1
|
Zhang A, Zhang Z, Liu R, Zhao Z, Liu L. Human umbilical cord mesenchymal stem cell-derived exosomes inhibit inflammation and fibrotic scar formation after intracerebral hemorrhage. Mol Cell Biochem 2025:10.1007/s11010-025-05259-2. [PMID: 40279088 DOI: 10.1007/s11010-025-05259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/16/2025] [Indexed: 04/26/2025]
Abstract
Human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-ex) have emerged as a promising alternative to whole-cell therapies due to their minimal immunogenicity and tumorigenicity. Pentraxin 3 (PTX3) acts as an inflammatory marker and pattern recognition receptor, playing a critical role in promoting tumor progression and inflammatory diseases. Fibrotic scars resulting from cerebral hemorrhage can impair motor and sensory functions, leading to poor prognosis. This study aimed to investigate whether hUCMSC-ex regulate matrix metalloproteinase-3 (MMP3) expression via the PTX3/Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB) pathway, thereby inhibiting inflammation and fibrotic scar formation following intracerebral hemorrhage and ultimately promoting the recovery of nerve function. A stereotactic technique was used to inject type IV collagenase (1 μL) into the striatum of rats, establishing an animal model of hemorrhagic stroke. Concurrently, hUCMSC-ex were administered via the tail vein at a dosage of 200 μg. In vitro, primary astrocytes were treated with hUCMSC-ex and subsequently stimulated with Hemin (20 μmol/mL) to create a cellular model of cerebral hemorrhage. The expression levels of PTX3, TLR4/NF-κB/MMP3 pathway proteins, and inflammatory factors, including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-10 (IL-10), were assessed both in vivo and in vitro to investigate the effects of hUCMSC-ex on the inflammatory response and fibroblast migration. Neurological function in rats with cerebral hemorrhage was evaluated on days 1, 3, and 5 using the corner turn test, forelimb placement test, Longa score, and Bederson score. Additionally, real-time PCR was utilized to measure PTX3 mRNA expression following treatment with hUCMSC-ex. hUCMSC-ex inhibited MMP3 expression by downregulating the protein levels of PTX3, TLR4, NF-κB/P65, and p-P65. This action resulted in a reduction of pro-inflammatory cytokines TNF-α and IL-1β while simultaneously increasing the expression of the anti-inflammatory cytokine IL-10. Furthermore, hUCMSC-ex suppressed the inflammatory response, prevented fibroblast migration, and decreased MMP3 expression in the conditioned medium derived from primary astrocytes. Importantly, hUCMSC-ex improved behavioral performance in rats with intracerebral hemorrhage (ICH). hUCMSC-ex modulated the expression of MMP3 through the downregulation of PTX3, TLR4, NF-κB/P65, and p-P65. This regulatory mechanism contributed to a decrease in pro-inflammatory cytokines TNF-α and IL-1β, while concurrently enhancing the expression of the anti-inflammatory cytokine IL-10. Additionally, hUCMSC-ex effectively suppressed the inflammatory response, inhibited fibroblast migration, and reduced MMP3 expression in primary astrocyte-conditioned medium. Overall, hUCMSC-ex significantly improved behavioral performance in rats with ICH.
Collapse
Affiliation(s)
- Aobo Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Zhanzhan Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Rongge Liu
- Department of Respiratory, The Second Affiliated Hospital of Xingtai Medical College, Xingtai, 054000, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Liqiang Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
2
|
Liu Y, Qi L, Li Z, Yong VW, Xue M. Crosstalk Between Matrix Metalloproteinases and Their Inducer EMMPRIN/CD147: a Promising Therapeutic Target for Intracerebral Hemorrhage. Transl Stroke Res 2025; 16:557-567. [PMID: 38100014 DOI: 10.1007/s12975-023-01225-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 04/08/2025]
Abstract
Intracerebral hemorrhage (ICH) is characterized by the disruption of cerebrovascular integrity, resulting in hematoma enlargement, edema formation, and physical damage in the brain parenchyma. Primary ICH also leads to secondary brain injury contributed by oxidative stress, dysregulated immune responses, and proteolysis. In this context, matrix metalloproteinases (MMPs) represent a ubiquitous superfamily of structurally related zinc-dependent endopeptidases capable of degrading all components of the extracellular matrix. They disrupt the blood-brain barrier and promote neuroinflammation. Importantly, several MMP members are upregulated following ICH, and members may have different functions at specific periods in ICH. Hence, the modulation and function of MMPs are more complex than expected. Extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) is a transmembrane glycoprotein that induces the production of MMPs. In this review, we systematically discuss the biology and functions of MMPs and EMMPRIN/CD147 in ICH and the complex crosstalk between them.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China
| | - Lingxiao Qi
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Nan C, Zhang Y, Zhang A, Shi Y, Yan D, Sun Z, Jin Q, Huo H, Zhuo Y, Zhao Z. Exosomes derived from human umbilical cord mesenchymal stem cells decrease neuroinflammation and facilitate the restoration of nerve function in rats suffering from intracerebral hemorrhage. Mol Cell Biochem 2025; 480:309-323. [PMID: 38459276 PMCID: PMC11695394 DOI: 10.1007/s11010-024-04954-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/28/2024] [Indexed: 03/10/2024]
Abstract
Exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSC-ex) have become a hopeful substitute for whole-cell therapy due to their minimal immunogenicity and tumorigenicity. The present study aimed to investigate the hypothesis that hUCMSC-ex can alleviate excessive inflammation resulting from intracerebral hemorrhage (ICH) and facilitate the rehabilitation of the nervous system in rats. In vivo, hemorrhagic stroke was induced by injecting collagenase IV into the striatum of rats using stereotactic techniques. hUCMSC-ex were injected via the tail vein at 6 h after ICH model establishment at a dosage of 200 µg. In vitro, astrocytes were pretreated with hUCMSC-ex and then stimulated with hemin (20 μmol/mL) to establish an ICH cell model. The expression of TLR4/NF-κB signaling pathway proteins and inflammatory factors, including TNF-α, IL-1β, and IL-10, was assessed both in vivo and in vitro to investigate the impact of hUCMSC-ex on inflammation. The neurological function of the ICH rats was evaluated using the corner turn test, forelimb placement test, Longa score, and Bederson score on the 1st, 3rd, and 5th day. Additionally, RT-PCR was employed to examine the mRNA expression of TLR4 following hUCMSC-ex treatment. The findings demonstrated that hUCMSC-ex downregulated the protein expression of TLR4, NF-κB/P65, and p-P65, reduced the levels of pro-inflammatory cytokines TNF-α and IL-1β, and increased the expression of the anti-inflammatory cytokine IL-10. Ultimately, the administration of hUCMSC-ex improved the behavioral performance of the ICH rats. However, the results of PT-PCR indicated that hUCMSC-ex did not affect the expression of TLR4 mRNA induced by ICH, suggesting that hUCMSCs-ex may inhibit TLR4 translation rather than transcription, thereby suppressing the TLR4/NF-κB signaling pathway. We can conclude that hUCMSC-ex mitigates hyperinflammation following ICH by inhibiting the TLR4/NF-κB signaling pathway. This study provides preclinical evidence for the potential future application of hUCMSC-ex in the treatment of cerebral injury.
Collapse
Affiliation(s)
- Chengrui Nan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yan Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Aobo Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yunpeng Shi
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Dongdong Yan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Zhimin Sun
- Department of Neurosurgery, Third Hospital of Shijiazhuang, Shijiazhuang, 050000, Hebei, China
| | - Qianxu Jin
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Haoran Huo
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yayu Zhuo
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
4
|
Wang Y, Xiao H, Xiong H, Zhang L, Wei B, Cao Y, Huang Y, Li J, Wang Q. An exploratory study to determine the survival time of human intracerebral hematomas utilizing ATR-FTIR spectroscopy. Microchem J 2025; 208:112395. [DOI: 10.1016/j.microc.2024.112395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Xu X, Li Y, Chen S, Wu X, Li J, Li G, Tang Z. Mechanism and application of immune interventions in intracerebral haemorrhage. Expert Rev Mol Med 2024; 26:e22. [PMID: 39375846 PMCID: PMC11488334 DOI: 10.1017/erm.2024.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/28/2024] [Accepted: 06/13/2024] [Indexed: 10/09/2024]
Abstract
Despite stroke being one of the major and increasing burdens to global health, therapeutic interventions in intracerebral haemorrhage (ICH) continue to be a challenge. Existing treatment methods, such as surgery and conservative treatment have shown limited efficacy in improving the prognosis of ICH. However, more and more studies show that exploring the specific process of immune response after ICH and taking corresponding immunotherapy may have a definite significance to improve the prognosis of cerebral haemorrhage. Therefore, immune interventions are currently under consideration as therapeutic interventions in the ICH. In this review, we aim to clarify unique immunological features of stroke, and consider the evidence for immune interventions. In acute ICH, activation of glial cells and cell death products trigger an inflammatory cascade that damages vessels and the parenchyma within minutes to hours of the haemorrhage. Immune interventions that ameliorate brain inflammation, vascular permeability and tissue oedema should be administered promptly to reduce acute immune destruction and avoid subsequent immunosuppression. A deeper understanding of the immune mechanisms involved in ICH is likely to lead to successful immune interventions.
