1
|
Diao L, Ma Y, Wang L, Li P, Zhang B, Meng W, Cai J, Meng Y, Zhou Y, Zhai J, Chen H. New Insights into Melatonin's Function on Thiacloprid-Induced Pyroptosis and Inflammatory Response in Head Kidney Lymphocytes of Cyprinus carpio: Implicating Mitochondrial Metabolic Imbalance and mtROS/cGAS-STING/NF-κB Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10574-10588. [PMID: 40238706 DOI: 10.1021/acs.jafc.5c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Thiacloprid (THI) is a synthetic insecticide, the misuse is targeted chiefly to control aphid pest species in orchards and vegetables. Melatonin (MET) is a hormone that plays crucial physiological roles in anti-inflammatory capacities of fish. We explored the function of MET (100 μM) to mitigate the toxicity induced by THI (20 μM) in lymphocytes. Our results indicate that THI led to a notable rise in lymphocyte mortality. Lymphocytes exposed to THI exhibited a heightened incidence of pyroptosis, accompanied by upregulation in expression associated with pyroptosis (NLRP3, GSDMEA, and IL-18). Meanwhile, THI exposure led to a decrease in lymphocyte mitochondrial membrane potential, an increase in mtROS levels, and a reduction in intracellular ATP, DNA, and NADPH/NADP+ levels, indicating an imbalance in the mitochondrial metabolism within the lymphocytes. Additionally, these effects were reversed by MET treatment, where MitoQ treatment showed that the suppression of mtROS reduced the lymphocyte pyroptosis caused by THI via the mtROS/cGAS-STING/NF-κB axis. Importantly, MET provided defense against the immunotoxic impacts of THI by ameliorating pyroptosis and enhancing anti-inflammatory capability via the mtROS/cGAS-STING/NF-κB axis. Our research potentiates the safeguarding of cultured fish from biological hazards caused by THI and highlights the valuable application of MET in common carp.
Collapse
Affiliation(s)
- Lei Diao
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Yang Ma
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Liping Wang
- College of Economics and Management, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Peng Li
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Bin Zhang
- Tongliao Animal Quarantine Technical Service Center, No. 2349, Jianguo Road North, Horqin District, Tongliao 028000, China
| | - Weijing Meng
- Tongliao Agricultural and Animal Husbandry Development Center, No. 2349, Jianguo Road North, Horqin District, Tongliao 028000, China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yan Meng
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Yuxun Zhou
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Jingying Zhai
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Huijie Chen
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| |
Collapse
|
2
|
Škrlec I, Biloglav Z, Lešić D, Talapko J, Žabić I, Katalinić D. Association of MTNR1B Gene Polymorphisms with Body Mass Index in Hashimoto's Thyroiditis. Int J Mol Sci 2025; 26:3667. [PMID: 40332199 PMCID: PMC12027080 DOI: 10.3390/ijms26083667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Hashimoto's thyroiditis (HT) is an autoimmune disorder of the thyroid gland characterized by chronic inflammation, which in most cases results in hypothyroidism. The melatonin receptor MTNR1B is sporadically expressed in the thyroid gland. It modulates immune responses, and alterations in the melatonin-MTNR1B receptor signaling pathway may play a role in developing autoimmune diseases. Obesity worsens the severity and progression of some autoimmune diseases and reduces treatment efficacy. This study aimed to investigate the association of MTNR1B gene polymorphisms (rs10830963, rs1387153, and rs4753426) with HT with regards to the body mass index (BMI). Patients with HT were categorized into normal weight BMI ≤ 25 kg/m2 and overweight/obese BMI > 25 kg/m2 groups. This study included 115 patients with a clinical-, ultrasound-, and laboratory-confirmed diagnosis of HT (64 normal-weight patients and 51 overweight/obese patients) with a mean age of 43 ± 12 years. The results showed that specific MTNR1B polymorphisms are associated with obesity in HT patients. BMI was found to be associated with the rs10830963 polymorphism, and the G allele and GG genotype of the rs10830963 polymorphism were more common in overweight/obese HT patients. Furthermore, the results suggest that genetic factors associated with BMI play a role in developing HT and open new possibilities for personalized treatment approaches.
Collapse
Affiliation(s)
- Ivana Škrlec
- Faculty of Dental Medicine and Health, University J. J. Strossmayer Osijek, 31000 Osijek, Croatia
| | - Zrinka Biloglav
- Department of Medical Statistics, Epidemiology and Medical Informatics, School of Public Health Andrija Štampar, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Jasminka Talapko
- Faculty of Dental Medicine and Health, University J. J. Strossmayer Osijek, 31000 Osijek, Croatia
| | - Igor Žabić
- County Hospital Koprivnica, 48000 Koprivnica, Croatia
| | - Darko Katalinić
- Faculty of Dental Medicine and Health, University J. J. Strossmayer Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
3
|
Amiri M, Khazaie H, Mohammadi M. The protective effects of melatonin against electromagnetic waves of cell phones in animal models: A systematic review. Animal Model Exp Med 2025; 8:629-637. [PMID: 39995082 PMCID: PMC12008444 DOI: 10.1002/ame2.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/21/2024] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Due to the widespread use of cell phone devices today, numerous research studies have focused on the adverse effects of electromagnetic radiation on human neuropsychological and reproductive systems. In most studies, oxidative stress has been identified as the primary pathophysiological mechanism underlying the harmful effects of electromagnetic waves. This paper aims to provide a holistic review of the protective effects of melatonin against cell phone-induced electromagnetic waves on various organs. METHODS This study is a systematic review of articles chosen by searching Google Scholar, PubMed, Embase, Scopus, Web of Science, and Science Direct using the keywords 'melatonin', 'cell phone radiation', and 'animal model'. The search focused on articles written in English, which were reviewed and evaluated. The PRISMA process was used to review the articles chosen for the study, and the JBI checklist was used to check the quality of the reviewed articles. RESULTS In the final review of 11 valid quality-checked articles, the effects of melatonin in the intervention group, the effects of electromagnetic waves in the case group, and the amount of melatonin in the chosen organ, i.e. brain, skin, eyes, testis and the kidney were thoroughly examined. The review showed that electromagnetic waves increase cellular anti-oxidative activity in different tissues such as the brain, the skin, the eyes, the testis, and the kidneys. Melatonin can considerably augment the anti-oxidative system of cells and protect tissues; these measurements were significantly increased in control groups. Electromagnetic waves can induce tissue atrophy and cell death in various organs including the brain and the skin and this effect was highly decreased by melatonin. CONCLUSION Our review confirms that melatonin effectively protects the organs of animal models against electromagnetic waves. In light of this conclusion and the current world-wide use of melatonin, future studies should advance to the stages of human clinical trials. We also recommend that more research in the field of melatonin physiology is conducted in order to protect exposed cells from dying and that melatonin should be considered as a pharmaceutical option for treating the complications resulting from electromagnetic waves in humans.
Collapse
Affiliation(s)
- Mohammad Amiri
- Sleep Disorders Research CenterKermanshah University of Medical SciencesKermanshahIran
| | - Habibolah Khazaie
- Sleep Disorders Research CenterKermanshah University of Medical SciencesKermanshahIran
| | - Masoud Mohammadi
- Research Center for Social Determinants of HealthJahrom University of Medical SciencesJahromIran
| |
Collapse
|
4
|
Li Q, Zheng T, Chen J, Li B, Zhang Q, Yang S, Shao J, Guan W, Zhang S. Exploring melatonin's multifaceted role in female reproductive health: From follicular development to lactation and its therapeutic potential in obstetric syndromes. J Adv Res 2025; 70:223-242. [PMID: 38692429 PMCID: PMC11976432 DOI: 10.1016/j.jare.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Melatonin is mainly secreted by the pineal gland during darkness and regulates biological rhythms through its receptors in the suprachiasmatic nucleus of the hypothalamus. In addition, it also plays a role in the reproductive system by affecting the function of the hypothalamic-pituitary-gonadal axis, and by acting as a free radical scavenger thus contributing to the maintenance of the optimal physiological state of the gonads. Besides, melatonin can freely cross the placenta to influence fetal development. However, there is still a lack of overall understanding of the role of melatonin in the reproductive cycle of female mammals. AIM OF REVIEW Here we focus the role of melatonin in female reproduction from follicular development to delivery as well as the relationship between melatonin and lactation. We further summarize the potential role of melatonin in the treatment of preeclampsia, polycystic ovary syndrome, endometriosis, and ovarian aging. KEY SCIENTIFIC CONCEPTS OF REVIEW Understanding the physiological role of melatonin in female reproductive processes will contribute to the advancement of human fertility and reproductive medicine research.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
5
|
Kolozsvári BL, Surányi É, Aszalós ZZ, Lénárt V, Chaker R, Vitályos G, Fodor M. Decades of Night-Shift Work Induce Diurnal Disruption and Corneal Adaptations: Evidence from Pentacam Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:474. [PMID: 40283704 PMCID: PMC12026888 DOI: 10.3390/ijerph22040474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025]
Abstract
We aimed to determine the effects of night-shift work on corneal parameters in thirty-five healthy individuals (24-59 years) in a retrospective cohort study. Among them, 12 hospital nurses regularly worked two shifts, spending a third of their nights awake, whereas 23 age-matched controls never worked shifts and slept regularly. Measurements were performed at least five times within 12 h. We analyzed the keratometric parameters of the corneal front (F) and back (B) surfaces, including the refractive power in the flattest and steepest axes (K1, K2), astigmatism (Astig); and corneal pachymetry (Pachy) at the thinnest corneal point and pupil center, volume relative to the 10 mm corneal diagonal (Vol D10); and surface variance index (ISV). A multilevel mixed-effects linear regression adjusted for age was applied to 905 measurements. All parameters exhibited significant periodic fluctuations (p ≤ 0.005). The two groups also showed significantly different periodic fluctuations (p ≤ 0.008), except in K1B and AstigB. K1/K2 (F and B), AstigF, Pachy, and ISV differed significantly (p < 0.0001). Surprisingly, prolonged night shift work did not increase the ISV, and no evidence of age-related corneal thinning was observed. Long-term night-shift exposures change various corneal parameters, reflecting both concomitant and adaptive effects. This study highlights the impact of consistent sleep deprivation on corneal properties, warranting further research into understanding the long-term effects of night-shift work.
Collapse
Affiliation(s)
- Bence Lajos Kolozsvári
- Department of Ophthalmology, Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (B.L.K.); (É.S.); (Z.Z.A.); (V.L.); (R.C.)
| | - Éva Surányi
- Department of Ophthalmology, Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (B.L.K.); (É.S.); (Z.Z.A.); (V.L.); (R.C.)
| | - Zsuzsa Zakarné Aszalós
- Department of Ophthalmology, Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (B.L.K.); (É.S.); (Z.Z.A.); (V.L.); (R.C.)
| | - Vivien Lénárt
- Department of Ophthalmology, Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (B.L.K.); (É.S.); (Z.Z.A.); (V.L.); (R.C.)
| | - Reda Chaker
- Department of Ophthalmology, Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (B.L.K.); (É.S.); (Z.Z.A.); (V.L.); (R.C.)
| | - Géza Vitályos
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Debrecen, 4012 Debrecen, Hungary;
| | - Mariann Fodor
- Department of Ophthalmology, Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (B.L.K.); (É.S.); (Z.Z.A.); (V.L.); (R.C.)
| |
Collapse
|
6
|
Yang G, Yao G, Wang H, Jiang R, Fang J, Hu J, Kong Y, Jin H, Song W, Wu Z, Huang X, Sun Y. Melatonin affects trophoblast epithelial-to-mesenchymal transition and oxidative damage resistance by modulating GDF15 expression to promote embryo implantation. Commun Biol 2025; 8:396. [PMID: 40057595 PMCID: PMC11890731 DOI: 10.1038/s42003-025-07834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/26/2025] [Indexed: 05/13/2025] Open
Abstract
Melatonin is widely observed in the female reproductive system and regulates trophoblast cell functions, but its effects on embryo implantation and underlying mechanisms are not well understood. By constructing an in vitro embryo culture model, we found that melatonin enhances migration and implantation in human and mouse trophoblast cells. It also significantly promoted HTR-8/SVneo cell proliferation, inhibited apoptosis, enhanced migration, and mitigated oxidative damage. Further investigation revealed that melatonin promoted trophoblast cell migration and increased the in vitro implantation rate of HTR-8/SVneo spheroids by promotes epithelial-mesenchymal transition (EMT) via the growth differentiation factor 15 (GDF15)-mothers against decapentaplegic homolog 2/3 (SMAD2/3) pathway. Additionally, melatonin increased the levels of glutathione peroxidase 4 (GPX4) and glutathione (GSH) in HTR-8/SVneo cells by upregulating the expression of GDF15, inhibiting reactive oxygen species (ROS) accumulation, and increasing mitochondrial membrane potential, thus suppressing apoptosis during oxidative stress. In conclusion, melatonin promotes EMT in trophoblast cells via GDF15-SMAD2/3 pathway and partially induces the expression of GPX4 through GDF15 to enhance oxidative damage resistance in trophoblast cells. These findings highlight melatonin's regulatory role in embryo implantation and suggest new avenues for exploring its biological effects in reproduction and clinical applications.
