1
|
Gómez-Roncal S, Gironès-Garreta A, Suárez M, Muguerza B, Aragonès G, Mulero M, Arola-Arnal A. Sex impact on daily activity and physiological, metabolic and hormonal responses to different photoperiod regimens in diet-induced obese fischer 344 rats. J Physiol Biochem 2025:10.1007/s13105-025-01075-w. [PMID: 40493338 DOI: 10.1007/s13105-025-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/11/2025] [Indexed: 06/12/2025]
Affiliation(s)
- Saioa Gómez-Roncal
- Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
- Nutrigenomics Research Group, Institut d'Investigació Sanitària Pere Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Aina Gironès-Garreta
- Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
- Nutrigenomics Research Group, Institut d'Investigació Sanitària Pere Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Manuel Suárez
- Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
- Nutrigenomics Research Group, Institut d'Investigació Sanitària Pere Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Begoña Muguerza
- Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
- Nutrigenomics Research Group, Institut d'Investigació Sanitària Pere Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Gerard Aragonès
- Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
- Nutrigenomics Research Group, Institut d'Investigació Sanitària Pere Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Miquel Mulero
- Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
- Nutrigenomics Research Group, Institut d'Investigació Sanitària Pere Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Anna Arola-Arnal
- Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain.
- Nutrigenomics Research Group, Institut d'Investigació Sanitària Pere Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain.
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain.
| |
Collapse
|
2
|
Campanher G, Andrade N, Lopes J, Silva C, Pena MJ, Rodrigues I, Martel F. The Counteracting Effect of Chrysin on Dietary Fructose-Induced Metabolic-Associated Fatty Liver Disease (MAFLD) in Rats with a Focus on Glucose and Lipid Metabolism. Molecules 2025; 30:380. [PMID: 39860248 PMCID: PMC11768066 DOI: 10.3390/molecules30020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The prevalence of metabolic syndrome has been exponentially increasing in recent decades. Thus, there is an increasing need for affordable and natural interventions for this disorder. We explored the effect of chrysin, a dietary polyphenol, on hepatic lipid and glycogen accumulation, metabolic dysfunction-associated fatty liver disease (MAFLD) activity score and oxidative stress and on hepatic and adipose tissue metabolism in rats presenting metabolic syndrome-associated conditions. Rats fed a chow diet were separated into four groups: Control (tap water), Fructose (tap water with 10% fructose), Chrysin (tap water+ chrysin (100 mg/kg body weight/d)), and Fructose + Chrysin (tap water with 10% fructose + chrysin (100 mg/kg body weight/d, daily)) (for 18 weeks). When associated with the chow diet, chrysin reduced hepatic lipid and glycogen storage, increased the hepatic antioxidant potential of glutathione and reduced de novo lipogenesis in the adipose tissue. When associated with the high fructose-diet, chrysin attenuated the increase in lipid and glycogen hepatic storage, improved the MAFLD activity score, decreased hepatic lipid peroxidation, increased the antioxidant potential of glutathione, and improved lipid and glucose metabolic markers in the liver and adipose tissue. In conclusion, our results suggest that chrysin is a beneficial addition to a daily diet for improvement of hepatic metabolic health, particularly for individuals suffering from metabolic syndrome.
Collapse
Affiliation(s)
- Gabriela Campanher
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (G.C.); (N.A.); (C.S.); (M.J.P.); (I.R.)
- School of Medical Sciences, University of Örebro, Campus USÖ, S-701 82 Örebro, Sweden
| | - Nelson Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (G.C.); (N.A.); (C.S.); (M.J.P.); (I.R.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. J. Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Joanne Lopes
- Department of Pathology, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal;
| | - Cláudia Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (G.C.); (N.A.); (C.S.); (M.J.P.); (I.R.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. J. Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Maria João Pena
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (G.C.); (N.A.); (C.S.); (M.J.P.); (I.R.)
| | - Ilda Rodrigues
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (G.C.); (N.A.); (C.S.); (M.J.P.); (I.R.)
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (G.C.); (N.A.); (C.S.); (M.J.P.); (I.R.)
