levels of LH and FSH were determined by enzyme immunoassay. Uterine weight was significantly increased by E2 and reduced by mirex ( p < 0.001 and p < 0.05, respectively). Total volume of uterus was significantly raised by E2, Aroclor 1221 and endosulfan compared with that of the control group ( p < 0.01). The ratio of epithelium was significantly increased by E2, PCBs and pesticides ( p < 0.01). The uterine cavity ratio was decreased by aroclor ( p < 0.01), PCB 180 and mirex ( p < 0.05). The serum levels of LH did not significantly differ among the groups but the levels of FSH were decreased by PCB 180 and endosulfan ( p < 0.05 and p < 0.01, respectively). These findings suggest that PCB 180, Aroclor 1221 and endosulfan may be estrogenic in immature uterotrophic assay.
Collapse
Affiliation(s)
- U. Uslu
- Faculty of Medicine, Department of Histology, Yeditepe University, Istanbul, Turkey
| | - S. Sandal
- Faculty of Medicine, Department of Physiology, Inonu University, Malatya, Turkey
| | - A. Cumbul
- Faculty of Medicine, Department of Histology, Yeditepe University, Istanbul, Turkey
| | - S. Yildiz
- Faculty of Medicine, Department of Physiology, Inonu University, Malatya, Turkey
| | - M. Aydin
- Faculty of Medicine, Department of Physiology, Mustafa Kemal University, Hatay, Turkey
| | - B. Yilmaz
- Faculty of Medicine, Department of Physiology, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
32
|
Simultaneous monitoring of seven phenolic metabolites of endocrine disrupting compounds (EDC) in human urine using gas chromatography with tandem mass spectrometry. Anal Bioanal Chem 2012; 405:2019-29. [DOI: 10.1007/s00216-012-6618-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
|
33
|
Pointis G, Gilleron J, Carette D, Segretain D. Testicular connexin 43, a precocious molecular target for the effect of environmental toxicants on male fertility. SPERMATOGENESIS 2011; 1:303-317. [PMID: 22332114 DOI: 10.4161/spmg.1.4.18392] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/10/2011] [Accepted: 10/10/2011] [Indexed: 02/08/2023]
Abstract
Many recent epidemiological, clinical and experimental findings support the hypothesis that environmental toxicants are responsible for the increasing male reproductive disorders (congenital malformations, declining sperm counts and testicular cancer) over the past 20 years. It has also been reported that exposure to these toxicants, during critical periods of development (fetal and neonatal), represents a more considerable risk for animals and humans than exposure during adulthood. However, the molecular targets for these chemicals have not been clearly identified. Recent studies showed that a family of transmembranous proteins, named connexins, regulates numerous physiological processes involved in testicular development and function, such as Sertoli and germ cell proliferation, differentiation, germ cell migration and apoptosis. In the testis, knockout strategy revealed that connexin 43, the predominant connexin in this organ, is essential for spermatogenesis. In addition, there is evidence that many environmental toxicants could alter testicular connexin 43 by dysregulation of numerous mechanisms controlling its function. In the present work, we propose first to give an overview of connexin expression and intercellular gap junction coupling in the developing fetal and neonatal testes. Second, we underline the impact of maternally chemical exposure on connexin 43 expression in the perinatal developing testis. Lastly, we attempt to link this precocious effect to male offspring fertility.
Collapse
|
34
|
Cummings JA, Clemens LG, Nunez AA. Mother counts: how effects of environmental contaminants on maternal care could affect the offspring and future generations. Front Neuroendocrinol 2010; 31:440-51. [PMID: 20685293 DOI: 10.1016/j.yfrne.2010.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/20/2010] [Accepted: 05/25/2010] [Indexed: 11/15/2022]
Abstract
Various compounds of anthropogenic origin represent environmental contaminants (EC) that penetrate the food chain and are frequently detected in human milk and maternal blood at the time of delivery. These ECs can affect the development of the fetus and can be transferred to the newborn during lactation. Many studies have used animal models to study the impact of ECs on the development of the nervous system and have reported effects of early exposure on neural and neuroendocrine systems and on behavior, when the exposed animals are tested as adults. Some of these effects persist across generations and may involve epigenetic mechanisms. The majority of these studies in developmental toxicology treat the pregnant or lactating animal with ECs in order to deliver the contaminants to the developing offspring. Almost universally, the mother is viewed as a passive conduit for the ECs, and maternal behavior is rarely assessed. Here we review the literature on the effects of ECs on maternal care and find mounting evidence that important components of the care given to the offspring are affected by maternal exposure to different ECs. Some of these changes in maternal behavior appear to be secondary to changes in the behavior and/or stimulus properties of the exposed offspring, but others are likely to be direct effects of the ECs on the maternal nervous and endocrine systems. Considering the extent to which the quality of maternal care affects the development of the offspring, it becomes imperative to determine the contributions that changes in maternal behavior make to the deficits traditionally ascribed solely to direct effects of ECs on the developing organism. Given the complexity and importance of mother-infant interactions, future research on developmental toxicology must consider the effects of ECs not only on the offspring, but also on the mother and on the interactions and social bond between mother and infant.