Collapse
Affiliation(s)
- Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Liu C, Guo Y, Deng S, Zhou S, Wu S, Chen T, Shi X, Mamtilahun M, Xu T, Liu Z, Li H, Zhang Z, Tian H, Chung WS, Wang J, Yang GY, Tang Y. Hemorrhagic stroke-induced subtype of inflammatory reactive astrocytes disrupts blood-brain barrier. J Cereb Blood Flow Metab 2024; 44:1102-1116. [PMID: 38388375 PMCID: PMC11179611 DOI: 10.1177/0271678x241235008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Astrocytes undergo disease-specific transcriptomic changes upon brain injury. However, phenotypic changes of astrocytes and their functions remain unclear after hemorrhagic stroke. Here we reported hemorrhagic stroke induced a group of inflammatory reactive astrocytes with high expression of Gfap and Vimentin, as well as inflammation-related genes lipocalin-2 (Lcn2), Complement component 3 (C3), and Serpina3n. In addition, we demonstrated that depletion of microglia but not macrophages inhibited the expression of inflammation-related genes in inflammatory reactive astrocytes. RNA sequencing showed that blood-brain barrier (BBB) disruption-related gene matrix metalloproteinase-3 (MMP3) was highly upregulated in inflammatory reactive astrocytes. Pharmacological inhibition of MMP3 in astrocytes or specific deletion of astrocytic MMP3 reduced BBB disruption and improved neurological outcomes of hemorrhagic stroke mice. Our study demonstrated that hemorrhagic stroke induced a group of inflammatory reactive astrocytes that were actively involved in disrupting BBB through MMP3, highlighting a specific group of inflammatory reactive astrocytes as a critical driver for BBB disruption in neurological diseases.
Collapse
Affiliation(s)
- Chang Liu
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yiyan Guo
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyu Deng
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyi Zhou
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengju Wu
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Chen
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojing Shi
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Muyassar Mamtilahun
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tongtong Xu
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hanlai Li
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hengli Tian
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Crocker CE, Sharmeen R, Tran TT, Khan AM, Li W, Alcorn JL. Surfactant protein a attenuates generalized and localized neuroinflammation in neonatal mice. Brain Res 2023; 1807:148308. [PMID: 36871846 PMCID: PMC10065943 DOI: 10.1016/j.brainres.2023.148308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Surfactant protein A (SP-A) has important roles in innate immunity and modulation of pulmonary and extrapulmonary inflammation. Given SP-A has been detected in rat and human brain, we sought to determine if SP-A has a role in modulating inflammation in the neonatal mouse brain. Neonatal wildtype (WT) and SP-A-deficient (SP-A-/-) mice were subjected to three models of brain inflammation: systemic sepsis, intraventricular hemorrhage (IVH) and hypoxic-ischemic encephalopathy (HIE). Following each intervention, RNA was isolated from brain tissue and expression of cytokine and SP-A mRNA was determined by real-time quantitative RT-PCR analysis. In the sepsis model, expression of most cytokine mRNAs was significantly increased in brains of WT and SP-A-/- mice with significantly greater expression of all cytokine mRNA levels in SP-A-/- mice compared to WT. In the IVH model, expression of all cytokine mRNAs was significantly increased in WT and SP-A-/- mice and levels of most cytokine mRNAs were significantly increased in SP-A-/- mice compared to WT. In the HIE model, only TNF-α mRNA levels were significantly increased in WT brain tissue while all pro-inflammtory cytokine mRNAs were significantly increased in SP-A-/- mice, and all pro-inflammatory cytokine mRNA levels were significantly higher in SP-A-/- mice compared to WT. SP-A mRNA was not detectable in brain tissue of adult WT mice nor in WT neonates subjected to these models. These results suggest that SP-A-/- neonatal mice subjected to models of neuroinflammation are more susceptible to both generalized and localized neuroinflammation compared to WT mice, thus supporting the hypothesis that SP-A attenuates inflammation in neonatal mouse brain.
Collapse
Affiliation(s)
- Caroline E Crocker
- Division of Neonatology, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Romana Sharmeen
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Thu T Tran
- Division of Neonatology, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Amir M Khan
- Division of Neonatology, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wen Li
- Division of Clinical and Translational Sciences, Department of Internal Medicine, the University of Texas McGovern Medical School at Houston, Houston, TX 77030, USA; Biostatistics/Epidemiology/Research Design Component, Center for Clinical and Translational Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joseph L Alcorn
- Division of Neonatology, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Pediatric Research Center, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Shi X, Tian Y, Zhai S, Liu Y, Chu S, Xiong Z. The progress of research on the application of redox nanomaterials in disease therapy. Front Chem 2023; 11:1115440. [PMID: 36814542 PMCID: PMC9939781 DOI: 10.3389/fchem.2023.1115440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Redox imbalance can trigger cell dysfunction and damage and plays a vital role in the origin and progression of many diseases. Maintaining the balance between oxidants and antioxidants in vivo is a complicated and arduous task, leading to ongoing research into the construction of redox nanomaterials. Nanodrug platforms with redox characteristics can not only reduce the adverse effects of oxidative stress on tissues by removing excess oxidants from the body but also have multienzyme-like activity, which can play a cytotoxic role in tumor tissues through the catalytic oxidation of their substrates to produce harmful reactive oxygen species such as hydroxyl radicals. In this review, various redox nanomaterials currently used in disease therapy are discussed, emphasizing the treatment methods and their applications in tumors and other human tissues. Finally, the limitations of the current clinical application of redox nanomaterials are considered.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| | - Zhengrong Xiong
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, China,Department of Applied Chemistry, University of Science and Technology of China, Hefei, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| |
Collapse
|
9
|
Inoue H, Kawano T, Iwasaki Y, Imada I, Yamada K, Tashima K, Muta D, Yamamoto K, Mukasa A. Two weeks administration of tranexamic acid for acute intracerebral hemorrhage: A hospital-based pilot study. Surg Neurol Int 2023; 14:76. [PMID: 36895235 PMCID: PMC9990797 DOI: 10.25259/sni_1110_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
Background A previous report suggested that functional status does not differ between patients who received tranexamic acid and those who received placebo within the early hours of intracerebral hemorrhage (ICH). Our pilot study tested the hypothesis that 2 weeks administration of tranexamic acid would contribute to functional improvement. Methods Consecutive patients with ICH were administered 250 mg tranexamic acid 3 times a day continuously for 2 weeks. We also enrolled historical control consecutive patients. We collected clinical data that involved hematoma size, level of consciousness, and Modified Rankin Scale (mRS) scores. Results Univariate analysis showed that the mRS score on day 90 was better in the administration group (P = 0.0095). The mRS scores on the day of death or discharge suggested a favorable effect of the treatment (P = 0.0678). Multivariable logistic regression analysis also showed that the treatment was associated with good mRS scores on day 90 (odds ratio [OR] = 2.81, 95% confidence interval [CI]: 1.10-7.21, P = 0.0312). In contrast, ICH size was associated with poor mRS scores on day 90 (OR = 0.92, 95% CI: 0.88-0.97, P = 0.0005). After propensity score matching, there was no difference in the outcomes between the two groups. We did not detect mild and serious adverse events. Conclusion The study could not show the significant effect of 2 weeks administration of tranexamic acid on functional outcomes of ICH patients after the matching; however, suggested that this treatment is at least safe and feasible. A larger and adequately powered trial is needed.
Collapse
Affiliation(s)
- Hirotaka Inoue
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takayuki Kawano
- Department of Neurosurgery, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Yuri Iwasaki
- Clinical Research Center, Hitoyoshi Medical Center, Hitoyoshi, Japan
| | - Izumi Imada
- Neurosurgery Unit, Hitoyoshi Medical Center, Hitoyoshi, Japan
| | - Kazuhiro Yamada
- Community Medical Cooperation Office, Hitoyoshi Medical Center, Hitoyoshi, Japan
| | - Kouzo Tashima
- Department of Neurosurgery, Kumamoto Medical Center, Kumamoto, Japan
| | - Daisuke Muta
- Department of Neurosurgery, Hitoyoshi Medical Center, Hitoyoshi, Japan
| | - Keizo Yamamoto
- Healthcare Center, Kumamoto Red Cross Hospital, Kumamoto, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
10
|
Shao L, Chen S, Ma L. Secondary Brain Injury by Oxidative Stress After Cerebral Hemorrhage: Recent Advances. Front Cell Neurosci 2022; 16:853589. [PMID: 35813506 PMCID: PMC9262401 DOI: 10.3389/fncel.2022.853589] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a clinical syndrome in which blood accumulates in the brain parenchyma because of a nontraumatic rupture of a blood vessel. Because of its high morbidity and mortality rate and the lack of effective therapy, the treatment of ICH has become a hot research topic. Meanwhile, Oxidative stress is one of the main causes of secondary brain injury(SBI) after ICH. Therefore, there is a need for an in-depth study of oxidative stress after ICH. This review will discuss the pathway and effects of oxidative stress after ICH and its relationship with inflammation and autophagy, as well as the current antioxidant therapy for ICH with a view to deriving better therapeutic tools or targets for ICH.
Collapse
|
11
|
Javaid MA, Selim M, Ortega-Gutierrez S, Lattanzi S, Zargar S, Alaouieh DA, Hong E, Divani AA. Potential application of intranasal insulin delivery for treatment of intracerebral hemorrhage: A review of the literature. J Stroke Cerebrovasc Dis 2022; 31:106489. [PMID: 35489182 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 12/01/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating subtype of stroke associated with high morbidity and mortality that is considered a medical emergency, mainly managed with adequate blood pressure control and creating a favorable hemostatic condition. However, to date, none of the randomized clinical trials have led to an effective treatment for ICH. It is vital to better understand the mechanisms underlying brain injury to effectively decrease ICH-associated morbidity and mortality. It is well known that initial hematoma formation and its expansion have detrimental consequences. The literature has recently focused on other pathological processes, including oxidative stress, neuroinflammation, blood-brain barrier disruption, edema formation, and neurotoxicity, that constitute secondary brain injury. Since conventional management has failed to improve clinical outcomes significantly, various neuroprotective therapies are tested in preclinical and clinical settings. Unlike intravenous administration, intranasal insulin can reach a higher concentration in the cerebrospinal fluid without causing systemic side effects. Intranasal insulin delivery has been introduced as a novel neuroprotective agent for certain neurological diseases, including ischemic stroke, subarachnoid hemorrhage, and traumatic brain injury. Since there is an overlap of mechanisms causing neuroinflammation in these neurological diseases and ICH, we believe that preclinical studies testing the role of intranasal insulin therapy in ICH are warranted.
