1
|
Le NT. The significance of ERK5 catalytic-independent functions in disease pathways. Front Cell Dev Biol 2023; 11:1235217. [PMID: 37601096 PMCID: PMC10436230 DOI: 10.3389/fcell.2023.1235217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5), also known as BMK1 or MAPK7, represents a recent addition to the classical mitogen-activated protein kinase (MAPK) family. This family includes well-known members such as ERK1/2, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), as well as atypical MAPKs such as ERK3, ERK4, ERK7 (ERK8), and Nemo-like kinase (NLK). Comprehensive reviews available elsewhere provide detailed insights into ERK5, which interested readers can refer to for in-depth knowledge (Nithianandarajah-Jones et al., 2012; Monti et al., Cancers (Basel), 2022, 14). The primary aim of this review is to emphasize the essential characteristics of ERK5 and shed light on the intricate nature of its activation, with particular attention to the catalytic-independent functions in disease pathways.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
2
|
Macrophage Repolarization as a Therapeutic Strategy for Osteosarcoma. Int J Mol Sci 2023; 24:ijms24032858. [PMID: 36769180 PMCID: PMC9917837 DOI: 10.3390/ijms24032858] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Macrophages are versatile immune cells and can adapt to both external stimuli and their surrounding environment. Macrophages are categorized into two major categories; M1 macrophages release pro-inflammatory cytokines and produce protective responses that lead to antimicrobial or antitumor activity. M2 or tumor-associated macrophages (TAM) release anti-inflammatory cytokines that support tumor growth, invasion capacity, and metastatic potential. Since macrophages can be re-polarized from an M2 to an M1 phenotype with a variety of strategies, this has emerged as an innovative anti-cancer approach. Osteosarcoma (OS) is a kind of bone cancer and consists of a complex niche, and immunotherapy is not very effective. Therefore, immediate attention to new strategies is required. We incorporated the recent studies that have used M2-M1 repolarization strategies in the aspect of treating OS cancer.
Collapse
|
3
|
Clinical Significance and Regulation of ERK5 Expression and Function in Cancer. Cancers (Basel) 2022; 14:cancers14020348. [PMID: 35053510 PMCID: PMC8773716 DOI: 10.3390/cancers14020348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) is a unique kinase among MAPKs family members, given its large structure characterized by the presence of a unique C-terminal domain. Despite increasing data demonstrating the relevance of the ERK5 pathway in the growth, survival, and differentiation of normal cells, ERK5 has recently attracted the attention of several research groups given its relevance in inflammatory disorders and cancer. Accumulating evidence reported its role in tumor initiation and progression. In this review, we explore the gene expression profile of ERK5 among cancers correlated with its clinical impact, as well as the prognostic value of ERK5 and pERK5 expression levels in tumors. We also summarize the importance of ERK5 in the maintenance of a cancer stem-like phenotype and explore the major known contributions of ERK5 in the tumor-associated microenvironment. Moreover, although several questions are still open concerning ERK5 molecular regulation, different ERK5 isoforms derived from the alternative splicing process are also described, highlighting the potential clinical relevance of targeting ERK5 pathways.
Collapse
|
4
|
Small molecule ERK5 kinase inhibitors paradoxically activate ERK5 signalling: be careful what you wish for…. Biochem Soc Trans 2021; 48:1859-1875. [PMID: 32915196 PMCID: PMC7609025 DOI: 10.1042/bst20190338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
ERK5 is a protein kinase that also contains a nuclear localisation signal and a transcriptional transactivation domain. Inhibition of ERK5 has therapeutic potential in cancer and inflammation and this has prompted the development of ERK5 kinase inhibitors (ERK5i). However, few ERK5i programmes have taken account of the ERK5 transactivation domain. We have recently shown that the binding of small molecule ERK5i to the ERK5 kinase domain stimulates nuclear localisation and paradoxical activation of its transactivation domain. Other kinase inhibitors paradoxically activate their intended kinase target, in some cases leading to severe physiological consequences highlighting the importance of mitigating these effects. Here, we review the assays used to monitor ERK5 activities (kinase and transcriptional) in cells, the challenges faced in development of small molecule inhibitors to the ERK5 pathway, and classify the molecular mechanisms of paradoxical activation of protein kinases by kinase inhibitors.
Collapse
|
5
|
Nailwal NP, Doshi GM. Role of intracellular signaling pathways and their inhibitors in the treatment of inflammation. Inflammopharmacology 2021; 29:617-640. [PMID: 34002330 DOI: 10.1007/s10787-021-00813-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is not only a defense mechanism of the innate immune system against invaders, but it is also involved in the pathogenesis of many diseases such as atherosclerosis, thrombosis, diabetes, epilepsy, and many neurodegenerative disorders. The World Health Organization (WHO) reports worldwide estimates of people (9.6% in males and 18.0% in females) aged over 60 years, suffering from symptomatic osteoarthritis, and around 339 million suffering from asthma. Other chronic inflammatory diseases, such as ulcerative colitis and Crohn's disease are also highly prevalent. The existing anti-inflammatory agents, both non-steroidal and steroidal, are highly effective; however, their prolonged use is marred by the severity of associated side effects. A holistic approach to ensure patient compliance requires understanding the pathophysiology of inflammation and exploring new targets for drug development. In this regard, various intracellular cell signaling pathways and their signaling molecules have been identified to be associated with inflammation. Therefore, chemical inhibitors of these pathways may be potential candidates for novel anti-inflammatory drug approaches. This review focuses on the anti-inflammatory effect of these inhibitors (for JAK/STAT, MAPK, and mTOR pathways) describing their mechanism of action through literature search, current patents, and molecules under clinical trials.
Collapse
Affiliation(s)
- Namrata P Nailwal
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), V. M. Road, 400056, Mumbai, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), V. M. Road, 400056, Mumbai, India.
| |
Collapse
|
6
|
Asih PR, Prikas E, Stefanoska K, Tan ARP, Ahel HI, Ittner A. Functions of p38 MAP Kinases in the Central Nervous System. Front Mol Neurosci 2020; 13:570586. [PMID: 33013322 PMCID: PMC7509416 DOI: 10.3389/fnmol.2020.570586] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein (MAP) kinases are a central component in signaling networks in a multitude of mammalian cell types. This review covers recent advances on specific functions of p38 MAP kinases in cells of the central nervous system. Unique and specific functions of the four mammalian p38 kinases are found in all major cell types in the brain. Mechanisms of p38 activation and downstream phosphorylation substrates in these different contexts are outlined and how they contribute to functions of p38 in physiological and under disease conditions. Results in different model organisms demonstrated that p38 kinases are involved in cognitive functions, including functions related to anxiety, addiction behavior, neurotoxicity, neurodegeneration, and decision making. Finally, the role of p38 kinases in psychiatric and neurological conditions and the current progress on therapeutic inhibitors targeting p38 kinases are covered and implicate p38 kinases in a multitude of CNS-related physiological and disease states.
Collapse
Affiliation(s)
- Prita R Asih
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Emmanuel Prikas
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kristie Stefanoska
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amanda R P Tan
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Holly I Ahel
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Arne Ittner
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
7
|
Patel P, Naik UP. Platelet MAPKs-a 20+ year history: What do we really know? J Thromb Haemost 2020; 18:2087-2102. [PMID: 32574399 DOI: 10.1111/jth.14967] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/01/2023]
Abstract
The existence of mitogen activated protein kinases (MAPKs) in platelets has been known for more than 20 years. Since that time hundreds of reports have been published describing the conditions that cause MAPK activation in platelets and their role in regulating diverse platelet functions from the molecular to physiological level. However, this cacophony of reports, with inconsistent and sometimes contradictory findings, has muddied the waters leading to great confusion. Since the last review of platelet MAPKs was published more than a decade ago, there have been more than 50 reports, including the description of novel knockout mouse models, that have furthered our knowledge. Therefore, we undertook an extensive literature review to delineate what is known about platelet MAPKs. We specifically discuss what is currently known about how MAPKs are activated and what signaling cascades they regulate in platelets incorporating recent findings from knockout mouse models. In addition, we will discuss the role each MAPK plays in regulating distinct platelet functions. In doing so, we hope to clarify the role for MAPKs and identify knowledge gaps in this field that await future researchers. In addition, we discuss the limitations of current studies with a particular focus on the off-target effects of commonly used MAPK inhibitors. We conclude with a look at the clinical utility of MAPK inhibitors as potential antithrombotic therapies with an analysis of current clinical trial data.
