1
|
Lebecque B, Besombes J, Dannus LT, De Antonio M, Cacheux V, Grèze V, Montagnon V, Veronese L, Tchirkov A, Tournilhac O, Berger MG, Veyrat-Masson R. Faster clinical decisions in B-cell acute lymphoblastic leukaemia: A single flow cytometric 12-colour tube improves diagnosis and minimal residual disease follow-up. Br J Haematol 2024; 204:1872-1881. [PMID: 38432068 DOI: 10.1111/bjh.19390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Assessing minimal residual disease (MRD) in B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) is essential for adjusting therapeutic strategies and predicting relapse. Quantitative polymerase chain reaction (qPCR) is the gold standard for MRD. Alternatively, flow cytometry is a quicker and cost-effective method that typically uses leukaemia-associated immunophenotype (LAIP) or different-from-normal (DFN) approaches for MRD assessment. This study describes an optimized 12-colour flow cytometry antibody panel designed for BCP-ALL diagnosis and MRD monitoring in a single tube. This method robustly differentiated hematogones and BCP-ALL cells using two specific markers: CD43 and CD81. These and other markers (e.g. CD73, CD66c and CD49f) enhanced the specificity of BCP-ALL cell detection. This innovative approach, based on a dual DFN/LAIP strategy with a principal component analysis method, can be used for all patients and enables MRD analysis even in the absence of a diagnostic sample. The robustness of our method for MRD monitoring was confirmed by the strong correlation (r = 0.87) with the qPCR results. Moreover, it simplifies and accelerates the preanalytical process through the use of a stain/lysis/wash method within a single tube (<2 h). Our flow cytometry-based methodology improves the BCP-ALL diagnosis efficiency and MRD management, offering a complementary method with considerable benefits for clinical laboratories.
Collapse
Affiliation(s)
- Benjamin Lebecque
- Hématologie Biologique, CHU Clermont-Ferrand, Estaing, Clermont-Ferrand, France
- Equipe d'Accueil EA7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Joevin Besombes
- Hématologie Biologique, CHU Clermont-Ferrand, Estaing, Clermont-Ferrand, France
- Equipe d'Accueil EA7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Louis-Thomas Dannus
- Hématologie Biologique, CHU Clermont-Ferrand, Estaing, Clermont-Ferrand, France
- Equipe d'Accueil EA7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Marie De Antonio
- Unité de Biostatistiques, Direction de la Recherche Clinique et de l'Innovation, Centre Hospitalier Universitaire de Clermont-Ferrand, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Victoria Cacheux
- Service de Thérapie Cellulaire et Hématologie Clinique Adulte, Clermont-Ferrand, France
| | - Victoria Grèze
- CHU Clermont-Ferrand, Service Hématologie Oncologie Pédiatrique, Hôpital Estaing, Clermont-Ferrand, France
| | - Valentin Montagnon
- Hématologie Biologique, CHU Clermont-Ferrand, Estaing, Clermont-Ferrand, France
| | - Lauren Veronese
- Equipe d'Accueil EA7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand, France
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, Clermont-Ferrand, France
| | - Andrei Tchirkov
- Equipe d'Accueil EA7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand, France
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, Clermont-Ferrand, France
| | - Olivier Tournilhac
- Equipe d'Accueil EA7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand, France
- Service de Thérapie Cellulaire et Hématologie Clinique Adulte, Clermont-Ferrand, France
| | - Marc G Berger
- Hématologie Biologique, CHU Clermont-Ferrand, Estaing, Clermont-Ferrand, France
- Equipe d'Accueil EA7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand, France
| | | |
Collapse
|
2
|
Rudzanová B, Thon V, Vespalcová H, Martyniuk CJ, Piler P, Zvonař M, Klánová J, Bláha L, Adamovsky O. Altered Transcriptome Response in PBMCs of Czech Adults Linked to Multiple PFAS Exposure: B Cell Development as a Target of PFAS Immunotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:90-98. [PMID: 38112183 PMCID: PMC10785749 DOI: 10.1021/acs.est.3c05109] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
While the immunomodulation effects of per- and polyfluoroalkyl substances (PFASs) are described on the level of clinical signs in epidemiological studies (e.g., suppressed antibody response after vaccination), the underlying mechanism has still not been fully elucidated. To reveal mechanisms of PFAS exposure on immunity, we investigated the genome-wide transcriptomic changes of peripheral blood mononuclear cells (PBMCs) responding to PFAS exposure (specifically, exposure to PFPA, PFOA, PFNA, PFDA, PFUnDA, PFHxS, and PFOS). Blood samples and the chemical load in the blood were analyzed under the cross-sectional CELSPAC: Young Adults study. The overall aim of the study was to identify sensitive gene sets and cellular pathways conserved for multiple PFAS chemicals. Transcriptome networks related to adaptive immunity were perturbed by multiple PFAS exposure (i.e., blood levels of at least four PFASs). Specifically, processes tightly connected with late B cell development, such as B cell receptor signaling, germinal center reactions, and plasma cell development, were shown to be affected. Our comprehensive transcriptome analysis identified the disruption of B cell development, specifically the impact on the maturation of antibody-secreting cells, as a potential mechanism underlying PFAS immunotoxicity.