Collapse
Affiliation(s)
| | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Shima Zargar
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | | | - Emily Hong
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
12
|
Tian Y, Yuan X, Wang Y, Wu Q, Fang Y, Zhu Z, Song G, Xu L, Wang W, Xie M. Soluble epoxide hydrolase inhibitor attenuates BBB disruption and neuroinflammation after intracerebral hemorrhage in mice. Neurochem Int 2021; 150:105197. [PMID: 34592333 DOI: 10.1016/j.neuint.2021.105197] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 11/18/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating disease with high mortality and morbidity. Soluble epoxide hydrolase (sEH) is the key enzyme in the epoxyeicosatrienoic acids (EETs) signaling. sEH inhibition has been demonstrated to have neuroprotective effects against multiple brain injuries. However, its role in the secondary injuries after ICH has not been fully elucidated. Here we tested the hypothesis that 1-Trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea (TPPU), a potent and highly selective sEH inhibitor, suppresses inflammation and the secondary injuries after ICH. Adult male C57BL/6 mice were subjected to a collagenase-induced ICH model. TPPU alleviated blood-brain barrier damage, inhibited inflammatory response, increased M2 polarization of microglial cells, reduced the infiltration of peripheral neutrophils. In addition, TPPU attenuated neuronal injury and promoted functional recovery. The results suggest that sEH may represent a potential therapeutic target for the treatment of ICH.
Collapse
Affiliation(s)
- Yeye Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xiao Yuan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yao Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Qiao Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yongkang Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Zhou Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Guini Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Li Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
13
|
Xiao W, He Z, Luo W, Feng D, Wang Y, Tang T, Yang A, Luo J. BYHWD Alleviates Inflammatory Response by NIK-Mediated Repression of the Noncanonical NF-κB Pathway During ICH Recovery. Front Pharmacol 2021; 12:632407. [PMID: 34025405 PMCID: PMC8138445 DOI: 10.3389/fphar.2021.632407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/19/2021] [Indexed: 01/24/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a life-threatening type of stroke that lacks effective treatments. The inflammatory response following ICH is a vital response that affects brain repair and organism recovery. The nuclear factor κB (NF-κB) signaling pathway is considered one of the most important inflammatory response pathways and one of its response pathways, the noncanonical NF-κB signaling pathway, is known to be associated with persistent effect and chronic inflammation. NF-κB–inducing kinase (NIK) via the noncanonical NF-κB signaling plays a key role in controlling inflammation. Here, we investigated potential effects of the traditional Chinese medicine formula Buyang Huanwu Decoction (BYHWD) on inflammatory response in a rat model of ICH recovery by inhibiting the NIK-mediated the noncanonical NF-κB signaling pathway. In the first part, rats were randomly divided into three groups: the sham group, the ICH group, and the BYHWD group. ICH was induced in rats by injecting collagenase (type VII) into the right globus pallidus of rats' brain. For the BYHWD group, rats were administered BYHWD (4.36 g/kg) once a day by intragastric administration until they were sacrificed. Neurological function was evaluated in rats by a modified neurological severity score (mNSS), the corner turn test, and the foot-fault test. The cerebral edema showed the degree of inflammatory response by sacrificed brain water content. Western blot and real-time quantitative reverse transcription PCR tested the activity of inflammatory response and noncanonical NF-κB signaling. In the second part, siRNA treatment and assessment of inflammation level as well as alterations in the noncanonical NF-κB signaling were performed to determine whether the effect of BYHWD on inflammatory response was mediated by suppression of NIK via the noncanonical NF-κB signaling pathway. We show that BYHWD treated rats exhibited: (i) better health conditions and better neural functional recovery; (ii) decreased inflammatory cytokine and the edema; (iii) reduced expression of NIK, a key protein in unregulated the noncanonical NF-κB signaling pathways; (iv) when compared with pretreated rats with NIK targeting (NIK siRNAs), showed the same effect of inhibiting the pathway and decreased inflammatory cytokine. BYHWD can attenuate the inflammatory response during ICH recovery in rats by inhibiting the NIK-mediated noncanonical NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zehui He
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Weikang Luo
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Dandan Feng
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ali Yang
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiekun Luo
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Zhang Z, Pang Y, Wang W, Zhu H, Jin S, Yu Z, Gu Y, Wu H. Neuroprotection of Heme Oxygenase-2 in Mice AfterIntracerebral Hemorrhage. J Neuropathol Exp Neurol 2021; 80:457-466. [PMID: 33870420 DOI: 10.1093/jnen/nlab025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There are few effective preventive or therapeutic strategies to mitigate the effects of catastrophic intracerebral hemorrhage (ICH) in humans. Heme oxygenase is the rate-limiting enzyme in heme metabolism; heme oxygenase-2 (HO-2) is a constitutively expressed heme oxygenase. We explored the involvement of HO-2 in a collagenase-induced mouse model of ICH in C57BL/6 wild-type and HO-2 knockout mice. We assessed oxidative stress injury, blood-brain barrier permeability, neuronal damage, late-stage angiogenesis, and hematoma clearance using immunofluorescence, Western blot, MRI, and special staining methods. Our results show that HO-2 reduces brain injury volume and brain edema, alleviates cytotoxic injury, affects vascular function in the early stage of ICH, and improves hematoma absorbance and angiogenesis in the late stage of ICH in this model. Thus, we found that HO-2 has a protective effect on brain injury after ICH.
Collapse
Affiliation(s)
- Ze Zhang
- From the Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuxin Pang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| | - Wei Wang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Zhu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| | - Sinan Jin
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| | - Zihan Yu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| | - Yunhe Gu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| | - He Wu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Chen X, Xiang X, Xie T, Chen Z, Mou Y, Gao Z, Xie X, Song M, Huang H, Gao Z, Chen M. Memantine protects blood-brain barrier integrity and attenuates neurological deficits through inhibiting nitric oxide synthase ser1412 phosphorylation in intracerebral hemorrhage rats: involvement of peroxynitrite-related matrix metalloproteinase-9/NLRP3 inflammasome activation. Neuroreport 2021; 32:228-237. [PMID: 33470757 PMCID: PMC7870044 DOI: 10.1097/wnr.0000000000001577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
Abstract
Memantine has demonstrated beneficial effects on several types of brain insults via therapeutic mechanisms mainly related to its activity as a receptor antagonist of N-methyl-d-aspartate. However, the influences of memantine on intracerebral hemorrhage (ICH) remain obscure. This research probed into the neurovascular protective mechanisms of memantine after ICH and its impacts on neuronal nitric oxide synthase (nNOS) ser1412 phosphorylation. ICH model was established by employing intrastriatal collagenase injection in rats. After modeling, rats were then allocated randomly into sham-operated (sham), vehicle-treated (ICH+V), and memantine-administrated (ICH+M) groups. Memantine (20 mg/kg/day) was intraperitoneally administered 30 min after ICH and thenceforth once daily. Rats were dedicated at 0.25, 6, 12, 24 h, 3 and 7 d post-ICH for measurement of corresponding indexes. Behavioral changes, brain edema, levels of nNOS ser1412 phosphorylation, peroxynitrite, matrix metalloproteinase (MMP)-9, NLRP3, IL-1β and numbers of dying neurons, as well as the cellular localization of gelatinolytic activity, were detected among the groups. Memantine improved the neurologic deficits and mitigated brain water content, levels of MMP-9, NLRP3, IL-1β and dying neurons. Additionally, treatment with memantine also reduced nNOS ser1412 phosphorylation and peroxynitrite formation compared with the ICH+V group at 24 h after ICH. In situ zymography simultaneously revealed that gelatinase activity was primarily colocalized with vessel walls and neurons. We concluded that memantine ameliorated blood-brain barrier disruption and neurologic dysfunction in an ICH rat model. The underlying mechanism might involve repression of nNOS ser1412 phosphorylation, as well as peroxynitrite-related MMP-9 and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xiaowei Chen
- Department of Neurosurgery, the First People’s Hospital of Jingmen City
| | - Xu Xiang
- Department of Neurosurgery, Jingmen Clinical Medical School, Hubei Minzu University, Hubei Province
| | - Teng Xie
- Department of Neurosurgery, the First People’s Hospital of Jingmen City
| | - Zhijun Chen
- Department of Neurosurgery, the First People’s Hospital of Jingmen City
| | - Yu Mou
- Department of Neurosurgery, Jingmen Clinical Medical School, Hubei Minzu University, Hubei Province
| | - Zixu Gao
- The Second Clinical Medical College of Nanchang University
| | - Xun Xie
- The Second Clinical Medical College of Nanchang University
| | - Min Song
- The Second Clinical Medical College of Nanchang University
| | - Hui Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ziyun Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Min Chen
- The Second Clinical Medical College of Nanchang University
| |
Collapse
|
16
|
Cho S, Rehni AK, Dave KR. Tobacco Use: A Major Risk Factor of Intracerebral Hemorrhage. J Stroke 2021; 23:37-50. [PMID: 33600701 PMCID: PMC7900392 DOI: 10.5853/jos.2020.04770] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/20/2021] [Indexed: 12/23/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (sICH) is one of the deadliest subtypes of stroke, and no treatment is currently available. One of the major risk factors is tobacco use. In this article, we review literature on how tobacco use affects the risk of sICH and also summarize the known effects of tobacco use on outcomes following sICH. Several studies demonstrate that the risk of sICH is higher in current cigarette smokers compared to non-smokers. The literature also establishes that cigarette smoking not only increases the risk of sICH but also increases hematoma growth, results in worse outcomes, and increases the risk of death from sICH. This review also discusses potential mechanisms activated by tobacco use which result in an increase in risk and severity of sICH. Exploring the underlying mechanisms may help alleviate the risk of sICH in tobacco users as well as may help better manage tobacco user sICH patients.