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
3
|
Krishnan I, Ling MTM, Ng MH, Law JX, Yusof MRM, Thangarajah T, Mahmood Z, Uda Zahli NI, Rajamanickam S, Subramani B, Lokanathan Y. Efficacy of Fetal Wharton's Jelly Mesenchymal Stem Cells-Derived Small Extracellular Vesicles in Metabolic Syndrome. Biomolecules 2025; 15:44. [PMID: 39858439 PMCID: PMC11763124 DOI: 10.3390/biom15010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVE Metabolic syndrome (MetS) is characterized by abdominal obesity, increased blood pressure (BP), fasting blood glucose (FBG) and triglyceride levels, and reduced high-density lipoprotein (HDL) levels. This study aims to investigate the efficacy of the Wharton's jelly mesenchymal stem cells (WJMSCs)-derived small extracellular vesicles' (sEVs) preparations in managing MetS. METHOD Twenty-four rats were fed with a high-fat and high-fructose diet to induce MetS for 16 weeks and randomized into three groups (n = 8/group): a MetS Control group treated with normal saline, MetS Low Dose (LD) group treated with a LD of sEVs preparations (3 × 109 particle/rat), and MetS High Dose (HD) group treated with a HD of sEVs preparations (9 × 109 particles/rat). The Control Non-Disease (ND) group was given a standard rat diet and autoclaved tap water with normal saline as treatment. Treatments were given via intravenous injection every three weeks for twelve weeks. Rats were assessed every six weeks for physical measurements, FBG, lipid profiles, CRP, leptin, adiponectin, and BP. Necropsy evaluation was performed on the lungs, liver, spleen, and kidney. RESULTS Significant reductions in FBG, triglycerides, BP, and increased HDL levels were observed in the treated groups compared to the control group. However, significant abdominal circumference (AC) improvement was not observed in the treated groups. Non-significant associations were found between fasting CRP, leptin, and adiponectin levels with MetS rats after treatment. In addition, sEVs preparations improved inflammation and hemorrhage in the lung and mineralisation in the renal of the treated group. CONCLUSIONS Human fetal WJMSCs-derived sEVs preparations improve all the clusters of MetS in rats except AC and could be further explored as a treatment for MetS.
Collapse
Affiliation(s)
- Illayaraja Krishnan
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur 56000, Malaysia; (I.K.); (M.T.M.L.); (M.H.N.); (J.X.L.)
| | - Magdalene Tan Mei Ling
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur 56000, Malaysia; (I.K.); (M.T.M.L.); (M.H.N.); (J.X.L.)
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya (UM), Kuala Lumpur 50603, Malaysia
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur 56000, Malaysia; (I.K.); (M.T.M.L.); (M.H.N.); (J.X.L.)
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur 56000, Malaysia; (I.K.); (M.T.M.L.); (M.H.N.); (J.X.L.)
| | - Mohd Rafizul Mohd Yusof
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur 56000, Malaysia;
| | - Thavachelvi Thangarajah
- Department of Obstetrics and Gynaecology, Hospital Angkatan Tentera (HAT) Tuanku Mizan, Wangsa Maju, Kuala Lumpur 53300, Malaysia;
| | - Zalina Mahmood
- Production and Blood Supply Management Division, National Blood Centre, Jalan Tun Razak, Kuala Lumpur 50400, Malaysia;
| | - Nurul Izzati Uda Zahli
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - Shathiya Rajamanickam
- Medixcell Sdn. Bhd., Level 5, Equatorial Plaza, Lot 5-5 & 5-6, Jalan Sultan Ismail, Kuala Lumpur 50250, Malaysia; (S.R.); (B.S.)
| | - Baskar Subramani
- Medixcell Sdn. Bhd., Level 5, Equatorial Plaza, Lot 5-5 & 5-6, Jalan Sultan Ismail, Kuala Lumpur 50250, Malaysia; (S.R.); (B.S.)