Collapse
Affiliation(s)
- Barbora Rudzanová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Vojtěch Thon
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Hana Vespalcová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Christopher J. Martyniuk
- Department
of Physiological Sciences and Center for Environmental and Human Toxicology,
UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Pavel Piler
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Martin Zvonař
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
- Department
of Kinesiology, Faculty of Sports Studies, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jana Klánová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Luděk Bláha
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Ondrej Adamovsky
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| |
Collapse
|
3
|
Richoz N, Tuong ZK, Loudon KW, Patiño-Martínez E, Ferdinand JR, Portet A, Bashant KR, Thevenon E, Rucci F, Hoyler T, Junt T, Kaplan MJ, Siegel RM, Clatworthy MR. Distinct pathogenic roles for resident and monocyte-derived macrophages in lupus nephritis. JCI Insight 2022; 7:159751. [PMID: 36345939 PMCID: PMC9675473 DOI: 10.1172/jci.insight.159751] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
Lupus nephritis is a serious complication of systemic lupus erythematosus, mediated by IgG immune complex (IC) deposition in kidneys, with limited treatment options. Kidney macrophages are critical tissue sentinels that express IgG-binding Fcγ receptors (FcγRs), with previous studies identifying prenatally seeded resident macrophages as major IC responders. Using single-cell transcriptomic and spatial analyses in murine and human lupus nephritis, we sought to understand macrophage heterogeneity and subset-specific contributions in disease. In lupus nephritis, the cell fate trajectories of tissue-resident (TrMac) and monocyte-derived (MoMac) kidney macrophages were perturbed, with disease-associated transcriptional states indicating distinct pathogenic roles for TrMac and MoMac subsets. Lupus nephritis-associated MoMac subsets showed marked induction of FcγR response genes, avidly internalized circulating ICs, and presented IC-opsonized antigen. In contrast, lupus nephritis-associated TrMac subsets demonstrated limited IC uptake, but expressed monocyte chemoattractants, and their depletion attenuated monocyte recruitment to the kidney. TrMacs also produced B cell tissue niche factors, suggesting a role in supporting autoantibody-producing lymphoid aggregates. Extensive similarities were observed with human kidney macrophages, revealing cross-species transcriptional disruption in lupus nephritis. Overall, our study suggests a division of labor in the kidney macrophage response in lupus nephritis, with treatment implications - TrMacs orchestrate leukocyte recruitment while MoMacs take up and present IC antigen.
Collapse
Affiliation(s)
- Nathan Richoz
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.,Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom.,National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Zewen K. Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.,Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom.,Cellular Genetics programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Kevin W. Loudon
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.,Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom
| | - Eduardo Patiño-Martínez
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John R. Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.,Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom
| | - Anaïs Portet
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.,Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom
| | - Kathleen R. Bashant
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Francesca Rucci
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Hoyler
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Tobias Junt
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Mariana J. Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard M. Siegel
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.,Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Menna R. Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.,Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge School of Clinical Medicine, United Kingdom.,Cellular Genetics programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
4
|
Mielle J, Tison A, Cornec D, Le Pottier L, Daien C, Pers JO. B cells in Sjögren's syndrome: from pathophysiology to therapeutic target. Rheumatology (Oxford) 2019; 60:2545-2560. [PMID: 30770916 DOI: 10.1093/rheumatology/key332] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Biological abnormalities associated with B lymphocytes are a hallmark of patients with primary Sjögren's syndrome. Those patients present abnormal distribution of B lymphocytes in peripheral blood and B cells in exocrine glands. B cells produce auto-antibodies, cytokines and present antigens but can also suppressive functions. In this review, we will summarize current knowledge on B cells in primary Sjögren's syndrome patients, demonstrate their critical role in the immunopathology of the disease and describe the past and current trials targeting B cells.