Collapse
Affiliation(s)
- Guang Yang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Clinical Medical Research Center, Zhengzhou, China
| | - Guidong Yao
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Clinical Medical Research Center, Zhengzhou, China.
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, China.
| | - Huihui Wang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Clinical Medical Research Center, Zhengzhou, China
| | - Ran Jiang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Clinical Medical Research Center, Zhengzhou, China
| | - Junnan Fang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Clinical Medical Research Center, Zhengzhou, China
| | - Jingyi Hu
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Clinical Medical Research Center, Zhengzhou, China
| | - Yue Kong
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Clinical Medical Research Center, Zhengzhou, China
| | - Haixia Jin
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Clinical Medical Research Center, Zhengzhou, China
| | - Wenyan Song
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Clinical Medical Research Center, Zhengzhou, China
| | - Zhaoting Wu
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Clinical Medical Research Center, Zhengzhou, China
| | - Xianju Huang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Clinical Medical Research Center, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Clinical Medical Research Center, Zhengzhou, China.
| |
Collapse
|
7
|
Dimovski AM, Fanson KV, Edwards AM, Robert KA. Short- and long-wavelength lights disrupt endocrine signalling but not immune function in a nocturnal marsupial. CONSERVATION PHYSIOLOGY 2025; 13:coae092. [PMID: 40182072 PMCID: PMC11964822 DOI: 10.1093/conphys/coae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/08/2024] [Accepted: 02/23/2025] [Indexed: 04/05/2025]
Abstract
Natural light-dark cycles are responsible for synchronizing an animal's circadian clock with environmental conditions. Consequently, the endocrine system is vulnerable to changes in the external light environment, particularly short-wavelength blue light. Artificial light at night drastically changes the night-time environment by masking natural light cycles and disrupting well-established biological rhythms. The introduction of blue-rich lighting, such as white light-emitting diodes (LEDs), may increase the biological effects of light at night on wildlife. However, flexibility in the spectral composition of LED lighting presents options for wildlife-sensitive lighting, such as long-wavelength amber LEDs. Here we examine the effect of light spectra on circadian physiology in a nocturnal marsupial. Specifically, we investigate the effect of short-wavelength white (standard urban lighting) and long-wavelength amber LEDs (proposed wildlife-sensitive lighting) on circadian hormones and cell-mediated immunity in the Krefft's glider (Petaurus notatus). Melatonin and glucocorticoid secretion were disrupted following exposure to both short-wavelength white and long-wavelength amber LEDs. Both LEDs suppressed melatonin, whilst glucocorticoid secretion was suppressed under amber LEDs and increased under white LEDs. Despite this disturbance we did not detect any effect of light treatment on cell-mediated immune response. Our findings offer a novel contribution to understanding the physiological impacts of light at night on wildlife. We also provide evidence that long-wavelength amber LEDs can disrupt physiology and are not a wildlife-sensitive lighting option for all species.
Collapse
Affiliation(s)
- Alicia M Dimovski
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, Victoria 3086, Australia
- Research Centre for Future Landscapes, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Kerry V Fanson
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Amy M Edwards
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, Victoria 3086, Australia
- Pest and Weeds Unit, New South Wales National Parks and Wildlife Service, Dubbo, New South Wales 2830, Australia
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2350, Australia
| | - Kylie A Robert
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, Victoria 3086, Australia
- Research Centre for Future Landscapes, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
8
|
Pratap AJ, Srinath R, Praveen NC, Sustarwar P, Sadarjoshi M, Almalki SA, Gowdar IM, Gufran K. Evaluation of melatonin gel as local drug delivery system for the treatment of periodontitis: a split-mouth randomized controlled trial. BMC Oral Health 2025; 25:230. [PMID: 39948592 PMCID: PMC11827357 DOI: 10.1186/s12903-025-05598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Periodontitis is a polymicrobial, multifactorial infection that affects the supporting structures of teeth. Melatonin, a biomolecule with anti-inflammatory, antibacterial, and antioxidant properties, has demonstrated promising results in various medical fields, including dentistry. OBJECTIVE This study aimed to evaluate the effectiveness of 1% (w/v) melatonin gel as an adjunct to Non-Surgical Periodontal Therapy (NSPT) in improving clinical periodontal parameters, reducing antimicrobial activity against Aggregatibacter actinomycetemcomitans and Prevotella intermedia, and increasing superoxide dismutase (SOD) levels in gingival crevicular fluid (GCF) among patients with stage II periodontitis. METHODS A split-mouth randomized controlled trial was conducted on 24 periodontitis patients. Two sites per patient were randomly assigned: the test site underwent scaling and root planing (SRP) followed by intra pocket application of 1% melatonin gel, while the control site received SRP alone. Clinical parameters, including the Plaque Index (PI), Gingival Index (GI), Gingival Bleeding Index (GBI), Periodontal Pocket Depth (PPD), and Clinical Attachment Loss (CAL), were assessed at baseline, 1 month, and 3 months. Subgingival plaque samples and GCF were collected to evaluate microbial and biochemical changes. RESULTS Both groups showed statistically significant improvements in clinical parameters from baseline to the 3rd month post-therapy. A quantitative reduction in Aggregatibacter actinomycetemcomitans and Prevotella intermedia was observed at both sites. Additionally, the test site exhibited a greater increase in SOD levels compared to the control site. CONCLUSION The adjunctive application of melatonin gel with SRP demonstrated enhanced antioxidant potential and improved clinical outcomes in patients with stage II periodontitis. TRIAL REGISTRATION TRIAL REGISTRY ISRCTN. Trial registration number ISRCTN40460432. Date of Registration: 22/10/2024. "Retrospectively registered".
Collapse
Affiliation(s)
| | - Rashmi Srinath
- Department of Periodontics, College of Dental Sciences, Davangere, Karnataka, 577004, India
| | - N C Praveen
- Department of Periodontics, College of Dental Sciences, Davangere, Karnataka, 577004, India
| | - Prerana Sustarwar
- Department of Periodontics, College of Dental Sciences, Davangere, Karnataka, 577004, India
| | - Manasa Sadarjoshi
- Department of Periodontics, College of Dental Sciences, Davangere, Karnataka, 577004, India
| | - Sultan Abdulrahman Almalki
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Inderjit Murugendrappa Gowdar
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Khalid Gufran
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Saudi Arabia.
| |
Collapse
|
9
|
López-Gatius F, Ganau S, Mora-García M, Garcia-Ispierto I. Melatonin Treatment at Dry-off Reduces Postpartum Shedding of Coccidia in Primiparous Dairy Cows and Their Calves. Animals (Basel) 2024; 14:3534. [PMID: 39682499 DOI: 10.3390/ani14233534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Coccidiosis is a protozoan disease that causes diarrhea in cattle. This study examines the impact of treating pregnant cows at dry-off with melatonin on postpartum coccidia excretion in dams and their calves. The study population comprised 106 primiparous lactating dairy cows: 53 controls and 53 receiving melatonin on days 220-226 of gestation, plus 99 calves: 52 born from control and 47 from treated dams. Feces samples were collected from each dam on gestation days 220-226 and on days 10-16 and 30-36 postpartum; and from each calf on days 10-16 and 30-36 of age. Postpartum rates of high excretion of oocysts per gram (OPG) (feces counts > 5000) were significantly lower (p < 0.01) in treated than control dams. Low excretion rates of OPG (<2000) were significantly higher (p < 0.01) in the melatonin treatment than control groups in dams on days 30-36 of lactation and in calves at 10-16 and 30-36 days of life. In conclusion, melatonin treatment in lactating cows at dry-off reduced coccidia shedding in dams and their calves during the early postpartum period.
Collapse
Affiliation(s)
- Fernando López-Gatius
- Agrotecnio Centre, 25198 Lleida, Spain
- Transfer in Bovine Reproduction SLu, 22300 Barbastro, Spain
| | - Sergi Ganau
- Granja Sant Josep, La Melusa, 22549 Tamarite, Spain
| | - María Mora-García
- Department of Animal Science, University of Lleida, 25198 Lleida, Spain
| | - Irina Garcia-Ispierto
- Agrotecnio Centre, 25198 Lleida, Spain
- Department of Animal Science, University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
10
|
Cainelli E, Vedovelli L, Bisiacchi P. The mother-child interface: A neurobiological metamorphosis. Neuroscience 2024; 561:92-106. [PMID: 39427701 DOI: 10.1016/j.neuroscience.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
From the start of pregnancy, mother and child induce reciprocal neurobiological changes in the brain that will prove critical for neurodevelopment and survival of both. Molecular communication between mother and fetus is constantly active and persists even after the fetus starts to synthesize its hormones in late gestation. Intriguingly, some mother and fetus exchange cells remain in the other's brain and body with long-lasting effects and memories that do not follow the laws of classical genetics but involve complex epigenetic mechanisms. After childbirth, mother and child go through a transitional phase, a sort of limbo in which both will have a peculiar functioning profile, which is adaptive for contingencies but also renders them vulnerable. The interplay between these two "limbo" states allows for an easier transition to the subsequent phases of development. In this review, we will trace mother's and child's path from pregnancy to the months following birth and, in particular, unravel i) the key features of pregnancy and brain development and the reciprocal influences; ii) how a transitory pattern of functioning characterize mother and child, moving them toward more flexible and evolved forms; and iii) how mother and fetus act during childbirth to promote neuroprotection, pain reduction, and neurophysiological changes. Therefore, this review covers a wide range of topics, integrating neuroanatomical, neurological, biochemical, neurophysiological, and psychological studies in a meaningful way, trying to integrate them in a holistic view of the mother-child interface that is usually neglected.
Collapse
Affiliation(s)
- Elisa Cainelli
- Department of General Psychology, University of Padova, 35131 Padova, Italy.
| | - Luca Vedovelli
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular and Public Health Sciences, University of Padova, 35131 Padova, Italy.