Collapse
Affiliation(s)
- Pravin Patel
- Department of Medicine, Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ulhas P Naik
- Department of Medicine, Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Choo WT, Teoh ML, Phang SM, Convey P, Yap WH, Goh BH, Beardall J. Microalgae as Potential Anti-Inflammatory Natural Product Against Human Inflammatory Skin Diseases. Front Pharmacol 2020; 11:1086. [PMID: 32848730 PMCID: PMC7411303 DOI: 10.3389/fphar.2020.01086] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/03/2020] [Indexed: 01/06/2023] Open
Abstract
The skin is the first line of defense against pathogen and other environmental pollutant. The body is constantly exposed to reactive oxygen species (ROS) that stimulates inflammatory process in the skin. Many studies have linked ROS to various inflammatory skin diseases. Patients with skin diseases face various challenges with inefficient and inappropriate treatment in managing skin diseases. Overproduction of ROS in the body will result in oxidative stress which will lead to various cellular damage and alter normal cell function. Multiple signaling pathways are seen to have significant effects during ROS-mediated oxidative stress. In this review, microalgae have been selected as a source of natural-derived antioxidant to combat inflammatory skin diseases that are prominent in today’s society. Several studies have demonstrated that bioactive compounds isolated from microalgae have anti-inflammation and anti-oxidative properties that can help remedy various skin diseases. These compounds are able to inhibit production of pro-inflammatory cytokines and reduce the expression of inflammatory genes. Bioactive compounds from microalgae work in action by altering enzyme activities, regulating cellular activities, targeting major signaling pathways related to inflammation.
Collapse
Affiliation(s)
- Wu-Thong Choo
- School of Biosciences, Taylor's University, Lakeside Campus, Subang Jaya, Malaysia
| | - Ming-Li Teoh
- School of Biosciences, Taylor's University, Lakeside Campus, Subang Jaya, Malaysia.,Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia.,National Antarctic Research Centre, Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Siew-Moi Phang
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia.,Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Peter Convey
- British Antarctic Survey, NERC, Cambridge, United Kingdom
| | - Wei-Hsum Yap
- School of Biosciences, Taylor's University, Lakeside Campus, Subang Jaya, Malaysia
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
9
|
Lochhead PA, Tucker JA, Tatum NJ, Wang J, Oxley D, Kidger AM, Johnson VP, Cassidy MA, Gray NS, Noble MEM, Cook SJ. Paradoxical activation of the protein kinase-transcription factor ERK5 by ERK5 kinase inhibitors. Nat Commun 2020; 11:1383. [PMID: 32170057 PMCID: PMC7069993 DOI: 10.1038/s41467-020-15031-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
The dual protein kinase-transcription factor, ERK5, is an emerging drug target in cancer and inflammation, and small-molecule ERK5 kinase inhibitors have been developed. However, selective ERK5 kinase inhibitors fail to recapitulate ERK5 genetic ablation phenotypes, suggesting kinase-independent functions for ERK5. Here we show that ERK5 kinase inhibitors cause paradoxical activation of ERK5 transcriptional activity mediated through its unique C-terminal transcriptional activation domain (TAD). Using the ERK5 kinase inhibitor, Compound 26 (ERK5-IN-1), as a paradigm, we have developed kinase-active, drug-resistant mutants of ERK5. With these mutants, we show that induction of ERK5 transcriptional activity requires direct binding of the inhibitor to the kinase domain. This in turn promotes conformational changes in the kinase domain that result in nuclear translocation of ERK5 and stimulation of gene transcription. This shows that both the ERK5 kinase and TAD must be considered when assessing the role of ERK5 and the effectiveness of anti-ERK5 therapeutics.
Collapse
Affiliation(s)
- Pamela A Lochhead
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Julie A Tucker
- York Biomedical Research Institute and Department of Biology, University of York, York, YO10 5DD, UK
| | - Natalie J Tatum
- CRUK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Newcastle University, Newcastle, NE2 4HH, UK
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - David Oxley
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Andrew M Kidger
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Victoria P Johnson
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Megan A Cassidy
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Martin E M Noble
- CRUK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Newcastle University, Newcastle, NE2 4HH, UK
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
10
|
Jiang W, Jin G, Cai F, Chen X, Cao N, Zhang X, Liu J, Chen F, Wang F, Dong W, Zhuang H, Hua ZC. Extracellular signal-regulated kinase 5 increases radioresistance of lung cancer cells by enhancing the DNA damage response. Exp Mol Med 2019; 51:1-20. [PMID: 30804322 PMCID: PMC6389946 DOI: 10.1038/s12276-019-0209-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy is a frequent mode of cancer treatment, although the development of radioresistance limits its effectiveness. Extensive investigations indicate the diversity of the mechanisms underlying radioresistance. Here, we aimed to explore the effects of extracellular signal-regulated kinase 5 (ERK5) on lung cancer radioresistance and the associated mechanisms. Our data showed that ERK5 is activated during solid lung cancer development, and ectopic expression of ERK5 promoted cell proliferation and G2/M cell cycle transition. In addition, we found that ERK5 is a potential regulator of radiosensitivity in lung cancer cells. Mechanistic investigations revealed that ERK5 could trigger IR-induced activation of Chk1, which has been implicated in DNA repair and cell cycle arrest in response to DNA double-strand breaks (DSBs). Subsequently, ERK5 knockdown or pharmacological inhibition selectively inhibited colony formation of lung cancer cells and enhanced IR-induced G2/M arrest and apoptosis. In vivo, ERK5 knockdown strongly radiosensitized A549 and LLC tumor xenografts to inhibition, with a higher apoptotic response and reduced tumor neovascularization. Taken together, our data indicate that ERK5 is a novel potential target for the treatment of lung cancer, and its expression might be used as a biomarker to predict radiosensitivity in NSCLC patients. Resistance to radiotherapy in patients with lung cancer may be countered by targeting a protein involved in promoting DNA repair. Radiotherapy causes DNA double-stranded breaks in lung cancer cells in order to kill them. However, cancer cells can show improved DNA repair and responses to damage, resulting in resistance to treatment. Zi-Chun Hua, Hongqin Zhuang at Nanjing University in China and co-workers examined the activity of the extracellular signal-related kinase 5 (ERK5) protein in response to the stress of ionizing radiation. They found that after radiation exposure ERK5 increased expression of another protein involved in DNA repair, facilitating cancer cell recovery. Knocking out ERK5 suppressed this resistance to radiotherapy. ERK5 could be a valuable target for treating lung cancer, and ERK5 expression level could be used as a biomarker for patient sensitivity to radiotherapy.
Collapse
Affiliation(s)
- Weiwei Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Guanghui Jin
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China.,Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, PR China
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Xiao Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Nini Cao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Xiangyu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Jia Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Fei Chen
- Department of Nuclear Medicine, The Affiliated Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Feng Wang
- Department of Nuclear Medicine, The Affiliated Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Wei Dong
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China.
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China. .,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, 213164, PR China.
| |
Collapse
|
11
|
Ma L, Li K, Guo Y, Sun X, Deng H, Li K, Feng Q, Li S. Ras-Raf-MAPK signaling promotes nuclear localization of FOXA transcription factor SGF1 via Ser91 phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:560-571. [PMID: 29355586 DOI: 10.1016/j.bbamcr.2018.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 01/27/2023]
Abstract
Ras-Raf-MAPK signaling promotes cell proliferation and cell survival. We previously reported that Ras1CA overexpression, specifically in the posterior silk glands (PSGs) of the silkworm Bombyx mori, increased fibroin synthesis and cell size, resulting in improved silk yields. In this study, we compared the iTRAQ-based phosphoproteomic profiles of PSGs from wild-type and Ras1CA-overexpressing silkworms. Silk gland factor 1 (SGF1), a FOXA transcription factor that plays a critical role in activating fibroin gene expression, was identified as a phosphoprotein harboring Ser91 as a potential MAPK phosphorylation site. Ser91 phosphorylation of SGF1 was enhanced by Ras1CA overexpression, and this finding was verified by selected reaction monitoring. Consistently, MAPK activity is well correlated with Ser91 phosphorylation of SGF1 and its nuclear localization in PSG cells during silkworm development. Ras1CA overexpression and treatment with inhibitors of Ras signaling promoted or inhibited SGF1 nuclear localization, respectively; mutation of Ser91 to Ala91 eliminated SGF1 nuclear localization. Moreover, MAPK binds to SGF1 and directly phosphorylates Ser91, demonstrating Ser91 as a MAPK phosphorylation site in SGF1. In conclusion, Ras-Raf-MAPK signaling promotes SGF1 nuclear localization for transactivation via Ser91 phosphorylation in silkworms, showing that FOXA transcription factors are regulated via MAPK phosphorylation in animals.