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur 56000, Malaysia; (I.K.); (M.T.M.L.); (M.H.N.); (J.X.L.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
4
|
Demirel MA, Şumlu E, Özercan İH, Şahin K, Tuzcu M, Bay V, Kurşun ÖED, Uludağ MO, Akar F. Impact of high-fructose diet and metformin on histomorphological and molecular parameters of reproductive organs and vaginal microbiota of female rat. Sci Rep 2024; 14:27463. [PMID: 39523383 PMCID: PMC11551161 DOI: 10.1038/s41598-024-76211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
There are limited data on the effects of a high-fructose diet on the female reproductive system. Although metformin has some functional effects on female fertility, its reproductive outcome on high fructose diet-induced metabolic syndrome is unclear. The aim of the present study is to evaluate the impact of a high fructose diet on histomorphological and molecular parameters of the reproductive organs and vaginal microbiota as well as the treatment potential of metformin. Wistar albino rats were used in the study. The metabolic syndrome model was induced by a high-fructose diet in rats for 15 weeks. Metformin was orally administered once a day for the last 6 weeks. The high-fructose diet increased blood glucose, triglycerides, insulin, and ovarian testosterone levels; however, it reduced ovarian aromatase levels and follicle numbers and caused uterine inflammation. The high-fructose diet-induced molecular abnormalities on ovarian tissue were demonstrated by the downregulation of ovarian insulin signaling pathway proteins and dysregulation of ovarian mitogenic and apoptotic pathway proteins. A high-fructose diet caused vaginal dysbiosis, metformin increased probiotic bacteria in the vaginal microbiota. Our results revealed that metformin improves ovarian impairments by modulating hormonal balance, insulin level, mapk, and apoptotic signaling molecules, as well as regulating the vaginal microbiota.
Collapse
Affiliation(s)
- Mürşide Ayşe Demirel
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Laboratory Animals Breeding, and Experimental Researches Center, Gazi University, Etiler, Ankara, 06330, Turkey.
| | - Esra Şumlu
- Department of Medical Pharmacology, Faculty of Medicine, KTO Karatay University, Konya, Turkey
| | - İbrahim Hanifi Özercan
- Department of Pathology, Medicine Faculty, Health Sciences Institution, University of Firat, Elazig, Turkey
| | - Kazım Şahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Veysel Bay
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100, İzmir, Turkey
| | | | - Mecit Orhan Uludağ
- Department of Clinical Pharmacy, Faculty of Pharmacy, Near East University, Nicosia, Turkey
| | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
5
|
Petrovic S, Mouskeftara T, Paunovic M, Deda O, Vucic V, Milosevic M, Gika H. Unveiling Lipidomic Alterations in Metabolic Syndrome: A Study of Plasma, Liver, and Adipose Tissues in a Dietary-Induced Rat Model. Nutrients 2024; 16:3466. [PMID: 39458462 PMCID: PMC11509917 DOI: 10.3390/nu16203466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a complex condition characterized by fat accumulation, dyslipidemia, impaired glucose control and hypertension. In this study, rats were fed a high-fat high-fructose (HFF) diet in order to develop MetS. After ten weeks, the dietary-induced MetS was confirmed by higher body fat percentage, lower HDL-cholesterol and increased blood pressure in the HFF-fed rats compared to the normal-fed control animals. However, the effect of MetS development on the lipidomic signature of the dietary-challenged rats remains to be investigated. To reveal the contribution of specific lipids to the development of MetS, the lipid profiling of rat tissues particularly susceptible to MetS was performed using untargeted UHPLC-QTOF-MS/MS lipidomic analysis. A total of 37 lipid species (mainly phospholipids, triglycerides, sphingolipids, cholesterol esters, and diglycerides) in plasma, 43 lipid species in liver, and 11 lipid species in adipose tissue were identified as dysregulated between the control and MetS groups. Changes in the lipid signature of selected tissues additionally revealed systemic changes in the dietary-induced rat model of MetS.
