1
|
Li P, Zhang Q, Chu C, Ren B, Wu P, Zhang G. Transcriptome Analysis of Hypothalamic-Pituitary-Ovarian Axis Reveals circRNAs Related to Egg Production of Bian Chicken. Animals (Basel) 2024; 14:2253. [PMID: 39123779 PMCID: PMC11311080 DOI: 10.3390/ani14152253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The hypothalamic-pituitary-ovarian (HPO) axis plays a pivotal role in the regulation of egg production in chickens. In addition to the traditional understanding of the HPO axis, emerging research highlights the significant role of circRNAs in modulating the functions of this axis. In the study, we collected hypothalamus, pituitary, and ovarian tissues from low-yielding and high-yielding Bian chickens for transcriptome sequencing. We identified 339, 339, and 287 differentially expressed (DE) circRNAs with p_value < 0.05 and |log2 (fold change)| ≥ 1 in hypothalamus, pituitary, and ovarian tissues. The Gene Ontology (GO) enrichment analysis for the source genes of DE circRNAs has yielded multiple biological process (BP) entries related to cell development, the nervous system, and proteins, including cellular component morphogenesis, cell morphogenesis, nervous system development, neurogenesis, protein modification process, and protein metabolic process. In the top 30 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we observed the enrichment of the GnRH signaling pathway in both the hypothalamus and the pituitary, solely identified the GnRH secretion pathway in the pituitary, and discovered the pathway of oocyte meiosis in the ovary. Furthermore, given that circRNA primarily functions through the ceRNA mechanism, we constructed ceRNA regulatory networks with DE circRNAs originating from the GnRH signaling pathway, GnRH secretion, ovarian steroidogenesis, steroid hormone biosynthesis, and the estrogen signaling pathway. Finally, several important ceRNA regulatory networks related to reproduction were discovered, such as novel_circ_003662-gga-let-7b/miR-148a-3p/miR-146a-5p/miR-146b-5p and novel_circ_003538-gga-miR-7464-3p-SLC19A1. This study will contribute to advancements in understanding the involvement of circRNAs in the HPO axis, potentially leading to innovations in improving egg production and poultry health.
Collapse
Affiliation(s)
- Peifeng Li
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China; (P.L.); (Q.Z.); (C.C.); (B.R.)
| | - Qi Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China; (P.L.); (Q.Z.); (C.C.); (B.R.)
| | - Chengzhu Chu
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China; (P.L.); (Q.Z.); (C.C.); (B.R.)
| | - Binlin Ren
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China; (P.L.); (Q.Z.); (C.C.); (B.R.)
| | - Pengfei Wu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
2
|
Geng J, Lv J, Zhang S, Ma Y, Sun Y, Du H. Kidney-tonifying formula facilitates the development and maturation of mouse preantral follicle in vitro. Am J Transl Res 2024; 16:3413-3426. [PMID: 39114693 PMCID: PMC11301477 DOI: 10.62347/qxtj9043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Kidney-tonifying formulas are frequently used in clinical practices to enhance follicular development and maturation. This research explored the impacts of the Bushen Tiaojing formula (BSTJF) on the development of mouse preantral follicles in vitro and its relationship with granulosa cells and gonadotropins. METHODS Preantral follicles were extracted from mice and cultured with or without serum from rats that were previously treated with or without BSTJF. During cultivation, the follicles were monitored for morphological changes and developmental maturation. Exhausted medium was collected every other day for the measurement of progesterone and estradiol (E2) levels by ELISA. Granulosa cells in in-vitro medium were collected on days 8, 10, and 12 and analyzed for determining the expressions of apoptosis-associated genes (Bax, Bcl-2, and Caspase-3). Propagation and apoptosis rates of collected granulosa cells were measured by CCK-8 assay and flow cytometry. RESULTS Compared with control follicles, follicles cultured with serum from BSTJF-treated rats had a higher survival rate, larger follicle diameter, higher Bcl-2 expression, and lower Bax and Caspase-3 expressions (all P ≤ 0.05). In addition, their granulosa cells presented substantially elevated proliferation (P ≤ 0.05) and a lower rate of apoptosis (P ≤ 0.05) compared with granulosa cells from control follicles. The level of E2 in the culture media of all groups increased slowly in the first 6 days. Subsequently, after formation of the antrum, the levels of E2 and progesterone were enhanced in the medium of follicles cultured with serum from BSTJF-treated rats compared with those in the media of control follicles (all P ≤ 0.05). CONCLUSION Serum from BSTJF-treated rats facilitated the in vitro development and maturation of mouse follicles by increasing the expression of anti-apoptotic gene Bcl-2, reducing the expressions of pro-apoptotic genes Bax and Caspase-3 as well as the apoptosis of granulosa cells, promoting the proliferation of granulosa cells and increasing the secretion of E2 and progesterone in the cells.
Collapse
Affiliation(s)
- Jingran Geng
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
- Hebei Maternity HospitalShijiazhuang, Hebei, China
| | - Jinmeng Lv
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Hebei Province Cangzhou Hospital of Integrated Traditional and Western MedicineCangzhou, Hebei, China
| | - Shuancheng Zhang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney PatternsShijiazhuang, Hebei, China
| | - Yucong Ma
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney PatternsShijiazhuang, Hebei, China
- Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive DiseaseShijiazhuang, Hebei, China
| | - Ying Sun
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney PatternsShijiazhuang, Hebei, China
- Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive DiseaseShijiazhuang, Hebei, China
| | - Huilan Du
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney PatternsShijiazhuang, Hebei, China
- Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive DiseaseShijiazhuang, Hebei, China
| |
Collapse
|
3
|
Kurowska P, Mlyczyńska E, Wajda J, Król K, Pich K, Guzman P, Greggio A, Szkraba O, Opydo M, Dupont J, Rak A. Expression and in vitro effect of phoenixin-14 on the porcine ovarian granulosa cells. Reprod Biol 2024; 24:100827. [PMID: 38016195 DOI: 10.1016/j.repbio.2023.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Phoenixin-14 (PNX-14) regulates energy metabolism via the G protein-coupled receptor 173 (GPR173); elevated plasma levels have been described in patients with polycystic ovary syndrome. The aims were to investigate the ovarian expression of PNX-14/GPR173 and the in vitro effect of PNX-14 on granulosa cells (Gc) function. Transcript and protein levels of PNX-14/GRP173 were analysed by real-time PCR, western blot and immunohistochemistry in the porcine ovarian follicles at days 2-3, 10-12 and 16-18 of the oestrous. For in vitro experiments, Gc were isolated from follicles at days 10-12 of the oestrous (4-6 mm) and PNX-14 at doses 1-1000 nM was added for 24-72 h to determine Gc proliferation. Cell cycle progression, E2 secretion, expression of proliferating cells nuclear antigen, cyclins, mitogen-activated kinase (MAP3/1; ERK1/2), protein kinase B (AKT) and signal transducer and activator of transcription 3 (STAT3) were studied. The involvement of these kinases in PNX-14 action on Gc proliferation was analysed using pharmacological inhibitors. Levels of GPR173 were increased in the ovarian follicles with oestrous progression, while only PNX-14 protein was the highest at days 10-12 of the oestrous. Immuno-signal of PNX-14 was detected in Gc and theca cells and oocyte, while GPR173 was mostly in theca. Interestingly, PNX-14 stimulated Gc proliferation, E2 secretion, cell cycle progression and cyclins expression and had a modulatory effect on MAP3/1, AKT and STAT3 activation. Our study suggests that PNX-14 could be an important factor for porcine reproduction by influencing ovarian follicle growth through direct action on Gc function.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Poland.
