1
|
Nakamura A, Fulk EM, Johnson CW, Isaacs FJ. Synthetic Genetic Elements Enable Rapid Characterization of Inorganic Carbon Uptake Systems in Cupriavidus necator H16. ACS Synth Biol 2025; 14:943-953. [PMID: 40048245 PMCID: PMC11934965 DOI: 10.1021/acssynbio.4c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
Cupriavidus necator H16 is a facultative chemolithotroph capable of using CO2 as a carbon source, making it a promising organism for carbon-negative biomanufacturing of petroleum-based product alternatives. In contrast to model microbes, genetic engineering technologies are limited in C. necator, constraining its utility in basic and applied research. Here, we developed a genome engineering technology to efficiently mobilize, integrate, and express synthetic genetic elements (SGEs) in C. necator. We tested the chromosomal expression of four inducible promoters to optimize an engineered genetic landing pad for tunable gene expression. To demonstrate utility, we employed the SGE system to design, mobilize, and express eight heterologous inorganic carbon uptake pathways in C. necator. We demonstrated all inorganic carbon uptake systems' upregulated intracellular bicarbonate concentrations under heterotrophic conditions. This work establishes the utility of the SGE strategy for expedited integration and tunable expression of heterologous pathways, and enhances intracellular bicarbonate concentrations in C. necator.
Collapse
Affiliation(s)
- Akira
K. Nakamura
- Department
of Molecular, Cellular & Developmental Biology, Yale University, New Haven, Connecticut 06520, United States
- Systems
Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Emily M. Fulk
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Christopher W. Johnson
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Farren J. Isaacs
- Department
of Molecular, Cellular & Developmental Biology, Yale University, New Haven, Connecticut 06520, United States
- Systems
Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department
of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
2
|
Wang Y, Tian Y, Xu D, Cheng S, Li WW, Song H. Recent advances in synthetic biology toolkits and metabolic engineering of Ralstonia eutropha H16 for production of value-added chemicals. Biotechnol Adv 2025; 79:108516. [PMID: 39793936 DOI: 10.1016/j.biotechadv.2025.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Ralstonia eutropha H16, a facultative chemolithoautotrophic Gram-negative bacterium, demonstrates remarkable metabolic flexibility by utilizing either diverse organic substrates or CO2 as the sole carbon source, with H2 serving as the electron donor under aerobic conditions. The capacity of carbon and energy metabolism of R. eutropha H16 enabled development of synthetic biology technologies and strategies to engineer its metabolism for biosynthesis of value-added chemicals. This review firstly outlines the development of synthetic biology tools tailored for R. eutropha H16, including construction of expression vectors, regulatory elements, and transformation techniques. The availability of comprehensive omics data (i.e., transcriptomic, proteomic, and metabolomic) combined with the fully annotated genome sequence provides a robust genetic framework for advanced metabolic engineering. These advancements facilitate efficient reprogramming metabolic network of R. eutropha. The potential of R. eutropha as a versatile microbial platform for industrial biotechnology is further underscored by its ability to utilize a wide range of carbon sources for the production of value-added chemicals through both autotrophic and heterotrophic pathways. The integration of state-of-the-art genetic and genomic engineering tools and strategies with high cell-density fermentation processes enables engineered R. eutropha as promising microbial cell factories for optimizing carbon fluxes and expanding the portfolio of bio-based products.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yao Tian
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, 110819 Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, 110819 Shenyang, China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wen-Wei Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Hao Song
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; College of Life and Health Sciences, Northeastern University, Shenyang 110169, China.
| |
Collapse
|
3
|
Niazi SK. The United States Food and Drug Administration's Platform Technology Designation to Expedite the Development of Drugs. Pharmaceutics 2024; 16:918. [PMID: 39065616 PMCID: PMC11279857 DOI: 10.3390/pharmaceutics16070918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Drug development costs can be significantly reduced if proven "platform" technologies are allowed to be used without having to validate their use. The most recent US Food and Drug Administration (FDA) guideline brings more clarity, as well as a greater focus on the most complex technologies that can now be used for faster drug development. The FDA has highlights the use of lipid nanoparticles (LNPs) to package and deliver mRNA vaccines, gene therapy, and short (2-20 length) synthetic nucleotides (siRNA). Additionally, monoclonal antibody cell development is targeted. The FDA provides a systematic process of requesting platform status to benefit from its advantages. It brings advanced science and rationality into regulatory steps for the FDA's approval of drugs and biologicals.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Nguyen VDH, Huynh TNP, Nguyen TTT, Ho HH, Trinh LTP, Nguyen AQ. Expression and characterization of a lipase EstA from Bacillus subtilis KM-BS for application in bio-hydrolysis of waste cooking oil. Protein Expr Purif 2024; 215:106419. [PMID: 38110109 DOI: 10.1016/j.pep.2023.106419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
A lipase EstA from Bacillus subtilis KM-BS was expressed in Escherichia coli BL21 (DE3) cells. The recombinant enzyme achieved high activity (49.67 U/mL) with protein concentration of 1.29 mg/mL under optimal conditions at the large-scale expression of 6 h and post-induction time at 30 °C using 0.1 mM isopropyl-β-d-thiogalactopyranoside (IPTG). The optimal temperature and pH of the purified enzyme were at 45-55 °C and pH 8.0 - 9.0, respectively. Activity of the purified enzyme was stable in the presence of 1 mM Ca2+; stimulated by 1 mM Mg2+ and Mn2+, and inhibited by Fe3+. A significant amount of fatty acids was released during the hydrolysis of waste cooking oil under the catalysis of purified lipase, indicating that this recombinant lipase showed promise as a suitable candidate in industrial fields, particularly in biodiesel and detergent sector.
Collapse
Affiliation(s)
- Vinh D H Nguyen
- Khai Minh Technology Group - KMTG, Ho Chi Minh City, Viet Nam; Faculty of Biological Sciences, Nong Lam University, Ho Chi Minh City, Viet Nam
| | - Trang N P Huynh
- Khai Minh Technology Group - KMTG, Ho Chi Minh City, Viet Nam; Faculty of Biological Sciences, Nong Lam University, Ho Chi Minh City, Viet Nam
| | - Thao T T Nguyen
- Khai Minh Technology Group - KMTG, Ho Chi Minh City, Viet Nam; Faculty of Biological Sciences, Nong Lam University, Ho Chi Minh City, Viet Nam
| | - Hai H Ho
- Khai Minh Technology Group - KMTG, Ho Chi Minh City, Viet Nam; Faculty of Biological Sciences, Nong Lam University, Ho Chi Minh City, Viet Nam
| | - Ly T P Trinh
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Viet Nam; Faculty of Biological Sciences, Nong Lam University, Ho Chi Minh City, Viet Nam
| | - Anh Q Nguyen
- Khai Minh Technology Group - KMTG, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
5
|
Exploring ionic liquids based on pyrrolidinium and imidazolium cations with low toxicity towards Escherichia coli for designing sustainable bioprocesses. J Biotechnol 2022; 360:192-197. [DOI: 10.1016/j.jbiotec.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
6
|
Falak S, Sajed M, Rashid N. Strategies to enhance soluble production of heterologous proteins in Escherichia coli. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00994-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Zhang T, Zhou M, Cai H, Yan K, Zha Y, Zhuang W, Liang J, Cheng Y. Identification, purification, and pharmacological activity analysis of Desmodus rotundus salivary plasminogen activator alpha1 (DSPAα1) expressed in transgenic rabbit mammary glands. Transgenic Res 2022; 31:149-163. [PMID: 35034272 DOI: 10.1007/s11248-021-00292-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
Desmodus rotundus plasminogen activator alpha 1(DSPAα1) is a thrombolytic protein with advantages, such as a long half-life, high accuracy and specificity for thrombolysis, wide therapeutic window, and no neurotoxicity. To date, DSPAα1 has only been expressed in the Chinese hamster ovary, insect cells, transgenic tobacco plants, and Pichia pastoris. To the best of our knowledge, we are the first to report the expression of DSPAα1 in transgenic rabbit mammary glands, extract the product, and analyze its pharmacology activity. An efficient mammary gland-specific expression vector pCL25/DSPAα1 was transferred to prokaryotic zygotes in rabbits by microinjection to generate six DSPAα1 transgenic rabbits. The recombinant DSPAα1 (rDSPAα1) expression in transgenic rabbit milk was 1.19 ± 0.26 mg/mL. The rDSPAα1 purification protocol included pretreatment, ammonium sulfate precipitation, benzamidine affinity chromatography, cation exchange chromatography, and Cibacron blue affinity chromatography; approximately 98% purity was achieved using gel electrophoresis. According to sequencing results, the primary structure of rDSPAα1 was consistent with the theoretical design sequence, and its molecular weight was consistent with that of the natural protein. N-terminal sequencing results indicated rDSPAα1 to be a mature protein, as the goat signal peptide sequence of the expression vector was no longer detected. The fibrinolytic activity of rDSPAα1 was estimated to be 773,333 IU/mg. Fibrin-agarose plate assay and in vitro rat blood clot degradation assay showed that rDSPAα1 had strong thrombolytic activity. In conclusion, we report recombinant DSPAα1 with high thrombolytic activity expressed in transgenic rabbit mammary glands.