Collapse
Affiliation(s)
- J A Cummings
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
35
|
Zama AM, Uzumcu M. Epigenetic effects of endocrine-disrupting chemicals on female reproduction: an ovarian perspective. Front Neuroendocrinol 2010; 31:420-39. [PMID: 20609371 PMCID: PMC3009556 DOI: 10.1016/j.yfrne.2010.06.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 06/16/2010] [Accepted: 06/25/2010] [Indexed: 01/16/2023]
Abstract
The link between in utero and neonatal exposure to environmental toxicants, such as endocrine-disrupting chemicals (EDCs) and adult female reproductive disorders is well established in both epidemiological and animal studies. Recent studies examining the epigenetic mechanisms involved in mediating the effects of EDCs on female reproduction are gathering momentum. In this review, we describe the developmental processes that are susceptible to EDC exposures in female reproductive system, with a special emphasis on the ovary. We discuss studies with select EDCs that have been shown to have physiological and correlated epigenetic effects in the ovary, neuroendocrine system, and uterus. Importantly, EDCs that can directly target the ovary can alter epigenetic mechanisms in the oocyte, leading to transgenerational epigenetic effects. The potential mechanisms involved in such effects are also discussed.
Collapse
Affiliation(s)
- Aparna Mahakali Zama
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8525, USA
| | | |
Collapse
|
36
|
Jolous-Jamshidi B, Cromwell HC, McFarland AM, Meserve LA. Perinatal exposure to polychlorinated biphenyls alters social behaviors in rats. Toxicol Lett 2010; 199:136-43. [PMID: 20813172 DOI: 10.1016/j.toxlet.2010.08.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 01/25/2023]
Abstract
Perinatal exposure to polychlorinated biphenyls (PCBs) leads to significant alterations of neural and hormonal systems. These alterations have been shown to impair motor and sensory development. Less is known about the influence of PCB exposure on developing emotional and motivational systems involved in social interactions and social learning. The present study examined the impact of perinatal PCB exposure (mixture of congeners 47 and 77) on social recognition in juvenile animals, conspecific-directed investigation in adults and on neural and hormonal systems involved in social functions. We used a standard habituation-dishabituation paradigm to evaluate juvenile recognition and a social port paradigm to monitor adult social investigation. Areal measures of the periventricular nucleus (PVN) of the hypothalamus were obtained to provide correlations with related hormone and brain systems. PCB exposed rats were significantly impaired in social recognition as indicated by persistent conspecific-directed exploration by juvenile animals regardless of social experience. As adults, PCB exposure led to a dampening of the isolation-induced enhancement of social investigation. There was not a concomitant alteration of social investigation in pair-housed PCB exposed animals at this stage of development. Interestingly, PVN area was significantly decreased in juvenile animals exposed to PCB during the perinatal period. Shifts in hypothalamic regulation of hormones involved in social behavior and stress could be involved in the behavioral changes observed. Overall, the results suggest that PCB exposure impairs context or experience-dependent modulation of social approach and investigation. These types of social-context deficits are similar to behavioral deficits observed in social disorders such as autism and other pervasive developmental disorders.