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Julia Wajda
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Poland
| | - Konrad Król
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Patrycja Guzman
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Poland
| | - Aleksandra Greggio
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Poland
| | - Oliwia Szkraba
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Poland
| | - Małgorzata Opydo
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Poland
| | - Joelle Dupont
- National Research Institute for Agriculture, Food and the Environment, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Poland
| |
Collapse
|
4
|
Zhang X, Wei Y, Li X, Li C, Zhang L, Liu Z, Cao Y, Li W, Zhang X, Zhang J, Shen M, Liu H. The Corticosterone–Glucocorticoid Receptor–AP1/CREB Axis Inhibits the Luteinizing Hormone Receptor Expression in Mouse Granulosa Cells. Int J Mol Sci 2022; 23:ijms232012454. [PMID: 36293309 PMCID: PMC9604301 DOI: 10.3390/ijms232012454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
Under stress conditions, luteinizing hormone (LH)-mediated ovulation is inhibited, resulting in insufficient oocyte production and excretion during follicular development. When the body is stressed, a large amount of corticosterone (CORT) is generated, which will lead to a disorder of the body’s endocrine system and damage to the body. Our previous work showed that CORT can block follicular development in mice. Since LH acts through binding with the luteinizing hormone receptor (Lhcgr), the present study aimed to investigate whether and how corticosterone (CORT) influences Lhcgr expression in mouse ovarian granulosa cells (GCs). For this purpose, three-week-old ICR female mice were injected intraperitoneally with pregnant mare serum gonadotropin (PMSG). In addition, the treatment group was injected with CORT (1 mg/mouse) at intervals of 8 h and the control group was injected with the same volume of methyl sulfoxide (DMSO). GCs were collected at 24 h, 48 h, and 55 h after PMSG injection. For in vitro experiments, the mouse GCs obtained from healthy follicles were treated with CORT alone, or together with inhibitors against the glucocorticoid receptor (Nr3c1). The results showed that the CORT caused a downregulation of Lhcgr expression in GCs, which was accompanied by impaired cell viability. Moreover, the effect of the CORT was mediated by binding to its receptor (Nr3c1) in GCs. Further investigation revealed that Nr3c1 might regulate the transcription of Lhcgr through inhibiting the expression of Lhcgr transcription factors, including AP1 and Creb. Taken together, our findings suggested a possible mechanism of CORT-induced anovulation involving the inhibition of Lhcgr expression in GCs by the CORT–Nr3c1–AP1/Creb axis.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinghui Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Xiaoxuan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangliang Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Cao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weijian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiying Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (M.S.); (H.L.)
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (M.S.); (H.L.)
| |
Collapse
|
5
|
Monge-Ochoa B, Montoro L, Gil-Arribas E, Montoya J, Ruiz-Pesini E, López-Pérez MJ, de Castro F, Díez-Sánchez C. Variants Ala307Ala and Ser680Ser of 307 and 680 FSHr polymorphisms negatively influence on assisted reproductive techniques outcome and determine high probability of non-pregnancy in Caucasian patients. J Assist Reprod Genet 2021; 38:2769-2779. [PMID: 34346002 PMCID: PMC8581085 DOI: 10.1007/s10815-021-02276-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To determine the influence of different genotypes of Ala307Thr and Asn680Ser FSHr polymorphisms on controlled ovarian stimulation (COS) outcome and pregnancy. METHODS This study collected blood and physiological and clinical parameters of 517 Caucasian patients (Statistical power ≥ 80%) that underwent COS treatment. Genotypes of Ala307Thr and Asn680Ser polymorphisms were determined using PCR amplification followed by Bsu36I and BsrI digestion, respectively. RESULTS Ala307Ala and Ser680Ser genotypes associated to worse parameters of COS outcome (preovulatory follicles P = 0.05, in both), justifying their lower pregnancy rate than Non-Ala307Ala, P = 0.01 and Non-Ser680Ser, P = 0.004, respectively or together, (P = 0.003). Within the Non-Ala307Ala group, Thr307Thr genotype showed higher number of fertilized oocytes (P = 0.04) and embryos (P = 0.01) than Non-Thr307Thr, but no influence on pregnancy rate. Ala307Ala and Ser680Ser patients doubled probability of non-pregnancy than Non-Ala307Ala (odds ratio = 2.0) and Non-Ser680Ser (odds ratio = 2.11), respectively. Ala307Ala and Ser680Ser genotypes tend to appear together (P < 0.0001), which increases the probability of non-pregnancy. CONCLUSIONS Ala307Ala and Ser680Ser genotypes of 307 and 680 FSHr polymorphisms associate to worse COS outcome than its respective Non-Ala307Ala and Non-Ser680Ser. Within the Non-Ala307Ala genotypes, Thr307Thr, although shows higher Fertilized Oocytes and Embryos, do not influence on pregnancy rate. Ala307Ala and Ser680Ser genotypes double the probability of Non-Pregnancy than their respective Non-Ala307Ala and Non-Ser680Ser genotypes. Furthermore, the strong tendency of these genotypes to appear together worsens the probability of pregnancy in these patients.
Collapse
Affiliation(s)
- Belén Monge-Ochoa
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain
| | - Luis Montoro
- Unidad de Reproducción Asistida, Hospital Universitario Príncipe de Asturias, Universidad Complutense de Madrid, Alcalá de Henares, Madrid, Spain
| | | | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red (CIBER) de Enfermedades Raras, Madrid, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red (CIBER) de Enfermedades Raras, Madrid, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain
| | - Manuel J López-Pérez
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain
| | - Francisco de Castro
- Unidad de Reproducción Asistida, Hospital Universitario Príncipe de Asturias, Universidad Complutense de Madrid, Alcalá de Henares, Madrid, Spain
| | - Carmen Díez-Sánchez
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain.
| |
Collapse
|
6
|
Kreisman MJ, Tadrousse KS, McCosh RB, Breen KM. Neuroendocrine Basis for Disrupted Ovarian Cyclicity in Female Mice During Chronic Undernutrition. Endocrinology 2021; 162:bqab103. [PMID: 34037744 PMCID: PMC8272537 DOI: 10.1210/endocr/bqab103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 11/19/2022]
Abstract
Chronic undernutrition is a type of metabolic stress that impairs reproduction in multiple species. Although energy balance and female reproductive capacity is recognized as tightly coupled, the neuroendocrine loci and molecular mechanisms that mediate ovarian cycle dysfunction during chronic undernutrition in adult females remain poorly understood. Here, we present a series of studies in which we tested the hypothesis that inhibition of kisspeptin (Kiss1) neurons, which are critical for controlling luteinizing hormone (LH) pulses and the preovulatory LH surge in females, underlies the impairment of the ovarian cycle by undernutrition. We first investigated the effect of chronic undernutrition (70% of unrestricted feed intake) on estrous cyclicity in intact female c57bl6 mice. Undernutrition caused a rapid cessation of ovarian cyclicity during the 2-week treatment, suppressing ovarian steroidogenesis and inhibiting ovulation. Using 2 well-defined estradiol-replacement paradigms, we directly tested the hypothesis that undernutrition inhibits Kiss1 neurons in the arcuate nucleus (ARCKiss1), which are required for LH pulses and in the anteroventral periventricular nucleus (AVPVKiss1), which are necessary for LH surge secretion. Undernutrition prevented LH pulses and impaired ARCKiss1 neuronal activation, using c-Fos as a marker, in ovariectomized females subcutaneously implanted with a pellet containing a diestrus-like level of estradiol. In addition, undernutrition completely blocked the estradiol-induced LH surge and diminished Kiss1 messenger RNA abundance, without decreasing estradiol receptor α (Erα), in micropunches of the AVPV. Collectively, these studies demonstrate that undernutrition disrupts ovarian cyclicity in females via impairment both of ARCKiss1 control of LH pulses and AVPVKiss1 induction of the LH surge.