Collapse
Affiliation(s)
- Julie Mielle
- Departement of Rheumatology, UMR5535, Inflammation and Cancer, University of Montpellier and Teaching hospital of Montpellier, Montpellier, France
| | - Alice Tison
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, France.,Service de Rhumatologie, CHU de Brest, Brest, France
| | - Divi Cornec
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, France.,Service de Rhumatologie, CHU de Brest, Brest, France
| | | | - Claire Daien
- Departement of Rheumatology, UMR5535, Inflammation and Cancer, University of Montpellier and Teaching hospital of Montpellier, Montpellier, France
| | | |
Collapse
|
5
|
Correa-Rocha R, Lopez-Abente J, Gutierrez C, Pérez-Fernández VA, Prieto-Sánchez A, Moreno-Guillen S, Muñoz-Fernández MÁ, Pion M. CD72/CD100 and PD-1/PD-L1 markers are increased on T and B cells in HIV-1+ viremic individuals, and CD72/CD100 axis is correlated with T-cell exhaustion. PLoS One 2018; 13:e0203419. [PMID: 30161254 PMCID: PMC6117071 DOI: 10.1371/journal.pone.0203419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022] Open
Abstract
In our work, we analyzed the role of the CD100/CD72 and PD-1/PD-L1 axes in immune response dysfunction in human immunodeficiency virus (HIV)-1 infection in which high expressions of PD-1 and PD-L1 were associated with an immunosuppressive state via limitation of the HIV-1-specific T-cell responses. CD100 was demonstrated to play a relevant role in immune responses in various pathological processes and may be responsible for immune dysregulation during HIV-1 infection. We investigated the function of CD72/CD100, and PD-1/PDL-1 axes on T and B cells in HIV-infected individuals and in healthy individuals. We analyzed the frequencies and fluorescence intensities of these four markers on CD4+, CD8+ T and B cells. Marker expressions were increased during active HIV-1 infection. CD100 frequency on T cells was positively associated with the expression of PD-1 and PD-L1 on T cells from HIV-infected treatment-naïve individuals. In addition, the frequency of CD72-expressing T cells was associated with interferon gamma (IFN-γ) production in HIV-infected treatment-naïve individuals. Our data suggest that the CD72/CD100 and PD-1/PD-L1 axes may jointly participate in dysregulation of immunity during HIV-1 infection and could partially explain the immune systems' hyper-activation and exhaustion.
Collapse
Affiliation(s)
- Rafael Correa-Rocha
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Jacobo Lopez-Abente
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Carolina Gutierrez
- Department of Infectious Diseases, Hospital Ramón y Cajal, Alcalá de Henares University, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Verónica Astrid Pérez-Fernández
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Adrián Prieto-Sánchez
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Santiago Moreno-Guillen
- Department of Infectious Diseases, Hospital Ramón y Cajal, Alcalá de Henares University, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María-Ángeles Muñoz-Fernández
- Immuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Marjorie Pion
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
- Immuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain
| |
Collapse
|
6
|
Mircheff AK, Wang Y, Li M, Pan BX, Ding C. Pregnancy probabilistically augments potential precursors to chronic, immune-mediated or autoimmune lacrimal gland infiltrates. Ocul Surf 2017; 16:120-131. [PMID: 28974417 DOI: 10.1016/j.jtos.2017.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/01/2017] [Accepted: 09/12/2017] [Indexed: 12/31/2022]
Abstract
PURPOSE This study asked whether pregnancy, a risk factor for dry eye disease associated with both chronic, immune-mediated- and autoimmune etiologies, augments development of clusters of coordinately functioning cells (CCFC) that may be precursors to pathological lacrimal gland infiltrates. METHODS Lacrimal glands were from six virgin- and six term-pregnant rabbits of the same age and environmental exposure history. Seventy-two immune response-related gene transcripts were assayed by real time RT-PCR. Principal component (PC) analysis identified transcript signatures of CCFC contributing negative (⊖) or positive (⊕) PC loadings and determined gland PC projections, which reflect levels of CCFC development. RESULTS Three CCFC were of interest as potential precursors to pathological infiltrates. CCFC 1⊖ was suggestive of an ectopic lymphoid structure with resting T cells and B cells. CCFC 1⊕ was suggestive of an immune-mediated infiltrate with TH1 cells and mature, cytotoxic B cells. CCFC 2⊖ was suggestive of an ectopic lymphoid structure with activated T cells, mature B cells, germinal center, and plasmacytes. CCFC 4⊖ and CCFC 5⊖ also included plasmacytes. Pregnancy augmented CCFC 1⊖ in some glands; augmented CCFC 1⊕ in others; and augmented CCFC 2⊖, CCFC 4⊖, and CCFC 5⊖ different combinations. CONCLUSIONS Potential precursors of pathological infiltrates form in the lacrimal glands by the time of sexual maturity. Pregnancy augments lacrimal gland plasmacyte populations, and it can augment development of potential precursors to either chronic, immune-mediated infiltrates or autoimmune infiltrates of various phenotypes. Systemic and strictly local, probabilistic phenomena interact with pregnancy to determine which combinatorial phenotypes are favored.