Collapse
Affiliation(s)
- Li Ma
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China; Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China; Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kang Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yaxin Guo
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xiang Sun
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Huimin Deng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kai Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China; Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
12
|
Li Y, Ji S, Fu L, Jiang T, Wu D, Meng F. Over-expression of ARHGAP18 suppressed cell proliferation, migration, invasion, and tumor growth in gastric cancer by restraining over-activation of MAPK signaling pathways. Onco Targets Ther 2018; 11:279-290. [PMID: 29386906 PMCID: PMC5767098 DOI: 10.2147/ott.s130255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Globally, gastric cancer is the second-greatest cause of cancer death. ARHGAP18 belongs to the Rho family of GTPases which is involved in cellular migration, invasion, and growth phases. The aim of the present study was to investigate whether ARHGAP18 could regulate cell proliferation, migration, invasion, and related molecular mechanisms in gastric cancer. Cell Counting Kit-8 (CCK-8) assay results showed that following transfection of a recombinant plasmid, over-expression of ARHGAP18 inhibited cell viability in MGC-803 and BGC823 cells. Using in vitro transwell analysis, migration and invasion abilities were significantly inhibited in cells with high ARHGAP18 expression. Phosphorylation levels of ERK, JNK, and p38 by Western blot analysis significantly declined after transfection of cells with the ARHGAP18 plasmid. Expression levels of ROCK, MTA1, and MMP-2/9 were detected by real-time polymerase chain reaction and Western blotting, and over-expression of ARHGAP18 decreased the expression levels of ROCK, MTA1, and MMP-9. A further in vivo tumor formation study in nude mice indicated that over-expression of ARHGAP18 delayed the progress of tumor formation. These results indicate that ARHGAP18 could act as a tumor suppressor and may serve as a promising therapeutic strategy for gastric cancer.
Collapse
Affiliation(s)
- Yan Li
- Department of Biotherapy, Cancer Research Institute, the First Affiliated Hospital of China Medical University, Shenyang City, People's Republic of China
| | - Shan Ji
- Department of Endocrinology, The Fifth People's Hospital of Shenyang City, Shenyang City, People's Republic of China
| | - Liye Fu
- Department of Biotherapy, Cancer Research Institute, the First Affiliated Hospital of China Medical University, Shenyang City, People's Republic of China
| | - Tao Jiang
- Department of Biotherapy, Cancer Research Institute, the First Affiliated Hospital of China Medical University, Shenyang City, People's Republic of China
| | - Di Wu
- Department of Biotherapy, Cancer Research Institute, the First Affiliated Hospital of China Medical University, Shenyang City, People's Republic of China
| | - Fandong Meng
- Department of Biotherapy, Cancer Research Institute, the First Affiliated Hospital of China Medical University, Shenyang City, People's Republic of China
| |
Collapse
|
13
|
Andrew AL, Perry BW, Card DC, Schield DR, Ruggiero RP, McGaugh SE, Choudhary A, Secor SM, Castoe TA. Growth and stress response mechanisms underlying post-feeding regenerative organ growth in the Burmese python. BMC Genomics 2017; 18:338. [PMID: 28464824 PMCID: PMC5412052 DOI: 10.1186/s12864-017-3743-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/27/2017] [Indexed: 12/26/2022] Open
Abstract
Background Previous studies examining post-feeding organ regeneration in the Burmese python (Python molurus bivittatus) have identified thousands of genes that are significantly differentially regulated during this process. However, substantial gaps remain in our understanding of coherent mechanisms and specific growth pathways that underlie these rapid and extensive shifts in organ form and function. Here we addressed these gaps by comparing gene expression in the Burmese python heart, liver, kidney, and small intestine across pre- and post-feeding time points (fasted, one day post-feeding, and four days post-feeding), and by conducting detailed analyses of molecular pathways and predictions of upstream regulatory molecules across these organ systems. Results Identified enriched canonical pathways and upstream regulators indicate that while downstream transcriptional responses are fairly tissue specific, a suite of core pathways and upstream regulator molecules are shared among responsive tissues. Pathways such as mTOR signaling, PPAR/LXR/RXR signaling, and NRF2-mediated oxidative stress response are significantly differentially regulated in multiple tissues, indicative of cell growth and proliferation along with coordinated cell-protective stress responses. Upstream regulatory molecule analyses identify multiple growth factors, kinase receptors, and transmembrane receptors, both within individual organs and across separate tissues. Downstream transcription factors MYC and SREBF are induced in all tissues. Conclusions These results suggest that largely divergent patterns of post-feeding gene regulation across tissues are mediated by a core set of higher-level signaling molecules. Consistent enrichment of the NRF2-mediated oxidative stress response indicates this pathway may be particularly important in mediating cellular stress during such extreme regenerative growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3743-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Audra L Andrew
- Department of Biology, The University of Texas Arlington, 501 S. Nedderman Dr, Arlington, TX, 76019, USA
| | - Blair W Perry
- Department of Biology, The University of Texas Arlington, 501 S. Nedderman Dr, Arlington, TX, 76019, USA
| | - Daren C Card
- Department of Biology, The University of Texas Arlington, 501 S. Nedderman Dr, Arlington, TX, 76019, USA
| | - Drew R Schield
- Department of Biology, The University of Texas Arlington, 501 S. Nedderman Dr, Arlington, TX, 76019, USA
| | - Robert P Ruggiero
- Department of Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Suzanne E McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Amit Choudhary
- Harvard Medical School, Renal Division, Brigham and Woman's Hospital, Cambridge, MA, 02142, USA.,Center for the Science of Therapeutics, Broad Institute, Cambridge, MA, 02142, USA
| | - Stephen M Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, Box 870344, USA
| | - Todd A Castoe
- Department of Biology, The University of Texas Arlington, 501 S. Nedderman Dr, Arlington, TX, 76019, USA.
| |
Collapse
|
14
|
Gomez N, Erazo T, Lizcano JM. ERK5 and Cell Proliferation: Nuclear Localization Is What Matters. Front Cell Dev Biol 2016; 4:105. [PMID: 27713878 PMCID: PMC5031611 DOI: 10.3389/fcell.2016.00105] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022] Open
Abstract
ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumor growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation, and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote cell proliferation. Although some ERK5 kinase inhibitors have shown antiproliferative activity it is likely that those tumors expressing kinase-inactive nuclear ERK5 will not respond to these inhibitors.
Collapse
Affiliation(s)
| | | | - Jose M. Lizcano
- Protein Kinases and Signal Transduction Laboratory, Institut de Neurociencies and Departament de Bioquimica i Biologia Molecular, Facultat de Medicina, Universitat Autonoma de BarcelonaBarcelona, Spain
| |
Collapse
|
15
|
Abstract
Vascular endothelial growth factor (VEGF) plays a fundamental role in angiogenesis and endothelial cell biology, and has been the subject of intense study as a result. VEGF acts via a diverse and complex range of signaling pathways, with new targets constantly being discovered. This review attempts to summarize the current state of knowledge regarding VEGF cell signaling in endothelial and cardiovascular biology, with a particular emphasis on its role in angiogenesis.
Collapse
Affiliation(s)
- Ian Evans
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, Rayne Building, 5 University Street, London, WC1E 6JF, UK,
| |
Collapse
|
16
|
Trp53 haploinsufficiency modifies EGFR-driven peripheral nerve sheath tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2082-98. [PMID: 24832557 DOI: 10.1016/j.ajpath.2014.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 03/11/2014] [Accepted: 04/01/2014] [Indexed: 12/21/2022]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are genetically diverse, aggressive sarcomas that occur sporadically or in association with neurofibromatosis type 1 syndrome. Reduced TP53 gene expression and amplification/overexpression of the epidermal growth factor receptor (EGFR) gene occur in MPNST formation. We focused on determining the cooperativity between reduced TP53 expression and EGFR overexpression for Schwann cell transformation in vitro (immortalized human Schwann cells) and MPNST formation in vivo (transgenic mice). Human gene copy number alteration data, microarray expression data, and TMA analysis indicate that TP53 haploinsufficiency and increased EGFR expression co-occur in human MPNST samples. Concurrent modulation of EGFR and TP53 expression in HSC1λ cells significantly increased proliferation and anchorage-independent growth in vitro. Transgenic mice heterozygous for a Trp53-null allele and overexpressing EGFR in Schwann cells had a significant increase in neurofibroma and grade 3 PNST (MPNST) formation compared with single transgenic controls. Histological analysis of tumors identified a significant increase in pAkt expression in grade 3 PNSTs compared with neurofibromas. Array comparative genome hybridization analysis of grade 3 PNSTs identified recurrent focal regions of chromosomal gains with significant enrichment in genes involved in extracellular signal-regulated kinase 5 signaling. Collectively, altered p53 expression cooperates with overexpression of EGFR in Schwann cells to enhance in vitro oncogenic properties and tumorigenesis and progression in vivo.