Collapse
Affiliation(s)
- Ting Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Minya Zhou
- Zhejiang University, Hangzhou, 310030, Zhejiang, People's Republic of China
| | - Heqing Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Kunning Yan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Yiwen Zha
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Wenwen Zhuang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Yong Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Abdelaal AS, Yazdani SS. A genetic toolkit for co-expression of multiple proteins of diverse physiological implication. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00692. [PMID: 34917492 PMCID: PMC8666340 DOI: 10.1016/j.btre.2021.e00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022]
Abstract
Construction of plasmids is crucial for expression of functional proteins of diverse physiological impact in E. coli. Here, we first designed and constructed a novel pair of bacterial expression vectors, i.e., pAS01 and pAS02, to be co-transformed with pQE30 for the co-expression of three target genes. The three plasmids contain ColE1, p15A and pSC101 origin of replication for high, medium and low copy plasmids, respectively, and same promoter (T5) and RBS. We then cloned genes encoding three reporter proteins (GFPuv, TurboRFP, and EYFP) in each of these plasmids and co-expressed in E. coli in six different combinations. Each of these reporter proteins exhibited diverse impact on growth, plasmid copy number and stability, and expression of other reporter proteins. Our results indicate that GFP and RFP were the most and the least favorable proteins for the cells, respectively, in terms of these parameters, especially on impacting expression of other co-expressed proteins.
Collapse
Affiliation(s)
- Ali Samy Abdelaal
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Genetics, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
9
|
Pan H, Wang J, Wu H, Li Z, Lian J. Synthetic biology toolkit for engineering Cupriviadus necator H16 as a platform for CO 2 valorization. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:212. [PMID: 34736496 PMCID: PMC8570001 DOI: 10.1186/s13068-021-02063-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/25/2021] [Indexed: 06/09/2023]
Abstract
BACKGROUND CO2 valorization is one of the effective methods to solve current environmental and energy problems, in which microbial electrosynthesis (MES) system has proved feasible and efficient. Cupriviadus necator (Ralstonia eutropha) H16, a model chemolithoautotroph, is a microbe of choice for CO2 conversion, especially with the ability to be employed in MES due to the presence of genes encoding [NiFe]-hydrogenases and all the Calvin-Benson-Basham cycle enzymes. The CO2 valorization strategy will make sense because the required hydrogen can be produced from renewable electricity independently of fossil fuels. MAIN BODY In this review, synthetic biology toolkit for C. necator H16, including genetic engineering vectors, heterologous gene expression elements, platform strain and genome engineering, and transformation strategies, is firstly summarized. Then, the review discusses how to apply these tools to make C. necator H16 an efficient cell factory for converting CO2 to value-added products, with the examples of alcohols, fatty acids, and terpenoids. The review is concluded with the limitation of current genetic tools and perspectives on the development of more efficient and convenient methods as well as the extensive applications of C. necator H16. CONCLUSIONS Great progress has been made on genetic engineering toolkit and synthetic biology applications of C. necator H16. Nevertheless, more efforts are expected in the near future to engineer C. necator H16 as efficient cell factories for the conversion of CO2 to value-added products.
Collapse
Affiliation(s)
- Haojie Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jia Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haoliang Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
10
|
Deykin AV, Shcheblykina OV, Povetka EE, Golubinskaya PA, Pokrovsky VM, Korokina LV, Vanchenko OA, Kuzubova EV, Trunov KS, Vasyutkin VV, Radchenko AI, Danilenko AP, Stepenko JV, Kochkarova IS, Belyaeva VS, Yakushev VI. Genetically modified animals for use in biopharmacology: from research to production. RESEARCH RESULTS IN PHARMACOLOGY 2021. [DOI: 10.3897/rrpharmacology.7.76685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: In this review, the analysis of technologies for obtaining biologically active proteins from various sources is carried out, and the comparative analysis of technologies for creating producers of biologically active proteins is presented. Special attention is paid to genetically modified animals as bioreactors for the pharmaceutical industry of a new type. The necessity of improving the technology of development transgenic rabbit producers and creating a platform solution for the production of biological products is substantiated.
The advantages of using TrB for the production of recombinant proteins: The main advantages of using TrB are the low cost of obtaining valuable complex therapeutic human proteins in readily accessible fluids, their greater safety relative to proteins isolated directly from human blood, and the greater safety of the activity of the native protein.
The advantages of the mammary gland as a system for the expression of recombinant proteins: The mammary gland is the organ of choice for the expression of valuable recombinant proteins because milk is easy to collect in large volumes.
Methods for obtaining transgenic animals: The modern understanding of the regulation of gene expression and the discovery of new tools for gene editing can increase the efficiency of creating bioreactors for animals and help to obtain high concentrations of the target protein.
The advantages of using rabbits as bioreactors producing recombinant proteins in milk: The rabbit is a relatively small animal with a short duration of gestation, puberty and optimal size, capable of producing up to 5 liters of milk per year per female, receiving up to 300 grams of the target protein.
Collapse
|
11
|
Identification of Optimal Expression Parameters and Purification of a Codon-Optimized Human GLIS1 Transcription Factor from Escherichia coli. Mol Biotechnol 2021; 64:42-56. [PMID: 34528219 DOI: 10.1007/s12033-021-00390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
GLIS1 has multiple roles in embryonic development and in deriving induced pluripotent stem cells by aiding signaling pathways and chromatin assembly. An inexpensive and simple method to produce human GLIS1 protein from Escherichia coli (E. coli) is demonstrated in this study. Various parameters such as codon usage bias, E. coli strains, media, induction conditions (such as inducer concentration, cell density, time, and temperature), and genetic constructs were investigated to obtain soluble expression of human GLIS1 protein. Using identified expression conditions and an appropriate genetic construct, the human GLIS1 protein was homogeneously purified (purity > 90%) under native conditions. Importantly, the purified protein has upheld a stable secondary structure, as demonstrated by circular dichroism spectroscopy. To the best of our knowledge, this is the first study to report the ideal expression conditions of human GLIS1 protein in E. coli to achieve soluble expression and purification under native conditions, upholding its stable secondary structure post-purification. The biological activity of the purified GLIS1 fusion protein was further assessed in MDA-MB-231 cells. This biologically active human GLIS1 protein potentiates new avenues to understand its molecular mechanisms in different cellular functions in various cancers and in the generation of induced pluripotent stem cells.
Collapse
|
12
|
Xu J, Zhou H, Yu H, Deng T, Wang Z, Zhang H, Wu J, Yang L. Computational design of highly stable and soluble alcohol dehydrogenase for NADPH regeneration. BIORESOUR BIOPROCESS 2021; 8:12. [PMID: 38650213 PMCID: PMC10992930 DOI: 10.1186/s40643-021-00362-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 11/10/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH), as a well-known cofactor, is widely used in the most of enzymatic redox reactions, playing an important role in industrial catalysis. However, the absence of a comparable method for efficient NADP+ to NADPH cofactor regeneration radically impairs efficient green chemical synthesis. Alcohol dehydrogenase (ADH) enzymes, allowing the in situ regeneration of the redox cofactor NADPH with high specific activity and easy by-product separation process, are provided with great industrial application potential and research attention. Accordingly, herein a NADP+-specific ADH from Clostridium beijerinckii was selected to be engineered for cofactor recycle, using an automated algorithm named Protein Repair One-stop Shop (PROSS). The mutant CbADH-6M (S24P/G182A/G196A/H222D/S250E/S254R) exhibited a favorable soluble and highly active expression with an activity of 46.3 U/mL, which was 16 times higher than the wild type (2.9 U/mL), and a more stable protein conformation with an enhanced thermal stability: Δ T 1 / 2 60 min = + 3.6 °C (temperature of 50% inactivation after incubation for 60 min). Furthermore, the activity of CbADH-6M was up-graded to 2401.8 U/mL by high cell density fermentation strategy using recombinant Escherichia coli, demonstrating its industrial potential. Finally, the superb efficiency for NADPH regeneration of the mutant enzyme was testified in the synthesis of some fine chiral aromatic alcohols coupling with another ADH from Lactobacillus kefir (LkADH).