Collapse
Affiliation(s)
- Sunjoo Cho
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ashish K Rehni
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
17
|
miR-183-5p alleviates early injury after intracerebral hemorrhage by inhibiting heme oxygenase-1 expression. Aging (Albany NY) 2020; 12:12869-12895. [PMID: 32602850 PMCID: PMC7377845 DOI: 10.18632/aging.103343] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Differences in microRNA (miRNA) expression after intracerebral hemorrhage (ICH) have been reported in human and animal models, and miRNAs are being investigated as a new treatment for inflammation and oxidative stress after ICH. In this study, we found that microRNA-183-5p expression was decreased in the mouse brain after ICH. To investigate the effect of miRNA-183-5p on injury and repair of brain tissue after ICH, saline, miRNA-183-5p agomir, or miRNA-183-5p antagomir were injected into the lateral ventricles of 8-week-old mice with collagenase-induced ICH. Three days after ICH, mice treated with exogenous miRNA-183-5p showed less brain edema, neurobehavioral defects, inflammation, oxidative stress, and ferrous deposition than control mice. In addition, by alternately treating mice with a heme oxygenase-1 (HO-1) inducer, a HO-1 inhibitor, a nuclear factor erythroid 2-related factor (Nrf2) activator, and Nrf2 knockout, we demonstrated an indirect, HO-1-dependent regulatory relationship between miRNA-183-5p and Nrf2. Our results indicate that miRNA-183-5p and HO-1 are promising therapeutic targets for controlling inflammation and oxidative damage after hemorrhagic stroke.
Collapse
|
18
|
|
19
|
Hua W, Chen X, Wang J, Zang W, Jiang C, Ren H, Hong M, Wang J, Wu H, Wang J. Mechanisms and potential therapeutic targets for spontaneous intracerebral hemorrhage. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2020.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
20
|
Zhou L, Yang F, Yin JW, Gu X, Xu Y, Liang YQ. Compound K induces neurogenesis of neural stem cells in thrombin induced nerve injury through LXRα signaling in mice. Neurosci Lett 2020; 729:135007. [PMID: 32371156 DOI: 10.1016/j.neulet.2020.135007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 01/17/2023]
Abstract
Intracerebral hemorrhage (ICH) causes neurological function deficit due to the loss of neurons surrounding the hematoma. Increased neurogenesis of endogenous neural stem cells (EnNSCs) is believed to increase cell proliferation and differentiation, thereby improving the neurological deficit. However, there are still limited drugs that are effective for treating neurological deficit. So, the effects of compound K (CK) in EnNSCs were measured after thrombin-induced mice models both in vivo and in vitro, and investigated the probable mechanisms of CK during pro-neurogenesis. The results revealed that 10 μM CK promotes neurogenesis, proliferation and reduces apoptosis of EnNSCs after induction by thrombin. After that, CK treatment increased the neurogenesis of EnNSCs through liver X receptor α (LXRα) signaling pathway using adeno-associated virus knockdown and knocked out mice of LXRα gene. Finally, intraperitoneal injection of 10 mg/kg CK improved the neurogenesis of subventricular zone (SVZ), myelin repair and behavioral deficit after stereotaxic injection of thrombin in the basal ganglia of mice, and this process involved LXRα. These observations provided evidence regarding the effect of CK in pro-neurogenesis via LXRα activation, and suggested further evaluation of it due to its potential role as an effective modulator in the treatment of ICH.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China; Department of Pharmacy, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Fan Yang
- Joint Surgery, General Hospital of Tibetan Military Command Lhasa, Lhasa, China
| | - Jie-Wen Yin
- Department of Pharmacy, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Gu
- Department of Pharmacy, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yue Xu
- Department of Pharmacy, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yue-Qin Liang
- Department of Pharmacy, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
21
|
Jiang C, Wang Y, Hu Q, Shou J, Zhu L, Tian N, Sun L, Luo H, Zuo F, Li F, Wang Y, Zhang J, Wang J, Wang J, Zhang J. Immune changes in peripheral blood and hematoma of patients with intracerebral hemorrhage. FASEB J 2020; 34:2774-2791. [PMID: 31912591 DOI: 10.1096/fj.201902478r] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/27/2019] [Accepted: 12/09/2019] [Indexed: 01/22/2023]
Abstract
Immunologic changes in the hematoma of patients with intracerebral hemorrhage (ICH) and the contribution of these changes to prognosis are unknown. We collected the blood samples and hematoma fluid from 35 patients with acute ICH (<30 hours from symptom onset) and 55 age-matched healthy controls. Using flow cytometry and ELISA, we found that the percentages of granulocytes, regulatory T cells, helper T (Th) 17 cells, and dendritic cells were higher in the peripheral blood of patients with ICH than in healthy controls, whereas the percentages of lymphocytes, M1-like macrophages, and M2-like macrophages were lower. Levels of IL-6, IL-17, IL-23, TNF-α, IL-4, IL-10, and TGF-β were higher in the peripheral blood of patients with ICH. The absolute counts of white blood cells, lymphocytes, monocytes, and granulocytes in the hematoma tended to be greater at 12-30 hours than they were within 12 hours after ICH, but the percentage of Th cells decreased in peripheral blood. Increased levels of IL-10 in the serum and hematoma, and a reduction in M1-like macrophages in hematoma were independently associated with favorable outcome on day 90. These results indicate that immunocytes present in the hematoma may participate in the acute-phase inflammatory response after ICH.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Yali Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Qiangfu Hu
- Department of Anesthesiology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Jixin Shou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Li Zhu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Ning Tian
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Lu Sun
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Huan Luo
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Fangfang Zuo
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Fangfang Li
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Yingying Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Jing Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Jiarui Wang
- Winston Churchill High School, Potomac, Maryland
| | - Jian Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
22
|
Therapeutic Potential of Human Amniotic Epithelial Cells on Injuries and Disorders in the Central Nervous System. Stem Cells Int 2019; 2019:5432301. [PMID: 31827529 PMCID: PMC6886344 DOI: 10.1155/2019/5432301] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/02/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances in neurosurgery and pharmaceuticals, contemporary treatments are ineffective in restoring lost neurological functions in patients with injuries and disorders of the central nervous system (CNS). Therefore, novel and effective therapies are urgently needed. Recent studies have indicated that stem cells, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs), could repair/replace damaged or degenerative neurons and improve functional recovery in both preclinical and clinical trials. However, there are many unanswered questions and unsolved issues regarding stem cell therapy in terms of potency, stability, oncogenicity, immune response, cell sources, and ethics. Currently, human amniotic epithelial cells (hAECs) derived from the amnion exhibit considerable advantages over other stem cells and have drawn much attention from researchers. hAECs are readily available, pose no ethical concerns, and have little risk of tumorigenicity and immunogenicity. Mounting evidence has shown that hAECs can promote neural cell survival and regeneration, repair affected neurons, and reestablish damaged neural connections. It is suggested that hAECs may be the most promising candidate for cell-based therapy of neurological diseases. In this review, we mainly focus on recent advances and potential applications of hAECs for treating various CNS injuries and neurodegenerative disorders. We also discuss current hurdles and challenges regarding hAEC therapies.
Collapse
|
23
|
Abstract
Mast cells are first responders to intracerebral hemorrhage. They release potent mediators that can disrupt the blood-brain barrier promoting injury, vasogenic edema formation, and hematoma exacerbation. Also, mast cells recruit other inflammatory cells that maintain and amplify brain damage. Given their early role in the cascade of events in intracerebral hemorrhage, mast cells may offer an alternative target for antichemotactic interventions.
Collapse
Affiliation(s)
- Mustafa Yehya
- Cerebrovascular and Neurocritical Care Division, Department of Neurology, Wexner Medical Center, The Ohio State University, 333 W. 10th Ave, Graves Hall, Rm. 3172, Columbus, OH, 43210, USA
| | - Michel T Torbey
- Cerebrovascular and Neurocritical Care Division, Department of Neurology, Wexner Medical Center, The Ohio State University, 333 W. 10th Ave, Graves Hall, Rm. 3172, Columbus, OH, 43210, USA. .,Department of Neurosurgery, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
24
|
Hua W, Yang X, Chen X, Ren H, Hong M, Wu H, Wang J. WITHDRAWN: Mechanisms and potential therapeutic targets for intracerebral hemorrhage. BRAIN HEMORRHAGES 2019. [DOI: 10.1016/j.hest.2019.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
25
|
Thrombin promotes pericyte coverage by Tie2 activation in a rat model of intracerebral hemorrhage. Brain Res 2019; 1708:58-68. [DOI: 10.1016/j.brainres.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 11/18/2022]
|
26
|
Zhang Z, Zhou M, Liu N, Shi Z, Pang Y, Li D, Qi J, Wu H, An R. The protection of New Interacting Motif E shot (NIMoEsh) in mice with collagenase-induced acute stage of intracerebral hemorrhage. Brain Res Bull 2019; 148:70-78. [PMID: 30935978 DOI: 10.1016/j.brainresbull.2019.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 12/23/2022]
Abstract
Aberrant c-Jun N terminal kinase (JNK) activation is broadly involved in the pathogenesis of several acute and chronic neurological diseases. However, the mechanism of JNK activation leading to aggravation of injury after ICH remains unclear. In this study, we confirmed that using NIMoEsh to inhibit JNK activation effectively reduced the level of brain injury following ICH. We evaluated brain outcomes by histology, immunofluorescence, Luxol fast blue/Cresyl violet staining and other experimental methods. We found that NIMoEsh could significantly inhibit the activity of JNK and thus improve inflammation, white-matter damage and neuronal cell death after ICH in mice. Our results suggest that JNK activation plays an important role of brain damage after acute stage of ICH and that NIMoEsh may be a potential target drug for the treatment of ICH.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Min Zhou
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| | - Nana Liu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| | - Zhongkai Shi
- Radioimmunoassay Laboratory Department, Heilongjiang Province Hospital, Harbin 150036, China
| | - Yuxin Pang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| | - Danyang Li
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| | - Jiping Qi
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| | - He Wu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China.
| | - Ruihua An
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
27
|
Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, Che F, Chen X, Ren H, Hong M, Wang J. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol 2019; 178:101610. [PMID: 30923023 DOI: 10.1016/j.pneurobio.2019.03.003] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/18/2022]
Abstract
Intracerebral hemorrhage (ICH) is a common and severe cerebrovascular disease that has high mortality. Few survivors achieve self-care. Currently, patients receive only symptomatic treatment for ICH and benefit poorly from this regimen. Inflammatory cytokines are important participants in secondary injury after ICH. Increases in proinflammatory cytokines may aggravate the tissue injury, whereas increases in anti-inflammatory cytokines might be protective in the ICH brain. Inflammatory cytokines have been studied as therapeutic targets in a variety of acute and chronic brain diseases; however, studies on ICH are limited. This review summarizes the roles and functions of various pro- and anti-inflammatory cytokines in secondary brain injury after ICH and discusses pathogenic mechanisms and emerging therapeutic strategies and directions for treatment of ICH.