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padova, 35131 Padova, Italy; Padova Neuroscience Center, PNC, 35131 Padova, Italy.
| |
Collapse
|
11
|
Muñoz-Jurado A, Escribano BM. Presence of melatonin in foods of daily consumption: The benefit of this hormone for health. Food Chem 2024; 458:140172. [PMID: 38943958 DOI: 10.1016/j.foodchem.2024.140172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Melatonin (MLT) is a hormone that exists in all living organisms, including bacteria, yeast, fungi, animals, and plants, many of which are ingested daily in the diet. However, the exact concentrations of melatonin in each of the foods and the effect on health of the intake of foods rich in MLT are not known. Therefore, the aim of this review was to gather the available information on the melatonin content of different foods and to evaluate the effect that this hormone has on different pathologies. The amount of MLT may vary depending on the variety, origin, heat treatment, processing, and analysis technique, among other factors. Dietary interventions with foods rich in MLT report health benefits, but there is no evidence that hormone is partially responsible for the clinical improvement. Therefore, it is necessary to evaluate the MLT content in more foods, as well as the effect that cooking/processing has on the amount of MLT, to estimate its total intake in a typical diet and better explore its potential impact on the health.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| |
Collapse
|
12
|
Rafiyian M, Reiter RJ, Rasooli Manesh SM, Asemi R, Sharifi M, Mohammadi S, Mansournia MA, Asemi Z. Programmed cell death and melatonin: A comprehensive review. Funct Integr Genomics 2024; 24:169. [PMID: 39313718 DOI: 10.1007/s10142-024-01454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Melatonin (MLT), a main product of pineal gland, recently has attracted the attention of scientists due to its benefits in various diseases and also regulation of cellular homeostasis. Its receptor scares widely distributed indicating that it influences numerous organs. Programmed cell death (PCD), of which there several types, is a regulated by highly conserved mechanisms and important for development and function of different organs. Enhancement or inhibition of PCDs could be a useful technique for treatment of different diseases and MLT, due to its direct effects on these pathways, is a good candidate for this strategy. Many studies investigated the role of MLT on PCDs in different diseases and in this review, we summarized some of the most significant studies in this field to provide a better insight into the mechanisms of modulation of PCD by MLT modulation.
Collapse
Affiliation(s)
- Mahdi Rafiyian
- Student Research Committee, Kashan University of Reiter Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | | | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sotoudeh Mohammadi
- Department of Obstetrics and Gynecology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
13
|
Santos R, Turck P, de Mello Palma V, Visioli F, Ortiz VD, Proença ICT, Fernandes TRG, Fernandes E, Tasca S, Carraro CC, Belló-Klein A, da Rosa Araujo AS, Khaper N, de Castro AL. Melatonin improves nitric oxide bioavailability in isoproterenol induced myocardial injury. Mol Cell Endocrinol 2024; 591:112279. [PMID: 38797355 DOI: 10.1016/j.mce.2024.112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Isoproterenol administration is associated with cardiac inflammation and decreased NO availability. Melatonin has been reported to have cardioprotective effect. The aim of this study was to investigate the effect of melatonin on NO bioavailability and inflammation in myocardial injury induced by isoproterenol. Isoproterenol was administrated in male Wistar rats for 7 days to induce cardiac injury. The animals were divided into 3 groups: Control, Isoproterenol, Isoproterenol + Melatonin. Animals received melatonin for 7 days. Echocardiographic analysis was performed and the hearts were collected for molecular analysis. Animals that received isoproterenol demonstrated a reduction in left ventricle systolic and diastolic diameter, indicating the presence of concentric hypertrophy. Melatonin was able to attenuate this alteration. Melatonin also improved NO bioavailability and decreased NF-κβ, TNFα and IL-1β expression. In conclusion, melatonin exhibited a cardioprotective effect which was associated with improving NO bioavailability and decreasing the pro-inflammatory proteins.
Collapse
Affiliation(s)
- Ramison Santos
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Patrick Turck
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Victor de Mello Palma
- Faculdade de Odontologia. Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2492 - Santa Cecília, CEP: 90035-004, Porto Alegre, RS, Brazil
| | - Fernanda Visioli
- Faculdade de Odontologia. Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2492 - Santa Cecília, CEP: 90035-004, Porto Alegre, RS, Brazil
| | - Vanessa Duarte Ortiz
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Isabel Cristina Teixeira Proença
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Tânia Regina G Fernandes
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Elissa Fernandes
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Silvio Tasca
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Cristina Campos Carraro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Adriane Belló-Klein
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Alex Sander da Rosa Araujo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Neelam Khaper
- Northern Ontario School of Medicine University, 955 Oliver Road, Thunder Bay, ON, Canada
| | - Alexandre Luz de Castro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 - Santa Cecília, CEP: 90035-003, Porto Alegre, RS, Brazil.
| |
Collapse
|
14
|
Khafaji AWM, Al-Zubaidy AAK, Farhood IG, Salman HR. Ameliorative effects of topical ramelteon on imiquimod-induced psoriasiform inflammation in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6231-6248. [PMID: 38446218 DOI: 10.1007/s00210-024-03017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Psoriasis is a long-lasting, immune-related inflammatory skin disease that affects 2-3% of the global population. It is distinguished by erythematous, silvery, and scaly patches. Ramelteon is a type of melatonin agonist that is used to treat insomnia. It has enhanced non-classical immunomodulatory and anti-inflammatory activities. The aim of the study is to assess the ameliorative effects of topical ramelteon on imiquimod (IMQ)-aggravated psoriasiform-like dermatosis in mice. The 32 albino mouse males were placed into six groups of eight animals, all of them. With the exception of the control group, all groups gained a once-a-day regimen of topical imiquimod 5% cream at a dose of 62.5 mg for eight uninterrupted days, while mice in the control group gained vaseline-based ointment alternately. Immediately after an 8-day induction period in the imiquimod group, mice in the clobetasol and ramelteon treatment groups obtained a twice-daily regimen of topical clobetasol propionate 0.05% ointment and 0.1% ointment, respectively, for a further 8 days. This extends the total duration of the experimental study to 16 continuous days. The findings of our study found that ramelteon significantly mitigated the concentrations of inflammatory cytokines in the skin tissue, including interleukin (IL)-6, IL-17A, IL-23, tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor (VEGF), as well as the scores associated with psoriatic lesions, including erythema, scaling, skin thickening, ear thickness, and overall cumulative PASI scores. Additionally, the anti-inflammatory impact of ramelteon was achieved by markedly increasing IL-10 levels in the skin tissue and correcting cutaneous histopathological alterations. Ramelteon ointment (0.1%) was comparable to that of clobetasol (0.05%) ointment in alleviating a mouse model of imiquimod-induced psoriasiform inflammation; this is probably due to its potential anti-inflammatory and immunomodulatory activities. Therefore, ramelteon could be a good additive option for therapeutic management of immune-triggered inflammatory conditions such as psoriasis.
Collapse
Affiliation(s)
| | | | - Iqbal Ghalib Farhood
- Section of Dermatology and Venereology, Department of Medicine, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Hayder Ridha Salman
- Department of Pharmacology, College of Pharmacy, Al-Mustaqbal University, 510001, Hillah, Iraq
| |
Collapse
|
15
|
Hosseinzadeh A, Jamshidi Naeini A, Sheibani M, Gholamine B, Reiter RJ, Mehrzadi S. Melatonin and oral diseases: possible therapeutic roles based on cellular mechanisms. Pharmacol Rep 2024; 76:487-503. [PMID: 38607587 DOI: 10.1007/s43440-024-00593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Oral diseases, including periodontal disorders, oral cancer, periodontitis, and mucositis are the major challenges for both patients and healthcare providers. These conditions often involve inflammation, oxidative stress, and impaired cellular processes, leading to symptoms ranging from discomfort to severe debilitation. Conventional treatments for such oral diseases exhibit constraints, prompting the investigation of innovative therapeutic approaches. Considering the anti-inflammatory, anti-oxidant, and anti-cancer effects of melatonin, this study was carried out to investigate the potential protective effects of melatonin in mitigating the severity of oral diseases. Studies indicate that melatonin influences the differentiation of periodontal stem cells, inhibits oral cancer progression, reduces inflammation associated with periodontitis, and alleviates the severity of oral mucositis. Melatonin has demonstrated potential efficacy in both preclinical and clinical investigations; however, findings are frequently heterogeneous and contingent upon contextual factors. This review provides a comprehensiveoverview of current state of knowledge in this domain, elucidating the multifaceted role that melatonin may assume in combatingoral diseases. Further research should be directed toward determining the most effective dosing, timing, and administration methods for melatonin-based therapies for oral diseases.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Gholamine
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Pirvu LC, Rusu N, Bazdoaca C, Androne E, Neagu G, Albulescu A. A View on the Chemical and Biological Attributes of Five Edible Fruits after Finishing Their Shelf Life: Studies on Caco-2 Cells. Int J Mol Sci 2024; 25:4848. [PMID: 38732066 PMCID: PMC11084482 DOI: 10.3390/ijms25094848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
We studied five common perishable fruits in terms of their polyphenols dynamic, minerals distribution, scavenger activity and the effects of 50% ethanolic extracts on the viability of Caco-2 cells in vitro, over a period of time between T = 0 and T = 5/7 days, typically the end of their shelf life. Altogether, there were few changes found, consisting of either an increase or a decrease in their chemical and biological attributes. A slow decrease was found in the antioxidant activity in apricot (-11%), plum (-6%) and strawberry (-4%) extracts, while cherry and green seedless table grape extracts gained 7% and 2% antioxidant potency, respectively; IC50 values ranged from 1.67 to 5.93 μg GAE/μL test extract. The cytotoxicity MTS assay at 24 h revealed the ability of all 50% ethanol fruit extracts to inhibit the Caco-2 cell viability; the inhibitory effects ranged from 49% to 83% and were measured at 28 µg GAE for strawberry extracts/EES, from 22 µg to 45 µg GAE for cherry extracts/EEC, from 7.58 to 15.16 µg GAE for apricot extracts/EEA, from 12.50 to 25.70 µg GAE for plum extracts/EEP and from 21.51 to 28.68 µg GAE for green table grape extracts/EEG. The MTS anti-proliferative assay (72 h) also revealed a stimulatory potency upon the Caco-2 viability, from 34% (EEA, EEG) and 48% (EEC) to 350% (EES) and 690% (EEP); therefore fruit juices can influence intestinal tumorigenesis in humans.
Collapse
Affiliation(s)
- Lucia Camelia Pirvu
- Department of Pharmaceutical Biotechnologies, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania
| | - Nicoleta Rusu
- Department of Chemical Analysis and Drug Control, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania; (N.R.); (C.B.); (E.A.)
| | - Cristina Bazdoaca
- Department of Chemical Analysis and Drug Control, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania; (N.R.); (C.B.); (E.A.)
| | - Elena Androne
- Department of Chemical Analysis and Drug Control, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania; (N.R.); (C.B.); (E.A.)
| | - Georgeta Neagu
- Department of Pharmacology, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania;
| | - Adrian Albulescu
- Department of Pharmacology, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania;
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Av., 030304 Bucharest, Romania
| |
Collapse
|
17
|
Gu P, Wu Y, Lu W. New Perspectives on the Role and Therapeutic Potential of Melatonin in Cardiovascular Diseases. Am J Cardiovasc Drugs 2024; 24:171-195. [PMID: 38436867 DOI: 10.1007/s40256-024-00631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and disability worldwide. It is essential to develop novel interventions to prevent/delay CVDs by targeting their fundamental cellular and molecular processes. Melatonin is a small indole molecule acting both as a hormone of the pineal gland and as a local regulator molecule in various tissues. It has multiple features that may contribute to its cardiovascular protection. Moreover, melatonin enters all cells and subcellular compartments and crosses morphophysiological barriers. Additionally, this indoleamine also serves as a safe exogenous therapeutic agent. Increasing evidence has demonstrated the beneficial effects of melatonin in preventing and improving cardiovascular risk factors. Exogenous administration of melatonin, as a result of its antioxidant and anti-inflammatory properties, has been reported to decrease blood pressure, protect against atherosclerosis, attenuate molecular and cellular damage resulting from cardiac ischemia/reperfusion, and improve the prognosis of myocardial infarction and heart failure. This review aims to summarize the beneficial effects of melatonin against these conditions, the possible protective mechanisms of melatonin, and its potential clinical applicability in CVDs.