Collapse
Affiliation(s)
- Jinling Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haisheng Zhou
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Tong Deng
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ziyuan Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongyu Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
13
|
Stepwise optimization of recombinant protein production in Escherichia coli utilizing computational and experimental approaches. Appl Microbiol Biotechnol 2020; 104:3253-3266. [DOI: 10.1007/s00253-020-10454-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
|
14
|
Production of functional human CuZn-SOD and EC-SOD in bitransgenic cloned goat milk. Transgenic Res 2018; 27:343-354. [PMID: 29926349 DOI: 10.1007/s11248-018-0080-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/26/2018] [Indexed: 12/16/2022]
Abstract
Human copper/zinc superoxide dismutase (CuZn-SOD) and extracellular superoxide dismutase (EC-SOD) are two superoxide dismutases that scavenge reactive oxygen species (ROS). Their biological role of eliminating oxidative stress caused by excessive ROS levels in living organisms has been utilized in medical treatment, preventing skin photoaging and food preservation. In this study, we employed two sequences that encode human CuZn-SOD and EC-SOD, along with goat beta-casein 5' and 3' regulatory elements, to construct mammary gland-specific expression vectors. Bitransgenic goats were generated using somatic cell nuclear transfer (SCNT), which employed co-transfection to generate bitransgenic goat fetal fibroblast cells as donor cells, and the expression of human CuZn-SOD and EC-SOD and their biological activities were assayed in the milk. PCR and Southern blot analysis confirmed that the cloned goat harbors both hCuZn-SOD and hEC-SOD transgenes. rhCuZn-SOD and rhEC-SOD were expressed in the mammary glands of bitransgenic goat, as determined by western blotting. The expression levels were 100.14 ± 5.09 mg/L for rhCuZn-SOD and 279.10 ± 5.38 mg/L for rhEC-SOD, as determined using ELISA. A total superoxide dismutase assay with WST-8 indicates that the biological activity of rhCuZn-SOD and rhEC-SOD in goat milk is 1451 ± 136 U/mL. The results indicate that two expression vectors can simultaneously transfect goat fetal fibroblast cells as donor cells to produce transgenic goats by SCNT, and the CuZn-SOD and EC-SOD proteins secreted in the mammary glands showed biological activity. The present study thus describes an initial step in the production of recombinant human SODs that may potentially be used for therapeutic purposes.
Collapse
|
15
|
Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int J Biol Macromol 2018; 106:803-822. [DOI: 10.1016/j.ijbiomac.2017.08.080] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/02/2017] [Accepted: 08/12/2017] [Indexed: 12/29/2022]
|
16
|
Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int J Biol Macromol 2018. [DOI: 10.1016/j.ijbiomac.2017.08.080 10.1242/jeb.069716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Buldum G, Bismarck A, Mantalaris A. Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli. Bioprocess Biosyst Eng 2017; 41:265-279. [PMID: 29177720 PMCID: PMC5773641 DOI: 10.1007/s00449-017-1864-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/04/2017] [Indexed: 01/16/2023]
Abstract
Bacterial cellulose (BC) exhibits unique properties such as high purity compared to plant-based cellulose; however, commercial production of BC has remained a challenge, primarily due to the strain properties of cellulose-producing bacteria. Herein, we developed a functional and stable BC production system in genetically modified (GM) Escherichia coli by recombinant expression of both the BC synthase operon (bcsABCD) and the upstream operon (cmcax, ccpAx). BC production was achieved in GM HMS174 (DE3) and in GM C41 (DE3) by optimization of the culture temperature (22 °C, 30 °C, and 37 °C) and IPTG concentration. BC biosynthesis was detected much earlier in GM C41 (DE3) cultures (3 h after IPTG induction) than those of Gluconacetobacter hansenii. GM HMS174 (DE3) produced dense fibres having a length of approximately 1000–3000 μm and a diameter of 10–20 μm, which were remarkably larger than the fibres of BC typically produced by G. hansenii.
Collapse
Affiliation(s)
- Gizem Buldum
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
- Department of Bioengineering, Marmara University, Göztepe Campus, Istanbul, Turkey
| | - Alexander Bismarck
- Polymer and Composite Engineering (PaCE) Group, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
- Polymer and Composite Engineering (PaCE) Group, Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| |
Collapse
|
18
|
da Silva AF, García-Fraga B, López-Seijas J, Sieiro C. Optimizing the expression of a Heterologous chitinase: A study of different promoters. Bioengineered 2017; 8:428-432. [PMID: 27893301 DOI: 10.1080/21655979.2016.1249074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Many relevant applications have been demonstrated for chitinolytic enzymes. However, their successful exploitation depends upon the availability of strains and expression conditions that allow the production of active forms and large quantities of these enzymes. Escherichia coli has been commonly used to express and overproduce different proteins, among them chitinases. Improving the functional gene expression of chitinases is key to exploiting their potential. In a recent study, we described the effect of various parameters on the functional expression of 2 chitinases from different families, demonstrating that the effect of each of these parameters on the activity of both chitinases was specific to each enzyme. In this study, the expression of a Lactococcus lactis chitinase encoded by a new allele, ChiA1-2, was optimized. The results showed that not only the expression parameters seemed to influence protein production, solubility and activity but also the plasmid used for the expression. Herein, we describe the effect of 2 different promoters, tac and T7, on the expression of the active form of the chitinolytic enzyme.
Collapse
Affiliation(s)
- Abigail F da Silva
- a Department of Functional Biology and Health Sciences , Microbiology Area, University of Vigo, Lagoas - Marcosende , Vigo , Spain
| | - Belén García-Fraga
- a Department of Functional Biology and Health Sciences , Microbiology Area, University of Vigo, Lagoas - Marcosende , Vigo , Spain
| | - Jacobo López-Seijas
- a Department of Functional Biology and Health Sciences , Microbiology Area, University of Vigo, Lagoas - Marcosende , Vigo , Spain
| | - Carmen Sieiro
- a Department of Functional Biology and Health Sciences , Microbiology Area, University of Vigo, Lagoas - Marcosende , Vigo , Spain
| |
Collapse
|
19
|
Yeom SJ, Kim YJ, Lee J, Kwon KK, Han GH, Kim H, Lee DH, Kim HS, Lee SG. Long-Term Stable and Tightly Controlled Expression of Recombinant Proteins in Antibiotics-Free Conditions. PLoS One 2016; 11:e0166890. [PMID: 27907029 PMCID: PMC5132264 DOI: 10.1371/journal.pone.0166890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/04/2016] [Indexed: 11/18/2022] Open
Abstract
Plasmid-based gene expression is a fundamental tool in the field of biotechnology. However, overexpression of genes of interest with multi-copy plasmids often causes detrimental effects on host cells. To overcome this problem, chromosomal integration of target genes has been used for decades; however, insufficient protein expression occurred with this method. In this study, we developed a novel cloning and expression system named the chromosomal vector (ChroV) system, that has features of stable and high expression of target genes on the F' plasmid in the Escherichia coli JM109(DE3) strain. We used an RMT cluster (KCTC 11994BP) containing a silent cat gene from a previous study to clone a gene into the F' plasmid. The ChroV system was applied to clone two model targets, GFPuv and carotenoids gene clusters (4 kb), and successfully used to prove the inducible tightly regulated protein expression in the F' plasmid. In addition, we verified that the expression of heterologous genes in ChroV system maintained stably in the absence of antibiotics for 1 week, indicating ChroV system is applicable to antibiotics-free production of valuable proteins. This protocol can be widely applied to recombinant protein expression for antibiotics-free, stable, and genome-based expression, providing a new platform for recombinant protein synthesis in E. coli. Overall, our approach can be widely used for the economical and industrial production of proteins in E. coli.
Collapse
Affiliation(s)
- Soo-Jin Yeom
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yu Jung Kim
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jeongmin Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kil Koang Kwon
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Gui Hwan Han
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Haseong Kim
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Biosystems & Bioengineering, University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Hak-Sung Kim
- Biosystems & Bioengineering, University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
20
|
Optimized expression conditions for enhancing production of two recombinant chitinolytic enzymes from different prokaryote domains. Bioprocess Biosyst Eng 2016; 38:2477-86. [PMID: 26470707 DOI: 10.1007/s00449-015-1485-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Enhancing functional gene expression is key to high-level production of active chitinases. For this purpose, the effects of culture cell density, inducer concentration, post-induction time and induction temperatures on the functional expression of two different chitinases (HsChiA1p, a family 18 archaeal chitinase and PtChi19p, a family 19 bacterial chitinase) were comparatively investigated. Results showed that the effect of each parameter on the activity of both chitinases was specific to each enzyme. In addition, different Escherichia coli host strains compatible with the expression in pET systems were assayed for active protein overexpression. When using BL21 Star (DE3), a significant increase of 60% in expression was observed for the active archaeal chitinase HsChiA1p as compared to that found when using BL21 (DE3), indicating that the rne131 gene mutation efficiently stabilizes the mRNA for HsChiA1p. Using the Codon Adaptation Index value, rare codon analysis of the archaeal HschiA1 and bacterial Ptchi19 genes revealed that both DNA sequences were not optimal for maximal expression in E. coli. Different E. coli host strains possess extra copies of some of the tRNA genes for rare codons. For the Rosetta 2 (DE3) and the BL21 RP (DE3) strains, a significant increase of 40% was reached for the activity of HsChiA1p and PtChi19p. Finally, as part of the protein still remained insoluble, the best conditions for recovering biologically active protein from inclusion bodies were established for each enzyme.