Collapse
Affiliation(s)
- Huimin Zhu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhiqiang Wang
- Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Jixu Yu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China; Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xiuli Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feng He
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhenchuan Liu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Fengyuan Che
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Hong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Wan J, Ren H, Wang J. Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage. Stroke Vasc Neurol 2019; 4:93-95. [PMID: 31338218 PMCID: PMC6613877 DOI: 10.1136/svn-2018-000205] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/06/2018] [Accepted: 12/18/2018] [Indexed: 01/10/2023] Open
Abstract
Intracerebral haemorrhage (ICH) is a devastating type of stroke with high mortality and morbidity. However, we have few options for ICH therapy and limited knowledge about post-ICH neuronal death and related mechanisms. In the aftermath of ICH, iron overload within the perihaematomal region can induce lethal reactive oxygen species (ROS) production and lipid peroxidation, which contribute to secondary brain injury. Indeed, iron chelation therapy has shown efficacy in preclinical ICH studies. Recently, an iron-dependent form of non-apoptotic cell death known as ferroptosis was identified. It is characterised by an accumulation of iron-induced lipid ROS, which leads to intracellular oxidative stress. The ROS cause damage to nucleic acids, proteins and lipid membranes, and eventually cell death. Recently, we and others discovered that ferroptosis does occur after haemorrhagic stroke in vitro and in vivo and contributes to neuronal death. Inhibition of ferroptosis is beneficial in several in vivo and in vitro ICH conditions. This minireview summarises current research on iron toxicity, lipid peroxidation and ferroptosis in the pathomechanisms of ICH, the underlying molecular mechanisms of ferroptosis and the potential for combined therapeutic strategies. Understanding the role of ferroptosis after ICH will provide a vital foundation for cell death-based ICH treatment and prevention.
Collapse
Affiliation(s)
- Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Li Q, Lan X, Han X, Wang J. Expression of Tmem119/ Sall1 and Ccr2/ CD69 in FACS-Sorted Microglia- and Monocyte/Macrophage-Enriched Cell Populations After Intracerebral Hemorrhage. Front Cell Neurosci 2019; 12:520. [PMID: 30687011 PMCID: PMC6333739 DOI: 10.3389/fncel.2018.00520] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/12/2018] [Indexed: 11/30/2022] Open
Abstract
Activation and polarization of microglia and macrophages are critical events in neuroinflammation and hematoma resolution after intracerebral hemorrhage (ICH). However, distinguishing microglia and monocyte-derived macrophages histologically can be difficult. Although they share most cell surface markers, evidence indicates that the gene regulation and function of these two cell types might be different. Flow cytometry is the gold standard for discriminating between the two cell populations, but it is rarely used in the ICH research field. We developed a flow cytometry protocol to identify and sort microglia and monocyte-derived macrophages from mice that have undergone well-established ICH models induced by collagenase or blood injection. In addition, we combined a recently established magnetic-activated cell separation system that allows eight tissue samples to be assessed together. This protocol can be completed within 5–8 h. Sorted cells are fully preserved and maintain expression of microglia-specific (Tmem119/Sall1) and macrophage-specific (Ccr2/CD69) markers. They retain phagocytic ability, respond to lipopolysaccharide stimulation, and engulf fluorescent latex beads. Thus, this protocol represents a very important tool for researching microglial and monocyte-derived macrophage biologic function after ICH and other brain diseases.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xi Lan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
30
|
Zhang X, Lu Y, Wu Q, Dai H, Li W, Lv S, Zhou X, Zhang X, Hang C, Wang J. Astaxanthin mitigates subarachnoid hemorrhage injury primarily by increasing sirtuin 1 and inhibiting the Toll-like receptor 4 signaling pathway. FASEB J 2019; 33:722-737. [PMID: 30048156 DOI: 10.1096/fj.201800642rr] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/02/2018] [Indexed: 11/29/2024]
Abstract
Inflammation plays a key role in the progression of subarachnoid hemorrhage (SAH). Here, we examined the effects of astaxanthin (ATX) on the inflammatory response and secondary damage after SAH and the underlying mechanisms of action. In vivo, a prechiasmatic cistern injection model was established in rats and mice. In addition, neuron-microglia cocultures were exposed to oxyhemoglobin to mimic SAH in vitro. Western blotting revealed that protein expression of TLR4 was markedly increased in microglia at 24 h after SAH, with consequent increases in the downstream molecules myeloid differentiation factor 88 and NF-кB. Treatment with ATX significantly inhibited the TLR4 activation, increased sirtuin 1 expression, and inhibited the subsequent inflammatory response both in vivo and in vitro. ATX also significantly decreased high-mobility group box 1 nuclear translocation and secretion in neurons, an effect that was reversed by the sirtuin 1-specific inhibitor sirtinol. ATX administered 4 h after SAH ameliorated cerebral inflammation, brain edema, and neuronal death and improved neurologic function. ATX reduced neuronal death but did not improve neurologic function in TLR4 knockout mice. These results suggest that ATX reduces the proinflammatory response and secondary brain injury after SAH, primarily by increasing sirtuin 1 levels and inhibiting the TLR4 signaling pathway.-Zhang, X., Lu, Y., Wu, Q., Dai, H., Li, W., Lv, S., Zhou, X., Zhang, X., Hang, C., Wang, J. Astaxanthin mitigates subarachnoid hemorrhage injury primarily by increasing sirtuin 1 and inhibiting the Toll-like receptor 4 signaling pathway.
Collapse
Affiliation(s)
- Xiangsheng Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Haibin Dai
- Department of Neurosurgery, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Shengyin Lv
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Changzheng Hospital, School of Medicine, Second Military Medical University, Shanghai, China; and
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Chunhua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Abstract
Located at the interface of the circulation system and the CNS, the basement membrane (BM) is well positioned to regulate blood-brain barrier (BBB) integrity. Given the important roles of BBB in the development and progression of various neurological disorders, the BM has been hypothesized to contribute to the pathogenesis of these diseases. After stroke, a cerebrovascular disease caused by rupture (hemorrhagic) or occlusion (ischemic) of cerebral blood vessels, the BM undergoes constant remodeling to modulate disease progression. Although an association between BM dissolution and stroke is observed, how each individual BM component changes after stroke and how these components contribute to stroke pathogenesis are mostly unclear. In this review, I first briefly introduce the composition of the BM in the brain. Next, the functions of the BM and its major components in BBB maintenance under homeostatic conditions are summarized. Furthermore, the roles of the BM and its major components in the pathogenesis of hemorrhagic and ischemic stroke are discussed. Last, unsolved questions and potential future directions are described. This review aims to provide a comprehensive reference for future studies, stimulate the formation of new ideas, and promote the generation of new genetic tools in the field of BM/stroke research.
Collapse
Affiliation(s)
- Yao Yao
- Yao Yao, Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 340 Pharmacy South Building, 250 West Green Street, Athens, GA 30602, USA.
| |
Collapse
|
32
|
Liu T, Zhou J, Cui H, Li P, Li H, Wang Y, Tang T. Quantitative proteomic analysis of intracerebral hemorrhage in rats with a focus on brain energy metabolism. Brain Behav 2018; 8:e01130. [PMID: 30307711 PMCID: PMC6236229 DOI: 10.1002/brb3.1130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Intracerebral hemorrhage (ICH) is a lethal cerebrovascular disorder with a high mortality and morbidity. The pathophysiological mechanisms underlying ICH-induced secondary injury remain unclear. METHODS To examine one of the gaps in the knowledge about ICH pathological mechanisms, isobaric tag for relative and absolute quantification (iTRAQ)-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used in collagenase-induced ICH rats on the 2nd day. RESULTS A total of 6,456 proteins were identified with a 1% false discovery rate (FDR). Of these proteins, 126 and 75 differentially expressed proteins (DEPs) were substantially increased and decreased, respectively. Based on Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and STRING analyses, the protein changes in cerebral hemorrhage were comprehensively evaluated, and the energy metabolism in ICH was anchored. The core position of the nitrogen metabolism pathway in brain metabolism in ICH was found for the first time. Carbonic anhydrase 1 (Ca1), carbonic anhydrase 2 (Ca2), and glutamine synthetase (Glul) participated in this pathway. We constructed the protein-protein interaction (PPI) networks for the energy metabolism of ICH, including the Atp6v1a-Atp6v0c-Atp6v0d1-Ppa2-Atp6ap2 network. CONCLUSIONS It seems that dysregulation of energy metabolism, especially nitrogen metabolism, may be a major cause in secondary ICH injury. This information provides novel insights into secondary events following ICH.
Collapse
Affiliation(s)
- Tao Liu
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
- Department of GerontologyTraditional Chinese Medicine Hospital Affiliated to Xinjiang Medical UniversityUrumqiChina
| | - Jing Zhou
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - Hanjin Cui
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - Pengfei Li
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - Haigang Li
- Department of PharmacyChangsha Medical UniversityChangshaChina
| | - Yang Wang
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - Tao Tang
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
33
|
Dexamethasone does not prevent hydrocephalus after severe intraventricular hemorrhage in newborn rats. PLoS One 2018; 13:e0206306. [PMID: 30359428 PMCID: PMC6201923 DOI: 10.1371/journal.pone.0206306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/10/2018] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was done to determine whether dexamethasone treatment prevents posthemorrhagic hydrocephalus (PHH) development and attenuates brain damage after severe IVH in newborn rats. Severe IVH was induced by injecting; 100 μL of blood into each lateral ventricle of postnatal day 4 (P4) Sprague-Dawley rats. Dexamethasone was injected intraperitoneally into rat pups at a dose of 0.5 mg/kg, 0.3 mg/kg, and 0.1 mg/kg on P5, P6, and P7, respectively. Serial brain magnetic resonance imaging and behavioral function tests, such as the negative geotaxis test and the rotarod test, were performed. On P32, brain tissues were obtained for histological and biochemical analyses. Dexamethasone treatment significantly improved the severe IVH-induced increase in the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling-positive cells, glial fibrillary acidic protein-positive astrocytes and ED-1 positive microglia, and the decrease in myelin basic protein. IVH reduced a survival of 71%, that showed a tendency to improve to 86% with dexamethasone treatment, although the result was not statistically significant. However, dexamethasone failed to prevent the progression to PHH and did not significantly improve impaired behavioral tests. Similarly, dexamethasone did not decrease the level of inflammatory cytokines such as interleukin (IL) -1α and ß, IL-6, and tumor necrosis factor-α after severe IVH. Despite its some neuroprotective effects, dexamethasone failed to improve the progress of PHH and impaired behavioral tests after severe IVH.