Collapse
Affiliation(s)
- Pengchen Gu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China
| | - Yuxin Wu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China
| | - Weiwei Lu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China.
| |
Collapse
|
18
|
Bouroutzika E, Proikakis S, Theodosiadou EK, Vougas K, Katsafadou AI, Tsangaris GT, Valasi I. Proteomics Analysis of Pregnancy in Ewes under Heat Stress Conditions and Melatonin Administration. Animals (Basel) 2024; 14:400. [PMID: 38338042 PMCID: PMC10854642 DOI: 10.3390/ani14030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Melatonin is an indoleamine with broad spectrum properties that acts as a regulator of antioxidant and immune response in organisms. In our previous studies, melatonin improved redox status and inflammatory response in pregnant ewes under heat stress conditions. In the present study, using proteomics, the proteins regulated by melatonin during different stages of pregnancy and lambing were assessed. Twenty-two ewes equally divided into two groups, the melatonin (M) (n = 11) and control (C) group (n = 11), participated in the study and were exposed to heat stress during the first months of pregnancy. In the M group, melatonin implants were administered throughout pregnancy, every 40 days, until parturition (a total of four implants per ewe). Blood samples were collected at the beginning of the study simultaneously with the administration of the first melatonin implant (blood samples M1, C1), mating (M2, C2), second implant (M3, C3), fourth implant (M4, C4) and parturition (M5, C5), and MALDI-TOF analysis was performed. The results revealed the existence of 42 extra proteins in samples M2, M3 and M4 and 53 in M5 (sample at parturition) that are linked to melatonin. The biological processes of these proteins refer to boosted immune response, the alleviation of oxidative and endoplasmic reticulum stress, energy metabolism, the protection of the maternal organism and embryo development. This proteomics analysis indicates that melatonin regulates protective mechanisms and controls cell proliferation under exogenous or endogenous stressful stimuli during pregnancy and parturition.
Collapse
Affiliation(s)
- Efterpi Bouroutzika
- Faculty of Veterinary Science, University of Thessaly, 43131 Karditsa, Greece; (E.B.); (E.K.T.)
| | - Stavros Proikakis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece;
| | | | - Konstantinos Vougas
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (K.V.), (G.T.T.)
| | | | - George T. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (K.V.), (G.T.T.)
| | - Irene Valasi
- Faculty of Veterinary Science, University of Thessaly, 43131 Karditsa, Greece; (E.B.); (E.K.T.)
| |
Collapse
|
19
|
Li XW, Yi BJ, Wang ZY, Guo K, Saleem MAU, Ma XY, Li XN, Li JL. The ROS/SIRT1/STAR axis as a target for melatonin ameliorating atrazine-induced mitochondrial dysfunction and steroid disorders in granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115780. [PMID: 38056123 DOI: 10.1016/j.ecoenv.2023.115780] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The granulosa cells (GCs) of birds are essential for the reproduction and maintenance of populations in nature. Atrazine (ATR) is a potent endocrine disruptor that can interfere with reproductive function in females and Diaminochlorotriazine (DACT) is the primary metabolite of ATR in the organism. Melatonin (MT) is an endogenous hormone with antioxidant properties that plays a crucial role in development of animal germ cells. However, how ATR causes mitochondrial dysfunction, abnormal secretion of steroid hormones, and whether MT prevents ATR-induced female reproductive toxicity remains unclear. Thus, the purpose of this study is to investigate the protective effect of MT against ATR-induced female reproduction. In the present study, the GCs of quail were divided into 6 groups, as follows: C (Serum-free medium), MT (10 µM MT), A250 (250 µM ATR), MA250 (10 µM MT+250 µM ATR), D200 (200 µM DACT) and MD200 (10 µM MT+200 µM DACT), and were cultured for 24 h. The results revealed that ATR prevented GCs proliferation and decreased cell differentiation. ATR caused oxidative damage and mitochondrial dysfunction, leading to disruption of steroid synthesis, which posed a severe risk to GC's function. However, MT supplements reversed these changes. Mechanistically, our study exhibited that the ROS/SIRT1/STAR axis as a target for MT to ameliorate ATR-induced mitochondrial dysfunction and steroid disorders in GCs, which provides new insights into the role of MT in ATR-induced reproductive capacity and species conservation in birds.
Collapse
Affiliation(s)
- Xiao-Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Bao-Jin Yi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhao-Yi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kai Guo
- Chifeng Agriculture and Animal Husbandry Comprehensive Administrative Law Enforcement Detachment, No. 70, Quanning Street, Songshan District, Chifeng City, Inner Mongolia, 024000, PR China
| | | | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
20
|
Feybesse C, Chokron S, Tordjman S. Melatonin in Neurodevelopmental Disorders: A Critical Literature Review. Antioxidants (Basel) 2023; 12:2017. [PMID: 38001870 PMCID: PMC10669594 DOI: 10.3390/antiox12112017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The article presents a review of the relationships between melatonin and neurodevelopmental disorders. First, the antioxidant properties of melatonin and its physiological effects are considered to understand better the role of melatonin in typical and atypical neurodevelopment. Then, several neurodevelopmental disorders occurring during infancy, such as autism spectrum disorder or neurogenetic disorders associated with autism (including Smith-Magenis syndrome, Angelman syndrome, Rett's syndrome, Tuberous sclerosis, or Williams-Beuren syndrome) and neurodevelopmental disorders occurring later in adulthood like bipolar disorder and schizophrenia, are discussed with regard to impaired melatonin production and circadian rhythms, in particular, sleep-wake rhythms. This article addresses the issue of overlapping symptoms that are commonly observed within these different mental conditions and debates the role of abnormal melatonin production and altered circadian rhythms in the pathophysiology and behavioral expression of these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cyrille Feybesse
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Regnier, 154 rue de Châtillon, 35000 Rennes, France
| | - Sylvie Chokron
- Integrative Neuroscience and Cognition Center (INCC), CNRS UMR 8002, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France;
| | - Sylvie Tordjman
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Regnier, 154 rue de Châtillon, 35000 Rennes, France
- Integrative Neuroscience and Cognition Center (INCC), CNRS UMR 8002, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France;
- Faculté de Médecine, Université de Rennes, 2 Avenue du Professeur Léon Bernard, 35000 Rennes, France
| |
Collapse
|
21
|
Khezri MR, Esmaeili A, Ghasemnejad-Berenji M. Role of Bmal1 and Gut Microbiota in Alzheimer's Disease and Parkinson's Disease Pathophysiology: The Probable Effect of Melatonin on Their Association. ACS Chem Neurosci 2023; 14:3883-3893. [PMID: 37823531 DOI: 10.1021/acschemneuro.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
In recent years, the role of new factors in the pathophysiology of neurodegenerative diseases has been investigated. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases worldwide. Although pathological changes such as the accumulation of aggregated proteins in the brain and inflammatory responses are known as the main factors involved in the development of these diseases, new studies show the role of gut microbiota and circadian rhythm in the occurrence of these changes. However, the association between circadian rhythm and gut microbiota in AD and PD has not yet been investigated. Recent results propose that alterations in circadian rhythm regulators, mainly Bmal1, may regulate the abundance of gut microbiota. This correlation has been linked to the regulation of the expression of immune-related genes and Bmal-1 mediated oscillation of IgA and hydrogen peroxide production. These data seem to provide new insight into the molecular mechanism of melatonin inhibiting the progression of AD and PD. Therefore, this manuscript aims to review the role of the gut microbiota and circadian rhythm in health and AD and PD and also presents a hypothesis on the effect of melatonin on their communication.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Faculty of Pharmacy. Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Ayda Esmaeili
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia 5715799313, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia 5715799313, Iran
| |
Collapse
|
22
|
Peng Z, Liang Y, Liu X, Shao J, Hu N, Zhang X. New insights into the mechanisms of diabetic kidney disease: Role of circadian rhythm and Bmal1. Biomed Pharmacother 2023; 166:115422. [PMID: 37660646 DOI: 10.1016/j.biopha.2023.115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
It is common for diabetic kidney disease (DKD) to be complicated by abnormal blood glucose, blood lipids, and blood pressure rhythms. Thus, it is essential to examine diagnostic and treatment plans from the perspective of circadian disruption. This brief review discusses the clinical relevance of circadian rhythms in DKD and how the core clock gene encoding brain and muscle arnt-like protein 1 (BMAL1) functions owing to the importance of circadian rhythm disruption processes, including the excretion of urinary protein and irregular blood pressure, which occur in DKD. Exploring Bmal1 and its potential mechanisms and signaling pathways in DKD following contact with Sirt1 and NF-κB is novel and important. Finally, potential pharmacological and behavioral intervention strategies for DKD circadian rhythm disturbance are outlined. This review aids in unveiling novel, potential molecular targets for DKD based on circadian rhythms.
Collapse
Affiliation(s)
- Zhimei Peng
- Department of Nephrology, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China; Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| | - Yanting Liang
- Department of Nephrology, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| | - Xueying Liu
- Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| | - Jie Shao
- Department of Nephrology, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| | - Nan Hu
- Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| | - Xinzhou Zhang
- Department of Nephrology, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China; Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| |
Collapse
|
23
|
Csoma B, Bikov A. The Role of the Circadian Rhythm in Dyslipidaemia and Vascular Inflammation Leading to Atherosclerosis. Int J Mol Sci 2023; 24:14145. [PMID: 37762448 PMCID: PMC10532147 DOI: 10.3390/ijms241814145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular diseases (CVD) are among the leading causes of death worldwide. Many lines of evidence suggest that the disturbances in circadian rhythm are responsible for the development of CVDs; however, circadian misalignment is not yet a treatable trait in clinical practice. The circadian rhythm is controlled by the central clock located in the suprachiasmatic nucleus and clock genes (molecular clock) located in all cells. Dyslipidaemia and vascular inflammation are two hallmarks of atherosclerosis and numerous experimental studies conclude that they are under direct influence by both central and molecular clocks. This review will summarise the results of experimental studies on lipid metabolism, vascular inflammation and circadian rhythm, and translate them into the pathophysiology of atherosclerosis and cardiovascular disease. We discuss the effect of time-respected administration of medications in cardiovascular medicine. We review the evidence on the effect of bright light and melatonin on cardiovascular health, lipid metabolism and vascular inflammation. Finally, we suggest an agenda for future research and recommend on clinical practice.
Collapse
Affiliation(s)
- Balazs Csoma
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK;
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| | - Andras Bikov
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK;
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
24
|
Mehrzadi S, Sheibani M, Koosha F, Alinaghian N, Pourhanifeh MH, Tabaeian SAP, Reiter RJ, Hosseinzadeh A. Protective and therapeutic potential of melatonin against intestinal diseases: updated review of current data based on molecular mechanisms. Expert Rev Gastroenterol Hepatol 2023; 17:1011-1029. [PMID: 37796746 DOI: 10.1080/17474124.2023.2267439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Intestinal diseases, a leading global cause of mortality and morbidity, carry a substantial socioeconomic burden. Small and large intestines play pivotal roles in gastrointestinal physiology and food digestion. Pathological conditions, such as gut dysbiosis, inflammation, cancer, therapy-related complications, ulcers, and ischemia, necessitate the urgent exploration of safe and effective complementary therapeutic strategies for optimal intestinal health. AREAS COVERED This article evaluates the potential therapeutic effects of melatonin, a molecule with a wide range of physiological actions, on intestinal diseases including inflammatory bowel disease, irritable bowel syndrome, colon cancer, gastric/duodenal ulcers and other intestinal disorders. EXPERT OPINION Due to anti-inflammatory and antioxidant properties as well as various biological actions, melatonin could be a therapeutic option for improving digestive disorders. However, more researches are needed to fully understand the potential benefits and risks of using melatonin for digestive disorders.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazila Alinaghian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Chen B, Jin T, Fu Z, Li H, Yang J, Liu Y, Han Y, Wang X, Wu Z, Xu T. Non-thermal plasma-treated melatonin inhibits the biological activity of HCC cells by increasing intracellular ROS levels and reducing RRM2 expression. Heliyon 2023; 9:e15992. [PMID: 37215864 PMCID: PMC10192739 DOI: 10.1016/j.heliyon.2023.e15992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Non-thermal plasma (NTP) is thought to have a cytotoxic effect on tumor cells. Although its application in cancer therapy has shown considerable promise, the current understanding of its mechanism of action and cellular responses remains incomplete. Furthermore, the use of melatonin (MEL) as an adjuvant anticancer drug remains unexplored. In this study, we found that NTP assists MEL in promoting apoptosis, delaying cell cycle progression, and inhibiting cell invasion and migration in hepatocellular carcinoma (HCC) cells. This mechanism may be associated with the regulation of intracellular reactive oxygen species levels and ribonucleotide reductase regulatory subunit M2 expression. Our findings confirm the pharmacological role of MEL and the adjuvant value of NTP, emphasizing their potential in combination therapy for HCC. Our study may have important implications for the development of new approaches for HCC treatment.