Collapse
Affiliation(s)
- Snjezana Petrovic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.P.); (V.V.)
| | - Thomai Mouskeftara
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Marija Paunovic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.P.); (V.V.)
| | - Olga Deda
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| | - Vesna Vucic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.P.); (V.V.)
| | - Maja Milosevic
- Group for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Helen Gika
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| |
Collapse
|
6
|
González-Garibay AS, Sandoval G, Torres-González OR, Bastidas-Ramírez BE, Sánchez-Hernández IM, Padilla-Camberos E. Agave-Laurate-Bioconjugated Fructans Decrease Hyperinsulinemia and Insulin Resistance, Whilst Increasing IL-10 in Rats with Metabolic Syndrome Induced by a High-Fat Diet. Pharmaceuticals (Basel) 2024; 17:1036. [PMID: 39204141 PMCID: PMC11357657 DOI: 10.3390/ph17081036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Metabolic syndrome (MetS) comprises a cluster of metabolic risk factors, which include obesity, hypertriglyceridemia, high blood pressure, and insulin resistance. The purpose of this study was to evaluate the effects of laurate-bioconjugated fructans on pro- and anti-inflammatory cytokines in Wistar rats with MetS induced by a high-fat diet. Laurate-bioconjugated fructans were synthesized with agave fructans, immobilized lipase B, and vinyl laureate as the acylant. Groups were fed a standard diet (NORMAL), a high-fat diet (HFD), or a high-fat diet plus laurate-bioconjugated fructans (FL PREV) for 9 weeks. A fourth group received a high-fat diet for 6 weeks, followed by simultaneous exposure to a high-fat diet and laurate-bioconjugated fructans for 3 additional weeks (FL REV). The dose of laurate-bioconjugated fructans was 130 mg/kg. Laurate-bioconjugated fructans reduced food and energy intake, body weight, body mass index, abdominal circumference, adipose tissue, adipocyte area, serum triglycerides, insulin, insulin resistance, and C-reactive protein but they increased IL-10 protein serum levels and mRNA expression. The impact of laurate-bioconjugated fructans on zoometric and metabolic parameters supports their potential as therapeutic agents to improve obesity, obesity comorbidities, insulin resistance, type 2 diabetes mellitus, and MetS.
Collapse
Affiliation(s)
- Angélica Sofía González-Garibay
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
- Department of Molecular Biology and Genomics, Institute of Research on Chronic Degenerative Diseases, University Center of Health Sciences, Universidad de Guadalajara, Sierra Mojada No. 950 Col. Independencia, Guadalajara C.P. 44340, Jalisco, Mexico
| | - Georgina Sandoval
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
| | - Omar Ricardo Torres-González
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
| | - Blanca Estela Bastidas-Ramírez
- Department of Molecular Biology and Genomics, Institute of Research on Chronic Degenerative Diseases, University Center of Health Sciences, Universidad de Guadalajara, Sierra Mojada No. 950 Col. Independencia, Guadalajara C.P. 44340, Jalisco, Mexico
| | - Iván Moisés Sánchez-Hernández
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
| | - Eduardo Padilla-Camberos
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
| |
Collapse
|
7
|
Dakic T, Jeremic D, Lakic I, Jasnic N, Ruzicic A, Vujovic P, Jevdjovic T. Walnut supplementation increases levels of UCP1 and CD36 in brown adipose tissue independently of diet type. Mol Cell Biochem 2024; 479:1735-1745. [PMID: 38478220 DOI: 10.1007/s11010-024-04981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/28/2024] [Indexed: 07/18/2024]
Abstract
Dietary interventions that modulate the brown adipose tissue (BAT) thermogenic activity could represent a promising therapy for metabolic disorders. In order to examine if dietary walnuts intake regulates the expression of BAT thermogenic markers levels in healthy and metabolically challenged (fructose fed) animals, rats were initially divided into the control and fructose-fed groups. After nine weeks, these groups were subdivided into the one kept on the original regimens and the other supplemented with walnuts. High-fructose diet resulted in an increased relative BAT mass and no change in UCP1 content, while the walnut supplementation increased the amount of UCP1 in BAT, but did not affect 5-HT, NA, DHPG content and DHPG/NA ratio regardless of the diet. Moreover, the CD36 levels were increased following the walnut consumption, unlike FATP1, GLUT1, GLUT4, and glycogen content which remained unchanged. Additionally, the BAT levels of activated IR and Akt were not affected by walnut consumption, while ERK signaling was decreased. Overall, we found that walnut consumption increased UCP1 and CD36 content in the BAT of both control and metabolically challenged rats, suggesting that FFAs represent the BAT preferred substrate under the previously described circumstances. This further implies that incorporating walnuts into the everyday diet may help to alleviate some symptoms of the metabolic disorder.