Collapse
|
21
|
Versatile plasmid-based expression systems for Gram-negative bacteria—General essentials exemplified with the bacterium Ralstonia eutropha H16. N Biotechnol 2015; 32:552-8. [DOI: 10.1016/j.nbt.2015.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 03/12/2015] [Accepted: 03/20/2015] [Indexed: 12/13/2022]
|
22
|
Zhong W, Ding S, Guo H. The chitinase C gene PsChiC from Pseudomonas sp. and its synergistic effects on larvicidal activity. Genet Mol Biol 2015; 38:366-72. [PMID: 26500441 PMCID: PMC4612601 DOI: 10.1590/s1415-475738320140320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/28/2015] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas sp. strain TXG6-1, a chitinolytic gram-negative bacterium, was isolated from a vegetable field in Taixing city, Jiangsu Province, China. In this study, a Pseudomonas chitinase C gene (PsChiC) was isolated from the chromosomal DNA of this bacterium using a pair of specific primers. The PsChiC gene consisted of an open reading frame of 1443 nucleotides and encoded 480 amino acid residues with a calculated molecular mass of 51.66 kDa. The deduced PsChiC amino acid sequence lacked a signal sequence and consisted of a glycoside hydrolase family 18 catalytic domain responsible for chitinase activity, a fibronectin type III-like domain (FLD) and a C-terminal chitin-binding domain (ChBD). The amino acid sequence of PsChiCshowed high sequence homology (> 95%) with chitinase C from Serratia marcescens. SDS-PAGE showed that the molecular mass of chitinase PsChiC was 52 kDa. Chitinase assays revealed that the chitobiosidase and endochitinase activities of PsChiCwere 51.6- and 84.1-fold higher than those of pET30a, respectively. Although PsChiC showed little insecticidal activity towards Spodoptera litura larvae, an insecticidal assay indicated that PsChiC increased the insecticidal toxicity of SpltNPV by 1.78-fold at 192 h and hastened death. These results suggest that PsChiC from Pseudomonas sp. could be useful in improving the pathogenicity of baculoviruses.
Collapse
Affiliation(s)
- Wanfang Zhong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China. ; Nanjing Forestry University, Nanjing, People's Republic of China
| | - Shaojun Ding
- Nanjing Forestry University, Nanjing, People's Republic of China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| |
Collapse
|
23
|
Nemani KV, Ennis RC, Griswold KE, Gimi B. Magnetic nanoparticle hyperthermia induced cytosine deaminase expression in microencapsulated E. coli for enzyme-prodrug therapy. J Biotechnol 2015; 203:32-40. [PMID: 25820125 DOI: 10.1016/j.jbiotec.2015.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 11/17/2022]
Abstract
Engineered bacterial cells that are designed to express therapeutic enzymes under the transcriptional control of remotely inducible promoters can mediate the de novo conversion of non-toxic prodrugs to their cytotoxic forms. In situ cellular expression of enzymes provides increased stability and control of enzyme activity as compared to isolated enzymes. We have engineered Escherichia coli (E. coli), designed to express cytosine deaminase at elevated temperatures, under the transcriptional control of thermo-regulatory λpL-cI857 promoter cassette which provides a thermal switch to trigger enzyme synthesis. Enhanced cytosine deaminase expression was observed in cultures incubated at 42°C as compared to 30°C, and enzyme expression was further substantiated by spectrophotometric assays indicating enhanced conversion of 5-fluorocytosine to 5-fluorouracil. The engineered cells were subsequently co-encapsulated with magnetic iron oxide nanoparticles in immunoprotective alginate microcapsules, and cytosine deaminase expression was triggered remotely by alternating magnetic field-induced hyperthermia. The combination of 5-fluorocytosine with AMF-activated microcapsules demonstrated tumor cell cytotoxicity comparable to direct treatment with 5-fluorouracil chemotherapy. Such enzyme-prodrug therapy, based on engineered and immunoisolated E. coli, may ultimately yield an improved therapeutic index relative to monotherapy, as AMF mediated hyperthermia might be expected to pre-sensitize tumors to chemotherapy under appropriate conditions.
Collapse
Affiliation(s)
| | | | - Karl E Griswold
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA; Department of Biological Sciences, Dartmouth, Hanover, NH, USA; Program in Molecular and Cellular Biology, Dartmouth, Hanover, NH, USA
| | - Barjor Gimi
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Thayer School of Engineering, Dartmouth, Hanover, NH, USA; Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
24
|
mRNA secondary structure engineering of Thermobifida fusca endoglucanase (Cel6A) for enhanced expression in Escherichia coli. World J Microbiol Biotechnol 2015; 31:499-506. [PMID: 25617066 DOI: 10.1007/s11274-015-1806-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/19/2015] [Indexed: 01/21/2023]
Abstract
The sequence and structure of mRNA plays an important role in solubility and expression of the translated protein. To divulge the role of mRNA secondary structure and its thermodynamics in the expression level of the recombinant endoglucanase in Escherichia coli, 5'-end of the mRNA was thermodynamically optimized. Molecular engineering was done by introducing two silent synonymous mutations at positions +5 (UCU with UCC) and +7 (UUC with UUU) of the 5'-end of mRNA to relieve hybridization with ribosomal binding site. Two variants of glycoside hydrolase family six endoglucanase, wild type (cel6A.wt) and mutant (cel6A.mut) from Thermobifida fusca were expressed and characterized in E. coli using T7 promoter-based expression vector; pET22b(+). Enhanced expression level of engineered construct (Cel6A.mut) with ∆G = -2.7 kcal mol(-1)was observed. It showed up to ~45 % higher expression as compared to the wild type construct (Cel6A.wt) having ∆G = -7.8 kcal mol(-1) and ~25 % expression to the total cell proteins. Heterologous protein was purified by heating the recombinant E. coli BL21 (DE3) CodonPlus at 60 °C. The optimum pH for enzyme activity was six and optimum temperature was 60 °C. Maximum activity was observed 4.5 Umg(-1) on CMC. Hydrolytic activity was also observed on insoluble substrates, i.e. RAC (2.8 Umg(-1)), alkali treated bagass (1.7 Umg(-1)), filter paper (1.2 Umg(-1)) and BMCC (0.3 Umg(-1)). Metal ions affect endoglucanase activity in different ways. Only Fe(2+) exhibited 20.8 % stimulatory effects on enzyme activity. Enzyme activity was profoundly inhibited by Hg2(+) (91.8 %).
Collapse
|
25
|
Itkonen JM, Urtti A, Bird LE, Sarkhel S. Codon optimization and factorial screening for enhanced soluble expression of human ciliary neurotrophic factor in Escherichia coli. BMC Biotechnol 2014; 14:92. [PMID: 25394427 PMCID: PMC4237735 DOI: 10.1186/s12896-014-0092-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurotrophic factors influence survival, differentiation, proliferation and death of neuronal cells within the central nervous system. Human ciliary neurotrophic factor (hCNTF) has neuroprotective properties and is also known to influence energy balance. Consequently, hCNTF has potential therapeutic applications in neurodegenerative, obesity and diabetes related disorders. Clinical and biological applications of hCNTF necessitate a recombinant expression system to produce large amounts of functional protein in soluble form. Earlier attempts to express hCNTF in Escherichia coli (E. coli) were limited by low amounts and the need to refold from inclusion bodies. RESULTS In this report, we describe a strategy to effectively identify constructs and conditions for soluble expression of hCNTF in E. coli. Small-scale expression screening with soluble fusion tags identified many conditions that yielded soluble expression. Codon optimized 6-His-hCNTF construct showed soluble expression in all the conditions tested. Large-scale culture of the 6-His-hCNTF construct yielded high (10 - 20 fold) soluble expression (8 - 9 fold) as compared to earlier published reports. Functional activity of recombinant 6-His-hCNTF produced was confirmed by its binding to hCNTF receptor (hCNTFRα) with an EC50 = 36 nM. CONCLUSION Our results highlight the combination of codon optimization and screening soluble fusion tags as a successful strategy for high yielding soluble expression of hCNTF in E. coli. Codon optimization of the hCNTF sequence seems to be sufficient for soluble expression of hCNTF. The combined approach of codon optimization and soluble fusion tag screen can be an effective strategy for soluble expression of pharmaceutical proteins in E. coli.