Collapse
Affiliation(s)
- Bangjie Chen
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Jin
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Ziyue Fu
- Second Clinical School of Anhui Medical University, Hefei, China
| | - Haiwen Li
- Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junfa Yang
- Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yucheng Liu
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanxun Han
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinyi Wang
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province; School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Tiwari J, Sur S, Naseem A, Rani S, Malik S. Photoperiodic modulation of melatonin receptor and immune genes in migratory redheaded bunting. Comp Biochem Physiol A Mol Integr Physiol 2023; 279:111381. [PMID: 36724811 DOI: 10.1016/j.cbpa.2023.111381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
The transcriptional regulation of innate immune function across annual life history states (LHS) remains obscure in avian migrants. We, therefore, investigated this in a migratory passerine songbird, redheaded bunting (Emberiza bruniceps), which exhibits long-distance vernal migration from India to Central Asia. We exposed the birds (N = 10) to differential photoperiodic conditions to induce a non-migratory (NM), pre-migratory (PM), migratory (MIG), and refractory (REF) state, and performed gene expression assays of melatonin receptors (MEL1A and MEL1B), and innate immunity-linked genes (IL1B, IL6, TLR4, and NFKB) in spleen and blood. We found a significant reduction in splenic mass and volume, and a parallel increase in fat accumulation, and testicular growth in birds under migratory state. The gene expression assay revealed an upregulation of MEL1A and MEL1B mRNA levels in both the tissues in MIG. Additionally, we found a nocturnal increase of splenic IL1B expression, and IL1B, IL6, and TLR4 expression in the blood. The mRNA expression of melatonin receptors and proinflammatory cytokine showed a positive correlation. These results suggest that melatonin relays the photoperiodic signal to peripheral immune organs, which shows LHS-dependent changes in mRNA expression of immune genes.
Collapse
Affiliation(s)
- Jyoti Tiwari
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India. https://twitter.com/JyotiTiwari2711
| | - Sayantan Sur
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India. https://twitter.com/sayantansur008
| | - Asma Naseem
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Sangeeta Rani
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Shalie Malik
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India.
| |
Collapse
|
27
|
Roa CL, Cipolla-Neto J, Reiter RJ, Linhares IM, Lepique AP, de Aguiar LM, Seganfredo IB, Ferreira-Filho ES, de Medeiros SF, Baracat EC, Soares-Júnior JM. Effects of Melatonin Alone or Associated with Acyclovir on the Suppressive Treatment of Recurrent Genital Herpes: A Prospective, Randomized, and Double-Blind Study. Biomedicines 2023; 11:biomedicines11041088. [PMID: 37189706 DOI: 10.3390/biomedicines11041088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Suppressive therapy of recurrent genital herpes is a challenge, and melatonin may be an alternative. Objective: To evaluate the action of melatonin, acyclovir, or the association of melatonin with acyclovir as a suppressive treatment in women with recurrent genital herpes. Design: The study was prospective, double-blind, and randomized, including 56 patients as follows: (a) The melatonin group received 180 placebo capsules in the ‘day’ container and 180 melatonin 3 mg capsules in the ‘night’ container (n = 19); (b) The acyclovir group received 360 capsules of 400 mg acyclovir twice a day (one capsule during the day and another during the night) (n = 15); (c) the melatonin group received 180 placebo capsules in the ‘day’ container and 180 melatonin 3 mg capsules in the ‘night’ container (n = 22). The length of treatment was six months. The follow-up after treatment was six months. Patients were evaluated before, during, and after treatment through clinical visits, laboratory tests, and the application of four questionnaires (QSF-36, Beck, Epworth, VAS, and LANNS). Results: No statistically significant difference was observed for the depression and sleepiness questionnaires. However, in the Lanns scale for pain, all groups decreased the mean and median values in time (p = 0.001), without differentiation among the groups (p = 0.188). The recurrence rates of genital herpes within 60 days after treatment were 15.8%, 33.3%, and 36.4% in the melatonin, acyclovir, and association of melatonin with acyclovir groups, respectively. Conclusion: Our data suggest that melatonin may be an option for the suppressive treatment of recurrent genital herpes.
Collapse
Affiliation(s)
- Cristiane Lima Roa
- Discipline of Gynecology, Obstetrics and Gynecology Department, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| | - Iara Moreno Linhares
- Discipline of Gynecology, Obstetrics and Gynecology Department, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - Ana Paula Lepique
- Biomedical Building IV—Department of Immunology, Instituto de Ciências Biomédicas—USP, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | - Lana Maria de Aguiar
- Discipline of Gynecology, Obstetrics and Gynecology Department, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - Isadora Braga Seganfredo
- Discipline of Gynecology, Obstetrics and Gynecology Department, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - Edson Santos Ferreira-Filho
- Discipline of Gynecology, Obstetrics and Gynecology Department, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | | | - Edmund Chada Baracat
- Discipline of Gynecology, Obstetrics and Gynecology Department, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - José Maria Soares-Júnior
- Discipline of Gynecology, Obstetrics and Gynecology Department, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| |
Collapse
|
28
|
Potes Y, Cachán-Vega C, Antuña E, García-González C, Menéndez-Coto N, Boga JA, Gutiérrez-Rodríguez J, Bermúdez M, Sierra V, Vega-Naredo I, Coto-Montes A, Caballero B. Benefits of the Neurogenic Potential of Melatonin for Treating Neurological and Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:ijms24054803. [PMID: 36902233 PMCID: PMC10002978 DOI: 10.3390/ijms24054803] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
There are several neurological diseases under which processes related to adult brain neurogenesis, such cell proliferation, neural differentiation and neuronal maturation, are affected. Melatonin can exert a relevant benefit for treating neurological disorders, given its well-known antioxidant and anti-inflammatory properties as well as its pro-survival effects. In addition, melatonin is able to modulate cell proliferation and neural differentiation processes in neural stem/progenitor cells while improving neuronal maturation of neural precursor cells and newly created postmitotic neurons. Thus, melatonin shows relevant pro-neurogenic properties that may have benefits for neurological conditions associated with impairments in adult brain neurogenesis. For instance, the anti-aging properties of melatonin seem to be linked to its neurogenic properties. Modulation of neurogenesis by melatonin is beneficial under conditions of stress, anxiety and depression as well as for the ischemic brain or after a brain stroke. Pro-neurogenic actions of melatonin may also be beneficial for treating dementias, after a traumatic brain injury, and under conditions of epilepsy, schizophrenia and amyotrophic lateral sclerosis. Melatonin may represent a pro-neurogenic treatment effective for retarding the progression of neuropathology associated with Down syndrome. Finally, more studies are necessary to elucidate the benefits of melatonin treatments under brain disorders related to impairments in glucose and insulin homeostasis.
Collapse
Affiliation(s)
- Yaiza Potes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
- Correspondence: (Y.P.); (B.C.); Tel.: +34-985102767 (Y.P.); +34-985102784 (B.C.)
| | - Cristina Cachán-Vega
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Eduardo Antuña
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Claudia García-González
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Nerea Menéndez-Coto
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Jose Antonio Boga
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - José Gutiérrez-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Manuel Bermúdez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Verónica Sierra
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Asturias, Spain
| | - Ignacio Vega-Naredo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Beatriz Caballero
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
- Correspondence: (Y.P.); (B.C.); Tel.: +34-985102767 (Y.P.); +34-985102784 (B.C.)
| |
Collapse
|
29
|
Álvarez-Fernández L, Gomez-Gomez A, Haro N, García-Lino AM, Álvarez AI, Pozo OJ, Merino G. ABCG2 transporter plays a key role in the biodistribution of melatonin and its main metabolites. J Pineal Res 2023; 74:e12849. [PMID: 36562106 PMCID: PMC10078363 DOI: 10.1111/jpi.12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The ATP-binding cassette G2 (ABCG2) is an efflux transporter expressed in the apical membrane of cells from a large number of tissues, directly affecting bioavailability, tissue accumulation, and secretion into milk of both xenobiotics and endogenous compounds. The aim of this work was to characterize the role of ABCG2 in the systemic distribution and secretion into milk of melatonin and its main metabolites, 6-hydroxymelatonin, and 6-sulfatoxymelatonin. For this purpose, we first showed that these three molecules are transported by this transporter using in vitro transepithelial assays with MDCK-II polarized cells transduced with different species variants of ABCG2. Second, we tested the in vivo effect of murine Abcg2 in the systemic distribution of melatonin and its metabolites using wild-type and Abcg2-/- mice. Our results show that after oral administration of melatonin, the plasma concentration of melatonin metabolites in Abcg2-/- mice was between 1.5 and 6-fold higher compared to the wild-type mice. We also evaluated in these animals differences in tissue accumulation of melatonin metabolites. The most relevant differences between both types of mice were found for small intestine and kidney (>sixfold increase for 6-sulfatoxymelatonin in Abcg2-/- mice). Finally, melatonin secretion into milk was also affected by the murine Abcg2 transporter, with a twofold higher milk concentration in wild-type compared with Abcg2-/- lactating female mice. In addition, melatonin metabolites showed a higher milk-to-plasma ratio in wild-type mice. Overall, our results show that the ABCG2 transporter plays a critical role in the biodistribution of melatonin and its main metabolites, thereby potentially affecting their biological and therapeutic activity.
Collapse
Affiliation(s)
- Laura Álvarez-Fernández
- Department of Biomedical Sciences-Physiology, Animal Health Institute (INDEGSAL), Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Alex Gomez-Gomez
- Applied Metabolomics Research Group, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Noemí Haro
- Applied Metabolomics Research Group, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Alba M García-Lino
- Department of Biomedical Sciences-Physiology, Animal Health Institute (INDEGSAL), Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Ana I Álvarez
- Department of Biomedical Sciences-Physiology, Animal Health Institute (INDEGSAL), Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Oscar J Pozo
- Applied Metabolomics Research Group, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Gracia Merino
- Department of Biomedical Sciences-Physiology, Animal Health Institute (INDEGSAL), Faculty of Veterinary Medicine, Universidad de León, León, Spain
| |
Collapse
|
30
|
Liu Y, Wang D, Li T, Xu L, Li Z, Bai X, Tang M, Wang Y. Melatonin: A potential adjuvant therapy for septic myopathy. Biomed Pharmacother 2023; 158:114209. [PMID: 36916434 DOI: 10.1016/j.biopha.2022.114209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Septic myopathy, also known as ICU acquired weakness (ICU-AW), is a characteristic clinical symptom of patients with sepsis, mainly manifested as skeletal muscle weakness and muscular atrophy, which affects the respiratory and motor systems of patients, reduces the quality of life, and even threatens the survival of patients. Melatonin is one of the hormones secreted by the pineal gland. Previous studies have found that melatonin has anti-inflammatory, free radical scavenging, antioxidant stress, autophagic lysosome regulation, mitochondrial protection, and other multiple biological functions and plays a protective role in sepsis-related multiple organ dysfunction. Given the results of previous studies, we believe that melatonin may play an excellent regulatory role in the repair and regeneration of skeletal muscle atrophy in septic myopathy. Melatonin, as an over-the-counter drug, has the potential to be an early, complementary treatment for clinical trials. Based on previous research results, this article aims to critically discuss and review the effects of melatonin on sepsis and skeletal muscle depletion.