Collapse
Affiliation(s)
- Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia
| | - Dusan Jeremic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia
| | - Iva Lakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia
| | - Nebojsa Jasnic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia
| | - Aleksandra Ruzicic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia
| | - Predrag Vujovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia.
| |
Collapse
|
8
|
Amaro GM, da Silva ADT, Tamarindo GH, Lamas CDA, Taboga SR, Cagnon VHA, Góes RM. Differential effects of omega-3 PUFAS on tumor progression at early and advanced stages in TRAMP mice. Prostate 2022; 82:1491-1504. [PMID: 36039485 DOI: 10.1002/pros.24421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/09/2022] [Accepted: 07/13/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND In vitro studies evidenced antitumor effects of omega-3 polyunsaturated fatty acids ([n-3] PUFAs), but their effects on prostate cancer (PCa) remain controversial in epidemiological studies. Here we investigated whether an (n-3) PUFA-enriched diet affects tumor progression in transgenic adenocarcinoma of the mouse prostate (TRAMP), at early (12 weeks age) and advanced stages (20 weeks age). METHODS TRAMP mice were fed with standard rodent diet (C12, C20) or (n-3) PUFA-enriched diet containing 10% fish oil (T12, T20). A group of 8 weeks age animals fed standard diet was also used for comparison (C8). The ventral prostate was processed for histopathological and immunohistochemical analyses and serum samples submitted to biochemical assays. RESULTS At early stages, (n-3) PUFA increased the frequency of normal epithelium (3.8-fold) and decreased the frequency of high-grade intraepithelial neoplasia (3.3-fold) and in situ carcinoma (1.9-fold) in the gland, maintaining prostate pathological status similar to C8 group. At advanced stages, 50% of the animals developed a large primary tumor in both C20 and T20, and tumor weight did not differ (C20: 2.2 ± 2.4; T20: 2.8 ± 2.9 g). The ventral prostate of T12 and of T20 animals that did not develop primary tumors showed lower cell proliferation, tissue expressions of androgen (AR) and glucocorticoid (GR) receptors, than their respective controls. For these animals, (n-3) PUFA also avoided an increase in the number of T-lymphocytes, collagen fibers, and αSMA immunoreactivity, and preserved stromal gland microenvironment. (n-3) PUFA also lowered serum triglycerides and cholesterol, regulating the lipid metabolism of TRAMP mice. CONCLUSIONS (n-3) PUFAs had a protective effect at early stages of PCa, delaying tumor progression in TRAMP mice, in parallel with reductions in cell proliferation, AR, and GR and maintenance of the stromal compartment of the gland. However, (n-3) PUFAs did not prevent the development of primary tumors for the T20 group, reinforcing the need for further investigation at advanced stages of disease.
Collapse
Affiliation(s)
- Gustavo M Amaro
- Departament of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Alana D T da Silva
- Departament of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Guilherme H Tamarindo
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Celina de A Lamas
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Sebastião R Taboga
- Departament of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Valéria Helena Alves Cagnon
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rejane M Góes
- Departament of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
9
|
Hassan NF, Hassan AH, El-Ansary MR. Cytokine modulation by etanercept ameliorates metabolic syndrome and its related complications induced in rats administered a high-fat high-fructose diet. Sci Rep 2022; 12:20227. [PMID: 36418417 PMCID: PMC9684438 DOI: 10.1038/s41598-022-24593-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to investigate the effect of etanercept (ETA)-an anti-tumor necrosis factor α (TNF-α) monoclonal antibody-on metabolic disorders such as obesity, hypertension, dyslipidemia, and insulin resistance associated with the metabolic syndrome (MS). MS was induced in rats via high-fat high-fructose (HFHF) administration for 8 weeks. Rats were divided into three groups: negative control, HFHF model, and ETA-treated groups [HFHF + ETA (0.8 mg/kg/twice weekly, subcutaneously) administered in the last 4 weeks]. ETA effectively diminished the prominent features of MS via a significant reduction in the percent body weight gain along with the modulation of adipokine levels, resulting in a significant elevation of serum adiponectin consistent with TNF-α and serum leptin level normalization. Moreover, ETA enhanced dyslipidemia and the elevated blood pressure. ETA managed the prominent features of MS and its associated complications via the downregulation of the hepatic inflammatory pathway that induces nonalcoholic steatohepatitis (NASH)-from the expression of Toll-like receptor 4, nuclear factor kappa B, and TNF-α until that of transforming growth factor-in addition to significant improvements in glucose utilization, insulin sensitivity, and liver function parameter activity and histopathological examination. ETA was effective for the treatment of all prominent features of MS and its associated complications, such as type II diabetes mellitus and NASH.