Collapse
|
17
|
The role of specific mitogen-activated protein kinase signaling cascades in the regulation of steroidogenesis. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:821615. [PMID: 21637381 PMCID: PMC3100650 DOI: 10.1155/2011/821615] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/28/2010] [Indexed: 11/17/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) comprise a family of serine/threonine kinases that are activated by a large variety of extracellular stimuli and play integral roles in controlling many cellular processes, from the cell surface to the nucleus. The MAPK family includes four distinct MAPK cascades, that is, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK, c-Jun N-terminal kinase or stress-activated protein kinase, and ERK5. These MAPKs are essentially operated through three-tiered consecutive phosphorylation events catalyzed by a MAPK kinase kinase, a MAPK kinase, and a MAPK. MAPKs lie in protein kinase cascades. The MAPK signaling pathways have been demonstrated to be associated with events regulating the expression of the steroidogenic acute regulatory protein (StAR) and steroidogenesis in steroidogenic tissues. However, it has become clear that the regulation of MAPK-dependent StAR expression and steroid synthesis is a complex process and is context dependent. This paper summarizes the current level of understanding concerning the roles of the MAPK signaling cascades in the regulation of StAR expression and steroidogenesis in different steroidogenic cell models.
Collapse
|
18
|
Keshet Y, Seger R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol 2010; 661:3-38. [PMID: 20811974 DOI: 10.1007/978-1-60761-795-2_1] [Citation(s) in RCA: 435] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sequential activation of kinases within the mitogen-activated protein (MAP) kinase (MAPK) cascades is a common, and evolutionary-conserved mechanism of signal transduction. Four MAPK cascades have been identified in the last 20 years and those are usually named according to the MAPK components that are the central building blocks of each of the cascades. These are the extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-Terminal kinase (JNK), p38, and ERK5 cascades. Each of these cascades consists of a core module of three tiers of protein kinases termed MAPK, MAPKK, and MAP3K, and often two additional tiers, the upstream MAP4K and the downstream MAPKAPK, which can complete five tiers of each cascade in certain cell lines or stimulations. The transmission of the signal via each cascade is mediated by sequential phosphorylation and activation of the components in the sequential tiers. These cascades cooperate in transmitting various extracellular signals and thus control a large number of distinct and even opposing cellular processes such as proliferation, differentiation, survival, development, stress response, and apoptosis. One way by which the specificity of each cascade is regulated is through the existence of several distinct components in each tier of the different cascades. About 70 genes, which are each translated to several alternatively spliced isoforms, encode the entire MAPK system, and allow the wide array of cascade's functions. These components, their regulation, as well as their involvement together with other mechanisms in the determination of signaling specificity by the MAPK cascade is described in this review. Mis-regulation of the MAPKs signals usually leads to diseases such as cancer and diabetes; therefore, studying the mechanisms of specificity-determination may lead to better understanding of these signaling-related diseases.
Collapse
Affiliation(s)
- Yonat Keshet
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
19
|
Urushihara M, Takamatsu M, Shimizu M, Kondo S, Kinoshita Y, Suga K, Kitamura A, Matsuura S, Yoshizumi M, Tamaki T, Kawachi H, Kagami S. ERK5 activation enhances mesangial cell viability and collagen matrix accumulation in rat progressive glomerulonephritis. Am J Physiol Renal Physiol 2009; 298:F167-76. [PMID: 19846573 DOI: 10.1152/ajprenal.00124.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade plays an important role in the regulation of various cellular functions in glomerulonephritis (GN). Here, we investigated whether extracellular signal-regulated kinase 5 (ERK5), a member of the MAPK family, is involved in the pathogenesis of chronic mesangioproliferative GN, using a rat model induced by uninephrectomy and anti-Thy-1 antibody injection. Immunostaining of kidneys obtained at different time points revealed that phospho-ERK5 was weakly expressed in control glomeruli but dramatically increased in a typical mesangial pattern after 28 and 56 days of GN. A semiquantitative assessment indicated that glomerular phospho-ERK5 expression closely paralleled the accumulation of extracellular matrix (ECM), collagen type I, as well as glomerular expression of reactive oxygen species (ROS) and ANG II. On the other hand, phospho-ERK1/2 expression increased on day 7 during the phase of enhanced mesangial cell (MC) proliferation and decreased thereafter. H(2)O(2) and ANG II each induced ERK5 phosphorylation by cultured rat MCs. Costimulation with both H(2)O(2) and ANG II synergistically increased ERK5 phosphorylation in MCs. Cultured MCs transfected with ERK5-specific small interference RNA showed a significant decrease in H(2)O(2) or ANG II-induced cell viability and soluble collagen secretion compared with control cells. Treatment of GN rats with an ANG II type 1 receptor blocker resulted in significant decreases in phospho-ERK5 expression and collagen accumulation accompanied by remarkable histological improvement. Taken together, these results suggest that MC ERK5 phosphorylation by ANG II or H(2)O(2) enhances cell viability and ECM accumulation in an experimental model of chronic GN.
Collapse
Affiliation(s)
- Maki Urushihara
- Department of Pediatrics, Institute of Health Bioscience, University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Carter EJ, Cosgrove RA, Gonzalez I, Eisemann JH, Lovett FA, Cobb LJ, Pell JM. MEK5 and ERK5 are mediators of the pro-myogenic actions of IGF-2. J Cell Sci 2009; 122:3104-12. [PMID: 19654213 DOI: 10.1242/jcs.045757] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the differentiation of muscle satellite cells, committed myoblasts respond to specific signalling cues by exiting the cell cycle, migrating, aligning, expressing muscle-specific genes and finally fusing to form multinucleated myotubes. The predominant foetal growth factor, IGF-2, initiates important signals in myogenesis. The aim of this study was to investigate whether ERK5 and its upstream MKK activator, MEK5, were important in the pro-myogenic actions of IGF-2. ERK5 protein levels, specific phosphorylation and kinase activity increased in differentiating C2 myoblasts. ERK5-GFP translocated from the cytoplasm to the nucleus after activation by upstream MEK5, whereas phospho-acceptor site mutated (dominant-negative) ERK5AEF-GFP remained cytoplasmic. Exogenous IGF-2 increased MHC levels, myogenic E box promoter-reporter activity, ERK5 phosphorylation and kinase activity, and rapidly induced nuclear localisation of ERK5. Transfection with antisense Igf2 decreased markers of myogenesis, and reduced ERK5 phosphorylation, kinase and transactivation activity. These negative effects of antisense Igf2 were rescued by constitutively active MEK5, whereas transfection of myoblasts with dominant-negative MEK5 blocked the pro-myogenic action of IGF-2. Our findings suggest that the MEK5-ERK5 pathway is a novel key mediator of IGF-2 action in myoblast differentiation.
Collapse
Affiliation(s)
- Emma J Carter
- Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Marchetti A, Colletti M, Cozzolino AM, Steindler C, Lunadei M, Mancone C, Tripodi M. ERK5/MAPK is activated by TGFbeta in hepatocytes and required for the GSK-3beta-mediated Snail protein stabilization. Cell Signal 2008; 20:2113-8. [PMID: 18760348 DOI: 10.1016/j.cellsig.2008.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 08/04/2008] [Indexed: 02/06/2023]
Abstract
Extracellular signal-regulated protein kinase 5 (ERK5) is a mitogen-activated protein kinase, specifically activated by MEK5, and involved in the regulation of many cellular functions including proliferation, survival, differentiation and apoptosis. MEK5/ERK5 module is an important element of different signal transduction pathways. The aim of this study was to investigate whether ERK5 participates to the signalling of the multifunctional cytokine TGFbeta, known to play an important role in the regulation of hepatic growth. Here, we reported that ERK5 is phosphorylated and activated by TGFbeta in hepatocytes, with a rapid and sustained kinetic, through a Src-dependent pathway. Moreover, we demonstrated that ERK5 participates to the TGFbeta-induced Snail protein regulation being required for its stabilization. We also found that the functional inactivation of ERK5 impedes the TGFbeta-mediated glycogen synthase kinase-3beta inactivation suggesting this as mechanism responsible for ERK5-mediated Snail stabilization. Thus, results presented in this study uncovered for the first time a role for ERK5 in the TGFbeta-induced cellular responses.
Collapse
Affiliation(s)
- Alessandra Marchetti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, University La Sapienza, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Fujii Y, Matsuda S, Takayama G, Koyasu S. ERK5 is involved in TCR-induced apoptosis through the modification of Nur77. Genes Cells 2008; 13:411-9. [DOI: 10.1111/j.1365-2443.2008.01177.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Katz M, Amit I, Yarden Y. Regulation of MAPKs by growth factors and receptor tyrosine kinases. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1161-76. [PMID: 17306385 PMCID: PMC2758354 DOI: 10.1016/j.bbamcr.2007.01.002] [Citation(s) in RCA: 327] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 12/31/2006] [Accepted: 01/04/2007] [Indexed: 12/15/2022]
Abstract
Multiple growth- and differentiation-inducing polypeptide factors bind to and activate transmembrane receptors tyrosine kinases (RTKs), to instigate a plethora of biochemical cascades culminating in regulation of cell fate. We concentrate on the four linear mitogen-activated protein kinase (MAPK) cascades, and highlight organizational and functional features relevant to their action downstream to RTKs. Two cellular outcomes of growth factor action, namely proliferation and migration, are critically regulated by MAPKs and we detail the underlying molecular mechanisms. Hyperactivation of MAPKs, primarily the Erk pathway, is a landmark of cancer. We describe the many links of MAPKs to tumor biology and review studies that identified machineries permitting prolongation of MAPK signaling. Models attributing signal integration to both phosphorylation of MAPK substrates and to MAPK-regulated gene expression may shed light on the remarkably diversified functions of MAPKs acting downstream to activated RTKs.