Collapse
Affiliation(s)
- Yukun Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Dongfang Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ligang Xu
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Zhanfei Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiangjun Bai
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Manli Tang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Yuchang Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
31
|
Dauchy RT, Blask DE. Vivarium Lighting as an Important Extrinsic Factor Influencing Animal-based Research. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:3-25. [PMID: 36755210 PMCID: PMC9936857 DOI: 10.30802/aalas-jaalas-23-000003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 01/22/2023]
Abstract
Light is an extrinsic factor that exerts widespread influence on the regulation of circadian, physiologic, hormonal, metabolic, and behavioral systems of all animals, including those used in research. These wide-ranging biologic effects of light are mediated by distinct photoreceptors, the melanopsin-containing intrinsically photosensitive retinal ganglion cells of the nonvisual system, which interact with the rods and cones of the conventional visual system. Here, we review the nature of light and circadian rhythms, current industry practices and standards, and our present understanding of the neurophysiology of the visual and nonvisual systems. We also consider the implications of this extrinsic factor for vivarium measurement, production, and technological application of light, and provide simple recommendations on artificial lighting for use by regulatory authorities, lighting manufacturers, designers, engineers, researchers, and research animal care staff that ensure best practices for optimizing animal health and wellbeing and, ultimately, improving scientific outcomes.
Collapse
Key Words
- blad, blue-enriched led light at daytime
- clock, circadian locomotor output kaput
- cct, correlated color temperature
- cwf, cool white fluorescent
- iprgc, intrinsically photosensitive retinal ganglion cell
- hiomt, hydroxyindole-o-methyltransferase
- lan, light at night
- led, light-emitting diode
- plr, pupillary light reflex
- scn, suprachiasmatic nuclei
- spd, spectral power distribution
Collapse
Affiliation(s)
- Robert T Dauchy
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David E Blask
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
32
|
Zhang X, Wang A, Chang E, Han B, Xu J, Fu Y, Dong X, Miao S. Effects of dietary tryptophan on the antioxidant capacity and immune response associated with TOR and TLRs/MyD88/NF-κB signaling pathways in northern snakehead, Channa argus (Cantor, 1842). Front Immunol 2023; 14:1149151. [PMID: 37114056 PMCID: PMC10128191 DOI: 10.3389/fimmu.2023.1149151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Dietary tryptophan (Trp) has been shown to influence fish feed intake, growth, immunity and inflammatory responses. The purpose of this study was to investigate the effect and mechanism of Trp on immune system of juvenile northern snakehead (Channa argus Cantor, 1842). Methods A total of 540 fish (10.21 ± 0.11 g) were fed six experimental diets containing graded levels of Trp at 1.9, 3.0, 3.9, 4.8, 5.9 and 6.8 g/kg diet for 70 days, respectively. Results and Discussion The results showed that supplementation of 1.9-4.8 g/kg Trp in diets had no effect on the hepatosomatic index (HSI) and renal index (RI), while dietary 3.9 and 4.8 g/kg Trp significantly increased spleen index (SI) of fish. Dietary 3.9, 4.8, 5.9 and 6.8 g/kg Trp enhanced the total hemocyte count (THC), the activities of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD). Malondinaldehyde (MDA) levels in the blood were significantly decreased by consuming 3.9 and 4.8 g/kg Trp. Fish fed with 3.0 and 3.9 g/kg Trp diets up-regulated interleukin 6 (il-6) and interleukin 8 (il-8) mRNA levels. The expression of tumor necrosis factor α (tnf-α) was highest in fish fed with 3.0 g/kg Trp diet, and the expression of interleukin 1β (il-1β) was highest in fish fed with 3.9 g/kg Trp diet. Dietary 4.8, 5.9 and 6.8 g/kg Trp significantly decreased il-6 and tnf-α mRNA levels in the intestine. Moreover, Trp supplementation was also beneficial to the mRNA expression of interleukin 22 (il-22). Additionally, the mRNA expression levels of target of rapamycin (tor), toll-like receptor-2 (tlr2), toll-like receptor-4 (tlr4), toll-like receptor-5 (tlr5) and myeloid differentiation primary response 88 (myd88) of intestine were significantly up-regulated in fish fed 1.9, 3.0 and 3.9 g/kg Trp diets, and down-regulated in fish fed 4.8, 5.9 and 6.8 g/kg Trp diets. Dietary 4.8 and 5.9 g/kg Trp significantly increased the expression of inhibitor of nuclear factor kappa B kinase beta subunit (ikkβ) and decreased the expression of inhibitor of kappa B (iκbα), but inhibited nuclear transcription factor kappa B (nf-κb) mRNA level. Collectively, these results indicated that dietary 4.8 g/kg Trp could improve antioxidant capacity and alleviate intestinal inflammation associated with TOR and TLRs/MyD88/NF-κB signaling pathways.
Collapse
|
33
|
Cyrino JC, de Figueiredo AC, Córdoba-Moreno MO, Gomes FR, Titon SCM. Day Versus Night Melatonin and Corticosterone Modulation by LPS in Distinct Tissues of Toads (Rhinella Icterica). Integr Comp Biol 2022; 62:1606-1617. [PMID: 35568500 DOI: 10.1093/icb/icac028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/30/2022] [Indexed: 01/05/2023] Open
Abstract
Pathogen-associated molecular patterns modulate melatonin (MEL) production in the pineal and extra-pineal sites and corticosterone (CORT) synthesis in the adrenal/interrenal and other tissues. Both MEL and CORT play essential and complex immunomodulatory roles, controlling the inflammatory response. Given that most of what we know about these interactions is derived from mammalian studies, discovering how MEL and CORT are modulated following an immune challenge in anurans would increase understanding of how conserved these immune-endocrine interactions are in vertebrates. Herein, we investigated the modulation of MEL and CORT in plasma vs. local tissues of toads (Rhinella icterica) in response to an immune challenge with lipopolysaccharide (LPS; 2 mg/kg) at day and night. Blood samples were taken 2 hours after injection (noon and midnight), and individuals were killed for tissue collection (bone marrow, lungs, liver, and intestine). MEL and CORT were determined in plasma and tissue homogenates. LPS treatment increased MEL concentration in bone marrow during the day. Intestine MEL levels were higher at night than during the day, particularly in LPS-injected toads. Bone marrow and lungs showed the highest MEL levels among tissues. Plasma MEL levels were not affected by either the treatment or the phase. Plasma CORT levels increased in LPS-treated individuals, with an accentuated increase at night. Otherwise, CORT concentration in the tissues was not affected by LPS exposure. Modulation of MEL levels in bone marrow suggests this tissue may participate in the toad's inflammatory response assembly. Moreover, MEL and CORT levels were different in tissues, pointing to an independent modulation of hormonal concentration. Our results suggest an important role of immune challenge in modulating MEL and CORT, bringing essential insights into the hormone-immune interactions during anuran's inflammatory response.
Collapse
Affiliation(s)
- João Cunha Cyrino
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | - Aymam Cobo de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | - Marlina Olyissa Córdoba-Moreno
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | | |
Collapse
|
34
|
Melatonin suppresses the antiviral immune response to EMCV infection through intracellular ATP deprivation caused by mitochondrial fragmentation. Heliyon 2022; 8:e11149. [PMID: 36303911 PMCID: PMC9593192 DOI: 10.1016/j.heliyon.2022.e11149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/28/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Melatonin, a sleep hormone derived from the pineal gland, has an anti-inflammatory effect on the immune system in addition to modulating the brain nervous system. Previous studies have shown that melatonin suppresses signaling pathways downstream of multiple pattern recognition receptors on the innate immune cells during pathogen infection, but the specific mechanism of suppression has not been well understood. Using an encephalomyocarditis virus (EMCV) infection model in macrophages, we investigated the effects of melatonin on the antiviral response in innate immunity and found that melatonin attenuated the uptake of viral particles into macrophages. Furthermore, melatonin suppressed cytoskeletal regulation by decreasing ATP production by mitochondria. Finally, in an in vivo infection experiment, we also found that melatonin administration partially exacerbated the infection in the mouse brain. These results suggest that melatonin may have an inhibitory effect on excessive inflammation by suppressing cytoskeletal regulation in the innate immune system, but also suggest that suppression of inflammation may lead to insufficient protection against EMCV infection in vivo.
Collapse
|
35
|
Begum R, Mamun-Or-Rashid ANM, Lucy TT, Pramanik MK, Sil BK, Mukerjee N, Tagde P, Yagi M, Yonei Y. Potential Therapeutic Approach of Melatonin against Omicron and Some Other Variants of SARS-CoV-2. Molecules 2022; 27:6934. [PMID: 36296527 PMCID: PMC9609612 DOI: 10.3390/molecules27206934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The Omicron variant (B.529) of COVID-19 caused disease outbreaks worldwide because of its contagious and diverse mutations. To reduce these outbreaks, therapeutic drugs and adjuvant vaccines have been applied for the treatment of the disease. However, these drugs have not shown high efficacy in reducing COVID-19 severity, and even antiviral drugs have not shown to be effective. Researchers thus continue to search for an effective adjuvant therapy with a combination of drugs or vaccines to treat COVID-19 disease. We were motivated to consider melatonin as a defensive agent against SARS-CoV-2 because of its various unique properties. Over 200 scientific publications have shown the significant effects of melatonin in treating diseases, with strong antioxidant, anti-inflammatory, and immunomodulatory effects. Melatonin has a high safety profile, but it needs further clinical trials and experiments for use as a therapeutic agent against the Omicron variant of COVID-19. It might immediately be able to prevent the development of severe symptoms caused by the coronavirus and can reduce the severity of the infection by improving immunity.
Collapse
Affiliation(s)
- Rahima Begum
- Department of Microbiology, Gono Bishwabidyalay, Dhaka 1344, Bangladesh
| | - A. N. M. Mamun-Or-Rashid
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, 130 De Soto Str., Pittsburgh, PA 15231, USA
| | - Tanzima Tarannum Lucy
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| | - Md. Kamruzzaman Pramanik
- Microbiology and Industrial Irradiation Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Savar 1349, Bangladesh
| | - Bijon Kumar Sil
- Department of Microbiology, Gono Bishwabidyalay, Dhaka 1344, Bangladesh
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata 700118, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Sydney 37729, Australia
| | - Priti Tagde
- Patel College of Pharmacy, Madhyanchal Professional University, Bhopal 462044, India
| | - Masayuki Yagi
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| | - Yoshikazu Yonei
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| |
Collapse
|
36
|
Abstract
The pineal gland is a interface between light-dark cycle and shows neuro-endocrine functions. Melatonin is the primary hormone of pineal gland, secreted at night. The night-time melatonin peak regulates the physiological functions at dark. Melatonin has several unique features as it synchronises internal rhythm with daily and seasonal variations, regulates circadian rhythm and sleep-wake cycle. Physiologically melatonin involves in detoxification of free radicals, immune functions, neuro-protection, oncostatic effects, cardiovascular functions, reproduction, and foetal development. The precise functions of melatonin are exhibited by specific receptors. In relation to pathophysiology, impaired melatonin secretion promotes sleep disorder, cancer progression, type-2 diabetes, and neurodegenerative diseases. Several reports have highlighted the therapeutic benefits of melatonin specially related to cancer protection, sleep disorder, psychiatric disorders, and jet lag problems. This review will touch the most of the area of melatonin-oriented health impacts and its therapeutic aspects.