Collapse
|
34
|
AC-YVAD-CMK Inhibits Pyroptosis and Improves Functional Outcome after Intracerebral Hemorrhage. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3706047. [PMID: 30410928 PMCID: PMC6206581 DOI: 10.1155/2018/3706047] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/25/2018] [Accepted: 09/17/2018] [Indexed: 01/06/2023]
Abstract
Intracerebral hemorrhage (ICH) refers to bleeding in the brain and is associated with the release of large amount of inflammasomes, and the activation of different cell death pathways. These cell death pathways lead to removal of inactivated and damaged cells and also result in neuronal cell damage. Pyroptosis is a newly discovered cell death pathway that has gained attention in recent years. This pathway mainly depends on activation of caspase-1-mediated cascades to cause cell death. We tested a well-known selective inhibitor of caspase-1, AC-YVAD-CMK, which has previously been found to have neuroprotective effects in ICH mice model, to ascertain its effects on the activation of inflammasomes mediated pyroptosis. Our results showed that AC-YVAD-CMK could reduce caspase-1 activation and inhibit IL-1β production and maturation, but has no effect on NLRP3 expression, an upstream inflammatory complex. AC-YVAD-CMK administration also resulted in reduction in M1-type microglia polarization around the hematoma, while increasing the number of M2-type cells. Furthermore, AC-YVAD-CMK treated mice showed some recovery of neurological function after hemorrhage especially at the hyperacute and subacute stage resulting in some degree of limb movement. In conclusion, we are of the view that AC-YVAD-CMK could inhibit pyroptosis, decrease the secretion or activation of inflammatory factors, and affect the polarization of microglia resulting in improvement of neurological function after ICH.
Collapse
|
35
|
The neuroprotective effects and probable mechanisms of Ligustilide and its degradative products on intracerebral hemorrhage in mice. Int Immunopharmacol 2018; 63:43-57. [DOI: 10.1016/j.intimp.2018.06.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 06/14/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022]
|
36
|
Qiao HB, Li J, Lv LJ, Nie BJ, Lu P, Xue F, Zhang ZM. Eupatilin inhibits microglia activation and attenuates brain injury in intracerebral hemorrhage. Exp Ther Med 2018; 16:4005-4009. [PMID: 30344678 PMCID: PMC6176204 DOI: 10.3892/etm.2018.6699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 05/17/2018] [Indexed: 12/31/2022] Open
Abstract
Inflammation serves a critical role in the pathophysiology of intracerebral hemorrhage (ICH)-induced brain injury. Eupatilin, a pharmacologically active flavone derived from Artemisia sp., has been reported to have antioxidant, anti-inflammatory, anti-allergic and antitumor activities. However, the effect of eupatilin in ICH has not been well studied. The aim of the present study was to investigate the effect of eupatilin on ICH-induced microglial inflammation. The MTT and Transwell migration assay results revealed that eupatilin significantly inhibited microglial migration. It also decreased the production of inflammatory cytokines in erythrocyte lysis-induced BV2 cells, as well as the level of intracellular reactive oxygen species. The anti-inflammatory mechanism of eupatilin was also investigated using ELISAs and western blotting and the results demonstrated that eupatilin was able to inhibit erythrocyte lysis-induced NF-κB activation in BV2 cells. Taken together, the results of the present study suggest that eupatilin serves neurological protective effects via inhibiting microglial inflammation, providing an experimental basis for the use of eupatilin as a therapeutic target for ICH.
Collapse
Affiliation(s)
- Hai-Bo Qiao
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Jia Li
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Lian-Jie Lv
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Ben-Jin Nie
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Peng Lu
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Feng Xue
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Zhi-Ming Zhang
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| |
Collapse
|
37
|
Zhang X, Wu Q, Lu Y, Wan J, Dai H, Zhou X, Lv S, Chen X, Zhang X, Hang C, Wang J. Cerebroprotection by salvianolic acid B after experimental subarachnoid hemorrhage occurs via Nrf2- and SIRT1-dependent pathways. Free Radic Biol Med 2018; 124:504-516. [PMID: 29966698 PMCID: PMC6286712 DOI: 10.1016/j.freeradbiomed.2018.06.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 01/19/2023]
Abstract
Salvianolic acid B (SalB), a natural polyphenolic compound extracted from the herb of Salvia miltiorrhiza, possesses antioxidant and neuroprotective properties and has been shown to be beneficial for diseases that affect vasculature and cognitive function. Here we investigated the protective effects of SalB against subarachnoid hemorrhage (SAH)-induced oxidative damage, and the involvement of underlying molecular mechanisms. In a rat model of SAH, SalB inhibited SAH-induced oxidative damage. The reduction in oxidative damage was associated with suppressed reactive oxygen species generation; decreased lipid peroxidation; and increased glutathione peroxidase, glutathione, and superoxide dismutase activities. Concomitant with the suppressed oxidative stress, SalB significantly reduced neurologic impairment, brain edema, and neural cell apoptosis after SAH. Moreover, SalB dramatically induced nuclear factor-erythroid 2-related factor 2 (Nrf2) nuclear translocation and increased expression of heme oxygenase-1 and NADPH: quinine oxidoreductase-1. In a mouse model of SAH, Nrf2 knockout significantly reversed the antioxidant effects of SalB against SAH. Additionally, SalB activated sirtuin 1 (SIRT1) expression, whereas SIRT1-specific inhibitor sirtinol pretreatment significantly suppressed SalB-induced SIRT1 activation and Nrf2 expression. Sirtinol pretreatment also reversed the antioxidant and neuroprotective effects of SalB. In primary cultured cortical neurons, SalB suppressed oxidative damage, alleviated neuronal degeneration, and improved cell viability. These beneficial effects were associated with activation of the SIRT1 and Nrf2 signaling pathway and were reversed by sirtinol treatment. Taken together, these in vivo and in vitro findings suggest that SalB provides protection against SAH-triggered oxidative damage by upregulating the Nrf2 antioxidant signaling pathway, which may be modulated by SIRT1 activation.
Collapse
Affiliation(s)
- Xiangsheng Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China; Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haibin Dai
- Department of Neurosurgery, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Changzheng Hospital, School of Medicine, Second Military Medical University, Shanghai, China
| | - Shengyin Lv
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Chunhua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
38
|
Histone Deacetylase Inhibitor Scriptaid Alleviated Neurological Dysfunction after Experimental Intracerebral Hemorrhage in Mice. Behav Neurol 2018; 2018:6583267. [PMID: 30159100 PMCID: PMC6109529 DOI: 10.1155/2018/6583267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/26/2018] [Indexed: 11/17/2022] Open
Abstract
Objectives To investigate the role of Scriptaid in reducing brain injury after intracerebral hemorrhage (ICH) in mice. Methods An ICH model was constructed by injecting autologous blood into the right basal ganglia in mice. The animals were administered 3.5 mg/kg of Scriptaid intraperitoneally after ICH. The hematoma volume and hemoglobin level were measured to examine hematoma resolution. A behavior test and brain edema and white matter injury examinations indicated brain injury after ICH. Results Scriptaid treatment promoted hematoma resolution and reduced the hematoma volume 7 d after ICH compared with the vehicle group (P < 0.05). Scriptaid treatment also alleviated the brain water content in the ipsilateral basal ganglia (P < 0.05) and cortex (P < 0.01) 3 d after ICH. In addition, Scriptaid improved neurological function recovery and alleviated white matter injury 35 d after ICH. Conclusions Scriptaid can protect against brain injury after ICH and may be considered a new medical therapy method for ICH.
Collapse
|
39
|
Li Q, Weiland A, Chen X, Lan X, Han X, Durham F, Liu X, Wan J, Ziai WC, Hanley DF, Wang J. Ultrastructural Characteristics of Neuronal Death and White Matter Injury in Mouse Brain Tissues After Intracerebral Hemorrhage: Coexistence of Ferroptosis, Autophagy, and Necrosis. Front Neurol 2018; 9:581. [PMID: 30065697 PMCID: PMC6056664 DOI: 10.3389/fneur.2018.00581] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/27/2018] [Indexed: 11/24/2022] Open
Abstract
Although intracerebral hemorrhage (ICH) is a devastating disease worldwide, the pathologic changes in ultrastructure during the acute and chronic phases of ICH are poorly described. In this study, transmission electron microscopy was used to examine the ultrastructure of ICH-induced pathology. ICH was induced in mice by an intrastriatal injection of collagenase. Pathologic changes were observed in the acute (3 days), subacute (6 days), and chronic (28 days) phases. Compared with sham animals, we observed various types of cell death in the injured striatum during the acute phase of ICH, including necrosis, ferroptosis, and autophagy. Different degrees of axon degeneration in the striatum were seen in the acute phase, and axonal demyelination was observed in the ipsilateral striatum and corpus callosum at late time points. In addition, phagocytes, resident microglia, and infiltrating monocyte-macrophages were present around red blood cells and degenerating neurons and were observed to engulf red blood cells and other debris. Many synapses appeared abnormal or were lost. This systematic analysis of the pathologic changes in ultrastructure after ICH in mice provides information that will be valuable for future ICH pathology studies.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Beijing, China
| | - Abigail Weiland
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xi Lan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Frederick Durham
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xi Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wendy C. Ziai
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Daniel F. Hanley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
40
|
Goulay R, Naveau M, Gaberel T, Vivien D, Parcq J. Optimized tPA: A non-neurotoxic fibrinolytic agent for the drainage of intracerebral hemorrhages. J Cereb Blood Flow Metab 2018; 38:1180-1189. [PMID: 28741405 PMCID: PMC6434446 DOI: 10.1177/0271678x17719180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracerebral hemorrhage (ICH) is the most severe form of stroke. Catheter-delivered thrombolysis with recombinant tissue-type plasminogen activator (rtPA) for the drainage of ICH is currently under evaluation in a phase III clinical trial (MISTIE III). However, in a pig model of ICH, in situ fibrinolysis with rtPA was reported to increase peri-lesional edema by promoting N-methyl-D-aspartate (NMDA)-dependent excitotoxicity. In the present study, we engineered a non-neurotoxic tPA variant, OptPA, and investigated its safety and efficacy for in situ fibrinolysis in a rat model of ICH. Magnetic resonance imaging analyses of hematoma and edema volumes, behavioral tasks and histological analyses were performed to measure the effects of treatments. In vitro, OptPA was equally fibrinolytic as rtPA without promoting NMDA-dependent neurotoxicity. In vivo, in situ fibrinolysis using OptPA reduced hematoma volume, like rtPA, but it also reduced the evolution of peri-hematomal neuronal death and subsequent edema progression. Overall, this preclinical study demonstrates beneficial effects of OptPA compared to rtPA for the drainage of ICH.