Collapse
Affiliation(s)
- Noha F. Hassan
- grid.440876.90000 0004 0377 3957Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Azza H. Hassan
- grid.7776.10000 0004 0639 9286Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mona R. El-Ansary
- grid.440876.90000 0004 0377 3957Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
10
|
I'Anson H, Archer HR, Choi HJ, Ko TB, Rodriguez CL, Samuel MA, Bezold KA, Whitworth GB. Resting metabolic rate, abdominal fat pad and liver metabolic gene expression in female rats provided a snacking diet from weaning to adulthood. Physiol Behav 2022; 256:113962. [PMID: 36100110 DOI: 10.1016/j.physbeh.2022.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
Abstract
Our female rat model with continuous, ad libitum access to snacks and chow from weaning to adulthood closely mimics human feeding behavior from childhood onwards. It causes weight gain, enlarged abdominal fat pads, reduced insulin sensitivity and leptin resistance without an increase in total caloric intake. Our current study investigated if this change in energy partitioning is due to a decrease in resting metabolic rate (RMR). In addition, we determined if carbohydrate and lipid metabolism changes in abdominal fat pads and liver. RMR, using indirect calorimetry, was determined in control and snacking rats every two weeks from Days 28-29 to Days 76-77. RMR decreased with age in both groups, but there was no difference between snacking and control rats at any age. At termination, abdominal fat pads (parametrial, retroperitoneal and mesenteric) and liver samples were collected for determination of gene expression for 21 genes involved in carbohydrate and lipid metabolism using RT-qPCR. Analysis of gene expression data showed a striking difference between metabolic profiles of control and snacking rats in abdominal fat pads and liver, with a distinct segregation of genes for both lipid and carbohydrate metabolism that correlated with an increase in body weight and fat pad weights. Genes involved in lipogenesis were upregulated in abdominal fat pads, while genes involved in adipogenesis, and lipid recycling were upregulated in the liver. In conclusion, snacking in addition to chow from weaning in female rats causes a repartitioning of energy that is not due to depressed RMR in snacking rats. Rather, snacking from weaning causes a shift in gene expression resulting in energy partitioning toward enhanced abdominal fat pad lipogenesis, and adipogenesis and lipid recycling in liver.
Collapse
Affiliation(s)
- Helen I'Anson
- Department of Biology, Washington & Lee University, Lexington VA 24450, United States.
| | - Hannah R Archer
- Department of Biology, Washington & Lee University, Lexington VA 24450, United States
| | - Hannah J Choi
- Department of Biology, Washington & Lee University, Lexington VA 24450, United States
| | - Tiffany B Ko
- Department of Biology, Washington & Lee University, Lexington VA 24450, United States
| | - Carissa L Rodriguez
- Department of Biology, Washington & Lee University, Lexington VA 24450, United States
| | - Mariam A Samuel
- Department of Biology, Washington & Lee University, Lexington VA 24450, United States
| | - Kelly A Bezold
- Department of Biology, Washington & Lee University, Lexington VA 24450, United States
| | - Gregg B Whitworth
- Department of Biology, Washington & Lee University, Lexington VA 24450, United States
| |
Collapse
|
11
|
El-Domiaty HF, Sweed E, Kora MA, Zaki NG, Khodir SA. Activation of angiotensin-converting enzyme 2 ameliorates metabolic syndrome-induced renal damage in rats by renal TLR4 and nuclear transcription factor κB downregulation. Front Med (Lausanne) 2022; 9:904756. [PMID: 36035416 PMCID: PMC9411523 DOI: 10.3389/fmed.2022.904756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is an independent risk factor for chronic kidney disease (CKD) through many mechanisms, including activation of the renin-angiotensin system. The deleterious effects of angiotensin II (Ang II) can be counterbalanced by angiotensin-converting enzyme 2 (ACE2). Diminazene aceturate (DIZE), an anti-trypanosomal drug, can activate ACE2. OBJECTIVE This study aimed to investigate the possible reno-protective effects of DIZE in MetS rats with elucidation of related