Collapse
Affiliation(s)
- Michael J Kreisman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, California 92093-0674, USA
| | - Kirollos S Tadrousse
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, California 92093-0674, USA
| | - Richard B McCosh
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, California 92093-0674, USA
| | - Kellie M Breen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, California 92093-0674, USA
| |
Collapse
|
7
|
Lottini T, Iorio J, Lastraioli E, Carraresi L, Duranti C, Sala C, Armenio M, Noci I, Pillozzi S, Arcangeli A. Transgenic mice overexpressing the LH receptor in the female reproductive system spontaneously develop endometrial tumour masses. Sci Rep 2021; 11:8847. [PMID: 33893331 PMCID: PMC8065064 DOI: 10.1038/s41598-021-87492-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/18/2021] [Indexed: 11/26/2022] Open
Abstract
The receptor for the luteinizing hormone (LH-R) is aberrantly over expressed in cancers of the reproductive system. To uncover whether LH-R over expression has a causative role in cancer, we generated a transgenic (TG) mouse which overexpresses the human LH-R (hLH-R) in the female reproductive tract, under the control of the oviduct-specific glycoprotein (OGP) mouse promoter (mogp-1). The transgene was highly expressed in the uterus, ovary and liver, but only in the uterus morphological and molecular alterations (increased proliferation and trans-differentiation in the endometrial layer) were detected. A transcriptomic analysis on the uteri of young TG mice showed an up regulation of genes involved in cell cycle control and a down regulation of genes related to the immune system and the metabolism of xenobiotics. Aged TG females developed tumor masses in the uteri, which resembled an Endometrial Cancer (EC). Microarray and immunohistochemistry data indicated the deregulation of signaling pathways which are known to be altered in human ECs. The analysis of a cohort of 126 human ECs showed that LH-R overexpression is associated with early-stage tumors. Overall, our data led support to conclude that LH-R overexpression may directly contribute to trigger the neoplastic transformation of the endometrium.
Collapse
Affiliation(s)
- Tiziano Lottini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Elena Lastraioli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | | | - Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Cesare Sala
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Miriam Armenio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Ivo Noci
- Department of Biochemical, Experimental and Clinical Science, University of Florence, Florence, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy.
- CSDC-Center for the Study of Complex Dynamics, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
8
|
Nguyen XP, Nakamura T, Osuka S, Bayasula B, Nakanishi N, Kasahara Y, Muraoka A, Hayashi S, Nagai T, Murase T, Goto M, Iwase A, Kikkawa F. Effect of the neuropeptide phoenixin and its receptor GPR173 during folliculogenesis. Reproduction 2020; 158:25-34. [PMID: 30933929 DOI: 10.1530/rep-19-0025] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/01/2019] [Indexed: 01/31/2023]
Abstract
Folliculogenesis is a complex process, defined by the growth and development of follicles from the primordial population. Granulosa cells (GCs) play a vital role in every stage of follicular growth through proliferation, acquisition of gonadotropic responsiveness, steroidogenesis and production of autocrine/paracrine factors. A recently discovered hypothalamic neuropeptide phoenixin is involved in the regulation of the reproductive system. Phoenixin acts through its receptor, G protein-coupled receptor 173 (GPR173), to activate the cAMP/PKA pathway leading to the phosphorylation of CREB (pCREB). Here, we demonstrated the expression patterns of phoenixin and GPR173 in human ovary and explored its role in folliculogenesis. Phoenixin and GPR173 were both expressed in the human ovarian follicle, with increased expression in GCs as the follicle grows. Phoenixin treatment at 100 nM for 24 h induced the proliferation of human non-luteinized granulosa cell line, HGrC1 and significantly increased the expression levels of CYP19A1, FSHR, LHR and KITL, but decreased NPPC expression levels. These effects were suppressed by GPR173 siRNA. The expression level of CREB1, pCREB and estradiol (E2) production in the culture medium was significantly enhanced by phoenixin treatment in a concentration-dependent manner. Phoenixin also significantly increased the follicular area in a murine ovarian tissue culture model, leading to an increased number of ovulated oocytes with a higher level of maturation. Taken together, our data demonstrate that phoenixin is an intraovarian factor that promotes follicular growth through its receptor GPR173 by accelerating proliferation of GCs, inducing E2 production and increasing the expression of genes related to follicle development.
Collapse
Affiliation(s)
- Xuan Phuoc Nguyen
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoko Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Maternal and Perinatal Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Bayasula Bayasula
- Bell Research Center for Reproductive Health and Cancer; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Natsuki Nakanishi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukiyo Kasahara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayako Muraoka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shotaro Hayashi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Nagai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiko Murase
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maki Goto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
9
|
Nora H, Wiweko B, Muharam R, Rajuddin, Wangge G, Hestiantoro A, Pratama G, Harzif AK, Zakirah SC. Impact of Serum Human Chorionic Gonadotropin and Luteinizing Hormone Receptor Expression to Oocyte Maturation Rate: A Study of Controlled Ovarian Stimulation. J Hum Reprod Sci 2020; 13:46-50. [PMID: 32577068 PMCID: PMC7295261 DOI: 10.4103/jhrs.jhrs_131_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/14/2019] [Accepted: 02/04/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Few studies have assessed the impact of serum human chorionic gonadotropin (hCG) levels before oocyte retrieval and luteinizing hormone receptor (LHR) mRNA expression. Aims: The objective was to assess the correlations between serum hCG levels at 12-h posttrigger granulosa cell LHR mRNA expression during the in vitro fertilization (IVF) cycle with oocyte maturation rate and to determine the cutoff level of serum hCG at 12-h posttrigger. Settings and Design: A cross-sectional was conducted for this study at the IVF center of Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia. Materials and Methods: Recombinant follicle-stimulating hormone was used on day 2 of the menstrual cycle with multiple doses of a gonadotropin-releasing hormone antagonist. Recombinant hCG was used to trigger ovulation. At 12-h posttrigger, hCG serum levels were measured using an enzyme-linked immunosorbent assay. Statistical Analysis: Pearson's correlation coefficient was used to evaluate the correlation between oocyte maturation rates, serum hCG levels, and LHR mRNA levels. Cutoff values were determined using a receiver operating characteristic (ROC) curve. Results: Serum hCG levels were positively correlated (r = 0.467;P < 0.01), and LHR mRNA expression was weakly correlated (r = 0.073; P = 0.701) with oocyte maturation. The cutoff of serum hCG for a high maturation rate was 77 mIU/mL, with an area under the ROC curve of 0.765 (95% confidence interval: 0.598–0.939) andP < 0.001. Conclusion: Oocyte maturation is correlated with serum hCG levels with 77 mIU/mL as the cutoff point for oocyte retrieval.
Collapse
Affiliation(s)
- Hilwah Nora
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Syiah Kuala, Banda Aceh, Indonesia.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Indonesia, Indonesia
| | - Budi Wiweko
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Indonesia, Indonesia.,Human Reproductive Infertility and Family Planning, Indonesian Medical Education and Research Institute, Central Jakarta, Indonesia.,Yasmin IVF Clinic, Dr. Cipto Mangunkusumo General Hospital, Central Jakarta, Indonesia
| | - R Muharam
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Indonesia, Indonesia.,Human Reproductive Infertility and Family Planning, Indonesian Medical Education and Research Institute, Central Jakarta, Indonesia.,Yasmin IVF Clinic, Dr. Cipto Mangunkusumo General Hospital, Central Jakarta, Indonesia
| | - Rajuddin
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Syiah Kuala, Banda Aceh, Indonesia
| | - Grace Wangge
- Southeast Asia Ministers of Education Regional Centre for Food and Nutrition - Pusat Kajian Gizi Regional, University of Indonesia, Central Jakarta, Indonesia
| | - Andon Hestiantoro
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Indonesia, Indonesia.,Human Reproductive Infertility and Family Planning, Indonesian Medical Education and Research Institute, Central Jakarta, Indonesia.,Yasmin IVF Clinic, Dr. Cipto Mangunkusumo General Hospital, Central Jakarta, Indonesia
| | - Gita Pratama
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Indonesia, Indonesia.,Human Reproductive Infertility and Family Planning, Indonesian Medical Education and Research Institute, Central Jakarta, Indonesia.,Yasmin IVF Clinic, Dr. Cipto Mangunkusumo General Hospital, Central Jakarta, Indonesia
| | - Achmad Kemal Harzif
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Indonesia, Indonesia.,Human Reproductive Infertility and Family Planning, Indonesian Medical Education and Research Institute, Central Jakarta, Indonesia.,Yasmin IVF Clinic, Dr. Cipto Mangunkusumo General Hospital, Central Jakarta, Indonesia
| | - Sarah Chairani Zakirah
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Indonesia, Indonesia.,Human Reproductive Infertility and Family Planning, Indonesian Medical Education and Research Institute, Central Jakarta, Indonesia
| |
Collapse
|
10
|
Menon B, Guo X, Garcia N, Gulappa T, Menon KMJ. miR-122 Regulates LHR Expression in Rat Granulosa Cells by Targeting Insig1 mRNA. Endocrinology 2018; 159:2075-2082. [PMID: 29579170 PMCID: PMC5905391 DOI: 10.1210/en.2017-03270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/13/2018] [Indexed: 11/19/2022]
Abstract
Luteinizing hormone/chorionic gonadotropin receptor (LHR) expression in the ovary is regulated by a messenger RNA (mRNA) binding protein, which specifically binds to the coding region of LHR mRNA. We have shown that miR-122, a short noncoding RNA, mediates LHR mRNA levels by modulating the expression of LHR mRNA-binding protein (LRBP) through the regulation of sterol regulatory element binding protein (SREBP) activation. The present results show that miR-122 regulates LRBP levels by increasing the processing of SREBP through the degradation of Insig1, the anchoring protein of SREBP. We present evidence showing that mRNA and protein levels of Insig1 undergo a time-dependent increase following the treatment of rat granulosa cells with follicle-stimulating hormone (FSH), which leads to a decrease in LRBP levels. Furthermore, overexpression of miR-122 using an adenoviral vector (AdmiR-122) abolished FSH-induced increases in Insig1 mRNA and protein. We further confirmed the role of Insig1 by showing that inhibition of Insig1 using a specific small interfering RNA prior to FSH treatment resulted in the abrogation of LHR upregulation. Silencing of Insig1 also reversed FSH-mediated decreases in SREBP and LRBP activation. These results show that decreased levels of miR-122 increase Insig1 and suppress SREBP processing in response to FSH stimulation of rat granulosa cells.