Collapse
Affiliation(s)
- Banafsheh Jolous-Jamshidi
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403-0208, USA
| | | | | | | |
Collapse
|
37
|
Llansola M, Montoliu C, Boix J, Felipo V. Polychlorinated biphenyls PCB 52, PCB 180, and PCB 138 impair the glutamate-nitric oxide-cGMP pathway in cerebellar neurons in culture by different mechanisms. Chem Res Toxicol 2010; 23:813-20. [PMID: 20297801 DOI: 10.1021/tx900440q] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that accumulate in the food chain and are present in human blood and milk. Children born to mothers exposed to PCBs show cognitive deficits, which are reproduced in rats perinatally exposed to PCBs. It has been proposed that PCB-induced cognitive impairment is due to impairment of the glutamate-nitric oxide (NO)-cGMP pathway. The aim of the present work was to assess whether chronic exposure to the nondioxin-like PCB52, PCB138, or PCB180 alters the function of this pathway in primary cultures of rat cerebellar neurons and to assess whether different PCBs have similar or different mechanisms of action. PCB180 and PCB138 impair the function of the glutamate-NO-cGMP pathway at nanomolar concentrations, and PCB52 impairs the function of the glutamate-NO-cGMP pathway at micromolar concentrations. The mechanisms by which different PCBs impair the function of the glutamate-NO-cGMP pathway are different. Each PCB affects the pathway at more than one step but with different potency and, for some steps, in opposite ways. Exposure to the PCBs alters the basal concentrations of intracellular calcium, NO, and cGMP. The three PCBs increase NO; however, PCB52 and PCB138 increase basal cGMP, while PCB180 decreases it. PCB52 and PCB138 decrease the activation of soluble guanylate cyclase by NO, and PCB180 increases it. Long-term exposure to PCB52, PCB180, or PCB138 reduces the activation of NO synthase and the whole glutamate-NO-cGMP pathway in response to activation of N-methyl-d-aspartate receptors. The EC(50) was 300 nM for PCB52 and 2 nM for PCB138 or PCB180. These results show that chronic exposure to nondioxin like PCBs impairs the function of the glutamate-NO-cGMP pathway in cerebellar neurons by different mechanisms and with different potencies. Impaired function of this pathway would contribute to the cognitive alterations induced by perinatal exposure to PCBs in humans.
Collapse
Affiliation(s)
- Marta Llansola
- Laboratory of Neurobiology, Centro de Investigacion Principe Felipe, Avda Autopista del Saler, 16, 46012 Valencia, Spain
| | | | | | | |
Collapse
|
38
|
Effect of 2,4-dichlorophenoxyacetic acid on milk transfer to the litter and prolactin release in lactating rats. Toxicology 2010; 271:13-20. [DOI: 10.1016/j.tox.2010.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 12/20/2009] [Accepted: 01/06/2010] [Indexed: 11/21/2022]
|
39
|
Perinatal exposure to diesel exhaust affects gene expression in mouse cerebrum. Arch Toxicol 2009; 83:985-1000. [DOI: 10.1007/s00204-009-0459-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 07/06/2009] [Indexed: 12/20/2022]
|
40
|
Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 2009; 30:293-342. [PMID: 19502515 PMCID: PMC2726844 DOI: 10.1210/er.2009-0002] [Citation(s) in RCA: 2880] [Impact Index Per Article: 180.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/17/2009] [Indexed: 12/11/2022]
Abstract
There is growing interest in the possible health threat posed by endocrine-disrupting chemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology. Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor gamma, retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness.