Collapse
|
26
|
Characterization and optimization of heterologous expression in Escherichia coli of the chitinase encoded by the chiA gene of Bacillus halodurans C-125. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
He J, Li X, Luo D, Zhang C, Hu S, Li X. A new animal bioreactor for producing pharmaceutical proteins. Acta Biochim Biophys Sin (Shanghai) 2014; 46:826-828. [PMID: 25033830 DOI: 10.1093/abbs/gmu062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jinshui He
- Department of Pediatrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, China
| | - Xushuang Li
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Daoshu Luo
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China
| | - Chaobao Zhang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, China
| | - Shuanggang Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, China
| | - Xiangqi Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, China
| |
Collapse
|
28
|
Hu J, Li Y, Zhang H, Tan Y, Wang X. Construction of a novel expression system for use in Corynebacterium glutamicum. Plasmid 2014; 75:18-26. [DOI: 10.1016/j.plasmid.2014.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/15/2014] [Accepted: 07/29/2014] [Indexed: 11/16/2022]
|
29
|
Jiang M, Fang L, Pfeifer BA. Improved heterologous erythromycin A production through expression plasmid re-design. Biotechnol Prog 2013; 29:862-9. [PMID: 23804312 DOI: 10.1002/btpr.1759] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/14/2013] [Indexed: 01/15/2023]
Abstract
The production of complex compounds from technically convenient microorganisms is an emerging route to the chemical diversity found in the surrounding environment. In this study, the antibiotic compound erythromycin A is produced from Escherichia coli as an alternative to native production through the soil bacterium Saccharopolyspora erythraea. By doing so, there is an opportunity to apply and refine engineering strategies for the manipulation of the erythromycin biosynthetic pathway and for the overproduction of this and other complex natural compounds. Previously, E. coli-derived production was enabled by the introduction of the entire erythromycin pathway (20 genes total) using separately selectable expression plasmids which demonstrated negative effects on final biosynthesis through metabolic burden and plasmid instability. In this study, improvements to final production were made by altering the design of the expression plasmids needed for biosynthetic pathway introduction. Specifically, the total number of genes and plasmids was pruned to reduce both metabolic burden and plasmid instability. Further, a comparison was conducted between species-specific (E. coli vs. S. coelicolor) protein chaperonins. Results indicate improvements in growth and plasmid retention metrics. The newly designed expression platform also increased erythromycin A production levels 5-fold. In conclusion, the steps outlined in this report were designed to upgrade the E. coli erythromycin A production system, led to improved final compound titers, and suggest additional forms of pathway engineering to further improve results from heterologous production attempts.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | |
Collapse
|
30
|
Wang Y, Zhao S, Bai L, Fan J, Liu E. Expression systems and species used for transgenic animal bioreactors. BIOMED RESEARCH INTERNATIONAL 2013; 2013:580463. [PMID: 23586046 PMCID: PMC3613084 DOI: 10.1155/2013/580463] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/15/2013] [Accepted: 02/17/2013] [Indexed: 01/05/2023]
Abstract
Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals) and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm cocoon), the mammary glands of transgenic animals have enormous potential. Compared with other mammalian species (pig, goat, sheep, and cow) that are currently being studied as bioreactors, rabbits offer many advantages: high fertility, easy generation of transgenic founders and offspring, insensitivity to prion diseases, relatively high milk production, and no transmission of severe diseases to humans. Noticeably, for a small- or medium-sized facility, the rabbit system is ideal to produce up to 50 kg of protein per year, considering both economical and hygienic aspects; rabbits are attractive candidates for the mammary-gland-specific expression of recombinant proteins. We also reviewed recombinant proteins that have been produced by targeted expression in the mammary glands of rabbits and discussed the limitations of transgenic animal bioreactors.
Collapse
Affiliation(s)
- Yanli Wang
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
- Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
- Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Liang Bai
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
- Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
- Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| |
Collapse
|
31
|
Liu XQ, Liu HY, Chen QJ, Yang MM, Xin HY, Bai L, Peng JY, Zhao HB, Cao BY. Construction of Foot-and-mouth disease virus 2A-based bicistronic expression vector and coexpression of two genes in goat mammary epithelial cells. ANIMAL PRODUCTION SCIENCE 2013. [DOI: 10.1071/an12235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using animal mammary glands as bioreactors for producing commercially important proteins is a cutting-edge direction in the field of biotechnology development and application. Dairy goats are an important dairy livestock, with roughage-resistance, fast propagation, long lactation periods and high milk production per bodyweight; these characteristics make dairy goats ideal for use as mammary gland bioreactors. Foot-and-mouth disease virus 2A (FMDV 2A) is an efficient viral cleavage element that mediates proteolytic cleavage independent of the presence of other FMDV sequences. It is often incorporated into recombinant vectors to generate cleavage in the presence of heterologous sequences. To achieve specific co-expression of two heterologous genes in goat mammary gland epithelial (GMGE) cells, a mammary gland-specific bicistronic expression vector, pFIEβ, containing the β-casein 5′ flanking sequence and FMDV 2A, was successfully constructed and the specific expression of human interleukin 2 (hIL-2) and enhanced green fluorescent protein (EGFP) was conducted in primary GMGE cells. Another bicistronic expression vector, pFIEC, driven by the cytomegalovirus promoter, was constructed as a positive control. In cells transfected with pFIEβ and pFIEC, RT-PCR verified the existence of recombinant fusion mRNA of hIL-2 upstream of EGFP within the FMDV 2A cassette fragment and western blot analysis showed the existence of the fusion between hIL-2 and EGFP. It is concluded that FMDV 2A generated specific co-expression of multiple genes for the first time in primary GMGE cells driven by the β-casein promoter.
Collapse
|
32
|
Li M, Wang J, Geng Y, Li Y, Wang Q, Liang Q, Qi Q. A strategy of gene overexpression based on tandem repetitive promoters in Escherichia coli. Microb Cell Fact 2012; 11:19. [PMID: 22305426 PMCID: PMC3293061 DOI: 10.1186/1475-2859-11-19] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/06/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND For metabolic engineering, many rate-limiting steps may exist in the pathways of accumulating the target metabolites. Increasing copy number of the desired genes in these pathways is a general method to solve the problem, for example, the employment of the multi-copy plasmid-based expression system. However, this method may bring genetic instability, structural instability and metabolic burden to the host, while integrating of the desired gene into the chromosome may cause inadequate transcription or expression. In this study, we developed a strategy for obtaining gene overexpression by engineering promoter clusters consisted of multiple core-tac-promoters (MCPtacs) in tandem. RESULTS Through a uniquely designed in vitro assembling process, a series of promoter clusters were constructed. The transcription strength of these promoter clusters showed a stepwise enhancement with the increase of tandem repeats number until it reached the critical value of five. Application of the MCPtacs promoter clusters in polyhydroxybutyrate (PHB) production proved that it was efficient. Integration of the phaCAB genes with the 5CPtacs promoter cluster resulted in an engineered E.coli that can accumulate 23.7% PHB of the cell dry weight in batch cultivation. CONCLUSIONS The transcription strength of the MCPtacs promoter cluster can be greatly improved by increasing the tandem repeats number of the core-tac-promoter. By integrating the desired gene together with the MCPtacs promoter cluster into the chromosome of E. coli, we can achieve high and stale overexpression with only a small size. This strategy has an application potential in many fields and can be extended to other bacteria.
Collapse
Affiliation(s)
- Mingji Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Peoples Republic of China
| | | | | | | | | | | | | |
Collapse
|
33
|
Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 2012; 39:383-99. [PMID: 22252444 DOI: 10.1007/s10295-011-1082-9] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/29/2011] [Indexed: 12/14/2022]
Abstract
Nearly 30% of currently approved recombinant therapeutic proteins are produced in Escherichia coli. Due to its well-characterized genetics, rapid growth and high-yield production, E. coli has been a preferred choice and a workhorse for expression of non-glycosylated proteins in the biotech industry. There is a wealth of knowledge and comprehensive tools for E. coli systems, such as expression vectors, production strains, protein folding and fermentation technologies, that are well tailored for industrial applications. Advancement of the systems continues to meet the current industry needs, which are best illustrated by the recent drug approval of E. coli produced antibody fragments and Fc-fusion proteins by the FDA. Even more, recent progress in expression of complex proteins such as full-length aglycosylated antibodies, novel strain engineering, bacterial N-glycosylation and cell-free systems further suggests that complex proteins and humanized glycoproteins may be produced in E. coli in large quantities. This review summarizes the current technology used for commercial production of recombinant therapeutics in E. coli and recent advances that can potentially expand the use of this system toward more sophisticated protein therapeutics.