Collapse
Affiliation(s)
- Bindu Menon
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
- Correspondence: K. M. J. Menon, PhD, 6428 Medical Science Building I, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109. E-mail: ; or Bindu Menon, PhD, 6436 Medical Sciences Building 1, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109. E-mail:
| | - Xingzi Guo
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
| | - Natalia Garcia
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
| | - Thippeswamy Gulappa
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
| | - K M J Menon
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
- Correspondence: K. M. J. Menon, PhD, 6428 Medical Science Building I, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109. E-mail: ; or Bindu Menon, PhD, 6436 Medical Sciences Building 1, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
11
|
Menon KMJ, Menon B, Gulappa T. Regulation of Luteinizing Hormone Receptor mRNA Expression in the Ovary: The Role of miR-122. VITAMINS AND HORMONES 2018; 107:67-87. [PMID: 29544643 DOI: 10.1016/bs.vh.2018.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The expression of luteinizing hormone receptor (LHR) in the mammalian ovary is regulated in response to changes in the secretion of follicle-stimulating hormone and luteinizing hormone by the anterior pituitary, at least in part, through posttranscriptional mechanisms. The steady-state levels of LHR mRNA are maintained by controlling its rate of degradation by an RNA-binding protein designated as LHR mRNA-binding protein (LRBP). LRBP forms a complex with LHR mRNA and targets it for degradation in the p bodies. miR-122, an 18 nucleotide noncoding RNA, regulates the expression of LRBP. Thus, the levels of miR-122 determine the cellular levels of LHR mRNA expression. This phenomenon has been examined during the induction of LHR mRNA expression that occurs during follicle maturation in response to rising levels of FSH. In this situation, miR-122 and LRBP levels decrease as LHR mRNA expression undergoes downregulation in response to preovulatory LH surge. miR-122 expression as well as LRBP levels show robust increases. The mechanism of induction of LRBP by miR-122 has also been discussed.
Collapse
Affiliation(s)
- K M J Menon
- The University of Michigan Medical School, Ann Arbor, MI, United States.
| | - Bindu Menon
- The University of Michigan Medical School, Ann Arbor, MI, United States
| | | |
Collapse
|
12
|
Ulloa-Aguirre A, Zariñán T, Gutiérrez-Sagal R, Dias JA. Intracellular Trafficking of Gonadotropin Receptors in Health and Disease. Handb Exp Pharmacol 2018; 245:1-39. [PMID: 29063275 DOI: 10.1007/164_2017_49] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gonadotropin receptors belong to the highly conserved subfamily of the G protein-coupled receptor (GPCR) superfamily, the so-called Rhodopsin-like family (class A), which is the largest class of GPCRs and currently a major drug target. Both the follicle-stimulating hormone receptor (FSHR) and the luteinizing hormone/chorionic gonadotropin hormone receptor (LHCGR) are mainly located in the gonads where they play key functions associated to essential reproductive functions. As any other protein, gonadotropin receptors must be properly folded into a mature tertiary conformation compatible with quaternary assembly and endoplasmic reticulum export to the cell surface plasma membrane. Several primary and secondary structural features, including presence of particular amino acid residues and short motifs and in addition, posttranslational modifications, regulate intracellular trafficking of gonadotropin receptors to the plasma membrane as well as internalization and recycling of the receptor back to the cell surface after activation by agonist. Inactivating mutations of gonadotropin receptors may derive from receptor misfolding and lead to absent or reduced plasma membrane expression of the altered receptor, thereby manifesting an array of phenotypical abnormalities mostly characterized by reproductive failure and/or abnormal or absence of development of secondary sex characteristics. In this chapter we review the structural requirements necessary for intracellular trafficking of the gonadotropin receptors, and describe how mutations in these receptors may lead to receptor misfolding and disease in humans.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Vasco de Quiroga 15, Tlalpan, Mexico City, 14000, Mexico.
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Vasco de Quiroga 15, Tlalpan, Mexico City, 14000, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Vasco de Quiroga 15, Tlalpan, Mexico City, 14000, Mexico
| | - James A Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| |
Collapse
|
13
|
Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E, Gutiérrez-Sagal R, Dias JA. Structure-Function Relationships of the Follicle-Stimulating Hormone Receptor. Front Endocrinol (Lausanne) 2018; 9:707. [PMID: 30555414 PMCID: PMC6281744 DOI: 10.3389/fendo.2018.00707] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022] Open
Abstract
The follicle-stimulating hormone receptor (FSHR) plays a crucial role in reproduction. This structurally complex receptor is a member of the G-protein coupled receptor (GPCR) superfamily of membrane receptors. As with the other structurally similar glycoprotein hormone receptors (the thyroid-stimulating hormone and luteinizing hormone-chorionic gonadotropin hormone receptors), the FSHR is characterized by an extensive extracellular domain, where binding to FSH occurs, linked to the signal specificity subdomain or hinge region. This region is involved in ligand-stimulated receptor activation whereas the seven transmembrane domain is associated with receptor activation and transmission of the activation process to the intracellular loops comprised of amino acid sequences, which predicate coupling to effectors, interaction with adapter proteins, and triggering of downstream intracellular signaling. In this review, we describe the most important structural features of the FSHR intimately involved in regulation of FSHR function, including trafficking, dimerization, and oligomerization, ligand binding, agonist-stimulated activation, and signal transduction.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- *Correspondence: Alfredo Ulloa-Aguirre
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eduardo Jardón-Valadez
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana Unidad Lerma, Lerma, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - James A. Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, United States
| |
Collapse
|
14
|
Analysis of LH receptor in canine ovarian follicles throughout the estrous cycle. Theriogenology 2017; 93:71-77. [DOI: 10.1016/j.theriogenology.2017.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 01/15/2017] [Accepted: 01/15/2017] [Indexed: 12/25/2022]
|
15
|
Menon B, Gulappa T, Menon KMJ. Molecular regulation of LHCGR expression by miR-122 during follicle growth in the rat ovary. Mol Cell Endocrinol 2017; 442:81-89. [PMID: 27940300 PMCID: PMC5371357 DOI: 10.1016/j.mce.2016.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 12/30/2022]
Abstract
We have previously reported that LHCGR expression in the ovary is regulated through a post-transcriptional mechanism involving an mRNA binding protein designated as LRBP, which is regulated, at least in part, by a non-coding RNA, miR-122. Our present study examined the regulatory role of miR-122 in FSH-induced LHCGR expression during follicle development. Treatment of rat granulosa cells concurrently with FSH and 17β estradiol showed, as expected, a time-dependent increase in LHCGR mRNA levels as well as hCG-induced progesterone production. However, miR-122 expression was decreased during the early time periods, which preceded the increased expression of LHCGR mRNA. The role of miR-122 in FSH-induced LHCGR mRNA expression was then examined by overexpressing miR-122 prior to FSH stimulation by infecting granulosa cells with an adenoviral vector containing a miR-122 insert (AdmiR-122). Pretreatment with AdmiR-122 resulted in complete abrogation of FSH- mediated upregulation of LHCGR. AdmiR-122 also blocked FSH-induced decrease in LRBP expression and increased the binding of LHCGR mRNA to LRBP. Based on these results, we conclude that miR-122 plays a regulatory role in LHCGR expression by modulating LRBP levels during FSH-induced follicle growth.