Collapse
Affiliation(s)
- Menachem Katz
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
24
|
McCubrey JA, Lahair MM, Franklin RA. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 2006; 8:1775-89. [PMID: 16987031 DOI: 10.1089/ars.2006.8.1775] [Citation(s) in RCA: 637] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An abundance of scientific literature exists demonstrating that oxidative stress influences the MAPK signaling pathways. This review summarizes these findings for the ERK, JNK, p38, and BMK1 pathways. For each of these different MAPK signaling pathways, the following is reviewed: the proteins involved in the signaling pathways, how oxidative stress can activate cellular signaling via these pathways, the types of oxidative stress that are known to induce activation of the different pathways, and the specific cell types in which oxidants induce MAPK responses. In addition, the functional outcome of oxidative stress-induced activation of these pathways is discussed. The purpose of this review is to provide the reader with an overall understanding and appreciation of oxidative stress-induced MAPK signaling.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, and the Leo W. Jenkins Cancer Center, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, USA
| | | | | |
Collapse
|
25
|
Abstract
Sequential activation of protein kinases within the mitogen-activated protein kinase (MAPK) cascades is a common mechanism of signal transduction in many cellular processes. Four such cascades have been elucidated thus far, and named according to their MAPK tier component as the ERK1/2, JNK, p38MAPK, and ERK5 cascades. These cascades cooperate in transmitting various extracellular signals, and thus control cellular processes such as proliferation, differentiation, development, stress response, and apoptosis. Here we describe the classic ERK1/2 cascade, and concentrate mainly on the properties of MEK1/2 and ERK1/2, including their mode of regulation and their role in various cellular processes and in oncogenesis. This cascade may serve as a prototype of the other MAPK cascades, and the study of this cascade is likely to contribute to the understanding of mitogenic and other processes in many cell lines and tissues.
Collapse
Affiliation(s)
- Hadara Rubinfeld
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
26
|
Abbasi S, Lee JD, Su B, Chen X, Alcon JL, Yang J, Kellems RE, Xia Y. Protein Kinase-mediated Regulation of Calcineurin through the Phosphorylation of Modulatory Calcineurin-interacting Protein 1. J Biol Chem 2006; 281:7717-26. [PMID: 16415348 DOI: 10.1074/jbc.m510775200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcineurin is a serine/threonine protein phosphatase that plays a critical role in many physiologic processes such as T-cell activation, skeletal myocyte differentiation, and cardiac hypertrophy. We previously showed that active MEKK3 is capable of stimulating calcineurin/nuclear factor of activated T-cells (NFAT) signaling in cardiac myocytes through phosphorylation of modulatory calcineurin-interacting protein 1 (MCIP1). However, the protein kinases that function downstream of MEKK3 to mediate MCIP1 phosphorylation and the mechanism of MCIP1-mediated calcineurin regulation have not been defined. Here, we show that MEK5 and big MAP kinase 1 (BMK1) function downstream of MEKK3 in a signaling cascade that induces calcineurin activity through phosphorylation of MCIP1. Genetic studies showed that BMK1-deficient mouse lung fibroblasts failed to mediate MCIP1 phosphorylation and activate calcineurin/NFAT in response to angiotensin II, a potent NFAT activator. Conversely, restoring BMK1 to the deficient cells restored angiotensin II-mediated calcineurin/NFAT activation. Thus, using BMK1-deficient mouse lung fibroblast cells, we provided the genetic evidence that BMK1 is required for angiotensin II-mediated calcineurin/NFAT activation through MICP1 phosphorylation. Finally, we discovered that phosphorylated MCIP1 dissociates from calcineurin and binds with 14-3-3, thereby relieving its inhibitory effect on calcineurin activity. In summary, our findings reveal a previously unrecognized essential regulatory role of mitogen-activated protein kinase signaling in calcineurin activation through the reversible phosphorylation of a calcineurin-interacting protein, MCIP1.
Collapse
Affiliation(s)
- Shahrzad Abbasi
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wu Y, Kajdacsy-Balla A, Strawn E, Basir Z, Halverson G, Jailwala P, Wang Y, Wang X, Ghosh S, Guo SW. Transcriptional characterizations of differences between eutopic and ectopic endometrium. Endocrinology 2006; 147:232-46. [PMID: 16195411 DOI: 10.1210/en.2005-0426] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endometriosis, defined as the presence of endometrial glandular and stromal cells outside the uterine cavity, is a common gynecological disease with poorly understood pathogenesis. Using laser capture microdissection and a cDNA microarray with 9600 genes/expressed sequence tags (ESTs), we have conducted a comprehensive profiling of gene expression differences between the ectopic and eutopic endometrium taken from 12 women with endometriosis adjusted for menstrual phase and the location of the lesions. With dye-swapping and replicated arrays, we found 904 genes/ESTs that are differentially expressed. We validated the gene expression using real-time RT-PCR. We found that the expression patterns of these genes/ESTs correctly classified the 12 patients into ovarian and nonovarian endometriosis. We identified gene clusters that are location-specific. In addition, we identified several biological themes using Expression Analysis Systematic Explorer. Finally, we identified 79 pathways with over 100 genes with known functions, which include oxidative stress, focal adhesion, Wnt signaling, and MAPK signaling. The identification of these genes and their associated pathways provides new insight. Our findings will stimulate future investigations on molecular genetic mechanisms underlying the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Yan Wu
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-0509, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Boland R, Buitrago C, De Boland AR. Modulation of tyrosine phosphorylation signalling pathways by 1alpha,25(OH)2-vitamin D3. Trends Endocrinol Metab 2005; 16:280-7. [PMID: 16002300 DOI: 10.1016/j.tem.2005.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 04/11/2005] [Accepted: 06/23/2005] [Indexed: 12/15/2022]
Abstract
Hormonally active vitamin D(3), 1alpha,25(OH)(2)D(3), interacts with the classic vitamin D nuclear receptor that regulates gene transcription and with a putative cell membrane receptor that mediates rapid biological responses. 1alpha,25(OH)(2)D(3) actions on target tissues regulate: mineral metabolism and intracellular Ca(2+); protein kinase cascades leading to cell proliferation, differentiation and apoptosis; muscle growth and contractility; and the immune system. There is evidence for underlying 1alpha,25(OH)(2)D(3)-mediated protein tyrosine phosphorylation signalling in bone, intestine, muscle, epidermal and cancer cells. Extracellular-signal-regulated kinases-1/2, p38 and/or c-jun N-terminal kinase pathways play important roles in mediating 1alpha,25(OH)(2)D(3) actions. Studies to elucidate key regulatory metabolic steps and crosstalk sites in these pathways would enhance our understanding of the significance of tyrosine phosphorylation cascades in normal 1alpha,25(OH)(2)D(3) physiology, pathophysiology and pharmacology.
Collapse
Affiliation(s)
- Ricardo Boland
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, (8000) Bahía Blanca, Argentina.
| | | | | |
Collapse
|
29
|
Rogers SJ, Harrington KJ, Rhys-Evans P, O-Charoenrat P, Eccles SA. Biological significance of c-erbB family oncogenes in head and neck cancer. Cancer Metastasis Rev 2005; 24:47-69. [PMID: 15785872 DOI: 10.1007/s10555-005-5047-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) tends to run an aggressive course and the prognosis has remained virtually unchanged in recent decades. The development of novel therapeutic strategies to improve patient outcome centres on the biology of the disease, namely the pivotal c-erbB family of growth factor receptors. c-erbB1 (or epidermal growth factor receptor, EGFR), is key to the pathogenesis of SCCHN and plays a central role in a complex network of downstream integrated signalling pathways. EGFR overexpression, detected in up to 90% of SCCHN, correlates with an increased risk of locoregional tumour relapse following primary therapy and relative resistance to treatment. The biological sequelae of erbB receptor activation are not simply cell proliferation, but also inhibition of apoptosis, enhanced migration, invasion, angiogenesis and metastasis: the 'hallmarks of cancer' [1]. As EGFR overexpression is associated with a poor clinical outcome in SCCHN, this receptor is attractive as a therapeutic target and the successful development of targeted therapies represents a paradigm shift in the medical approach to head and neck cancer. However, the extensive cross talk between signalling pathways, the multiple molecular aberrations and genetic plasticity in SCCHN all contribute to inherent and acquired resistance to both conventional and novel therapies. Understanding the cancer cell biology, in particular the significance of co-expression of c-erbB (and other) receptors, and the cell survival stimuli from (for example) activation of the phosphoinositide 3-kinase (PI3-kinase) cascade is fundamental to overcome current limitations in biologically targeted therapies.