Collapse
Affiliation(s)
- Evanthia Diamanti-Kandarakis
- Endocrine Section of First Department of Medicine, Laiko Hospital, Medical School University of Athens, 11527 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Fernandez-Cabezudo MJ, Azimullah S, Nurulain SM, Mechkarska M, Lorke DE, Hasan MY, Petroianu GA, Al-Ramadi BK. The organophosphate paraoxon has no demonstrable effect on the murine immune system following subchronic low dose exposure. Int J Immunopathol Pharmacol 2009; 21:891-901. [PMID: 19144274 DOI: 10.1177/039463200802100413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Paraoxon is the bioactive metabolite of the organophosphate pesticide parathion. Desulphuration of parathion by liver enzymes or sunlight results in the formation of paraoxon which inhibits acetylcholine esterase (AChE) activity. In the present study, we analyzed the effect of a 6-week, subchronic treatment with two different daily intraperitoneal doses (30 or 40 nmol) of paraoxon on the immune system of BALB/c mice. At a dose of 30 nmol/day, body weight of treated animals was unchanged compared to the controls. In contrast, the higher dose (40 nmol/day) induced a reduction in body growth, particularly in the first 3 weeks of treatment, peaking at week 2 when the saline group showed a 14.2-fold increase in body weight gain compared to paraoxon-treated animals. Moreover, mice treated with either dose of paraoxon had a >50% reduction in AChE activity during the first 3 weeks of treatment, but by the end of the treatment (week 6), AChE activity returned to normal. With regard to immunological parameters, there was no significant difference in either total spleen weight or in the ratios of various spleen cell populations between control and paraoxon-treated animals. Furthermore, no changes were observed in mitogen-induced cytokine secretion from splenocytes of paraoxon-treated mice. Finally, subchronic exposure to paraoxon did not alter mortality of mice exposed to a bacterial infection with Salmonella typhimurium. These data suggest that although subchronic exposure to paraoxon induced a transient inhibition in AChE activity, it had no demonstrable effect on the host immune system.
Collapse
Affiliation(s)
- M J Fernandez-Cabezudo
- Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Issam C, Samir H, Zohra H, Monia Z, Hassen BC. Toxic responses to deltamethrin (DM) low doses on gonads, sex hormones and lipoperoxidation in male rats following subcutaneous treatments. J Toxicol Sci 2009; 34:663-70. [DOI: 10.2131/jts.34.663] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Chargui Issam
- Laboratory of Histology Cytology and Genetics (02/UR/08-03), Faculty of Medicine
| | | | - Haouas Zohra
- Laboratory of Histology Cytology and Genetics (02/UR/08-03), Faculty of Medicine
| | - Zaouali Monia
- Laboratory of Physiology and Functional Explorations, Faculty of Medicine Ibn Eljazzar
| | - Ben Cheikh Hassen
- Laboratory of Histology Cytology and Genetics (02/UR/08-03), Faculty of Medicine
| |
Collapse
|
43
|
A. Zidan NEH. Evaluation of the Reproductive Toxicity of Chlorpyrifos Methyl, Diazinon and Profenofos Pesticides in Male Rats. INT J PHARMACOL 2008. [DOI: 10.3923/ijp.2009.51.57] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Steinberg RM, Walker DM, Juenger TE, Woller MJ, Gore AC. Effects of perinatal polychlorinated biphenyls on adult female rat reproduction: development, reproductive physiology, and second generational effects. Biol Reprod 2008; 78:1091-101. [PMID: 18305224 PMCID: PMC2692589 DOI: 10.1095/biolreprod.107.067249] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Perinatal exposures to endocrine-disrupting chemicals, such as polychlorinated biphenyls (PCBs), can cause latent effects on reproductive function. Here, we tested whether PCBs administered during late pregnancy would compromise reproductive physiology in both the fetally exposed female offspring (F1 generation), as well as in their female offspring (F2 generation). Pregnant Sprague-Dawley rats were treated with the PCB mixture, Aroclor 1221 (A1221; 0, 0.1, 1, or 10 mg/kg), on Embryonic Days 16 and 18. Somatic and reproductive development of F1 and their F2 female offspring were monitored, including ages of eye opening, pubertal landmarks, and serum reproductive hormones. The results showed that low doses of A1221 given during this critical period of neuroendocrine development caused differential effects of A1221 on F1 and F2 female rats. In both generations, litter sex ratio was skewed toward females. In the F1 generation, additional effects were found, including a significant alteration of serum LH in the 1 mg/kg A1221 group. The F2 generation showed more profound alterations, particularly with respect to fluctuations in hormones and reproductive tract tissues across the estrous cycle. On proestrus, the day of the preovulatory GnRH/gonadotropin surge, F2 females whose mothers had been exposed perinatally to A1221 exhibited substantially suppressed LH and progesterone concentrations, and correspondingly smaller uterine and ovarian weights on estrus, compared with F2 descendants of control rats. These latter changes suggest a dysregulation of reproductive physiology. Thus, low levels of exposure to PCBs during late fetal development cause significant effects on the maturation and physiology of two generations of female offspring. These findings have implications for reproductive health and fertility of wildlife and humans.