Collapse
Affiliation(s)
- Austin K Mircheff
- Department of Physiology & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA; Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Yanru Wang
- Department of Physiology & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Meng Li
- Bioinformatics Service, Norris Medical Library, University of Southern California, Los Angeles, CA, 90033, USA
| | - Billy X Pan
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Chuanqing Ding
- Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
7
|
Vadasz Z, Goldeberg Y, Halasz K, Rosner I, Valesini G, Conti F, Perricone C, Sthoeger Z, Bezalel SR, Tzioufas AG, Levin NA, Shoenfeld Y, Toubi E. Increased soluble CD72 in systemic lupus erythematosus is in association with disease activity and lupus nephritis. Clin Immunol 2016; 164:114-8. [DOI: 10.1016/j.clim.2016.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 10/22/2022]
|
8
|
Almeida J, Polvorosa MA, Gonzalez-Quintela A, Madruga I, Marcos M, Pérez-Nieto MA, Hernandez-Cerceño ML, Orfao A, Laso FJ. Altered Distribution of Peripheral Blood Maturation-Associated B-Cell Subsets in Chronic Alcoholism. Alcohol Clin Exp Res 2015; 39:1476-84. [PMID: 26146763 DOI: 10.1111/acer.12783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/14/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Although decreased counts of peripheral blood (PB) B cells-associated with an apparently contradictory polyclonal hypergammaglobulinemia-have been reported in chronic alcoholism, no information exists about the specific subsets of circulating B cells altered and their relationship with antibody production. Here, we analyzed for the first time the distribution of multiple maturation-associated subpopulations of PB B cells in alcoholism and its potential relationship with the onset of liver disease. METHODS PB samples from 35 male patients-20 had alcoholic hepatitis (AH) and 15 chronic alcoholism without liver disease (AWLD)-were studied, in parallel to 19 male healthy donors (controls). The distribution of PB B-cell subsets (immature/regulatory, naïve, CD27(-) and CD27(+) memory B lymphocytes, and circulating plasmablasts of distinct immunoglobulin-Ig-isotypes) was analyzed by flow cytometry. RESULTS Patients with AH showed significantly decreased numbers of total PB B lymphocytes (vs. controls and AWLD), at the expense of immature, memory, and, to a lesser extent, also naïve B cells. AWLD showed reduced numbers of immature and naïve B cells (vs. controls), but higher PB counts of plasmablasts (vs. the other 2 groups). Although PB memory B cells were reduced among the patients, the percentage of surface (s)IgA(+) cells (particularly CD27(-) /sIgA(+) cells) was increased in AH, whereas both sIgG(+) and sIgA(+) memory B cells were significantly overrepresented in AWLD versus healthy donors. Regarding circulating plasmablasts, patients with AH only showed significantly reduced counts of sIgG(+) cells versus controls. In contrast, the proportion of both sIgA(+) and sIgG(+) plasmablasts-from all plasmablasts-was reduced in AH and increased in AWLD (vs. the other 2 groups). CONCLUSIONS AH and AWLD patients display a significantly reduced PB B-cell count, at the expense of decreased numbers of recently produced immature/regulatory B cells and naïve B cells, together with an increase in Ig-switched memory B lymphocytes and plasmablasts, particularly of IgA(+) cells.