Collapse
Affiliation(s)
- Susanne J Rogers
- Tumour Biology and Metastasis Team, CRUK Centre for Cancer Therapeutics, McElwain Laboratories, Institute for Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | | | | | | | | |
Collapse
|
30
|
Carvajal-Vergara X, Tabera S, Montero JC, Esparís-Ogando A, López-Pérez R, Mateo G, Gutiérrez N, Parmo-Cabañas M, Teixidó J, San Miguel JF, Pandiella A. Multifunctional role of Erk5 in multiple myeloma. Blood 2005; 105:4492-9. [PMID: 15692064 DOI: 10.1182/blood-2004-08-2985] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
Multiple myeloma is characterized by the accumulation of terminally differentiated B cells in the bone marrow, due to increased proliferation and restricted apoptosis of the myelomatous clone. Here we have studied the participation of a novel mitogen-activated protein kinase (MAPK) route, the extracellular signal-regulated kinase 5 (Erk5) pathway, in the regulation of myeloma cell proliferation and apoptosis. Erk5 was expressed in cells isolated from patients and in myeloma cell lines. The myeloma growth factor interleukin 6 (IL-6) activated Erk5, and this activation was independent of Ras and Src. Expression of a dominant-negative form of Erk5 restricted the proliferation of myeloma cells and inhibited IL-6–dependent cell duplication. This dominant-negative form also sensitized myeloma cells to the proapoptotic action of dexamethasone and PS341. The latter compound caused a profound decrease in the amount of endogenous Erk5 and was less effective in inducing apoptosis when the level of Erk5 was increased by transfection of Erk5. These results place the Erk5 route as a new regulatory signaling pathway that affects multiple myeloma proliferation and apoptosis.
Collapse
|
31
|
Wang X, Merritt AJ, Seyfried J, Guo C, Papadakis ES, Finegan KG, Kayahara M, Dixon J, Boot-Handford RP, Cartwright EJ, Mayer U, Tournier C. Targeted deletion of mek5 causes early embryonic death and defects in the extracellular signal-regulated kinase 5/myocyte enhancer factor 2 cell survival pathway. Mol Cell Biol 2005; 25:336-45. [PMID: 15601854 PMCID: PMC538774 DOI: 10.1128/mcb.25.1.336-345.2005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To elucidate the physiological significance of MEK5 in vivo, we have examined the effect of mek5 gene elimination in mice. Heterozygous mice appear to be healthy and were fertile. However, mek5(-/-) embryos die at approximately embryonic day 10.5 (E10.5). The phenotype of the mek5(-/-) embryos includes abnormal cardiac development as well as a marked decrease in proliferation and an increase in apoptosis in the heart, head, and dorsal regions of the mutant embryos. The absence of MEK5 does not affect cell cycle progression but sensitizes mouse embryonic fibroblasts (MEFs) to the ability of sorbitol to enhance caspase 3 activity. Further studies with mek5(-/-) MEFs indicate that MEK5 is required for mediating extracellular signal-regulated kinase 5 (ERK5) activation and for the regulation of the transcriptional activity of myocyte enhancer factor 2. Overall, this is the first study to rigorously establish the role of MEK5 in vivo as an activator of ERK5 and as an essential regulator of cell survival that is required for normal embryonic development.
Collapse
Affiliation(s)
- Xin Wang
- University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Buschbeck M, Ullrich A. The unique C-terminal tail of the mitogen-activated protein kinase ERK5 regulates its activation and nuclear shuttling. J Biol Chem 2004; 280:2659-67. [PMID: 15548525 DOI: 10.1074/jbc.m412599200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERK5 is unique among mitogen-activated protein kinases (MAPKs) in that it contains a large C-terminal tail. We addressed the question of how this tail could affect the signaling capacity of ERK5. Gradual deletion of the C-terminal domains resulted in a drastic increase of ERK5 kinase activity, which was dependent on the up-stream MAPK cascade, thus indicating a possible auto-inhibitory function of the tail. It is interesting that ERK5 was able to autophosphorylate its own tail. Moreover, ERK5, which was found to be expressed in virtually all kinds of cell lines, localized to nuclear as well as cytoplasmic compartments. The localization of ERK5 was determined by its C-terminal domains, which were also required for appropriate nucleocytoplasmic shuttling. Taken together, these results indicate that ERK5 signaling is directed by the presence of its unique C-terminal tail, which might be the key to understanding the key role of ERK5 in MAPK signaling.
Collapse
Affiliation(s)
- Marcus Buschbeck
- Max-Planck-Institute of Biochemistry, Department of Molecular Biology, D-82152 Martinsried, Germany
| | | |
Collapse
|
33
|
Wang H, Lillehoj EP, Kim KC. MUC1 tyrosine phosphorylation activates the extracellular signal-regulated kinase. Biochem Biophys Res Commun 2004; 321:448-54. [PMID: 15358196 DOI: 10.1016/j.bbrc.2004.06.167] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Indexed: 11/28/2022]
Abstract
MUC1 is a transmembrane glycoprotein expressed on the apical surface of epithelial cells and exhibiting structural features characteristic of receptors for cytokines and growth factors. Its intracellular cytoplasmic tail (CT) contains multiple amino acid sequence motifs that, once phosphorylated, serve as docking sites for SH2 domain-containing proteins mediating signal transduction. Most studies examining MUC1 signaling have focused on cancer cells where MUC1 is overexpressed, aberrantly glycosylated, and constitutively phosphorylated. No studies have determined the signaling pathways activated in response to stimulation of its ectodomain. To better understand the signaling mechanisms of MUC1, we stably transfected HEK293 cells with an expression plasmid encoding a chimeric protein consisting of the extracellular and transmembrane domains of CD8 and the MUC1 CT (CD8/MUC1). Extracellular treatment of HEK293-CD8/MUC1 cells with CD8 antibody induced intracellular Tyr phosphorylation of the MUC1 CT and activated ERK1/2, but not the p38, SAPK/JNK, or ERK5 MAP kinases. Moreover, phosphorylation of ERK1/2 was completely blocked using a CT deletion mutant or a mutant construct in which all Tyr residues in the CT were changed to Phe. These results establish that Tyr phosphorylation of the MUC1 CT is required for activation of a downstream ERK1/2 pathway.
Collapse
Affiliation(s)
- Honghe Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
34
|
Chen C, Kong ANT. Dietary chemopreventive compounds and ARE/EpRE signaling. Free Radic Biol Med 2004; 36:1505-16. [PMID: 15182853 DOI: 10.1016/j.freeradbiomed.2004.03.015] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 03/15/2004] [Accepted: 03/19/2004] [Indexed: 02/07/2023]
Abstract
Chemoprevention comprises multiple intervention methods using either pharmacological or dietary agents to impede, arrest, or reverse carcinogenesis at various stages. Development of dietary compounds as potential cancer chemopreventive agents is highly desirable, due to their safety, low toxicity, and general acceptance as dietary supplements. In this review, potential application of the dietary detoxifying enzyme inducers for chemoprevention and their relevant signaling events are discussed. Overall, the detoxifying enzyme system plays an important role in determining the final fate of carcinogens/procarcinogens and their subsequent impact on carcinogenesis. Among those positive regulators, phenolic and sulfur-containing compounds are two major classes of dietary detoxifying enzyme inducers. Regulation of many detoxifying enzymes by dietary chemopreventive compounds is mediated by the antioxidant response element (ARE)/electrophile response element (EpRE), which is located in the promoter region of related genes. Transcription factor nuclear factor E2-related factor 2 (Nrf2) binds to the ARE sequence to initiate gene expression. In response to treatments of various detoxifying enzyme inducers, several signal transduction pathways, including the oxidative stress, mitogen-active protein kinase, protein kinase C, and phosphatidylinositol 3-kinase pathways, are activated. The consequences of the activation of these signaling cascades, whether directly or indirectly, lead to the dissociation of Nrf2 from its cytosolic sequester Kelch-like ECH associating protein 1, nuclear translocation, and accumulation of Nrf2 protein in the nucleus, and ultimately increase the expression level of detoxifying enzymes through transcriptional activation of ARE/EpRE in those responsible genes.