Collapse
|
34
|
Carvalho RJ, Cabrera-Crespo J, Tanizaki MM, Gonçalves VM. Development of production and purification processes of recombinant fragment of pneumococcal surface protein A in Escherichia coli using different carbon sources and chromatography sequences. Appl Microbiol Biotechnol 2011; 94:683-94. [DOI: 10.1007/s00253-011-3649-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/28/2011] [Accepted: 10/17/2011] [Indexed: 11/24/2022]
|
35
|
Wang R, Iwakura Y, Araki K, Sotoyama H, Takei N, Nawa H. In vitro production of an active neurotrophic factor, neuregulin-1: qualitative comparison of different cell-free translation systems. Neurosci Lett 2011; 497:90-3. [PMID: 21536100 DOI: 10.1016/j.neulet.2011.04.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 04/17/2011] [Indexed: 11/17/2022]
Abstract
The individual biological activities of many neurotrophic factors and their variants, which are produced by alternative splicing and proteolytic processing, often remain to be characterized. Bacterial protein production combined with protein refolding and purification is a conventional procedure to obtain active neurotrophic factors; however, the procedure is time consuming and appropriate protein refolding in vitro is sometimes unpredictable. Here we examined three distinct cell-free translation systems: reticulocyte lysate, Hela cell lysate and wheat germ extract, which may allow us to produce biologically active factors in a single tube. Taking type-I neuregulin-1 beta3 as an example, we produced neuregulin-1 protein from its mRNAs flanked by Cap nucleotide and/or internal ribosome entry site (IRES) and compared the yields and biological activity of translation products from these systems. The protein yield from IRES+ mRNA was highest in the Hela cell-free system, while background translation was lowest in the wheat germ system. The biological activity of both translation products was modest or negligible, however. Neuregulin-1 protein was produced in reticulocyte lysate at yields of 19 pmol/mL (~500 ng/mL); furthermore, it was potent at phosphorylating ErbB4 receptor and able to bind to heparin sulfate. These results demonstrate that the reticulocyte lysate translation system produces active neurotrophic factors in vitro and is useful for radiolabeling or preliminary assessment of novel neurotrophic factors and their variants.
Collapse
Affiliation(s)
- Ran Wang
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Niigata 951-8585, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Li Z, Leung W, Yon A, Nguyen J, Perez VC, Vu J, Giang W, Luong LT, Phan T, Salazar KA, Gomez SR, Au C, Xiang F, Thomas DW, Franz AH, Lin-Cereghino J, Lin-Cereghino GP. Secretion and proteolysis of heterologous proteins fused to the Escherichia coli maltose binding protein in Pichia pastoris. Protein Expr Purif 2010; 72:113-24. [PMID: 20230898 PMCID: PMC2860017 DOI: 10.1016/j.pep.2010.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 11/19/2022]
Abstract
The Escherichia coli maltose binding protein (MBP) has been utilized as a translational fusion partner to improve the expression of foreign proteins made in E. coli. When located N-terminal to its cargo protein, MBP increases the solubility of intracellular proteins and improves the export of secreted proteins in bacterial systems. We initially explored whether MBP would have the same effect in the methylotrophic yeast Pichia pastoris, a popular eukaryotic host for heterologous protein expression. When MBP was fused as an N-terminal partner to several C-terminal cargo proteins expressed in this yeast, proteolysis occurred between the two peptides, and MBP reached the extracellular region unattached to its cargo. However, in two of three instances, the cargo protein reached the extracellular region as well, and its initial attachment to MBP enhanced its secretion from the cell. Extensive mutagenesis of the spacer region between MBP and its C-terminal cargo protein could not inhibit the cleavage although it did cause changes in the protease target sites in the fusion proteins, as determined by mass spectrometry. Taken together, these results suggested that an uncharacterized P. pastoris protease attacked at different locations in the region C-terminal of the MBP domain, including the spacer and cargo regions, but the MBP domain could still act to enhance the secretion of certain cargo proteins.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of Chemistry, University of the Pacific, Stockton, California 95211
| | - Wilson Leung
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Amy Yon
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - John Nguyen
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Vincent C. Perez
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Jane Vu
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - William Giang
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Linda T. Luong
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Tracy Phan
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Katherine A. Salazar
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Seth R. Gomez
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Colin Au
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Fan Xiang
- Shimadzu Biotech Corporation, 7060 Koll Center Parkway, Suite 328, Pleasanton, California 94566
| | - David W. Thomas
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211
| | - Andreas H. Franz
- Department of Chemistry, University of the Pacific, Stockton, California 95211
| | - Joan Lin-Cereghino
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| | - Geoff P. Lin-Cereghino
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211
| |
Collapse
|
37
|
Novel antibiotic-free plasmid selection system based on complementation of host auxotrophy in the NAD de novo synthesis pathway. Appl Environ Microbiol 2010; 76:2295-303. [PMID: 20118370 DOI: 10.1128/aem.02462-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of antibiotic resistance genes in plasmids causes potential biosafety and clinical hazards, such as the possibility of horizontal spread of resistance genes or the rapid emergence of multidrug-resistant pathogens. This paper introduces a novel auxotrophy complementation system that allowed plasmids and host cells to be effectively selected and maintained without the use of antibiotics. An Escherichia coli strain carrying a defect in NAD de novo biosynthesis was constructed by knocking out the chromosomal quinolinic acid phosphoribosyltransferase (QAPRTase) gene. The resistance gene in the plasmids was replaced by the QAPRTase gene of E. coli or the mouse. As a result, only expression of the QAPRTase gene from plasmids can complement and rescue E. coli host cells in minimal medium. This is the first time that a vertebrate gene has been used to construct a nonantibiotic selection system, and it can be widely applied in DNA vaccine and gene therapy. As the QAPRTase gene is ubiquitous in species ranging from bacteria to mammals, the potential environmental biosafety problems caused by horizontal gene transfer can be eliminated.
Collapse
|
38
|
Niu D, Zuo Z, Shi GY, Wang ZX. High yield recombinant thermostable alpha-amylase production using an improved Bacillus licheniformis system. Microb Cell Fact 2009; 8:58. [PMID: 19878591 PMCID: PMC2776586 DOI: 10.1186/1475-2859-8-58] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 10/31/2009] [Indexed: 11/10/2022] Open
Abstract
Background Some strains of Bacillus licheniformis have been improved by target-directed screening as well as by classical genetic manipulation and used in commercial thermostable α-amylase and alkaline protease production for over 40 years. Further improvements in production of these enzymes are desirable. Results A new strain of B. licheniformis CBBD302 carrying a recombinant plasmid pHY-amyL for Bacillus licheniformis α-amylase (BLA) production was constructed. The combination of target-directed screening and genetic recombination led to an approximately 26-fold improvement of BLA production and export in B. licheniformis. Furthermore, a low-cost fermentation medium containing soybean meal and cottonseed meal for BLA production in shake-flasks and in a 15 liter bioreactor was developed and a BLA concentration of up to 17.6 mg per ml growth medium was attained. Conclusion This production level of BLA by B. licheniformis CBBD302(pHY-amyL) is amongst the highest levels in Gram-positive bacteria reported so far.
Collapse
Affiliation(s)
- Dandan Niu
- Center for Bioresource and Bioenergy, School of Biotechnology & Culture and Information Center of Industrial Microorganisms of China Universities, Jiangnan University, Wuxi 214122, PR China
| | | | | | | |
Collapse
|
39
|
Bifunctional xylanases and their potential use in biotechnology. J Ind Microbiol Biotechnol 2008; 35:635-44. [DOI: 10.1007/s10295-008-0342-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/06/2008] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
|
40
|
Wittmann C, Weber J, Betiku E, Krömer J, Böhm D, Rinas U. Response of fluxome and metabolome to temperature-induced recombinant protein synthesis in Escherichia coli. J Biotechnol 2007; 132:375-84. [PMID: 17689798 DOI: 10.1016/j.jbiotec.2007.07.495] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 06/07/2007] [Accepted: 07/03/2007] [Indexed: 10/23/2022]
Abstract
The response of the central carbon metabolism of Escherichia coli to temperature-induced recombinant production of human fibroblast growth factor was studied on the level of metabolic fluxes and intracellular metabolite levels. During production, E. coli TG1:plambdaFGFB, carrying a plasmid encoded gene for the recombinant product, revealed stress related characteristics such as decreased growth rate and biomass yield and enhanced by-product excretion (acetate, pyruvate, lactate). With the onset of production, the adenylate energy charge dropped from 0.85 to 0.60, indicating the occurrence of a severe energy limitation. This triggered an increase of the glycolytic flux which, however, was not sufficient to compensate for the increased ATP demand. The activation of the glycolytic flux was also indicated by the readjustment of glycolytic pool sizes leading to an increased driving force for the reaction catalyzed by phosphofructokinase. Moreover, fluxes through the TCA cycle, into the pentose phosphate pathway and into anabolic pathways decreased significantly. The strong increase of flux into overflow pathways, especially towards acetate was most likely caused by a flux redirection from pyruvate dehydrogenase to pyruvate oxidase. The glyoxylate shunt, not active during growth, was the dominating anaplerotic pathway during production. Together with pyruvate oxidase and acetyl CoA synthase this pathway could function as a metabolic by-pass to overcome the limitation in the junction between glycolysis and TCA cycle and partly recycle the acetate formed back into the metabolism.