Collapse
Affiliation(s)
- Bindu Menon
- Departments of Obstetrics/Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0617, USA
| | - Thippeswamy Gulappa
- Departments of Obstetrics/Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0617, USA
| | - K M J Menon
- Departments of Obstetrics/Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0617, USA.
| |
Collapse
|
16
|
Maugars G, Dufour S. Demonstration of the Coexistence of Duplicated LH Receptors in Teleosts, and Their Origin in Ancestral Actinopterygians. PLoS One 2015; 10:e0135184. [PMID: 26271038 PMCID: PMC4536197 DOI: 10.1371/journal.pone.0135184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/18/2015] [Indexed: 11/18/2022] Open
Abstract
Pituitary gonadotropins, FSH and LH, control gonad activity in vertebrates, via binding to their respective receptors, FSHR and LHR, members of GPCR superfamily. Until recently, it was accepted that gnathostomes possess a single FSHR and a single LHR, encoded by fshr and lhcgr genes. We reinvestigated this question, focusing on vertebrate species of key-phylogenetical positions. Genome analyses supported the presence of a single fshr and a single lhcgr in chondrichthyans, and in sarcopterygians including mammals, birds, amphibians and coelacanth. In contrast, we identified a single fshr but two lhgcr in basal teleosts, the eels. We further showed the coexistence of duplicated lhgcr in other actinopterygians, including a non-teleost, the gar, and other teleosts, e.g. Mexican tetra, platyfish, or tilapia. Phylogeny and synteny analyses supported the existence in actinopterygians of two lhgcr paralogs (lhgcr1/ lhgcr2), which do not result from the teleost-specific whole-genome duplication (3R), but likely from a local gene duplication that occurred early in the actinopterygian lineage. Due to gene losses, there was no impact of 3R on the number of gonadotropin receptors in extant teleosts. Additional gene losses during teleost radiation, led to a single lhgcr (lhgcr1 or lhgcr2) in some species, e.g. medaka and zebrafish. Sequence comparison highlighted divergences in the extracellular and intracellular domains of the duplicated lhgcr, suggesting differential properties such as ligand binding and activation mechanisms. Comparison of tissue distribution in the European eel, revealed that fshr and both lhgcr transcripts are expressed in the ovary and testis, but are differentially expressed in non-gonadal tissues such as brain or eye. Differences in structure-activity relationships and tissue expression may have contributed as selective drives in the conservation of the duplicated lhgcr. This study revises the evolutionary scenario and nomenclature of gonadotropin receptors, and opens new research avenues on the roles of duplicated LHR in actinopterygians.
Collapse
Affiliation(s)
- Gersende Maugars
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208-IRD 207-UPMC-UCBN, Paris, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208-IRD 207-UPMC-UCBN, Paris, France
| |
Collapse
|
17
|
Banerjee AA, Mahale SD. Role of the Extracellular and Intracellular Loops of Follicle-Stimulating Hormone Receptor in Its Function. Front Endocrinol (Lausanne) 2015; 6:110. [PMID: 26236283 PMCID: PMC4505104 DOI: 10.3389/fendo.2015.00110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/03/2015] [Indexed: 12/20/2022] Open
Abstract
Follicle-stimulating hormone receptor (FSHR) is a leucine-rich repeat containing class A G-protein coupled receptor belonging to the subfamily of glycoprotein hormone receptors (GPHRs), which includes luteinizing hormone/choriogonadotropin receptor (LH/CGR) and thyroid-stimulating hormone receptor. Its cognate ligand, follicle-stimulating hormone binds to, and activates FSHR expressed on the surface of granulosa cells of the ovary, in females, and Sertoli cells of the testis, in males, to bring about folliculogenesis and spermatogenesis, respectively. FSHR contains a large extracellular domain (ECD) consisting of leucine-rich repeats at the N-terminal end and a hinge region at the C-terminus that connects the ECD to the membrane spanning transmembrane domain (TMD). The TMD consists of seven α-helices that are connected to each other by means of three extracellular loops (ELs) and three intracellular loops (ILs) and ends in a short-cytoplasmic tail. It is well established that the ECD is the primary hormone binding domain, whereas the TMD is the signal transducing domain. However, several studies on the ELs and ILs employing site directed mutagenesis, generation of chimeric receptors and in vitro characterization of naturally occurring mutations have proven their indispensable role in FSHR function. Their role in every phase of the life cycle of the receptor like post translational modifications, cell surface trafficking, hormone binding, activation of downstream signaling, receptor phosphorylation, hormone-receptor internalization, and recycling of hormone-receptor complex have been documented. Mutations in the loops causing dysregulation of these processes lead to pathophysiological conditions. In other GPHRs as well, the loops have been convincingly shown to contribute to various aspects of receptor function. This review article attempts to summarize the extensive contributions of FSHR loops and C-terminal tail to its function.
Collapse
Affiliation(s)
- Antara A. Banerjee
- Division of Structural Biology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Smita D. Mahale
- Division of Structural Biology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
- ICMR Biomedical Informatics Centre, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
- *Correspondence: Smita D. Mahale, Division of Structural Biology, ICMR Biomedical Informatics Centre, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Jehangir Merwanji Street, Parel, Mumbai 400 012, India,
| |
Collapse
|
18
|
Iwamune M, Nakamura K, Kitahara Y, Minegishi T. MicroRNA-376a regulates 78-kilodalton glucose-regulated protein expression in rat granulosa cells. PLoS One 2014; 9:e108997. [PMID: 25279841 PMCID: PMC4184830 DOI: 10.1371/journal.pone.0108997] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/02/2014] [Indexed: 12/28/2022] Open
Abstract
The 78-kilodalton glucose-regulated protein (GRP78) is a molecular chaperone that assists in protein assembly, folding, and translocation. Recently, our laboratory reported that GRP78 regulates the expression of luteinizing hormone-human chorionic gonadotropin receptor (LHR) in the early stage of corpus luteum formation. In this study, we investigated whether microRNAs (miRNAs), which post-transcriptionally regulate mRNA, are involved in the regulation mechanism of GRP78 in the ovary. A miRNA microarray was performed to analyze the overall miRNA expression profile, and the results indicated that 44 miRNAs were expressed highly after ovulation was induced. The results from a bio-informative database analysis and in vitro granulosa cell culture studies led us to focus on rno-miR-376a for further analysis. In both in vivo and in vitro studies, rno-miR-376a levels increased 12 h after human chorionic gonadotropin (hCG) administration. To elucidate whether rno-miR-376a induced mRNA destabilization or translational repression of GRP78, rno-miR-376a was transfected into cultured granulosa cells, resulting in decreased GPR78 protein levels without an alteration in GRP78 mRNA levels. To confirm that rno-miR-376a binds to GRP78 mRNA, we cloned the 3'-end of GRP78 mRNA (nucleotides 2439-2459) into a reporter vector that contained a Renilla luciferase coding region upstream of the cloning site. The luciferase assays revealed that rno-miR-376a bound to the 3'-end of GRP78 mRNA. From these data, we conclude that rno-miR-376a potentially negatively regulates GRP78 protein expression through translational repression at an early stage transition from the follicular phase to luteinization.