Collapse
Affiliation(s)
- Julia Almeida
- Instituto de Biologia Molecular y Celular del Cancer, Centro de Investigacion del Cancer/IBMCC (CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), Cytometry Service, Salamanca, Spain.,Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Maria Angeles Polvorosa
- Alcoholism Unit, Department of Internal Medicine, University Hospital of Salamanca, Salamanca, Spain.,Department of Medicine, IBSAL, University of Salamanca, Salamanca, Spain
| | - Arturo Gonzalez-Quintela
- Department of Internal Medicine, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ignacio Madruga
- Alcoholism Unit, Department of Internal Medicine, University Hospital of Salamanca, Salamanca, Spain.,Department of Medicine, IBSAL, University of Salamanca, Salamanca, Spain
| | - Miguel Marcos
- Alcoholism Unit, Department of Internal Medicine, University Hospital of Salamanca, Salamanca, Spain.,Department of Medicine, IBSAL, University of Salamanca, Salamanca, Spain
| | - Maria Angeles Pérez-Nieto
- Alcoholism Unit, Department of Internal Medicine, University Hospital of Salamanca, Salamanca, Spain.,Department of Medicine, IBSAL, University of Salamanca, Salamanca, Spain
| | | | - Alberto Orfao
- Instituto de Biologia Molecular y Celular del Cancer, Centro de Investigacion del Cancer/IBMCC (CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), Cytometry Service, Salamanca, Spain.,Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Francisco Javier Laso
- Alcoholism Unit, Department of Internal Medicine, University Hospital of Salamanca, Salamanca, Spain.,Department of Medicine, IBSAL, University of Salamanca, Salamanca, Spain
| |
Collapse
|
9
|
Vadasz Z, Haj T, Balbir A, Peri R, Rosner I, Slobodin G, Kessel A, Toubi E. A regulatory role for CD72 expression on B cells in systemic lupus erythematosus. Semin Arthritis Rheum 2013; 43:767-71. [PMID: 24461079 DOI: 10.1016/j.semarthrit.2013.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/07/2013] [Accepted: 11/22/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND B regulatory cells and their regulatory products/markers, such us semaphorin 3A (sema3A) and its receptor NP-1, FcγIIB, IL-10, and others, act at the very base of self-tolerance, maintenance, and prevention of autoimmune disease development. OBJECTIVES The aim of the present study was to assess the involvement of CD72, a regulatory receptor on B cells, in systemic lupus erythematosus (SLE). In addition, the potential of soluble sema3A in enhancing the expression of CD72 on B cells of SLE patients was investigated. RESULTS CD72 expression on activated B cells of SLE patients was significantly lower than that of normal controls. This lower expression of CD72 in SLE patients correlated inversely with SLE disease activity and was associated with lupus nephritis, the presence of anti-dsDNA antibodies, and low levels of complement. Co-culture of purified B cells from healthy controls with condition-media containing recombinant sema3A resulted in significant enhancement of CD72. Similar enhancement of CD72 on activated B cells from SLE patients, though significant, was still lower than in normal individuals. CONCLUSIONS The lower expression of CD72 on activated B cells from SLE patients correlates with SLE disease activity, lupus nephritis, the presence of anti-dsDNA antibodies, and low levels of complement. The improvement of CD72 expression following the addition of soluble semaphorin 3A suggests that CD72 may be useful as a biomarker to be followed during the treatment of SLE.
Collapse
Affiliation(s)
- Zahava Vadasz
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Haifa, Israel; Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Tharwat Haj
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Haifa, Israel; Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Alexandra Balbir
- Rheumatology Unit, Rambam Medical Center, Haifa, Israel; Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Regina Peri
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Haifa, Israel; Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Itzhak Rosner
- Rheumatology Unit, Bnai Zion Medical Center, Haifa, Israel; Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Gleb Slobodin
- Rheumatology Unit, Bnai Zion Medical Center, Haifa, Israel; Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Aharon Kessel
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Haifa, Israel; Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Elias Toubi
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Haifa, Israel; Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
10
|
Wu HJ, Bondada S. CD72, a coreceptor with both positive and negative effects on B lymphocyte development and function. J Clin Immunol 2008; 29:12-21. [PMID: 19067131 DOI: 10.1007/s10875-008-9264-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
INTRODUCTION B lymphocytes remain in a resting state until activated by antigenic stimuli through interaction with the B cell receptor (BCR). Coreceptors on B cells can modulate the thresholds for signaling through the BCR for growth and differentiation. CD72 is a B cell coreceptor that has been shown to interact with CD100, a semaphorin, and to enhance BCR signaling. DISCUSSION CD72 ligation induces a variety of early signaling events such as activation of the Src kinases Blk and Lyn and the non-src kinase Btk leading to activation of the mitogen-activated protein (MAP) kinases, events usually associated with positive signaling. CD72 signals can enable Btk-deficient B cells to overcome their unresponsiveness to BCR signaling. On the other hand, BCR-mediated signals are enhanced in CD72-deficient cells but are reduced in CD100 null cells. The dual effects of CD72 on B cells can be explained by its association with positive and negative signaling molecules. Thus, CD72 interacts with SHP-1, an SH2-domain containing protein tyrosine phosphatase, a negative regulator of signaling, and Grb2, an adaptor protein associated with the Ras/MAPK pathway. Ligation of CD72 also triggered its association with CD19, a positive modulator of B cell receptor signaling. We propose a dual signaling hypothesis to explain the growth and differentiation promoting properties of CD72. Deficiency in either CD72 or CD100 leads to autoimmunity in mouse models. CD72 expression and polymorphisms exhibit some association with autoimmune diseases such as lupus, Sjogren's syndrome, and type 1 diabetes.