Collapse
Affiliation(s)
- Chi Chen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|
35
|
Henrich LM, Smith JA, Kitt D, Errington TM, Nguyen B, Traish AM, Lannigan DA. Extracellular signal-regulated kinase 7, a regulator of hormone-dependent estrogen receptor destruction. Mol Cell Biol 2003; 23:5979-88. [PMID: 12917323 PMCID: PMC180983 DOI: 10.1128/mcb.23.17.5979-5988.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Estrogen receptor alpha (ER alpha) degradation is regulated by ubiquitination, but the signaling pathways that modulate ER alpha turnover are unknown. We found that extracellular signal-regulated kinase 7 (ERK7) preferentially enhances the destruction of ER alpha but not the related androgen receptor. Loss of ERK7 was correlated with breast cancer progression, and all ER alpha-positive breast tumors had decreased ERK7 expression compared to that found in normal breast tissue. In human breast cells, a dominant-negative ERK7 mutant decreased the rate of endogenous ER alpha degradation >4-fold in the presence of hormone and potentiated estrogen responsiveness. ERK7 targets the ER alpha ligand-binding domain for destruction by enhancing its ubiquitination. Thus, ERK7 is a novel regulator of estrogen responsiveness through its control of ER alpha turnover.
Collapse
Affiliation(s)
- Lorin M Henrich
- Department of Microbiology and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Mulloy R, Salinas S, Philips A, Hipskind RA. Activation of cyclin D1 expression by the ERK5 cascade. Oncogene 2003; 22:5387-98. [PMID: 12934098 DOI: 10.1038/sj.onc.1206839] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcriptional activation of the cyclin D1 gene is a key step in cell proliferation. Accordingly, cyclin D1 overexpression is frequently an early step in neoplastic transformation, particularly in mammary epithelium. Numerous studies have linked elevated cyclin D1 promoter activity to a sustained activation of the ERK1/2 cascade. Here we show that the ERK5 cascade, a distinct mitogen-induced MAPK pathway, can also drive cyclin D1 expression. In CCL39 cells, serum induces a strong, prolonged peak of ERK1/2 and ERK5 phosphorylation, and subsequently elevates cyclin D1 mRNA and protein levels. Overexpression of constitutively active MEK5 and wt ERK5 induces a cyclin D1 reporter gene (D1 -973-luciferase) at least as well as constitutively active MEK1. Activation is blocked by kinase-dead mutants of ERK5 and ERK2, respectively. Mutation of the CRE at -50 in the cyclin D1 promoter decreases activation by the ERK5 but not the ERK1/2 cascade. Importantly, expression of kinase-dead ERK5 diminishes endogenous cyclin D1 protein induction by serum in CCL39 cells and the breast cancer cell lines MCF-7 and HS579. These data identify the cyclin D1 gene as a novel target of the ERK5 cascade, an observation with important implications in cancers involving cyclin D1 deregulation.
Collapse
Affiliation(s)
- Roseann Mulloy
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, IFR 122, 1919 Route de Mende, 34293 Montpellier 5, France
| | | | | | | |
Collapse
|
37
|
Cowan KJ, Storey KB. Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J Exp Biol 2003; 206:1107-15. [PMID: 12604570 DOI: 10.1242/jeb.00220] [Citation(s) in RCA: 447] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mitogen-activated protein kinase (MAPK) superfamily consists of three main protein kinase families: the extracellular signal-regulated protein kinases (ERKs), the c-Jun N-terminal kinases (JNKs) and the p38 family of kinases. Each is proving to have major roles in the regulation of intracellular metabolism and gene expression and integral actions in many areas including growth and development, disease, apoptosis and cellular responses to external stresses. To date, this cellular signal transduction network has received relatively little attention from comparative biochemists, despite the high probability that MAPKs have critical roles in the adaptive responses to thermal, osmotic and oxygen stresses. The present article reviews the current understanding of the roles and regulation of ERKs, JNKs and p38, summarizes what is known to date about MAPK roles in animal models of anoxia tolerance, freeze tolerance and osmoregulation, and highlights the potential that studies of MAPK pathways have for advancing our understanding of the mechanisms of biochemical adaptation.
Collapse
Affiliation(s)
- Kyra J Cowan
- Department of Surgery, Surgical Research Laboratory, San Francisco General Hospital and University of California, San Francisco, San Francisco, California 94110, USA
| | | |
Collapse
|
38
|
Yang J, Yu Y, Duerksen-Hughes PJ. Protein kinases and their involvement in the cellular responses to genotoxic stress. Mutat Res 2003; 543:31-58. [PMID: 12510016 DOI: 10.1016/s1383-5742(02)00069-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cells are constantly subjected to genotoxic stress, and much has been learned regarding their response to this type of stress during the past year. In general, the cellular genotoxic response can be thought to occur in three stages: (1) damage sensing; (2) activation of signal transduction pathways; (3) biological consequences and attenuation of the response. The biological consequences, in particular, include cell cycle arrest and cell death. Although our understanding of the molecular mechanisms underlying cellular genotoxic stress responses remains incomplete, many cellular components have been identified over the years, including a group of protein kinases that appears to play a major role. Various DNA-damaging agents can activate these protein kinases, triggering a protein phosphorylation cascade that leads to the activation of transcription factors, and altering gene expression. In this review, the involvement of protein kinases, particularly the mitogen-activated protein kinases (MAPKs), at different stages of the genotoxic response is discussed.
Collapse
Affiliation(s)
- Jun Yang
- Department of Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310031, China
| | | | | |
Collapse
|
39
|
Tsangaris GT, Botsonis A, Politis I, Tzortzatou-Stathopoulou F. Evaluation of cadmium-induced transcriptome alterations by three color cDNA labeling microarray analysis on a T-cell line. Toxicology 2002; 178:135-60. [PMID: 12160620 DOI: 10.1016/s0300-483x(02)00236-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Beside heavy metals, cadmium (Cd(2+)) is a ubiquitous toxic metal with a well established apoptotic and genotoxic effect, chronic exposure of which has been involved in a variety of pathological conditions. In the present study, we investigated by 1455 genes cDNA microarrays the toxic and apoptotic effect of Cd(2+), on the T-cell line CCRF-CEM, applying a three laser differential analysis, on the same microarray slide. The cells were cultured for 6 and 24 h in the absence (control) or presence of Cd(2+) (10 or 20 microM), RNAs were extracted and the produced cDNAs were labeled with rhodamine derivatives fluorescent dyes. A microarray slide was simultaneously hybridized by the labeled cDNAs and analyzed. We found that, in relation to control, treatment of the cells for 6 h with 10 and 20 microM Cd(2+), induces up-regulation in 20 and 34 genes, respectively. Treatment for 24 h with 10 and 20 microM Cd(2+) induces up-regulation in 22 and 84 genes, respectively. Twenty-eight genes were found down-regulated only after treatment for 24 h with Cd(2+) 10 microM. These data suggest that Cd(2+) produces a time- and dose-dependent molecular cascade, induces disturbances in different subcellular compartments, influencing thereafter the normal cellular functions, the differentiation process, the malignant transformation and the cell death.
Collapse
Affiliation(s)
- George Th Tsangaris
- University Research Institute for the Study and Treatment of Childhood Genetic and Malignant Diseases and Oncology Unit, First Department of Pediatrics, University of Athens, Aghia Sophia Childrens' Hospital, Greece.
| | | | | | | |
Collapse
|
40
|
Buschbeck M, Eickhoff J, Sommer MN, Ullrich A. Phosphotyrosine-specific phosphatase PTP-SL regulates the ERK5 signaling pathway. J Biol Chem 2002; 277:29503-9. [PMID: 12042304 DOI: 10.1074/jbc.m202149200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The duration and the magnitude of mitogen-activated protein kinase (MAPK) activation specifies signal identity and thus allows the regulation of diverse cellular functions by the same kinase cascade. A tight and finely tuned regulation of MAPK activity is therefore critical for the definition of a specific cellular response. We investigated the role of tyrosine-specific phosphatases (PTPs) in the regulation of ERK5. Although unique in its structure, ERK5 is activated in analogy to other MAPKs by dual phosphorylation of threonine and tyrosine residues in its activation motif. In this study we concentrated on whether and how PTP-SL, a kinase-interacting motif-containing PTP, might be involved in the down-regulation of the ERK5 signal. We found that both proteins interact directly with each other in vitro and in intact cells, resulting in mutual modulation of their enzymatic activities. PTP-SL is a substrate of ERK5 and independent of phosphorylation binding to the kinase enhances its catalytic phosphatase activity. On the other hand, interaction with PTP-SL not only down-regulates endogenous ERK5 activity but also effectively impedes the translocation of ERK5 to the nucleus. These findings indicate a direct regulatory influence of PTP-SL on the ERK5 pathway and corresponding downstream responses of the cell.