Collapse
Affiliation(s)
- Masayuki Iwamune
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kazuto Nakamura
- Department of Gynecology, Gunma Prefectural Cancer Center, Oota, Gunma, Japan
- * E-mail:
| | - Yoshikazu Kitahara
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Takashi Minegishi
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
19
|
Chauvigné F, Zapater C, Crespo D, Planas JV, Cerdà J. Fsh and Lh direct conserved and specific pathways during flatfish semicystic spermatogenesis. J Mol Endocrinol 2014; 53:175-90. [PMID: 25024405 DOI: 10.1530/jme-14-0087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The current view of the control of spermatogenesis by Fsh and Lh in non-mammalian vertebrates is largely based on studies carried out in teleosts with cystic and cyclic spermatogenesis. Much less is known concerning the specific actions of gonadotropins during semicystic germ cell development, a type of spermatogenesis in which germ cells are released into the tubular lumen where they transform into spermatozoa. In this study, using homologous gonadotropins and a candidate gene approach, for which the genes' testicular cell-type-specific expression was established, we investigated the regulatory effects of Fsh and Lh on gene expression during spermatogenesis in Senegalese sole (Solea senegalensis), a flatfish with asynchronous and semicystic germ cell development. During early spermatogenesis, Fsh and Lh upregulated steroidogenesis-related genes and nuclear steroid receptors, expressed in both somatic and germ cells, through steroid-dependent pathways, although Lh preferentially stimulated the expression of downstream genes involved in androgen and progestin syntheses. In addition, Lh specifically promoted the expression of spermatid-specific genes encoding spermatozoan flagellar proteins through direct interaction with the Lh receptor in these cells. Interestingly, at this spermatogenic stage, Fsh primarily regulated genes encoding Sertoli cell growth factors with potentially antagonistic effects on germ cell proliferation and differentiation through steroid mediation. During late spermatogenesis, fewer genes were regulated by Fsh or Lh, which was associated with a translational and posttranslational downregulation of the Fsh receptor in different testicular compartments. These results reveal that conserved and specialized gonadotropic pathways regulate semicystic spermatogenesis in flatfish, which may spatially adjust cell germ development to maintain a continuous reservoir of spermatids in the testis.
Collapse
Affiliation(s)
- François Chauvigné
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del MarConsejo Superior de Investigaciones Científicas (CSIC), Passeig marítim 37-49, 08003 Barcelona, SpainDepartament de Fisiologia i ImmunologiaFacultat de Biologia, Universitat de Barcelona, i Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| | - Cinta Zapater
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del MarConsejo Superior de Investigaciones Científicas (CSIC), Passeig marítim 37-49, 08003 Barcelona, SpainDepartament de Fisiologia i ImmunologiaFacultat de Biologia, Universitat de Barcelona, i Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| | - Diego Crespo
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del MarConsejo Superior de Investigaciones Científicas (CSIC), Passeig marítim 37-49, 08003 Barcelona, SpainDepartament de Fisiologia i ImmunologiaFacultat de Biologia, Universitat de Barcelona, i Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| | - Josep V Planas
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del MarConsejo Superior de Investigaciones Científicas (CSIC), Passeig marítim 37-49, 08003 Barcelona, SpainDepartament de Fisiologia i ImmunologiaFacultat de Biologia, Universitat de Barcelona, i Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del MarConsejo Superior de Investigaciones Científicas (CSIC), Passeig marítim 37-49, 08003 Barcelona, SpainDepartament de Fisiologia i ImmunologiaFacultat de Biologia, Universitat de Barcelona, i Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| |
Collapse
|
20
|
Ohkubo M, Yabu T, Yamashita M, Shimizu A. Molecular cloning of two gonadotropin receptors in mummichog Fundulus heteroclitus and their gene expression during follicular development and maturation. Gen Comp Endocrinol 2013; 184:75-86. [PMID: 23337032 DOI: 10.1016/j.ygcen.2012.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 12/13/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
Two cDNAs encoding gonadotropin receptors, follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) were cloned from mummichog (Fundulus heteroclitus) ovary. Deduced amino acid sequences of the mummichog FSHR (fhFSHR) and LHR (fhLHR) showed high homologies to teleost FSHRs (77-53%) and teleost LHRs (76-62%), respectively. Both the fhFSHR and fhLHR are composed of a typical structural architecture of glycoprotein hormone receptors consisting of the large N-terminal extracellular domain, the transmembrane domain containing seven cell surface membrane-spanning regions, and the intracellular domain. Functional analysis using HEK293 cells stably expressing the fhFSHR or fhLHR demonstrated that both the receptors are specifically activated by mummichog FSH or LH, respectively. Reverse transcription-polymerase chain reaction revealed that both the fhFSHR and fhLHR were expressed in the ovary, testis, and pituitary, and the fhLHR was also expressed in several extra-gonadal tissues. Real-time quantitative-PCR analysis revealed that the fhFSHR gene was abundantly expressed in developing follicles whereas expression of the fhLHR gene markedly increased in follicles of the final maturational stage. These results indicate that gonadotropin stimulation on follicles is regulated by the two distinct pathways via their cognate receptors.
Collapse
Affiliation(s)
- Makoto Ohkubo
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa 236-8648, Japan
| | | | | | | |
Collapse
|
21
|
Jeppesen JV, Kristensen SG, Nielsen ME, Humaidan P, Dal Canto M, Fadini R, Schmidt KT, Ernst E, Yding Andersen C. LH-receptor gene expression in human granulosa and cumulus cells from antral and preovulatory follicles. J Clin Endocrinol Metab 2012; 97:E1524-31. [PMID: 22659248 PMCID: PMC3410279 DOI: 10.1210/jc.2012-1427] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Human granulosa cells (GC) acquire LH receptor (LHR) expression during the follicular phase of the menstrual cycle. Currently, the precise follicular stage is unknown, and specific roles of LH in the follicular development are not fully understood. OBJECTIVE Our objective was to measure LHR gene expression on GC and cumulus cells (CC) from normal human follicles with diameters form 3-20 mm. DESIGN, SETTING, AND PATIENTS At a university hospital, GC, CC, and the corresponding follicular fluid (FF) were collected from patients undergoing fertility preservation by having one ovary frozen and patients undergoing infertility treatment. INTERVENTIONS Cells and fluids were isolated from surgically excised ovaries or from aspirated preovulatory follicles. MAIN OUTCOME MEASURES We evaluated gene expression of LHR, FSHR, androgen receptor (AR), aromatase (CYP19a1), and AMHR2 normalized to the GAPDH expression and associated with FF levels of anti-Mullerian hormone, inhibin-B, and steroids. RESULTS LHR expression was maximal in GC from preovulatory follicles before ovulation induction. A majority of 150 antral follicles (3-10 mm in diameter) showed LHR expression at approximately 10% of the maximum, and LHR expression showed significant associations with FSHR, AR, CYP19a1, and AMHR2 and with FF estradiol and progesterone. Levels of FSHR continued to decline in GC as the follicular diameter increased. CONCLUSIONS The LHR gene is expressed in GC of human antral follicles throughout the follicular phase and is significantly associated with expression of the CYP19a1 gene and with the corresponding FF concentrations of estradiol and progesterone. LH appears to affect human follicular development during most the follicular phase in normal women.
Collapse
Affiliation(s)
- Janni Vikkelsø Jeppesen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Copenhagen University, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Menon KMJ, Menon B. Structure, function and regulation of gonadotropin receptors - a perspective. Mol Cell Endocrinol 2012; 356:88-97. [PMID: 22342845 PMCID: PMC3327826 DOI: 10.1016/j.mce.2012.01.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 01/13/2012] [Accepted: 01/24/2012] [Indexed: 11/19/2022]
Abstract
Luteinizing hormone receptor and follicle stimulating hormone receptor play a crucial role in female and male reproduction. Significant new information has emerged about the structure, mechanism of activation, and regulation of expression of these receptors. Here we provide an overview of the current information on those aspects with an in-depth discussion of the recent developments in the post-transcriptional mechanism of LH receptor expression mediated by a specific LH receptor mRNA binding protein, designated as LRBP. LRBP was identified by electrophoretic gel mobility shift assay using cytosolic fractions from ovaries in the down regulated state. LRBP was purified, its binding site on LH receptor mRNA was identified and characterized. During ligand-induced down regulation, LRBP expression is increased through the cAMP/PKA and ERK signaling pathway, is translocated to translating ribosomes, binds LH receptor mRNA and forms an untranslatable ribonucleoprotein complex. This complex is then routed to the mRNA degradation machinery resulting in diminished levels of both LHR mRNA and cell surface expression of LH receptor. The studies leading to these conclusions are presented.