Collapse
Affiliation(s)
- Hsin-Jung Wu
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
11
|
Kaneko U, Toyabe SI, Hara M, Uchiyama M. Increased mutations of CD72 transcript in B-lymphocytes from adolescent patients with systemic lupus erythematosus. Pediatr Allergy Immunol 2006; 17:565-71. [PMID: 17121583 DOI: 10.1111/j.1399-3038.2006.00466.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies have shown that B cells play a central role in the pathogenesis of systemic lupus erythematosus (SLE). Abnormal expression of molecules engaging in B-cell receptor (BCR) signaling and resultant hyperactivity of B cells has been reported in both mouse models of lupus and patients with SLE. CD72 on B cells is unique in that it regulates BCR signaling both positively and negatively. We analyzed the expression of CD72 protein and mRNA in peripheral blood B cells from adolescent patients with SLE. The expression level of CD72 on B cells of the patients was decreased compared with that on B cells of controls. Sequence analysis of CD72 mRNA showed significantly increased nucleotide mutations, including both nucleotide substitutions and deletions. Almost all (95.6%) of the CD72 transcripts from the patients had different nucleotide sequences from those of the wild type. About half (41.3%) of the mutations were point mutations located close to the sequence of the immunoreceptor tyrosine-based inhibitory motif (ITIM), which negatively regulates BCR signaling. These results indicate that increased nucleotide mutation of CD72 mRNA accounts for the decreased expression level of CD72 in B cells, and it might be related to hyperactivity of B cells in patients with SLE.
Collapse
MESH Headings
- Adolescent
- Antigens, CD/analysis
- Antigens, CD/genetics
- Antigens, Differentiation, B-Lymphocyte/analysis
- Antigens, Differentiation, B-Lymphocyte/genetics
- B-Lymphocytes/immunology
- Humans
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Mutation
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Receptors, Antigen, B-Cell
- Signal Transduction
Collapse
Affiliation(s)
- Utako Kaneko
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata Graduate School of Medical and Dental Sciences, Niigata City, Japan.