Collapse
Affiliation(s)
- Romain Goulay
- UNICAEN, INSERM, Serine Proteases and Pathophysiology of the Neurovascular Unit, Normandie University, Caen, France
| | - Mikaël Naveau
- UNICAEN, INSERM, Serine Proteases and Pathophysiology of the Neurovascular Unit, Normandie University, Caen, France
| | - Thomas Gaberel
- UNICAEN, INSERM, Serine Proteases and Pathophysiology of the Neurovascular Unit, Normandie University, Caen, France
- Department of Neurosurgery, Caen University Hospital, Caen, France
| | - Denis Vivien
- UNICAEN, INSERM, Serine Proteases and Pathophysiology of the Neurovascular Unit, Normandie University, Caen, France
- Department of Clinical Research, Caen University Hospital, Caen, France
- Denis Vivien, UMR-S INSERM UMR-S U1237 “Physiopathology and Imaging of Neurological Disorders” (PhIND), Caen Normandy University, GIP CYCERON, Bd Becquerel, BP 5229, Caen 14074, France.
| | - Jérôme Parcq
- UNICAEN, INSERM, Serine Proteases and Pathophysiology of the Neurovascular Unit, Normandie University, Caen, France
| |
Collapse
|
41
|
Abstract
TRPC channels play important roles in neuronal death/survival in ischemic stroke, vasospasm in hemorrhagic stroke, thrombin-induced astrocyte pathological changes, and also in the initiation of stroke by affecting blood pressure and atherogenesis. TRPCs' unique channel characters and downstream pathways make them possible new targets for stroke therapy. TRPC proteins have different functions in different cell types. Considering TRPCs' extensive distribution in various tissues and cell types, drugs targeting them could induce more complicated effects. More specific agonists/antagonists and antibodies are required for future study of TRPCs as potential targets for stroke therapy.
Collapse
|
42
|
Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol 2017; 13:420-433. [PMID: 28524175 PMCID: PMC5575938 DOI: 10.1038/nrneurol.2017.69] [Citation(s) in RCA: 621] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracerebral haemorrhage (ICH) is the most lethal subtype of stroke but currently lacks effective treatment. Microglia are among the first non-neuronal cells on the scene during the innate immune response to ICH. Microglia respond to acute brain injury by becoming activated and developing classic M1-like (proinflammatory) or alternative M2-like (anti-inflammatory) phenotypes. This polarization implies as yet unrecognized actions of microglia in ICH pathology and recovery, perhaps involving microglial production of proinflammatory or anti-inflammatory cytokines and chemokines. Furthermore, alternatively activated M2-like microglia might promote phagocytosis of red blood cells and tissue debris, a major contribution to haematoma clearance. Interactions between microglia and other cells modulate microglial activation and function, and are also important in ICH pathology. This Review summarizes key studies on modulators of microglial activation and polarization after ICH, including M1-like and M2-like microglial phenotype markers, transcription factors and key signalling pathways. Microglial phagocytosis, haematoma resolution, and the potential crosstalk between microglia and T lymphocytes, neurons, astrocytes, and oligodendrocytes in the ICH brain are described. Finally, the clinical and translational implications of microglial polarization in ICH are presented, including the evidence that therapeutic approaches aimed at modulating microglial function might mitigate ICH injury and improve brain repair.
Collapse
Affiliation(s)
- Xi Lan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| | - Qian Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing 400037, China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| |
Collapse
|
43
|
Li M, Li Z, Ren H, Jin WN, Wood K, Liu Q, Sheth KN, Shi FD. Colony stimulating factor 1 receptor inhibition eliminates microglia and attenuates brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab 2017; 37:2383-2395. [PMID: 27596835 PMCID: PMC5482387 DOI: 10.1177/0271678x16666551] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microglia are the first responders to intracerebral hemorrhage, but their precise role in intracerebral hemorrhage remains to be defined. Microglia are the only type of brain cells expressing the colony-stimulating factor 1 receptor, a key regulator for myeloid lineage cells. Here, we determined the effects of a colony-stimulating factor 1 receptor inhibitor (PLX3397) on microglia and the outcome in the context of experimental mouse intracerebral hemorrhage. We show that PLX3397 effectively depleted microglia, and the depletion of microglia was sustained after intracerebral hemorrhage. Importantly, colony-stimulating factor 1 receptor inhibition attenuated neurodeficits and brain edema in two experimental models of intracerebral hemorrhage induced by injection of collagenase or autologous blood. The benefit of colony-stimulating factor 1 receptor inhibition was associated with reduced leukocyte infiltration in the brain and improved blood-brain barrier integrity after intracerebral hemorrhage, and each observation was independent of lesion size or hematoma volume. These results demonstrate that suppression of colony-stimulating factor 1 receptor signaling ablates microglia and confers protection after intracerebral hemorrhage.
Collapse
Affiliation(s)
- Minshu Li
- 1 Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,2 Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, USA
| | - Zhiguo Li
- 2 Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, USA
| | - Honglei Ren
- 1 Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei-Na Jin
- 1 Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,2 Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, USA
| | - Kristofer Wood
- 2 Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, USA
| | - Qiang Liu
- 1 Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,2 Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, USA
| | - Kevin N Sheth
- 3 Department of Neurology, Yale University School of Medicine, New Haven, USA
| | - Fu-Dong Shi
- 1 Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,2 Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, USA
| |
Collapse
|
44
|
Kim JH, Kim YS, Kim SH, Kim SD, Park JY, Kim TS, Joo SP. Contralateral Hemispheric Brain Atrophy After Primary Intracerebral Hemorrhage. World Neurosurg 2017; 102:56-64. [DOI: 10.1016/j.wneu.2017.02.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/18/2022]
|
45
|
Li M, Ren H, Sheth KN, Shi FD, Liu Q. A TSPO ligand attenuates brain injury after intracerebral hemorrhage. FASEB J 2017; 31:3278-3287. [PMID: 28416580 PMCID: PMC5503714 DOI: 10.1096/fj.201601377rr] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/27/2017] [Indexed: 01/25/2023]
Abstract
Intracerebral hemorrhage (ICH) is a devastating disease without effective treatment. After ICH, the immediate infiltration of leukocytes and activation of microglia are accompanied by a rapid up-regulation of the 18-kDa translocator protein (TSPO). TSPO ligands have shown anti-inflammatory and neuroprotective properties in models of CNS injury. In this study, we determined the impact of a TSPO ligand, etifoxine, on brain injury and inflammation in 2 mouse models of ICH. TSPO was up-regulated in Iba1+ cells from brains of patients with ICH and in CD11b+CD45int cells from mice subjected to collagenase-induced ICH. Etifoxine significantly reduced neurodeficits and perihematomal brain edema after ICH induction by injection of either autologous blood or collagenase. In collagenase-induced ICH mice, the protection of etifoxine was associated with reduced leukocyte infiltration into the brain and microglial production of IL-6 and TNF-α. Etifoxine improved blood–brain barrier integrity and diminished cell death. Notably, the protective effect of etifoxine was abolished in mice depleted of microglia by using a colony-stimulating factor 1 receptor inhibitor. These results indicate that the TSPO ligand etifoxine attenuates brain injury and inflammation after ICH. TSPO may be a viable therapeutic target that requires further investigations in ICH.—Li, M., Ren, H., Sheth, K. N., Shi, F.-D., Liu, Q. A TSPO ligand attenuates brain injury after intracerebral hemorrhage.
Collapse
Affiliation(s)
- Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Honglei Ren
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Kevin N Sheth
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; .,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
46
|
Lim-Hing K, Rincon F. Secondary Hematoma Expansion and Perihemorrhagic Edema after Intracerebral Hemorrhage: From Bench Work to Practical Aspects. Front Neurol 2017; 8:74. [PMID: 28439253 PMCID: PMC5383656 DOI: 10.3389/fneur.2017.00074] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/20/2017] [Indexed: 01/24/2023] Open
Abstract
Intracerebral hemorrhages (ICH) represent about 10-15% of all strokes per year in the United States alone. Key variables influencing the long-term outcome after ICH are hematoma size and growth. Although death may occur at the time of the hemorrhage, delayed neurologic deterioration frequently occurs with hematoma growth and neuronal injury of the surrounding tissue. Perihematoma edema has also been implicated as a contributing factor for delayed neurologic deterioration after ICH. Cerebral edema results from both blood-brain barrier disruption and local generation of osmotically active substances. Inflammatory cellular mediators, activation of the complement, by-products of coagulation and hemolysis such as thrombin and fibrin, and hemoglobin enter the brain and induce a local and systemic inflammatory reaction. These complex cascades lead to apoptosis or neuronal injury. By identifying the major modulators of cerebral edema after ICH, a therapeutic target to counter degenerative events may be forthcoming.