Collapse
|
37
|
Faridzadeh A, Tabashiri A, Miri HH, Mahmoudi M. The role of melatonin as an adjuvant in the treatment of COVID-19: A systematic review. Heliyon 2022; 8:e10906. [PMID: 36254292 PMCID: PMC9540685 DOI: 10.1016/j.heliyon.2022.e10906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction Since November 2019, the world has been grappling with the rapid spread of the Coronavirus disease 2019 (COVID-19). In response to this major health crisis, the first vaccination rollout was launched in December 2020. However, even fully vaccinated individuals are not completely immune to infection, albeit with less severe symptoms. Melatonin is known as an anti-oxidant, anti-inflammatory, and immunomodulatory agent whose anti-viral properties, cost-effectiveness, and relatively few side effects make it a potential adjuvant in the treatment of COVID-19. This systematic review aims to summarize the clinical studies on the effects of melatonin on COVID-19 patients. Methods The search of articles was carried out in the Web of Science, PubMed/MEDLINE, Cochrane library, and Scopus databases up to January 2022. Results Ten articles were included in our study. It seems melatonin can decrease inflammatory markers, inflammatory cytokines, and the expression of some genes, including the signal transducer and activator of transcription (STAT)4, STAT6, T-box expressed in T cell (T-bet), GATA binding protein 3 (GATA3), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and caspase-1 (CASP1). In addition, melatonin appears to alleviate some clinical signs and symptoms and accelerate recovery. The use of melatonin in severe cases reduces thrombosis, sepsis, and mortality rate. Conclusion This systematic review highlights the probable role of melatonin as a potential adjuvant in the treatment of COVID-19 after about two weeks of consumption. However, further high-quality randomized clinical trials are required.
Collapse
Affiliation(s)
- Arezoo Faridzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arefeh Tabashiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Heidarian Miri
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Assis VR, Titon SCM, Voyles J. Ecoimmunology: What Unconventional Organisms Tell Us after Two Decades. Integr Comp Biol 2022; 62:icac148. [PMID: 36250609 DOI: 10.1093/icb/icac148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 02/18/2024] Open
Affiliation(s)
- Vania R Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo SP 05508-090, Brasil
| | - Stefanny C M Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo SP 05508-090, Brasil
| | - Jamie Voyles
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| |
Collapse
|
39
|
Hou D, Shang S, Lv J, Wang S. Study on the Effects of Melatonin on Cisplatin-Induced Apoptosis of Renal Tubular Epithelial Cells and Autophagy Protein L Light Chain 3 (LC3). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Purpose: The aim of this work was to discuss Melatonin’s effects on Cisplatin-induced Apoptosis of Renal Tubular Epithelial Cells. Materials and Methods: Blood and renal tissue were collected, The level of serum creatinine (Scr) was detected, the content of p53 protein
in renal tissue was detected by immunohistochemistry, the expression of p53 protein and autophagy marker protein microtubule associated protein L light chain 3II (LC3II)/LC 3I ratio in renal tissue was detected by WB method, the apoptosis of renal tubular epithelial cells was detected by TUNEL
method, and the morphological changes of renal tissue were observed by light microscope. Results: Scr level and apoptosis cell rate were significantly increased in Model group (P < 0.001), P53 and LC 3II/LC 3I ratio were significantly depressed (P < 0.001). With
MT supplement, Scr level and apoptosis cell rate were significantly depressed (P < 0.05); MT could significantly up-regulate P53 and LC 3II/LC 3I ratio (P < 0.05), MT could improve the pathological changes such as renal tubular epithelial cell fusion and vacuolar degeneration,
and reduce renal tubular injury. Conclusion: MT has a protective effect on cisplatin induced AKI in mice. Its mechanism may be related to up regulating the expression levels of p53 protein and LC 3II/LC 3I ratio.
Collapse
Affiliation(s)
- Dandan Hou
- Shuangqiao Hospital, Chaoyang, Beijing, 100024, China
| | - Sainan Shang
- Shuangqiao Hospital, Chaoyang, Beijing, 100024, China
| | - Juan Lv
- Shuangqiao Hospital, Chaoyang, Beijing, 100024, China
| | - Shuling Wang
- Shuangqiao Hospital, Chaoyang, Beijing, 100024, China
| |
Collapse
|
40
|
Wang Y, Wang Z, Shao C, Lu G, Xie M, Wang J, Duan H, Li X, Yu W, Duan W, Yan X. Melatonin may suppress lung adenocarcinoma progression via regulation of the circular noncoding RNA hsa_circ_0017109/miR-135b-3p/TOX3 axis. J Pineal Res 2022; 73:e12813. [PMID: 35661247 DOI: 10.1111/jpi.12813] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 05/10/2022] [Accepted: 06/03/2022] [Indexed: 12/01/2022]
Abstract
Melatonin is a hormone synthesized in the pineal gland and has widespread physiological and pharmacological functions. Moreover, it can activate protective receptor-dependent processes. These processes can prevent tissue carcinogenesis and inhibit malignant tumor progression and metastasis. Therefore, we investigated the regulatory effects of melatonin on dysregulated circular RNAs in human lung adenocarcinoma (LUAD) cells. In this study, we treated LUAD cells with melatonin and measured the expression of hsa_circ_0017109, miR-135b-3p, and TOX3 by quantitative reverse transcription polymerase chain reaction. Colony formation and cell counting kit-8 assays were used to determine cell proliferation. The wound-healing assay and Transwell experiment were carried out to evaluate the migration potential and invasive capacity of LUAD cells. Also, cell apoptosis was detected using a cell apoptosis kit, and protein production was identified by Western blot. It was suggested that melatonin could inhibit LUAD progression in vivo and in vitro, and the role of TOX3 in this process was explored. Additionally, hsa_circ_0017109 was found to sponge miR-135b-3p, a downstream factor of circ_0017109, which was demonstrated to target TOX3 in LUAD cells and could promote the Hippo pathway and epithelial-mesenchymal transition pathway. To summarize, we demonstrated that melatonin decreases the expression of circ_0017109 and suppresses the non-small-cell lung cancer cell migration, invasion, and proliferation through decreasing TOX3 expression via direct activation of miR-135b-3p.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Guofang Lu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, China
| | - Jian Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Hongtao Duan
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Xi'an International Medical Center Hospital, Xi'an, China
| | - Wanpeng Yu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital of Fourth Military Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| |
Collapse
|
41
|
Dana PM, Sadoughi F, Reiter RJ, Mohammadi S, Heidar Z, Mirzamoradi M, Asemi Z. Melatonin as an adjuvant treatment modality with doxorubicin [Biochimie 200 (2022) 1-7]. Biochimie 2022; 200:1-7. [PMID: 35569703 DOI: 10.1016/j.biochi.2022.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Sotoudeh Mohammadi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Heidar
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Mirzamoradi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| |
Collapse
|
42
|
Hosseinzadeh A, Bagherifard A, Koosha F, Amiri S, Karimi-Behnagh A, Reiter RJ, Mehrzadi S. Melatonin effect on platelets and coagulation: Implications for a prophylactic indication in COVID-19. Life Sci 2022; 307:120866. [PMID: 35944663 PMCID: PMC9356576 DOI: 10.1016/j.lfs.2022.120866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
Severe COVID-19 is associated with the dynamic changes in coagulation parameters. Coagulopathy is considered as a major extra-pulmonary risk factor for severity and mortality of COVID-19; patients with elevated levels of coagulation biomarkers have poorer in-hospital outcomes. Oxidative stress, alterations in the activity of cytochrome P450 enzymes, development of the cytokine storm and inflammation, endothelial dysfunction, angiotensin-converting enzyme 2 (ACE2) enzyme malfunction and renin–angiotensin system (RAS) imbalance are among other mechanisms suggested to be involved in the coagulopathy induced by severe acute respiratory syndrome coronavirus (SARS-CoV-2). The activity and function of coagulation factors are reported to have a circadian component. Melatonin, a multipotential neurohormone secreted by the pineal gland exclusively at night, regulates the cytokine system and the coagulation cascade in infections such as those caused by coronaviruses. Herein, we review the mechanisms and beneficial effects of melatonin against coagulopathy induced by SARS-CoV-2 infection.
Collapse
|
43
|
Review of Drug Therapy for Peripheral Facial Nerve Regeneration That Can Be Used in Actual Clinical Practice. Biomedicines 2022; 10:biomedicines10071678. [PMID: 35884983 PMCID: PMC9313135 DOI: 10.3390/biomedicines10071678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Although facial nerve palsy is not a life-threatening disease, facial asymmetry affects interpersonal relationships, causes psychological stress, and devastates human life. The treatment and rehabilitation of facial paralysis has many socio-economic costs. Therefore, in cases of facial paralysis, it is necessary to identify the cause and provide the best treatment. However, until now, complete recovery has been difficult regardless of the treatment used in cases of complete paralysis of unknown cause and cutting injury of the facial nerve due to disease or accident. Therefore, this article aims to contribute to the future treatment of facial paralysis by reviewing studies on drugs that aid in nerve regeneration after peripheral nerve damage.
Collapse
|
44
|
Effects of Extreme Light Cycle and Density on Melatonin, Appetite, and Energy Metabolism of the Soft-Shelled Turtle (Pelodiscus sinensis). BIOLOGY 2022; 11:biology11070965. [PMID: 36101346 PMCID: PMC9312178 DOI: 10.3390/biology11070965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022]
Abstract
Constant darkness and constant light exposure often disturb the circadian rhythm in the behavior and energy metabolism of vertebrates. Melatonin is known as the hormonal mediator of photoperiodic information to the central nervous system and plays a key role in food intake and energy balance regulation in vertebrates. The popularly cultured soft-shelled turtle Pelodiscus sinensis has been reported to grow better under constant darkness; however, the underlying physiological mechanism by which darkness benefits turtle growth is not clear yet. We hypothesized that increased melatonin levels induced by darkness would increase appetite and energy metabolism and thus promote growth in P. sinensis. In addition, in order to elucidate the interaction of photoperiod and density, juvenile turtles were treated under three photoperiods (light/dark cycle: 24L:0D, 12L:12D, 0L:24D, light density 900 lux) and two stocking densities (high density: 38.10 ind./m2, low density: 6.35 ind./m2) for 4 weeks, and then the blood and brain tissues of turtles were collected during the day (11:00–13:00) and at night (23:00–1:00) after 2 days of fasting. We examined changes in plasma melatonin levels, food intake (FI), and appetite-related hormones (plasma ghrelin and leptin), as well as growth and energy metabolism parameters such as specific growth rate (SGR), standard metabolic rate (SMR), plasma growth hormone (GH), and thyroid hormone/enzyme activity (plasma triiodothyronine T3, thyroxine T4, and T45′-deiodinase activity). Moreover, we also assessed the responses of mRNA expression levels of food intake-related genes (kisspeptin 1 (Kiss1); cocaine amphetamine-regulated transcript (CART); neuropeptide Y (NPY)) in the brain. The results showed that under high density, SGR was the lowest in 24L:0D and the highest in 0L:24D. FI was the highest in 0L:24D regardless of density. Plasma melatonin was the highest in 0L:24D under high density at night. SMR increased with decreasing light time regardless of density. Most expressions of the measured appetite-related genes (Kiss1, CART, and NPY) were not affected by photoperiod, nor were the related hormone levels, such as plasma leptin, ghrelin, and GH. However, thyroid hormones were clearly affected by photoperiod. T3 level in 0L:24D under high density during the day was the highest among all treatment groups. T4 in 24L:0D under high density during the day and T45′-deiodinase activity in 24L:0D under low density at night were significantly reduced compared with the control. Furthermore, the energy metabolism-related hormone levels were higher under higher density, especially during the day. Together, melatonin secretion is not only modulated by light but also likely to be regulated by unknown endogenous factors and density. Altered plasma melatonin induced by constant darkness and density seems to be involved in the modulation of energy metabolism rather than appetite in the soft-shelled turtle.