Collapse
Affiliation(s)
| | - Deena M. Walker
- The Institute for Neuroscience, The University of Texas at Austin, Austin, TX
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX
| | - Thomas E. Juenger
- Section of Integrative Biology, The University of Texas at Austin, Austin, TX
- Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, TX
| | | | - Andrea C. Gore
- The Institute for Neuroscience, The University of Texas at Austin, Austin, TX
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX
- Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, TX
| |
Collapse
|
45
|
Gore AC. Developmental programming and endocrine disruptor effects on reproductive neuroendocrine systems. Front Neuroendocrinol 2008; 29:358-74. [PMID: 18394690 PMCID: PMC2702520 DOI: 10.1016/j.yfrne.2008.02.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 02/21/2008] [Accepted: 02/22/2008] [Indexed: 01/01/2023]
Abstract
The ability of a species to reproduce successfully requires the careful orchestration of developmental processes during critical time points, particularly the late embryonic and early postnatal periods. This article begins with a brief presentation of the evidence for how gonadal steroid hormones exert these imprinting effects upon the morphology of sexually differentiated hypothalamic brain regions, the mechanisms underlying these effects, and their implications in adulthood. Then, I review the evidence that aberrant exposure to hormonally-active substances such as exogenous endocrine-disrupting chemicals (EDCs), may result in improper hypothalamic programming, thereby decreasing reproductive success in adulthood. The field of endocrine disruption has shed new light on the discipline of basic reproductive neuroendocrinology through studies on how early life exposures to EDCs may alter gene expression via non-genomic, epigenetic mechanisms, including DNA methylation and histone acetylation. Importantly, these effects may be transmitted to future generations if the germline is affected via transgenerational, epigenetic actions. By understanding the mechanisms by which natural hormones and xenobiotics affect reproductive neuroendocrine systems, we will gain a better understanding of normal developmental processes, as well as develop the potential ability to intervene when development is disrupted.
Collapse
Affiliation(s)
- Andrea C Gore
- Division of Pharmacology and Toxicology, Institute for Neuroscience and Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A1915, Austin, TX 78712, USA.
| |
Collapse
|
46
|
Effet de l'hexachlorobenzène sur certains paramètres de la fonction de reproduction mâle chez Meriones unguiculatus. C R Biol 2008; 331:380-8. [DOI: 10.1016/j.crvi.2008.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 11/18/2022]
|
47
|
Affiliation(s)
- Andrea C Gore
- The University of Texas at Austin, Division of Pharmacology & Toxicology, College of Pharmacy, Austin, Texas 78712, USA.
| |
Collapse
|
48
|
Menzel R, Yeo HL, Rienau S, Li S, Steinberg CEW, Stürzenbaum SR. Cytochrome P450s and short-chain dehydrogenases mediate the toxicogenomic response of PCB52 in the nematode Caenorhabditis elegans. J Mol Biol 2007; 370:1-13. [PMID: 17499272 DOI: 10.1016/j.jmb.2007.04.058] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 04/13/2007] [Accepted: 04/19/2007] [Indexed: 11/28/2022]
Abstract
Although non-coplanar PCBs are ubiquitous organic chemicals known to induce numerous biological responses and thus are toxic to man and wildlife, little is known about the toxic mode of action. Using PCB52, an ortho-substituted, 2,2',5,5'-tetrachlorobiphenyl, it was possible to pinpoint the relationship between induced gene expression and observed toxicity in the model nematode Caenorhabditis elegans. On the basis of the calculated EC20 for brood size (5 mg/l), whole genome DNA microarray experiments were performed to identify differentially expressed genes. Gene knockdown by RNAi was used to determine the consequences in reproductive fitness in the presence and in the absence of PCB52. On the basis of altered phenotype, several gene classes were identified to have a pivotal role in PCB52 toxicogenesis, most notably cytochrome P450s, short-chain dehydrogenases and lipases. In addition to this, four of six selected cytochrome P450s were shown to be involved in fat storage, with PCB52 exposure increasing the fat content in N2 wild-type as indicated by staining with Nile red. Furthermore, exposure to PCB52 induces a general detoxification response via small heat-shock proteins and caspases. Our data provide strong evidence of the molecular mechanisms that underlie the toxicity of non-coplanar PCBs, and confirms that, despite the ability to metabolize PCB, alterations in lipid metabolism and storage are major factors that drive the toxic effect of PCB52.