Collapse
|
41
|
Zhang W, Xiao W, Wei H, Zhang J, Tian Z. mRNA secondary structure at start AUG codon is a key limiting factor for human protein expression in Escherichia coli. Biochem Biophys Res Commun 2006; 349:69-78. [PMID: 16930549 DOI: 10.1016/j.bbrc.2006.07.209] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 07/24/2006] [Indexed: 11/25/2022]
Abstract
Codon usage and thermodynamic optimization of the 5'-end of mRNA have been applied to improve the efficiency of human protein production in Escherichia coli. However, high level expression of human protein in E. coli is still a challenge that virtually depends upon each individual target genes. Using human interleukin 10 (huIL-10) and interferon alpha (huIFN-alpha) coding sequences, we systematically analyzed the influence of several major factors on expression of human protein in E. coli. The results from huIL-10 and reinforced by huIFN-alpha showed that exposing AUG initiator codon from base-paired structure within mRNA itself significantly improved the translation of target protein, which resulted in a 10-fold higher protein expression than the wild-type genes. It was also noted that translation process was not affected by the retained short-range stem-loop structure at Shine-Dalgarno (SD) sequences. On the other hand, codon-optimized constructs of huIL-10 showed unimproved levels of protein expression, on the contrary, led to a remarkable RNA degradation. Our study demonstrates that exposure of AUG initiator codon from long-range intra-strand secondary structure at 5'-end of mRNA may be used as a general strategy for human protein production in E. coli.
Collapse
Affiliation(s)
- Weici Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | | | | | | | |
Collapse
|
42
|
Labbé G, Bezaire J, de Groot S, How C, Rasmusson T, Yaeck J, Jervis E, Dmitrienko GI, Guillemette JG. High level production of the Magnaporthe grisea fructose 1,6-bisphosphate aldolase enzyme in Escherichia coli using a small volume bench-top fermentor. Protein Expr Purif 2006; 51:110-9. [PMID: 16901716 DOI: 10.1016/j.pep.2006.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
The Class II fructose 1,6-bisphosphate aldolase from the Rice Blast causative agent Magnaporthe grisea was subcloned in the Escherichia coli vector pT7-7. The enzyme was overexpressed using fed-batch fermentation in a small bench-top reactor. A total of 275 g of cells and 1.3 g of highly purified enzyme with a specific activity of 70 U/mg were obtained from a 1.5L culture. The purified enzyme is a homodimer of 39.6 kDa subunits with a zinc ion at the active site. Kinetic characterization indicates that the enzyme has a K(m) of 51 microM, a k(cat) of 46 s(-1), and a pH optimum of 7.8 for fructose 1,6-bisphosphate cleavage. The fermentation system procedure reported exemplifies the potential of using a lab-scale bioreactor for the large scale production of recombinant enzymes.
Collapse
Affiliation(s)
- Geneviève Labbé
- Department of Chemistry, University of Waterloo, 200 University Ave. W, Waterloo, Ont., Canada N2L 3G1
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wladyka B, Puzia K, Dubin A. Efficient co-expression of a recombinant staphopain A and its inhibitor staphostatin A in Escherichia coli. Biochem J 2005; 385:181-7. [PMID: 15320867 PMCID: PMC1134686 DOI: 10.1042/bj20040958] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Staphopain A is a staphylococcal cysteine protease. Genes encoding staphopain A and its specific inhibitor, staphostatin A, are localized in an operon. Staphopain A is an important staphylococcal virulence factor. It is difficult to perform studies on its interaction with other proteins due to problems in obtaining a sufficient amount of the enzyme from natural sources. Therefore efforts were made to produce a recombinant staphopain A. Sequences encoding the mature form of staphopain A and staphostatin A were PCR-amplified from Staphylococcus aureus genomic DNA and cloned into different compatible expression vectors. Production of staphopain A was observed only when the enzyme was co-expressed together with its specific inhibitor, staphostatin A. Loss of the function mutations introduced within the active site of staphopain A causes the expression of the inactive enzyme. Mutations within the reactive centre of staphostatin A result in abrogation of production of both the co-expressed proteins. These results support the thesis that the toxicity of recombinant staphopain A to the host is due to its proteolytic activity. The coexpressed proteins are located in the insoluble fraction. Ni2+-nitrilotriacetate immobilized metal-affinity chromatography allows for an efficient and easy purification of staphopain A. Our optimized refolding parameters allow restoration of the native conformation of the enzyme, with yields over 10-fold higher when compared with isolation from natural sources.
Collapse
Affiliation(s)
- Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387, Krakow, Poland.
| | | | | |
Collapse
|
44
|
Hytönen V, Laitinen O, Airenne T, Kidron H, Meltola N, Porkka E, Hörhä J, Paldanius T, Määttä J, Nordlund H, Johnson M, Salminen T, Airenne K, Ylä-Herttuala S, Kulomaa M. Efficient production of active chicken avidin using a bacterial signal peptide in Escherichia coli. Biochem J 2005; 384:385-90. [PMID: 15324300 PMCID: PMC1134122 DOI: 10.1042/bj20041114] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chicken avidin is a highly popular tool with countless applications in the life sciences. In the present study, an efficient method for producing avidin protein in the periplasmic space of Escherichia coli in the active form is described. Avidin was produced by replacing the native signal sequence of the protein with a bacterial OmpA secretion signal. The yield after a single 2-iminobiotin-agarose affinity purification step was approx. 10 mg/l of virtually pure avidin. Purified avidin had 3.7 free biotin-binding sites per tetramer and showed the same biotin-binding affinity and thermal stability as egg-white avidin. Avidin crystallized under various conditions, which will enable X-ray crystallographic studies. Avidin produced in E. coli lacks the carbohydrate chains of chicken avidin and the absence of glycosylation should decrease the non-specific binding that avidin exhibits towards many materials [Rosebrough and Hartley (1996) J. Nucl. Med. 37, 1380-1384]. The present method provides a feasible and inexpensive alternative for the production of recombinant avidin, avidin mutants and avidin fusion proteins for novel avidin-biotin technology applications.
Collapse
Affiliation(s)
- Vesa P. Hytönen
- *Department of Biological and Environmental Science, NanoScience Center, P.O. Box 35 (YAB), FIN-40014 University of Jyväskylä, Finland
| | - Olli H. Laitinen
- †Department of Molecular Medicine, A.I. Virtanen Institute, University of Kuopio, P.O. Box 1627, Kuopio FIN-70211, Finland
| | - Tomi T. Airenne
- ‡Department of Biochemistry and Pharmacy, Åbo Akademi University, P.O. Box 66, Turku FIN-20521, Finland
| | - Heidi Kidron
- ‡Department of Biochemistry and Pharmacy, Åbo Akademi University, P.O. Box 66, Turku FIN-20521, Finland
| | - Niko J. Meltola
- §Arctic Diagnostics Oy, P.O. Box 51, Turku FIN-20521, Finland
| | - Eevaleena J. Porkka
- *Department of Biological and Environmental Science, NanoScience Center, P.O. Box 35 (YAB), FIN-40014 University of Jyväskylä, Finland
| | - Jarno Hörhä
- *Department of Biological and Environmental Science, NanoScience Center, P.O. Box 35 (YAB), FIN-40014 University of Jyväskylä, Finland
| | - Tiina Paldanius
- *Department of Biological and Environmental Science, NanoScience Center, P.O. Box 35 (YAB), FIN-40014 University of Jyväskylä, Finland
| | - Juha A. E. Määttä
- *Department of Biological and Environmental Science, NanoScience Center, P.O. Box 35 (YAB), FIN-40014 University of Jyväskylä, Finland
| | - Henri R. Nordlund
- *Department of Biological and Environmental Science, NanoScience Center, P.O. Box 35 (YAB), FIN-40014 University of Jyväskylä, Finland
| | - Mark S. Johnson
- ‡Department of Biochemistry and Pharmacy, Åbo Akademi University, P.O. Box 66, Turku FIN-20521, Finland
| | - Tiina A. Salminen
- ‡Department of Biochemistry and Pharmacy, Åbo Akademi University, P.O. Box 66, Turku FIN-20521, Finland
| | - Kari J. Airenne
- †Department of Molecular Medicine, A.I. Virtanen Institute, University of Kuopio, P.O. Box 1627, Kuopio FIN-70211, Finland
| | - Seppo Ylä-Herttuala
- †Department of Molecular Medicine, A.I. Virtanen Institute, University of Kuopio, P.O. Box 1627, Kuopio FIN-70211, Finland
| | - Markku S. Kulomaa
- *Department of Biological and Environmental Science, NanoScience Center, P.O. Box 35 (YAB), FIN-40014 University of Jyväskylä, Finland
- To whom correspondence should be addressed (email )
| |
Collapse
|
45
|
Lee JR, Hahn HS, Yu JR, Kim ST, Yang JM, Hahn MJ. Immunoaffinity purification of SRT-tagged human creatine kinase by peptide elution. J Biotechnol 2005; 117:287-91. [PMID: 15862359 DOI: 10.1016/j.jbiotec.2005.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 01/18/2005] [Accepted: 01/24/2005] [Indexed: 11/16/2022]
Abstract
The mouse monoclonal antibody (Mab), SRT10, recognizes a linear epitope of 10 amino acids (ThrPheIleGlyAlaIleAlaThrAspThr). When these epitope-tagged fusion proteins are expressed in mammalian cells, the Mab can detect the tagged proteins by immunoblotting, immunocytochemistry and immunoprecipitation. Here, we describe an efficient method for the purification of SRT-tagged recombinant human creatine kinase (CK) transiently expressed in mammalian cells. This method utilizes the expression of the N-terminal- or C-terminal-tagged CK in transiently transfected HEK293 cells followed by binding to anti-SRT-agarose affinity resin and competitive elution with SRT peptide. Recombinant CK was purified near homogeneity as judged by SDS-PAGE.