| | | | | | | |
Collapse
|
12
|
Yamashita Y, Phee H, Tudor KSRS, Rossi MID, Parnes JR, Coggeshall KM, Kincade PW. A unique CD72 epitope suggests a potential interaction with Fc gamma RII/CD32 on B lineage lymphocytes. Hybridoma (Larchmt) 2006; 25:107-14. [PMID: 16796456 DOI: 10.1089/hyb.2006.25.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It has long been known that ligation of the transmembrane CD72 glycoprotein delivers signals to B lymphocytes, with the outcome depending on context. Of particular interest is its ability to function as a counter-receptor/ ligand for the CD100 semaphorin protein. We have now obtained evidence that CD72 physically interacts on the lymphocyte membrane with Fcgamma receptor II (CD32). The association was first revealed with a new monoclonal antibody that recognizes polymorphic determinants on murine CD72. Although the specificity for CD72 was clear from immunoblotting, transfection and other experiments, staining with this reagent was inhibited when cells were pretreated with an Fc receptor-blocking antibody (CD16/CD32 specific). Furthermore, confocal microscopy revealed that the two molecules co-distributed on viable B cells. We also used the antibody to determine when CD72 becomes available to maturing lymphocytes. The marker is first acquired as large pre-B cells and enter the IL-7 independent phase of maturation within bone marrow. Subsequent interactions between CD72 and CD32 may cooperatively deliver negative signals that modulate humoral immune responses.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- COS Cells
- Cell Line, Tumor
- Cell Lineage/immunology
- Chlorocebus aethiops
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Rats
- Rats, Wistar
- Receptors, IgG/metabolism
Collapse
Affiliation(s)
- Yoshio Yamashita
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Baba T, Fusaki N, Aoyama A, Li DH, Okamura RM, Parnes JR, Hozumi N. Dual regulation of BCR-mediated growth inhibition signaling by CD72. Eur J Immunol 2005; 35:1634-42. [PMID: 15816000 DOI: 10.1002/eji.200425775] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CD72 has been reported to regulate BCR-mediated signals both positively and negatively. SHP-1 and Grb2 bind, respectively, to ITIM1 and ITIM2 of CD72. We generated transformed B cell lines with an immature phenotype following J2 virus infection of splenocytes from CD72(-/-) and wild-type (Wt) mice. The transformed lines were infected with retroviral vectors carrying Tyr (Y) to Phe (F) substitutions in the ITIM sequences (ITIM1 mutated: Y7/F; ITIM2 mutated: Y39/F; and both ITIM mutated: Y7,39/F). Cross-linking of the BCR induced growth inhibition in transfectants expressing Wt CD72, but this response was less sensitive in transfectants with Y7,39/F. The Y7/F transfectants demonstrated the least sensitive response. We were not able to obtain transfectants with Y39/F, suggesting that CD72 associated with SHP-1, but not with Grb2, delivers a strong negative signal. Pre-ligation of CD72, which induces dephosphorylation of the molecule, partially rescued the Wt transfectants from growth inhibition, leading to a growth response profile similar to that of Y7,39/F transfectants. These results suggest that ITIM1/SHP-1 delivers a very strong negative signal that is down-modulated by signals through ITIM2/Grb2, leading to delivery of an attenuated negative signal. Thus, pre-ligation of CD72 results in the manifestation of an ostensible positive signal.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Cell Proliferation
- Flow Cytometry
- GRB2 Adaptor Protein
- Immunoblotting
- Intracellular Signaling Peptides and Proteins
- Mice
- Mitogen-Activated Protein Kinase Kinases/immunology
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Mutation
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/immunology
- Protein Tyrosine Phosphatases/metabolism
- Receptors, Antigen, B-Cell/immunology
- Signal Transduction/immunology
- Transfection
Collapse
Affiliation(s)
- Takeshi Baba
- Research Institute for Biological Sciences, Tokyo University of Science (RIKADAI), Noda, Chiba-ken, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Smith AJF, Gordon TP, Macardle PJ. Increased expression of the B-cell-regulatory molecule CD72 in primary Sjögren's syndrome. ACTA ACUST UNITED AC 2004; 63:255-9. [PMID: 14989715 DOI: 10.1111/j.1399-0039.2004.00187.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To determine whether there is an intrinsic abnormality of B-cell signaling in primary Sjögren's syndrome (pSS), the expression of B-cell coreceptors was determined in patients with primary Sjögren's syndrome and healthy and disease controls. Peripheral blood mononuclear cells were labeled with monoclonal antibodies to CD21, CD22, or CD72, and then the pan B-cell marker CD19. The expression of these coreceptors on the total CD19(+) population was determined. There was a significant increased expression of CD72 on the B cells of pSS patients (MFI, 215 +/- 6) compared to normal controls (MFI, 141 +/- 6). The increased CD72 expression was disease specific for pSS, as it was not observed in systemic lupus erythematosus or rheumatoid arthritis. The effect of B-cell stimulation on coreceptor expression was determined by culturing cells with B-lymphocyte-activating factor (BAFF) and/or pokeweed mitogen (PWM) or without either. Following culture, CD72 expression was decreased in both pSS and normal controls, regardless of the presence of BAFF or PWM. The upregulation of CD72 in pSS might be a compensatory response to increased B-cell receptor stimulation or a primary abnormality leading to uncontrolled B-cell activation.