Collapse
Affiliation(s)
- K M J Menon
- Departments of Obstetrics/Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0617, United States.
| | | |
Collapse
|
23
|
Kotula-Balak M, Hejmej A, Kopera I, Lydka M, Bilinska B. Prenatal and neonatal exposure to flutamide affects function of Leydig cells in adult boar. Domest Anim Endocrinol 2012; 42:142-54. [PMID: 22177695 DOI: 10.1016/j.domaniend.2011.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/03/2011] [Accepted: 11/06/2011] [Indexed: 11/20/2022]
Abstract
In this study, flutamide, an androgen receptor antagonist, was used as a tool to better understand the role of androgen receptor signaling and androgen signaling disruption during fetal and neonatal periods on porcine Leydig cell development and function. Flutamide, 50 mg kg(-1) d(-1) was administered into pregnant gilts during gestational days 20 to 28 and days 80 to 88 and into male piglets on postnatal days 2 to 10 (PD2). Leydig cells of flutamide-exposed boars, especially those of PD2 males, displayed morphologic alterations, increased size, and occupied increased area (P < 0.001) of the testes when compared with the control. Despite this, testosterone concentrations were reduced significantly in comparison with those of controls (P < 0.05, P < 0.001). Reduced testosterone production in response to flutamide exposure appeared to be related to changes in testosterone metabolism, as shown by increased aromatase mRNA (P < 0.05, P < 0.01), protein expression (P < 0.01, P < 0.001), and elevated estradiol concentrations (P < 0.001). Moreover, impaired Leydig cell responsiveness to LH was indicated by the decreased expression of LH receptor (P < 0.05, P < 0.001). No significant effect of flutamide was found on LH and FSH concentrations. Taken together, our data indicate that flutamide when administered during prenatal or neonatal period have a long-term effect on Leydig cell structure and function, leading to androgen-estrogen imbalance. Leydig cell failure was most evident in adult boars neonatally exposed to flutamide, suggesting that androgen action during neonatal development is of pivotal importance for the differentiation and function of porcine adult Leydig cell population.
Collapse
Affiliation(s)
- M Kotula-Balak
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | | | | | | | | |
Collapse
|
24
|
Gulappa T, Clouser CL, Menon KMJ. The role of Rab5a GTPase in endocytosis and post-endocytic trafficking of the hCG-human luteinizing hormone receptor complex. Cell Mol Life Sci 2011; 68:2785-95. [PMID: 21104291 PMCID: PMC4479136 DOI: 10.1007/s00018-010-0594-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/29/2010] [Accepted: 11/05/2010] [Indexed: 01/25/2023]
Abstract
This study examined the role of Rab5a GTPase in regulating hCG-induced internalization and trafficking of the hCG-LH receptor complex in transfected 293T cells. Coexpression of wild-type Rab5a (WT) or constitutively active Rab5a (Q79L) with LHR significantly increased hCG-induced LHR internalization. Conversely, coexpression of dominant negative Rab5a (S34N) with LHR reduced internalization. Confocal microscopy showed LHR colocalizing with Rab5a (WT) and Rab5a (Q79L) in punctuate structures. Coexpression of Rab5a (WT) and Rab5a (Q79L) with LHR significantly increased colocalization of LHR in early endosomes. Conversely, dominant negative Rab5a (S34N) decreased this colocalization. While Rab5a stimulated internalization of LHR, it significantly decreased LHR recycling to the cell surface and increased degradation. Dominant negative Rab5a (S34N) increased LHR recycling and decreased degradation. These results suggest that Rab5a plays a role in LHR trafficking by facilitating internalization and fusion to early endosomes, increasing the degradation of internalized receptor resulting in a reduction in LHR recycling.
Collapse
Affiliation(s)
- Thippeswamy Gulappa
- Departments of Obstetrics and Gynecology and Biological Chemistry, University of Michigan Medical School, University of Michigan, 6428 Medical Science I, 1301 Catherine Street, Ann Arbor, MI 48109-0617, USA
| | - Christine L. Clouser
- Departments of Obstetrics and Gynecology and Biological Chemistry, University of Michigan Medical School, University of Michigan, 6428 Medical Science I, 1301 Catherine Street, Ann Arbor, MI 48109-0617, USA
| | - K. M. J. Menon
- Departments of Obstetrics and Gynecology and Biological Chemistry, University of Michigan Medical School, University of Michigan, 6428 Medical Science I, 1301 Catherine Street, Ann Arbor, MI 48109-0617, USA
| |
Collapse
|
25
|
Fridovich-Keil JL, Gubbels CS, Spencer JB, Sanders RD, Land JA, Rubio-Gozalbo E. Ovarian function in girls and women with GALT-deficiency galactosemia. J Inherit Metab Dis 2011; 34:357-66. [PMID: 20978943 PMCID: PMC3063539 DOI: 10.1007/s10545-010-9221-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 09/21/2010] [Accepted: 09/27/2010] [Indexed: 12/04/2022]
Abstract
Primary or premature ovarian insufficiency (POI) is the most common long-term complication experienced by girls and women with classic galactosemia; more than 80% and perhaps more than 90% are affected despite neonatal diagnosis and careful lifelong dietary restriction of galactose. In this review we explore the complexities of timing and detection of galactosemia-associated POI and discuss potential underlying mechanisms. Finally, we offer recommendations for follow-up care with current options for intervention.
Collapse
|
26
|
Rubio-Gozalbo ME, Gubbels CS, Bakker JA, Menheere PPCA, Wodzig WKWH, Land JA. Gonadal function in male and female patients with classic galactosemia. Hum Reprod Update 2009; 16:177-88. [PMID: 19793842 DOI: 10.1093/humupd/dmp038] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Hypergonadotropic hypoestrogenic infertility is the most burdensome complication for females suffering from classic galactosemia. In contrast, male gonadal function seems less affected. The underlying mechanism is not understood and several pathogenic mechanisms have been proposed. Timing of the lesion, prenatal or chronic post-natal, or a combination of both are not yet clear. METHODS This review focuses on gonadal function in males and females, ovarian imaging and histology in this disease. It is based on the literature known to the authors and a Pubmed search using the keywords galactosemia, GALT deficiency, (premature) ovarian failure/insufficiency/dysfunction, testicular function, gonadotrophins, FSH, LH (published between January 1971 and April 2009). RESULTS Male gonads are less affected, boys spontaneously reach puberty, although onset can be delayed. Semen quality has not been extensively studied. Several affected males are known to have fathered a child. Female gonads are invariably affected, although to a varied extent (hypergonadotropic hypoestrogenic ovarian dysfunction). Intriguingly, FSH is often already increased in infancy. Imaging usually shows hypoplastic and streak-like ovaries. Histological findings in some cases reveal the presence of morphologically normal but decreased numbers of primordial follicles, with the absence of intermediate and Graafian follicles. CONCLUSION Gonads in males seem less affected than in females who exhibit hypergonadotropic hypoestrogenic subfertility. FSH can be elevated in infancy, and ovarian histology sometimes shows the presence of normal primordial follicles with absence of intermediate and Graafian follicles. These findings are similar to other genetic diseases primarily affecting the ovary.
Collapse
Affiliation(s)
- M E Rubio-Gozalbo
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
27
|
Uribe A, Zariñán T, Pérez-Solis MA, Gutiérrez-Sagal R, Jardón-Valadez E, Piñeiro A, Dias JA, Ulloa-Aguirre A. Functional and structural roles of conserved cysteine residues in the carboxyl-terminal domain of the follicle-stimulating hormone receptor in human embryonic kidney 293 cells. Biol Reprod 2008; 78:869-82. [PMID: 18199880 DOI: 10.1095/biolreprod.107.063925] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The carboxyl-terminal segment of G protein-coupled receptors has one or more conserved cysteine residues that are potential sites for palmitoylation. This posttranslational modification contributes to membrane association, internalization, and membrane targeting of proteins. In contrast to other members of the glycoprotein hormone receptor family (the LH and thyroid-stimulating hormone receptors), it is not known whether the follicle-stimulating hormone receptor (FSHR) is palmitoylated and what are the effects of abolishing its potential palmitoylation sites. In the present study, a functional analysis of the FSHR carboxyl-terminal segment cysteine residues was carried out. We constructed a series of mutant FSHRs by substituting cysteine residues with alanine, serine, or threonine individually and together at positions 629 and 655 (conserved cysteines) and 627 (nonconserved). The results showed that all three cysteine residues are palmitoylated but that only modification at Cys629 is functionally relevant. The lack of palmitoylation does not appear to greatly impair coupling to G(s) but, when absent at position 629, does significantly impair cell surface membrane expression of the partially palmitoylated receptor. All FSHR Cys mutants were capable of binding agonist with the same affinity as the wild-type receptor and internalizing on agonist stimulation. Molecular dynamics simulations at a time scale of approximately 100 nsec revealed that replacement of Cys629 resulted in structures that differed significantly from that of the wild-type receptor. Thus, deviations from wild-type conformation may potentially contribute to the severe impairment in plasma membrane expression and the modest effects on signaling exhibited by the receptors modified in this particular position.