mechanisms. MATERIALS AND METHODS Thirty adult male Wistar albino rats were divided equally into control, MetS, and MetS + DIZE groups. Body weight, systolic blood pressure (SBP), and urinary albumin levels were measured. Serum levels of fasting blood glucose (FBG), insulin, uric acid, lipid profile, urea, and creatinine were measured. Homeostasis Model Assessment Index (HOMA-IR) was estimated. Subsequently, renal levels of ACE2, Ang II, malondialdehyde (MDA), reduced glutathione (GSH), and tumor necrosis factor-α (TNF-α) were measured with histopathological and immunohistochemical assessment of TLR4 and NF-κB in renal tissues. RESULTS MetS caused dyslipidemia with significant increases in body weight, SBP, FBG, serum insulin, HOMA-IR, uric acid, urea, creatinine, urinary albumin, and renal levels of Ang II, MDA, and TNF-α, whereas renal ACE2 and GSH were significantly decreased. Renal TLR4 and NF-κB immunoreactivity in MetS rats was upregulated. DIZE supplementation of MetS rats induced significant improvements in renal function parameters; this could be explained by the ability of DIZE to activate renal ACE2 and decrease renal Ang II levels with downregulation of renal TLR4 and NF-κB expression. CONCLUSION DIZE exerts a reno-protective effect in MetS, mainly by downregulating renal TLR4 and NF-κB levels.
Collapse
Affiliation(s)
- Heba F. El-Domiaty
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Eman Sweed
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Mona A. Kora
- Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Nader G. Zaki
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Suzan A. Khodir
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
12
|
Tasić D, Opačić M, Kovačević S, Nikolić Kokić A, Dimitrijević M, Nikolić D, Vojnović Milutinović D, Blagojević D, Djordjevic A, Brkljačić J. Effects of Fructose and Stress on Rat Renal Copper Metabolism and Antioxidant Enzymes Function. Int J Mol Sci 2022; 23:ijms23169023. [PMID: 36012287 PMCID: PMC9409054 DOI: 10.3390/ijms23169023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 12/22/2022] Open
Abstract
The effects of a fructose-rich diet and chronic stress on copper metabolism in the kidneys are still understudied. We investigated whether fructose and/or chronic unpredictable stress modulate copper metabolism in a way that affects redox homeostasis, thus contributing to progression of metabolic disturbances in the kidney. We determined protein level of copper transporters, chaperones, and cuproenzymes including cytochrome c oxidase, as well as antioxidant enzymes function in the kidneys of male Wistar rats subjected to 20% liquid fructose supplementation and/or chronic stress. Liquid fructose supplementation increased level of copper chaperone of superoxide dismutase and decreased metallothionein level, while rendering the level of copper importer and copper chaperones involved in copper delivery to mitochondria and trans Golgi network unaffected. Stress had no effect on renal copper metabolism. The activity and expression of renal antioxidant enzymes remained unaltered in all experimental groups. In conclusion, fructose, independently of stress, decreased renal copper level, and modulated renal copper metabolism as to preserve vital cellular function including mitochondrial energy production and antioxidative defense, at the expense of intracellular copper storage.
Collapse
Affiliation(s)
- Danica Tasić
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Miloš Opačić
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Aleksandra Nikolić Kokić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Milena Dimitrijević
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Dušan Nikolić
- Department of Biology and Inland Waters Protection, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Duško Blagojević
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Jelena Brkljačić
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-2078318
| |
Collapse
|
13
|
Clark TD, Reichelt AC, Ghosh-Swaby O, Simpson SJ, Crean AJ. Nutrition, anxiety and hormones. Why sex differences matter in the link between obesity and behavior. Physiol Behav 2022; 247:113713. [DOI: 10.1016/j.physbeh.2022.113713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
|