Collapse
Affiliation(s)
- A J F Smith
- Department of Immunology, Allergy & Arthritis, Flinders Medical Center and Flinders University of South Australia, Bedford Park, Adelaide, South Australia, Australia.
| | | | | |
Collapse
|
15
|
Spach KM, Pedersen LB, Nashold FE, Kayo T, Yandell BS, Prolla TA, Hayes CE. Gene expression analysis suggests that 1,25-dihydroxyvitamin D3reverses experimental autoimmune encephalomyelitis by stimulating inflammatory cell apoptosis. Physiol Genomics 2004; 18:141-51. [PMID: 15138306 DOI: 10.1152/physiolgenomics.00003.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating autoimmune disease of the central nervous system (CNS) that develops in genetically susceptible individuals who are exposed to undefined environmental risk factors. Epidemiological, genetic, and biological evidence suggests that insufficient vitamin D may be an MS risk factor. However, little is known about how vitamin D might be protective in MS. We hypothesized that 1,25-dihydroxyvitamin D3[1,25-(OH)2D3] might regulate gene expression patterns in a manner that would resolve inflammation. To test this hypothesis, experimental autoimmune encephalomyelitis (EAE) was induced in mice, 1,25-(OH)2D3or a placebo was administered, and 6 h later, DNA microarray hybridization was performed with spinal cord RNA to analyze the gene expression patterns. At this time, clinical, histopathological, and biological studies showed that the two groups did not differ in EAE disease, but changes in several 1,25-(OH)2D3-responsive genes indicated that the 1,25-(OH)2D3had reached the CNS. Compared with normal mice, placebo-treated mice with EAE showed increased expression of many immune system genes, confirming the acute inflammation. When 1,25-(OH)2D3was administered, several genes like glial fibrillary acidic protein and eukaryotic initiation factor 2α kinase 4, whose expression increased or decreased with EAE, returned to homeostatic levels. Also, two genes with pro-apoptotic functions, calpain-2 and caspase-8-associated protein, increased significantly. A terminal deoxynucleotidyl transferase-mediated dUTP nicked end labeling study detected increased nuclear fragmentation in the 1,25-(OH)2D3-treated samples, confirming increased apoptosis. Together, these results suggest that sensitization of inflammatory cells to apoptotic signals may be one mechanism by which the 1,25-(OH)2D3resolved EAE.
Collapse
Affiliation(s)
- Karen M Spach
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Bondada S, Troyer A, Chelvarajan RL. Early Events in B Lymphocyte Activation. ACTA ACUST UNITED AC 2003; Chapter 3:Unit 3.9. [DOI: 10.1002/0471142735.im0309s57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | - Amy Troyer
- University of Kentucky Lexington Kentucky
| | | |
Collapse
|
17
|
Sen G, Wu HJ, Bikah G, Venkataraman C, Robertson DA, Snow EC, Bondada S. Defective CD19-dependent signaling in B-1a and B-1b B lymphocyte subpopulations. Mol Immunol 2002; 39:57-68. [PMID: 12213328 DOI: 10.1016/s0161-5890(02)00047-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Peritoneal and pleural cavities in mice and humans contain a unique population of B-lymphocytes called B-1 cells that are defective in B cell antigen receptor (BCR) signaling but have an increased propensity to produce autoantibodies. Several molecules such as Btk, Vav, and CD19 known to be important for BCR signaling have been shown to be critical for the development of B-1 cells from undefined precursors. Here we demonstrate that B-1 cell unresponsiveness to BCR cross-linking is in part due to defective signaling through CD19, a molecule known to modulate signaling thresholds in B cells. The defective CD19 signaling is manifested in reduced synergy between mIgM and CD19 to stimulate calcium mobilization in B-1 cells. BCR induced tyrosine phosphorylation of CD19 was transient in B-1 cells while it was prolonged in splenic B-2 cells. In both B-1 and B-2 cells BCR cross-linking induced a modest increase of CD19 associated Lyn, a Src family protein tyrosine kinase (PTK) thought to be important for CD19 phosphorylation. However, the tyrosine phosphorylated CD19 in B-1 cells binds less phosphatidylinositol 3-kinase (PI3-K) compared to B-2 cells. Most interestingly, we find that Vav-1 and Vav-2, proteins thought to be critical for CD19 signal transduction, are severely reduced in B-1 cells resulting in a complete absence of any CD19 associated Vav. Also we showed that both B-1a and B-1b B cells failed to proliferate in response to BCR cross-linking which in part appears to be due to defects in CD19 mediated amplification of BCR induced calcium mobilization.
Collapse
Affiliation(s)
- Goutam Sen
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0230, USA
| | | | | | | | | | | | | |
Collapse
|