Collapse
Affiliation(s)
- Krista Lim-Hing
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Fred Rincon
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
47
|
Porte B, Hardouin J, Zerdoumi Y, Derambure C, Hauchecorne M, Dupre N, Obry A, Lequerre T, Bekri S, Gonzalez B, Flaman JM, Marret S, Cosette P, Leroux P. Major remodeling of brain microvessels during neonatal period in the mouse: A proteomic and transcriptomic study. J Cereb Blood Flow Metab 2017; 37:495-513. [PMID: 26873886 PMCID: PMC5381447 DOI: 10.1177/0271678x16630557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Preterm infants born before 29 gestation weeks incur major risk of subependymal/intracerebral/intraventricular hemorrhage. In mice, neonate brain endothelial cells are more prone than adult cells to secrete proteases under glutamate challenge, and invalidation of the Serpine 1 gene is accompanied by high brain hemorrhage risk up to five days after birth. We hypothesized that the structural and functional states of microvessels might account for age-dependent vulnerability in mice up to five days after birth and might represent a pertinent paradigm to approach the hemorrhage risk window observed in extreme preterms. Mass spectrometry proteome analyses of forebrain microvessels at days 5, 10 and in adult mice revealed 899 proteins and 36 enriched pathways. Microarray transcriptomic study identified 5873 genes undergoing at least two-fold change between ages and 93 enriched pathways. Both approaches pointed towards extracellular matrix, cell adhesion and junction pathways, indicating delayed microvascular strengthening after P5. Furthermore, glutamate receptors, proteases and their inhibitors exhibited convergent evolutions towards excitatory aminoacid sensitivity and low proteolytic control likely accounting for vascular vulnerability in P5 mice. Thus, age vascular specificities must be considered in future therapeutic interventions in preterms. Data are available on ProteomeXchange (identifier PXD001718) and NCBI Gene-Expression-Omnibus repository (identification GSE67870).
Collapse
Affiliation(s)
- Baptiste Porte
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Julie Hardouin
- 2 UMR-6270, CNRS, Polymers, Biopolymers, Surfaces, Biofilm Resistance, Cell Surfaces Interactions Group (PBS), CNRS, IRIB, Normandie Université, Mont-Saint-Aignan, France.,3 Proteomic Facility PISSARO, IRIB, Normandie Université, Mont-Saint-Aignan, France
| | - Yasmine Zerdoumi
- 4 UMR-S1079, INSERM, Genetic of Cancer and Neurogenetics (GCM), IRIB, Normandie Université, Rouen, France
| | - Céline Derambure
- 5 UMR-S905, INSERM, Pathophysiology and Biotherapy of Inflammatory and Autoimmune Diseases, IRIB, Normandie Université, Rouen, France
| | - Michèle Hauchecorne
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Nicolas Dupre
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Antoine Obry
- 3 Proteomic Facility PISSARO, IRIB, Normandie Université, Mont-Saint-Aignan, France
| | - Thierry Lequerre
- 5 UMR-S905, INSERM, Pathophysiology and Biotherapy of Inflammatory and Autoimmune Diseases, IRIB, Normandie Université, Rouen, France
| | - Soumeya Bekri
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,6 Metabolic Biochemistry, Rouen University Hospital, Rouen, France
| | - Bruno Gonzalez
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Jean M Flaman
- 4 UMR-S1079, INSERM, Genetic of Cancer and Neurogenetics (GCM), IRIB, Normandie Université, Rouen, France
| | - Stéphane Marret
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,7 Neonatal Pediatrics and Intensive Care, Rouen University Hospital, Rouen, France
| | - Pascal Cosette
- 2 UMR-6270, CNRS, Polymers, Biopolymers, Surfaces, Biofilm Resistance, Cell Surfaces Interactions Group (PBS), CNRS, IRIB, Normandie Université, Mont-Saint-Aignan, France.,3 Proteomic Facility PISSARO, IRIB, Normandie Université, Mont-Saint-Aignan, France
| | - Philippe Leroux
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| |
Collapse
|
48
|
Zhang Z, Song Y, Zhang Z, Li D, Zhu H, Liang R, Gu Y, Pang Y, Qi J, Wu H, Wang J. Distinct role of heme oxygenase-1 in early- and late-stage intracerebral hemorrhage in 12-month-old mice. J Cereb Blood Flow Metab 2017; 37:25-38. [PMID: 27317654 PMCID: PMC5363754 DOI: 10.1177/0271678x16655814] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 05/12/2016] [Accepted: 05/25/2016] [Indexed: 12/22/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating form of stroke with high morbidity and mortality. Heme oxygenase-1 (HO-1), the key enzyme in heme degradation, is highly expressed after ICH, but its role is still unclear. In this study, we used an HO-1 inducer and inhibitor to test the role of HO-1 in different stages of ICH in vivo and in vitro. In the early stage of ICH, high HO-1 expression worsened the outcomes of mice subjected to the collagenase-induced ICH model. HO-1 increased brain edema, white matter damage, neuronal death, and neurobehavioral deficits. Furthermore, elevated HO-1 increased inflammation, oxidative stress, matrix metalloproteinase-9/2 activity, and iron deposition. In the later stage of ICH, long-term induction of HO-1 increased hematoma absorption, angiogenesis, and recovery of neurologic function. We conclude that HO-1 activation mediates early brain damage after ICH but promotes neurologic function recovery in the later stage of ICH.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Pathology, First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Yuejia Song
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Ze Zhang
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Danyang Li
- Department of Pathology, First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Hong Zhu
- Department of Pathology, First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Rui Liang
- Department of Pathology, First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Yunhe Gu
- Department of Pathology, First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Yuxin Pang
- Department of Pathology, First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Jiping Qi
- Department of Pathology, First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - He Wu
- Department of Pathology, First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Cheng S, Gao W, Xu X, Fan H, Wu Y, Li F, Zhang J, Zhu X, Zhang Y. Methylprednisolone sodium succinate reduces BBB disruption and inflammation in a model mouse of intracranial haemorrhage. Brain Res Bull 2016; 127:226-233. [PMID: 27746369 DOI: 10.1016/j.brainresbull.2016.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/20/2016] [Accepted: 10/12/2016] [Indexed: 01/30/2023]
Abstract
Inflammation and disruption of the blood-brain barrier (BBB) cause oedema and secondary brain injury after intracranial haemorrhage (ICH), which is closely related to patient prognosis. Methylprednisolone sodium succinate (MPSS), a well-known immunosuppressive agent, is widely applied in many diseases to inhibit inflammation. In this study, we investigated the effect of MPSS on inflammation and disruption of the BBB in a model mouse of ICH. ICH was induced by injecting collagenase into the right striatum of male C57/BL mice. Permeability of BBB was measured with Evans Blue assay and brain oedema was detected by measurement of brain water content. Expressions of NF-κB, TLR4, occludin, ZO-1, IL-1β, TNF-α, Bax, and Bcl-2 were determined by Western Blot. Neutrophils, microglia were measured by immunohistochemistry staining, neuronal apoptosis was measured by TUNEL and NeuN co-stained. Administration of MPSS post-ICH significantly reduced permeability of the BBB and brain oedema and upregulated expression of ZO-1 and Occludin. MPSS inhibited inflammatory responses, including reducing proinflammatory cytokines (IL-1β, TNF-α), suppressing infiltration of neutrophils and activation of microglia. This was accompanied by attenuated activation of the TLR4/NF-κB signalling pathway. In addition, MPSS reduced neuronal apoptosis through increasing Bcl-2 expression and reducing Bax expression. MPSS suppressed inflammatory responses, attenuated disruption of the BBB and reduced neuronal apoptosis, contributing to reduction of secondary brain injury after ICH. These results suggest that MPSS may be a potential therapy for ICH.
Collapse
Affiliation(s)
- Shiqi Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, People's Republic of China
| | - WeiWei Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, People's Republic of China
| | - Xin Xu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, People's Republic of China
| | - Hengyi Fan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, People's Republic of China
| | - Yingang Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, People's Republic of China
| | - Fei Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, People's Republic of China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, People's Republic of China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, People's Republic of China.
| | - Yan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
50
|
Min H, Jang YH, Cho IH, Yu SW, Lee SJ. Alternatively activated brain-infiltrating macrophages facilitate recovery from collagenase-induced intracerebral hemorrhage. Mol Brain 2016; 9:42. [PMID: 27094968 PMCID: PMC4837536 DOI: 10.1186/s13041-016-0225-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) is one of the major causes of stroke. After onset of ICH, massive infiltration of macrophages is detected in the peri-hematoma regions. Still, the function of these macrophages in ICH has not been completely elucidated. Results In a collagenase-induced ICH model, CX3CR1+ macrophages accumulated in the peri-hematoma region. Characterization of these macrophages revealed expression of alternatively activated (M2) macrophage markers. In the macrophage-depleted mice, ICH-induced brain lesion volume was larger and neurological deficits were more severe compared to those of control mice, indicating a protective role of these macrophages in ICH. In the ICH-injured brain, mannose receptor-expressing macrophages increased at a delayed time point after ICH, indicating M2 polarization of the brain-infiltrating macrophages in the brain microenvironment. To explore this possibility, bone marrow-derived macrophages (BMDM) were co-cultured with mouse brain glial cells and then tested for activation phenotype. Upon co-culture with glia, the number of mannose receptor-positive M2 macrophages was significantly increased. Furthermore, treatment with glia-conditioned media increased the number of BMDM of M2 phenotype. Conclusions In this study, our data suggest that brain-infiltrating macrophages after ICH are polarized to the M2 phenotype by brain glial cells and thereby contribute to recovery from ICH injury.
Collapse
Affiliation(s)
- Hyunjung Min
- Department of Neuroscience and Dental Research Institute, School of Dentistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yong Ho Jang
- Department of Neuroscience and Dental Research Institute, School of Dentistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Oriental Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Seong-Woon Yu
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, Korea
| | - Sung Joong Lee
- Department of Neuroscience and Dental Research Institute, School of Dentistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|