Collapse
|
45
|
Maleki Dana P, Sadoughi F, J Reiter R, Mohammadi S, Heidar Z, Mirzamoradi M, Asemi Z. Melatonin as an adjuvant treatment modality with doxorubicin. Biochimie 2022; 202:49-55. [PMID: 35752222 DOI: 10.1016/j.biochi.2022.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Combination chemotherapy seems to be a beneficial choice for some cancer patients particularly when the drugs target different processes of oncogenesis; patients treated with combination therapies sometimes have a better prognosis than those treated with single drug chemotherapy. However, research has shown that this is not always the case, and this approach may only increase toxicity without having a significant effect in augmenting the antitumor actions of the drugs. Doxorubicin (Dox) is one of the most common chemotherapy drugs used to treat many types of cancer, but it also has serious side effects, such as cardiotoxicity, skin necrosis, testicular toxicity, and nephrotoxicity. Many studies have examined the efficiacy of melatonin (MLT) as an anticancer agent. In fact, MLT is an anti-cancer agent that has various functions in inhibiting cancer cell proliferation, inducing apoptosis, and suppressing metastasis. Herein, we provide a comprehensive evaluation of the literature concerned with the role of MLT as an adjuvant in Dox-based chemotherapies and discuss how MLT may enhance the antitumor effects of Dox (e.g., by inducing apoptosis and suppressing metastasis) while rescuring other organs from its adverse effects, such as cardio- and nephrotoxicity.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Sotoudeh Mohammadi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Heidar
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Mirzamoradi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| |
Collapse
|
46
|
David DD, de Assis LVM, Moraes MN, Zanotto FP, Castrucci AMDL. CasEcR and CasMIH Genes in the Blue Crab, Callinectes sapidus: A Temporal Evaluation and Melatonin Effects. Front Physiol 2022; 13:903060. [PMID: 35800348 PMCID: PMC9253825 DOI: 10.3389/fphys.2022.903060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Environmental cues synchronize endogenous rhythms of many physiological processes such as hormone synthesis and secretion. Little is known about the diurnal pattern of hormones and gene expression of the Callinectes sapidus molt cycle. We aimed to investigate in the eyestalk and hepatopancreas of premolt and intermolt C. sapidus the following parameters: 1) the diurnal expression of the ecdysteroid receptor CasEcR isoforms, and the molt inhibiting hormone CasMIH; 2) the diurnal hemolymph ecdysteroid and melatonin levels; and 3) melatonin effects on the transcripts of the above-mentioned genes in intermolt C. sapidus. Ecdysteroid levels were higher in the premolt than the intermolt animals at all time points evaluated (ZTs). Premolt crabs displayed a variation of ecdysteroid concentration between time points, with a reduction at ZT17. No difference in the melatonin level was seen in either molt stage or between stages. In the eyestalk of intermolt animals, CasEcR expression oscillated, with a peak at ZT9, and premolt crabs have a reduction at ZT9; CasMIH transcripts did not vary along 24 h in either molt stage. Moreover, the evaluated eyestalk genes were more expressed at ZT9 in the intermolt than the premolt crabs. In the hepatopancreas, CasEcR expression showed a peak at ZT9 in premolt crabs. Exogenous melatonin (10−7 mol/animal) reduced the expression of both genes in the eyestalk at ZT17. In the hepatopancreas, melatonin markedly increased the expression of the CasEcR gene at ZT9. Taken altogether, our results are pioneer in demonstrating the daily oscillation of gene expression associated to molt cycle stages, as well as the daily ecdysteroid and melatonin levels and the remarkable influence of melatonin on the molt cycle of C. sapidus.
Collapse
Affiliation(s)
- Daniela Dantas David
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Center of Brain, Behavior and Metabolism, Institute of Neurobiology, Lübeck University, Lübeck, Germany
| | - Maria Nathalia Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Flávia Pinheiro Zanotto
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Department of Biology, University of Virginia, Charlottesville, United States
- *Correspondence: Ana Maria de Lauro Castrucci,
| |
Collapse
|
47
|
Moslehi M, Moazamiyanfar R, Dakkali MS, Rezaei S, Rastegar-Pouyani N, Jafarzadeh E, Mouludi K, Khodamoradi E, Taeb S, Najafi M. Modulation of the immune system by melatonin; implications for cancer therapy. Int Immunopharmacol 2022; 108:108890. [PMID: 35623297 DOI: 10.1016/j.intimp.2022.108890] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022]
Abstract
Immune system interactions within the tumour have a key role in the resistance or sensitization of cancer cells to anti-cancer agents. On the other hand, activation of the immune system in normal tissues following chemotherapy or radiotherapy is associated with acute and late effects such as inflammation and fibrosis. Some immune responses can reduce the efficiency of anti-cancer therapy and also promote normal tissue toxicity. Modulation of immune responses can boost the efficiency of anti-tumour therapy and alleviate normal tissue toxicity. Melatonin is a natural body agent that has shown promising results for modulating tumour response to therapy and also alleviating normal tissue toxicity. This review tries to focus on the immunomodulatory actions of melatonin in both tumour and normal tissues. We will explain how anti-cancer drugs may cause toxicity for normal tissues and how tumours can adapt themselves to ionizing radiation and anti-cancer drugs. Then, cellular and molecular mechanisms of immunoregulatory effects of melatonin alone or combined with other anti-cancer agents will be discussed.
Collapse
Affiliation(s)
- Masoud Moslehi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Moazamiyanfar
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Sepideh Rezaei
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Bldg. Rm 112, Houston, TX 77204-5003, USA
| | - Nima Rastegar-Pouyani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Emad Jafarzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kave Mouludi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran; Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
48
|
Effects of Implanting Exogenous Melatonin 40 Days before Lambing on Milk and Colostrum Quality. Animals (Basel) 2022; 12:ani12101257. [PMID: 35625103 PMCID: PMC9137558 DOI: 10.3390/ani12101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
The effects of exogenous melatonin implanted before lambing on the quality of colostrum and milk yield were quantified in 715 ewes. Forty days before lambing, 246 ewes (1M) received a melatonin implant; another 137 ewes (2M) received two implants, and the remaining 332 ewes (C) did not receive an implant (control). Milk analysis was based on individual monthly milk samplings (June, July, and August) after lambing. A colostrum sample was collected from 303 ewes (118 1M; 73 2M; and 112 C), and IgG concentrations were measured. Ewes implanted with melatonin had higher (p < 0.01) daily milk yield (DMY) in the three samplings than the C ewes. On average, 1M ewes produced more milk (p < 0.05) than ewes in the other two groups, and 2M ewes produced significantly (p < 0.05) more milk than C ewes. In the first and third controls, ewes that received two melatonin implants had a lower (p < 0.05) SCC than C and 1M ewes, and in the second sampling, 1M and 2M ewes had a lower (p < 0.01) SCC than C ewes. Ewes that received melatonin implants had a higher (p < 0.01) IgG concentration (21.61 ± 1.03 mg/mL) than non-implanted ewes (16.99 ± 1.13 mg/mL); 2M ewes had the highest IgG levels. In conclusion, ewes that received a melatonin implant 40 d before lambing produced colostrum that had a higher IgG concentration than the colostrum from nonimplanted ewes, and produced more milk, which had a lower SCC. The effect on SCC was prolonged if the sheep received a second melatonin implant.
Collapse
|
49
|
Camp OG, Bai D, Awonuga A, Goud P, Abu-Soud HM. Hypochlorous acid facilitates inducible nitric oxide synthase subunit dissociation: The link between heme destruction, disturbance of the zinc-tetrathiolate center, and the prevention by melatonin. Nitric Oxide 2022; 124:32-38. [PMID: 35513289 DOI: 10.1016/j.niox.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
Abstract
Inducible nitric oxide synthase (iNOS) is a zinc-containing hemoprotein composed of two identical subunits, each containing a reductase and an oxygenase domain. The reductase domain contains binding sites for NADPH, FAD, FMN, and tightly bound calmodulin and the oxygenase domain contains binding sites for heme, tetrahydrobiopterin (H4B), and l-arginine. The enzyme converts l-arginine into nitric oxide (NO) and citrulline in the presence of O2. It has previously been demonstrated that myeloperoxidase (MPO), which catalyzes formation of hypochlorous acid (HOCl) from hydrogen peroxide (H2O2) and chloride (Cl-), is enhanced in inflammatory diseases and could be a potent scavenger of NO. Using absorbance spectroscopy and gel filtration chromatography, we investigated the role of increasing concentrations of HOCl in mediating iNOS heme destruction and subsequent subunit dissociation and unfolding. The results showed that dimer iNOS dissociation between 15 and 100 μM HOCl was accompanied by loss of heme content and NO synthesis activity. The dissociated subunits-maintained cytochrome c and ferricyanide reductase activities. There was partial unfolding of the subunits at 300 μM HOCl and above, and the subunit unfolding transition was accompanied by loss of reductase activities. These events can be prevented when the enzyme is preincubated with melatonin prior to HOCl addition. Melatonin supplementation to patients experiencing low NO levels due to inflammatory diseases may be helpful to restore physiological NO functions.
Collapse
Affiliation(s)
- Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - David Bai
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Awoniyi Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Pravin Goud
- Division of Reproductive Endocrinology and Infertility & California IVF Fertility Center, Department of Obstetrics and Gynecology, University of California Davis, Sacramento, CA, 95833, USA; California Northstate University Medical College, Elk Grove, CA, 95757, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
50
|
Yang Y, Wang L, Zhou Y, He Y, Lin S, Zeng Y, Zhou Y, Li W, He Z, Zhao Q, Chen L, Li Z, Wang W, Zhang ZY. Antioxidant-enriched autologous biogel promoted diabetic wound healing by remodeling inherent posttraumatic inflammatory patterning and restoring compromised microenvironment homeostasis. Regen Biomater 2022; 9:rbac023. [PMID: 35529048 PMCID: PMC9071060 DOI: 10.1093/rb/rbac023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 04/10/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Successful wound healing depends on the reconstruction of proper tissue homeostasis, particularly in the posttraumatic inflammatory tissue microenvironment. Diabetes jeopardizes tissues’ immune homeostasis in cutaneous wounds, causing persistent chronic inflammation and cytokine dysfunction. Previously, we developed an autologous regeneration factor (ARF) technology to extract the cytokine composite from autologous tissue to restore immune homeostasis and promote wound healing. However, treatment efficacy was significantly compromised in diabetic conditions. Therefore, we proposed that a combination of melatonin and ARF, which is beneficial for proper immune homeostasis reconstruction, could be an effective treatment for diabetic wounds. Our research showed that the utilization of melatonin-mediated ARF biogel (AM gel) promoted diabetic wound regeneration at a more rapid healing rate. RNA-seq analysis showed that AM gel treatment could restore more favorable immune tissue homeostasis with unique inflammatory patterning as a result of the diminished intensity of acute and chronic inflammation. Currently, AM gel could be a novel and promising therapeutic strategy for diabetic wounds in clinical practice through favorable immune homeostatic reconstructions in the tissue microenvironment and proper posttraumatic inflammation patterning.
Collapse
Affiliation(s)
- Yixi Yang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Le Wang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
- Medical Technology and Related Equipment Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Yonglin Zhou
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Yijun He
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Shaozhang Lin
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Yuwei Zeng
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Yunhe Zhou
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Wei Li
- Hand and Foot Surgery & Plastic Surgery, Affiliated Shunde Hospital of Guangzhou Medical University, Shunde District, Foshan, P. R. China
| | - Zaopeng He
- Hand and Foot Surgery & Plastic Surgery, Affiliated Shunde Hospital of Guangzhou Medical University, Shunde District, Foshan, P. R. China
| | - Qi Zhao
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Lihao Chen
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Zijie Li
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Wenhao Wang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| |
Collapse
|