Collapse
Affiliation(s)
- Marcus Buschbeck
- Max Planck Institute for Biochemistry, Department of Molecular Biology, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
41
|
Reddy SPM, Adiseshaiah P, Shapiro P, Vuong H. BMK1 (ERK5) regulates squamous differentiation marker SPRR1B transcription in Clara-like H441 cells. Am J Respir Cell Mol Biol 2002; 27:64-70. [PMID: 12091247 DOI: 10.1165/ajrcmb.27.1.20020003oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Various toxicants and carcinogens upregulate the expression of small proline-rich protein 1B (SPRR1B), a squamous differentiation marker, in bronchial epithelial cells both in vivo and in vitro. We have recently shown that phorbol 13-myristate 12-acetate (PMA)-stimulated SPRR1B transcription in Clara-like H441 cells is mainly mediated by activator protein-1 (AP-1) and c-Jun N-terminal kinase-1 (JNK1). Though mitogen-activated protein kinase (MAPK) kinase (MEK)-1/2 pathway inhibitors strongly suppressed both basal and PMA-inducible SPRR1B transcription, overexpression of dominant negative (dn) forms of extracellular signal-regulated kinase (ERK)-1 and/or -2 did not have any significant effect indicating the involvement of another ERK-like MAPK in this pathway. Here, we report for the first time the involvement of ERK5 in PMA-inducible SPRR1B transcription in H441 cells. PMA significantly induced ERK5 activation in H441 cells. Overexpression of dn-ERK5 strongly suppressed both basal and PMA-inducible SPRR1B transcription, whereas wild-type ERK5 upregulated it. Consistent with this, a mutant form of MEK-5, an upstream activator of ERK5, strongly suppressed PMA-inducible promoter activity. However, coexpression of c-Jun restored promoter activation suppressed by dn-ERK5. Thus, in addition to JNK1, the activation of MEK5-ERK5 MAPK pathway probably plays a pivotal role in transcriptional regulation of AP-1-mediated SPRR1B expression in the distal bronchiolar region.
Collapse
Affiliation(s)
- Sekhar P M Reddy
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
42
|
Lu H, Guizzetti M, Costa LG. Inorganic lead activates the mitogen-activated protein kinase kinase-mitogen-activated protein kinase-p90(RSK) signaling pathway in human astrocytoma cells via a protein kinase C-dependent mechanism. J Pharmacol Exp Ther 2002; 300:818-23. [PMID: 11861786 DOI: 10.1124/jpet.300.3.818] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously reported that lead acetate activates protein kinase Calpha (PKCalpha) and induces DNA synthesis in human 1321N1 astrocytoma cells. In this study, we investigated the ability of lead to activate the mitogen-activated protein kinase (MAPK) cascade. We found that exposure to lead acetate (1-50 microM) resulted in concentration- and time-dependent activation of MAPK (extracellular signal responsive kinase 1/2), as shown by increased phosphorylation and increased kinase activity. This effect was significantly reduced by the PKC-specific inhibitor bisindolylmaleimide (GF109203X), by down-regulation of PKC with 12-O-tetradecanoyl-phorbol 13-acetate, by a pseudosubstrate to PKCalpha, and by selective down-regulation of PKCalpha by prior lead exposure. Lead was also shown to activate MAPK kinase (MEK1/2), and this effect was mediated by PKC. Two MEK inhibitors, 2-(2'-amino-3'-methoxyphenol)-oxanaphthalen-4-one (PD98059) and 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (UO126), blocked lead-induced MAPK activation and inhibited lead-induced DNA synthesis, as measured by incorporation of [methyl-3H]thymidine into cell DNA. The 90 kDa ribosomal S6 protein kinase, p90(RSK), a substrate of MAPK, was also found to be activated by lead in a PKC- and MAPK-dependent manner. Stimulation of DNA synthesis by lead in astrocytoma cells may be of interest in light of the observed association between exposure to lead and an increased risk of astrocytomas.
Collapse
Affiliation(s)
- Hailing Lu
- Department of Environmental, University of Washington, Seattle, Washington 98105, USA
| | | | | |
Collapse
|
43
|
Abstract
MAPK families play an important role in complex cellular programs like proliferation, differentiation, development, transformation, and apoptosis. At least three MAPK families have been characterized: extracellular signal-regulated kinase (ERK), Jun kinase (JNK/SAPK) and p38 MAPK. The above effects are fulfilled by regulation of cell cycle engine and other cell proliferation related proteins. In this paper we discussed their functions and cooperation with other signal pathways in regulation of cell proliferation.
Collapse
Affiliation(s)
- Wei Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, China
| | | |
Collapse
|
44
|
Dinev D, Jordan BW, Neufeld B, Lee JD, Lindemann D, Rapp UR, Ludwig S. Extracellular signal regulated kinase 5 (ERK5) is required for the differentiation of muscle cells. EMBO Rep 2001; 2:829-34. [PMID: 11520859 PMCID: PMC1084032 DOI: 10.1093/embo-reports/kve177] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Extracellular signal regulated kinase 5 (ERK5) is a novel member of the mitogen-activated protein kinase (MAPK) family with a poorly defined physiological function. Since ERK5 and its upstream activator MEK5 are abundant in skeletal muscle we examined a function of the cascade during muscle differentiation. We show that ERK5 is activated upon induction of differentiation in mouse myoblasts and that selective activation of the pathway results in promoter activation of differentiation-specific genes. Moreover, myogenic differentiation is completely blocked when ERK5 expression is inhibited by antisense RNA. Thus, we conclude that the MEK5/ERK5 MAP kinase cascade is critical for early steps of muscle cell differentiation.
Collapse
Affiliation(s)
- D Dinev
- Institut für Medizinische Strahlenkunde und Zellforschung, Universität Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Miyata Y, Ikawa Y, Shibuya M, Nishida E. Specific association of a set of molecular chaperones including HSP90 and Cdc37 with MOK, a member of the mitogen-activated protein kinase superfamily. J Biol Chem 2001; 276:21841-8. [PMID: 11278794 DOI: 10.1074/jbc.m010944200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently identified and cloned a novel member of mitogen-activated protein kinase superfamily protein, MOK (Miyata, Y., Akashi, M., and Nishida, E. (1999) Genes Cells 4, 299-309). To address its regulatory mechanisms, we searched for cellular proteins that specifically associate with MOK by co-immunoprecipitation experiments. Several cellular proteins including a major 90-kDa molecular chaperone HSP90 were found associated with MOK. Treatment of cells with geldanamycin, an HSP90-specific inhibitor, rapidly decreased the protein level of MOK, and the decrease was attributed to enhanced degradation of MOK through proteasome-dependent pathways. Our data suggest that the association with HSP90 may regulate intracellular protein stability and solubility of MOK. Experiments with a series of deletion mutants of MOK indicated that the region encompassing the protein kinase catalytic subdomains I-IV is required for HSP90 binding. Closely related protein kinases (male germ cell-associated kinase and male germ cell-associated kinase-related kinase) were also found to associate with HSP90, whereas conventional mitogen-activated protein kinases (extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase/stress-activated protein kinase) were not associated with HSP90. In addition, we found that other molecular chaperones including Cdc37, HSC70, HSP70, and HSP60 but not GRP94, FKBP52, or Hop were detected specifically in the MOK-HSP90 immunocomplexes. These results taken together suggest a role of a specific set of molecular chaperones in the stability of signal-transducing protein kinases.
Collapse
Affiliation(s)
- Y Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
46
|
Marinissen MJ, Chiariello M, Gutkind JS. Regulation of gene expression by the small GTPase Rho through the ERK6 (p38 gamma) MAP kinase pathway. Genes Dev 2001; 15:535-53. [PMID: 11238375 PMCID: PMC312639 DOI: 10.1101/gad.855801] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Small GTP-binding proteins of the Rho-family, Rho, Rac, and Cdc42, have been traditionally linked to the regulation of the cellular actin-based cytoskeleton. Rac and Cdc42 can also control the activity of JNK, thus acting in a molecular pathway transmitting extracellular signals to the nucleus. Interestingly, Rho can also regulate gene expression, albeit by a not fully understood mechanism. Here, we found that activated RhoA can stimulate c-jun expression and the activity of the c-jun promoter. As the complexity of the signaling pathways controlling the expression of c-jun has begun to be unraveled, this finding provided a unique opportunity to elucidate the biochemical routes whereby RhoA regulates nuclear events. We found that RhoA can initiate a linear kinase cascade leading to the activation of ERK6 (p38 gamma), a recently identified member of the p38 family of MAPKs. Furthermore, we present evidence that RhoA, PKN, MKK3/MKK6, and ERK6 (p38 gamma) are components of a novel signal transduction pathway involved in the regulation of gene expression and cellular transformation.
Collapse
Affiliation(s)
- M J Marinissen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|