Collapse
Affiliation(s)
- Aída Uribe
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia "Luis Castelazo Ayala," Instituto Mexicano del Seguro Social, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ulloa-Aguirre A, Zariñán T, Pasapera AM, Casas-González P, Dias JA. Multiple facets of follicle-stimulating hormone receptor function. Endocrine 2007; 32:251-63. [PMID: 18246451 DOI: 10.1007/s12020-008-9041-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 01/04/2008] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
Follicle-stimulating hormone (FSH) is a glycoprotein hormone produced by the anterior pituitary gland. This gonadotropin plays an essential role in reproduction. Its receptor (FSHR) belongs to the superfamily of G protein-coupled receptors (GPCR), specifically the family of rhodopsin-like receptors. Agonist binding to the FSHR triggers the rapid activation of multiple signaling cascades, mainly the cAMP-adenylyl cyclase-protein kinase A cascade, that impact diverse biological effects of FSH in the gonads. As in other G protein-coupled receptors, the several cytoplasmic domains of the FSHR are involved in signal transduction and termination of the FSH signal. Here we summarize some recent information on the signaling cascades activated by FSH as well as on the role of the intracytoplasmic domains of the FSHR in coupling to membrane and cytosolic proteins linked to key biological functions regulated by the FSH-FSHR system.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social, Apartado Postal 99-065, Unidad Independencia, C.P. 10101 Mexico, D.F., Mexico.
| | | | | | | | | |
Collapse
|
29
|
Li Y, Ganta S, Cheng C, Craig R, Ganta RR, Freeman LC. FSH stimulates ovarian cancer cell growth by action on growth factor variant receptor. Mol Cell Endocrinol 2007; 267:26-37. [PMID: 17234334 PMCID: PMC1880879 DOI: 10.1016/j.mce.2006.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
A number of FSH receptor (FSH-R) isoforms with distinct structural motifs and signaling paradigms have been described, including a single transmembrane domain variant that functions as a growth factor type receptor (FSH-R3). This study tested the hypothesis that FSH can stimulate ovarian cancer cell proliferation by acting on FSH-R3, using the tumorigenic mouse ovarian surface epithelial cell (MOSEC) line ID8. FSH enhanced ID8 proliferation in a concentration-dependent fashion. Moreover, FSH-treatment of ID8 elicited intracellular events consistent with activation of FSH-R3 and distinct from those associated with activation of the canonical G-protein coupled FSH-R isoform (FSH-R1). Specifically, the FSH-R3 signaling pathway included cAMP-independent activation of ERK downstream of an SNX-482 sensitive component likely to be the Cav2.3 calcium channel. Northern analysis using probes specific for exons 7 and 11 of FSH-R identified consistently only one 1.9kb transcript. Immunoblot analysis confirmed expression of FSH-R3 but not FSHR-1 in ID8. Together, these data suggest that FSH-R3 signaling promotes proliferation of ovarian cancer cells.
Collapse
Affiliation(s)
- Y Li
- Department of Anatomy & Physiology, Kansas State University, Manhattan, KS 66506
| | - S Ganta
- Department of Anatomy & Physiology, Kansas State University, Manhattan, KS 66506
| | - C Cheng
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506
| | - R Craig
- Department of Anatomy & Physiology, Kansas State University, Manhattan, KS 66506
| | - RR Ganta
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506
| | - LC Freeman
- Department of Anatomy & Physiology, Kansas State University, Manhattan, KS 66506
- *Corresponding author: Lisa C. Freeman, DVM, PhD, Professor of Pharmacology, Kansas State University, 212 Coles Hall, Manhattan, KS 66506-5802, Tel: 785-532-4542, Fax: 785-532-4557,
| |
Collapse
|
30
|
Menon KMJ, Nair AK, Wang L, Peegel H. Regulation of luteinizing hormone receptor mRNA expression by a specific RNA binding protein in the ovary. Mol Cell Endocrinol 2007; 260-262:109-16. [PMID: 17055149 PMCID: PMC2677972 DOI: 10.1016/j.mce.2006.03.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 03/21/2006] [Indexed: 12/01/2022]
Abstract
The expression of LH receptor mRNA shows significant changes during different physiological states of the ovary. Previous studies from our laboratory have identified a post-transcriptional mechanism by which LH receptor mRNA is regulated following preovulatory LH surge or in response to hCG administration. A specific binding protein, identified as mevalonate kinase, binds to the open reading frame of LH receptor mRNA. The protein binding site is localized to nucleotides 203-220 of the LH receptor mRNA and exhibits a high degree of specificity. The expression levels of the protein show an inverse relationship to the LH receptor mRNA levels. The hCG-induced down-regulation of LH receptor mRNA can be mimicked by increasing the intracellular levels of cyclic AMP by a phosphodiesterase inhibitor. An in vitro mRNA decay assay showed that addition of the binding protein to the decay system caused accelerated LH receptor mRNA decay. Our results therefore show that LH receptor mRNA expression in the ovary is regulated post-transcriptionally by altering the rate of mRNA degradation by a specific mRNA binding protein.
Collapse
Affiliation(s)
- K M J Menon
- Department of Obstetrics and Gynecology, The University of Michigan Medical School, 6428 Medical Science I, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0617, United States.
| | | | | | | |
Collapse
|
31
|
Cameo P, Szmidt M, Strakova Z, Mavrogianis P, Sharpe-Timms KL, Fazleabas AT. Decidualization Regulates the Expression of the Endometrial Chorionic Gonadotropin Receptor in the Primate1. Biol Reprod 2006; 75:681-9. [PMID: 16837644 DOI: 10.1095/biolreprod.106.051805] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Chorionic gonadotropin (CG) plays an important role in establishing a receptive endometrium by directly modulating the function of both endometrial stromal and epithelial cells in the baboon. The focus of this study was to characterize changes in CG receptor (LHCGR, also known as CG-R) expression during the menstrual cycle and early pregnancy, particularly during decidualization. LHCGR was localized by using a peptide-specific antibody generated against the extracellular domain. Immunostaining was absent in any of the cell types during the proliferative phase of the cycle. In contrast, during the secretory phase, both luminal and glandular epithelial cells stained positively. Stromal staining was confined to the cells around spiral arteries (SAs) and in the basalis layer. This stromal staining pattern persisted at the implantation site between Days 18 and 25 of pregnancy and after CG infusion. However, as pregnancy progressed (Days 40 to 60), staining for LHCGR was dramatically decreased in the stromal cells. These data were confirmed by nonisotopic in situ hybridization. To confirm whether the loss of LHCGR was associated with a decidual response, stromal fibroblasts were decidualized in vitro, and cell lysates obtained after 3, 6, and 12 days of culture were analyzed by Western blotting. LHCGR protein decreased with the onset of decidualization in vitro, confirming the in vivo results. Addition of CG to decidualized cells resulted in the reinduction of LHCGR in the absence of dbcAMP. We propose that CG acting via its R on stromal cells modulates SA in preparation for pregnancy and trophoblast invasion. As pregnancy progresses, further modification of SA by migrating endovascular trophoblasts and subsequent decidualization results in the downregulation of LHCGR. This inhibition of LHCGR expression also coincides with the decrease of measurable CG in peripheral circulation.
Collapse
Affiliation(s)
- Paula Cameo
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, Illinois 60212-7313, USA
| | | | | | | | | | | |
Collapse
|