Collapse
Affiliation(s)
- Ralph Menzel
- Department of Biology, Freshwater and Stress Ecology, Humboldt University at Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Acerini CL, Hughes IA. Endocrine disrupting chemicals: a new and emerging public health problem? Arch Dis Child 2006; 91:633-41. [PMID: 16861481 PMCID: PMC2083052 DOI: 10.1136/adc.2005.088500] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2005] [Indexed: 11/04/2022]
Abstract
Coordination of targeted toxicological studies is needed
Collapse
Affiliation(s)
- C L Acerini
- Department of Paediatrics, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK.
| | | |
Collapse
|
50
|
Jeong SH, Kim BY, Kang HG, Ku HO, Cho JH. Effect of chlorpyrifos-methyl on steroid and thyroid hormones in rat F0- and F1-generations. Toxicology 2006; 220:189-202. [PMID: 16472551 DOI: 10.1016/j.tox.2006.01.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 12/23/2005] [Accepted: 01/03/2006] [Indexed: 11/28/2022]
Abstract
Chlorpyrifos-methyl (CPM) suppressed androgenic activity in Hershberger assay using castrated rats. Acute oral lowest-observed-adverse-effect-level (LOAEL) and no-observed-adverse-effect-level (NOAEL) was evaluated as 12 and 0.1 mg/kg bw, respectively, based on its major effect of cholinesterase inhibition. Also, repeated oral NOAEL was 0.1 mg/kg bw/day based on adrenal damage in rats. We investigated one-generation reproductive toxicity of CPM focusing on endocrine-disrupting effects by the administration of 1, 10 and 100 mg/kg bw/day CPM to mature SD rats (F0) through pre-mating, mating, gestation and lactation period and to their offspring (F1) until 13 weeks age via gavage. A group treated with corn oil served as vehicle control. In F0 rats, the most affected organs were adrenal glands as increased in weight at all doses of CPM in males and at 10 and 100 mg/kg CPM in females and adrenal vacuolation at CPM 10 and 100 mg/kg. The relative and absolute ovaries and the absolute seminal vesicle weights were decreased but the weights of liver, spleen or kidneys were increased at 100 mg/kg CPM. Parameters representing reproductive performances as mating ratio, gestation length and delivery index were not affected, except for decreased fertility index and numbers of implantation and born pups and a higher male sex ratio of pups at CPM 100 mg/kg. F1 pups exposed to CPM 100 mg/kg in utero and via maternal milk showed lower body weight with changes of absolute or relative weights of brain, ovary, liver, spleen and epididymis and decreased absolute not relative anogenital distance at weanling time. The time of vaginal patency and preputial separation and estrous cycling pattern of F1 rats were not impacted by CPM. After further 10 weeks oral administration until 13 weeks old, adrenal glands, brain, liver, spleen or kidneys tended to be increased, while thyroid gland, testes and ventral prostate of F1 male rats were decreased at CPM 10 or 100 mg/kg. Histopathologically, necrosis or vacuolation of thyroid follicular epithelial cells and adrenal cortical cells were observed at all doses of CPM. Serum levels of estradiol, testosterone, T4 and T3 were significantly lower while TSH and cholesterol were higher in both F1 female and male rats treated with CPM though dose-responsiveness was not clear in F1 females. Decreased sperm were counted in F1 rats at CPM 100 mg/kg. As a whole, LOAEL and NOAEL was evaluated as 10 and 1 mg/kg bw, respectively, based on decreased estradiol and T4 and increased TSH in serum of F1 male rats, and when considering histopathological alteration of adrenal and thyroid glands, LOAEL assumed to be lower than 1 mg/kg bw. This study elucidates that CPM exhibit weak reproductive toxicity in F0 rats exposed at adulthood and negligible effects in F1 offspring exposed in utero and via lactation at weanling, but induce anti-androgenic effect and hypothyroidism after long term exposure from in utero through sexual maturation of F1 rats.
Collapse
Affiliation(s)
- Sang-Hee Jeong
- Toxicology Division, National Veterinary Research and Quarantine Service, 480, Anyang 430-016, Republic of Korea
| | | | | | | | | |
Collapse
|