Collapse
Affiliation(s)
- Jae-Rin Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea
| | | | | | | | | | | |
Collapse
|
46
|
Butt TR, Edavettal SC, Hall JP, Mattern MR. SUMO fusion technology for difficult-to-express proteins. Protein Expr Purif 2005; 43:1-9. [PMID: 16084395 PMCID: PMC7129290 DOI: 10.1016/j.pep.2005.03.016] [Citation(s) in RCA: 362] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 03/14/2005] [Accepted: 03/16/2005] [Indexed: 10/27/2022]
Abstract
The demands of structural and functional genomics for large quantities of soluble, properly folded proteins in heterologous hosts have been aided by advancements in the field of protein production and purification. Escherichia coli, the preferred host for recombinant protein expression, presents many challenges which must be surmounted in order to over-express heterologous proteins. These challenges include the proteolytic degradation of target proteins, protein misfolding, poor solubility, and the necessity for good purification methodologies. Gene fusion technologies have been able to improve heterologous expression by overcoming many of these challenges. The ability of gene fusions to improve expression, solubility, purification, and decrease proteolytic degradation will be discussed in this review. The main disadvantage, cleaving the protein fusion, will also be addressed. Focus will be given to the newly described SUMO fusion system and the improvements that this technology has advanced over traditional gene fusion systems.
Collapse
Affiliation(s)
- Tauseef R Butt
- LifeSensors, Inc., 271 Great Valley Parkway, Malvern, PA 19355, USA.
| | | | | | | |
Collapse
|
47
|
Fukatsu H, Herai S, Hashimoto Y, Maseda H, Higashibata H, Kobayashi M. High-level expression of a novel amine-synthesizing enzyme, N-substituted formamide deformylase, in Streptomyces with a strong protein expression system. Protein Expr Purif 2005; 40:212-9. [PMID: 15721791 DOI: 10.1016/j.pep.2004.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 11/19/2004] [Indexed: 11/22/2022]
Abstract
N-substituted formamide deformylase (NfdA) from Arthrobacter pascens F164 is a novel deformylase involved in the metabolism of isonitriles. The enzyme catalyzes the deformylation of an N-substituted formamide, which is produced from the corresponding isonitrile, to yield the corresponding amine and formate. The nfdA gene from A. pascens F164 was cloned into different types of expression vectors for Escherichia coli and Streptomyces strains. Expression in E. coli resulted in the accumulation of an insoluble protein. However, Streptomyces strains transformed with a P(nitA)-NitR system, which we very recently developed as a regulatory gene expression system for streptomycetes, allowed the heterologous overproduction of NfdA in an active form. When Streptomyces lividans TK24 transformed with pSH19-nfdA was cultured under the optimum conditions, the NfdA activity of the cell-free extract amounted to 8.5 U/mg, which was 29-fold higher than that of A. pascens F164. The enzyme also comprised approximately 20% of the total extractable cellular protein. The recombinant enzyme was purified to homogeneity and characterized. The expression system established here will allow structural analysis and mutagenesis studies of NfdA.
Collapse
Affiliation(s)
- Hiroshi Fukatsu
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Hägg P, de Pohl JW, Abdulkarim F, Isaksson LA. A host/plasmid system that is not dependent on antibiotics and antibiotic resistance genes for stable plasmid maintenance in Escherichia coli. J Biotechnol 2004; 111:17-30. [PMID: 15196766 DOI: 10.1016/j.jbiotec.2004.03.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 03/16/2004] [Accepted: 03/19/2004] [Indexed: 11/29/2022]
Abstract
Uneven distribution of plasmid-based expression vectors to daughter cells during bacterial cell division results in an increasing proportion of plasmid free cells during growth. This is a major industrial problem leading to reduction of product yields and increased production costs during large-scale cultivation of vector-carrying bacteria. For this reason, a selection must be provided that kills the plasmid free cells. The most conventional method to obtain this desired selection is to insert some gene for antibiotic resistance in the plasmid and then grow the bacteria in the presence of the corresponding antibiotic. We describe here a host/plasmid Escherichia coli system with a totally stable plasmid that can be maintained without the use of antibiotic selection. The plasmid is maintained, since it carries the small essential gene infA (coding for translation initiation factor 1, IF1) in an E. coli strain that has been deleted for its chromosomal infA gene. As a result only plasmid carrying cells can grow, making the strain totally dependent on the maintenance of the plasmid. A selection based on antibiotics is thus not necessary during cultivation, and no antibiotic-resistance genes are present neither in the final strain nor in the final plasmid. Plasmid-free cells do not accumulate even after an extended period of continuous growth. Growth rates of the control and the plasmid harboring strains are indistinguishable from each other in both LB and defined media. The indicated approach can be used to modify existing production strains and plasmids to the described concept. The infA based plasmid stability system should eliminate industrial cultivation problems caused by the loss of expression vector and use of antibiotics in the cultivation medium. Also environmental problems caused by release of antibiotics and antibiotic resistance genes, that potentially can give horizontal gene transfer between bacterial populations, are eliminated.
Collapse
Affiliation(s)
- Peter Hägg
- Department of Microbiology, Svante Arrhenius väg 16F, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
49
|
Paulus M, Haslbeck M, Watzele M. RNA stem-loop enhanced expression of previously non-expressible genes. Nucleic Acids Res 2004; 32:e78. [PMID: 15163763 PMCID: PMC419630 DOI: 10.1093/nar/gnh076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The key step in bacterial translation is formation of the pre-initiation complex. This requires initial contacts between mRNA, fMet-tRNA and the 30S subunit of the ribosome, steps that limit the initiation of translation. Here we report a method for improving translational initiation, which allows expression of several previously non-expressible genes. This method has potential applications in heterologous protein synthesis and high-throughput expression systems. We introduced a synthetic RNA stem-loop (stem length, 7 bp; DeltaG(0) = -9.9 kcal/mol) in front of various gene sequences. In each case, the stem-loop was inserted 15 nt downstream from the start codon. Insertion of the stem-loop allowed in vitro expression of five previously non-expressible genes and enhanced the expression of all other genes investigated. Analysis of the RNA structure proved that the stem-loop was formed in vitro, and demonstrated that stabilization of the ribosome binding site is due to stem-loop introduction. By theoretical RNA structure analysis we showed that the inserted RNA stem-loop suppresses long-range interactions between the translation initiation domain and gene-specific mRNA sequences. Thus the inserted RNA stem-loop supports the formation of a separate translational initiation domain, which is more accessible to ribosome binding.
Collapse
Affiliation(s)
- Michael Paulus
- Roche Diagnostics, Nonnenwald 2, D-82377 Penzberg, Germany
| | | | | |
Collapse
|
50
|
Tayapiwatana C, Arooncharus P, Kasinrerk W. Displaying and epitope mapping of CD147 on VCSM13 phages: influence of Escherichia coli strains. J Immunol Methods 2003; 281:177-85. [PMID: 14580891 DOI: 10.1016/s0022-1759(03)00270-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The external domain of a human leukocyte surface molecule, CD147 was displayed on the surface of phage. Two Escherichia coli laboratory strains, XL-1 Blue and TG-1, were chosen to separately propagate the recombinant phages. By sandwich enzyme linked immunosorbent assay (ELISA), CD147 on phage particles were individually captured by six CD147 mAbs and subsequently detected by anti-M13 conjugated HRP. All mAbs specifically bound the CD147 on phage particles derived from TG-1. On the contrary, only four of them could recognize the CD147 on phages produced by XL-1 Blue. The results indicate that the environment in the TG-1 periplasm is more appropriate than that of XL-1 Blue for promoting the suitable folding of CD147. This finding emphasizes the importance of selecting the appropriate E. coli host for display of a complex protein. The epitopes of CD147 displayed on the phage were further mapped by competitive inhibition ELISA, which is a reliable and economical method. Certain clusters of mAb recognition areas were identified and will provide valuable information for the discovery of the ligand for CD147.
Collapse
Affiliation(s)
- Chatchai Tayapiwatana
- Department of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | | | | |
Collapse
|