1
|
Hakim TA, Zaki BM, Mohamed DA, Blasdel B, Gad MA, Fayez MS, El-Shibiny A. Novel strategies for vancomycin-resistant Enterococcus faecalis biofilm control: bacteriophage (vB_EfaS_ZC1), propolis, and their combined effects in an ex vivo endodontic model. Ann Clin Microbiol Antimicrob 2025; 24:24. [PMID: 40223105 PMCID: PMC11995525 DOI: 10.1186/s12941-025-00790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Endodontic treatment failures are predominantly attributed to Enterococcus faecalis (E. faecalis) infection, a Gram-positive coccus. E. faecalis forms biofilms, resist multiple antibiotics, and can withstand endodontic disinfection protocols. Vancomycin-resistant strains, in particular, are challenging to treat and are associated with serious medical complications. METHODS A novel phage, vB_EfaS_ZC1, was isolated and characterized. Its lytic activity against E. faecalis was assessed in vitro through time-killing and biofilm assays. The phage's stability under various conditions was determined. Genomic analysis was conducted to characterize the phage and its virulence. The phage, propolis, and their combination were evaluated as an intracanal irrigation solution against a 4-week E. faecalis mature biofilm, using an ex vivo infected human dentin model. The antibiofilm activity was analyzed using a colony-forming unit assay, field emission scanning electron microscopy, and confocal laser scanning microscopy. RESULTS The isolated phage, vB_EfaS_ZC1, a siphovirus with prolate capsid, exhibited strong lytic activity against Vancomycin-resistant strains. In vitro assays indicated its effectiveness in inhibiting planktonic growth and disrupting mature biofilms. The phage remained stable under wide range of temperatures (- 80 to 60 °C), tolerated pH levels from 4 to 11; however the phage viability significantly reduced after UV exposure. Genomic analysis strongly suggests the phage's virulence and suitability for therapeutic applications; neither lysogeny markers nor antibiotic resistance markers were identified. Phylogenetic analysis clustered vB_EfaS_ZC1 within the genus Saphexavirus. The phage, both alone and in combination with propolis, demonstrated potent antibiofilm effects compared to conventional root canal irrigation. CONCLUSION Phage vB_EfaS_ZC1 demonstrates a promising therapy, either individually or in combination with propolis, for addressing challenging endodontic infections caused by E. faecalis.
Collapse
Affiliation(s)
- Toka A Hakim
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Bishoy Maher Zaki
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
- ESCMID Study Group on Biofilms (ESGB), Basel, Switzerland
| | - Dalia A Mohamed
- Department of Endodontics, Faculty of Dentistry, Suez Canal University, 4.5 Ring Road, Ismailia, 41522, Egypt
- Department of Endodontics, Faculty of Dentistry, Sinai University, Kantara-Shark, Ismailia, Egypt
| | - Bob Blasdel
- Vésale Bioscience, Vésale Pharmaceutica, 5310, Noville-Sur-Mehaigne, Belgium
| | - Mohamed A Gad
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Mohamed S Fayez
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, 45511, Egypt.
| |
Collapse
|
2
|
Charria-Girón E, Zeng H, Gorelik TE, Pahl A, Truong KN, Schrey H, Surup F, Marin-Felix Y. Arcopilins: A New Family of Staphylococcus aureus Biofilm Disruptors from the Soil Fungus Arcopilus navicularis. J Med Chem 2024; 67:15029-15040. [PMID: 39141525 PMCID: PMC11403616 DOI: 10.1021/acs.jmedchem.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Biofilms represent a key challenge in the treatment of microbial infections; for instance, Staphylococcus aureus causes chronic or fatal infections by forming biofilms on medical devices. Herein, the fungus Arcopilus navicularis was found to produce a novel family of PKS-NRPS metabolites that are able to disrupt preformed biofilms of S. aureus. Arcopilins A-F (1-6), tetramic acids, and arcopilin G (7), a 2-pyridone, were elucidated using HR-ESI-MS and one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy. Their absolute configuration was established by the synthesis of MPTA-esters for 2, analysis of 1H-1H coupling constants, and ROESY correlations, along with comparison with the crystal structure of 7. Arcopilin A (1) not only effectively disrupts preformed biofilms of S. aureus but also potentiates the activity of gentamicin and vancomycin up to 115- and 31-fold times, respectively. Our findings demonstrate the potential application of arcopilins for the conjugated treatment of infections caused by S. aureus with antibiotics unable to disrupt preformed biofilms.
Collapse
Affiliation(s)
- Esteban Charria-Girón
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Haoxuan Zeng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Tatiana E Gorelik
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Alexandra Pahl
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Khai-Nghi Truong
- Rigaku Europe SE, Hugenottenallee 167, 63263 Neu-Isenburg, Germany
| | - Hedda Schrey
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Yasmina Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
3
|
Wei X, Qian S, Yang Y, Mo J. Microbiome-based therapies for periodontitis and peri-implantitis. Oral Dis 2024; 30:2838-2857. [PMID: 37890080 DOI: 10.1111/odi.14782] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/16/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVES Periodontitis and peri-implantitis are oral infectious-inflammatory diseases associated with oral microbial dysbiosis. Microbiome-based therapies, characterized by manipulation of the microbiota, are emerging as promising therapeutic approaches to resolve the microbial dysbiosis and associated dysregulation of immune system. This review aims at summarizing recent progress on microbiome-based therapies in periodontitis and peri-implantitis, promoting a further understanding of the related therapeutic mechanisms. SUBJECTS AND METHODS Pertinent literatures focused on microbiome-based therapies for periodontitis and peri-implantitis are obtained from PubMed and Web of Science. RESULTS In this article, we review the roles and therapeutic mechanisms of four microbiome-based therapies, including probiotics, postbiotics, predatory bacteria and phages, and microbiota transplantation, in the management of periodontitis and peri-implantitis. Challenges facing this field are also discussed, highlighting the areas that require more attention and investigation. CONCLUSIONS Microbiome-based therapies may serve as effective treatment for periodontitis and peri-implantitis. This review presents a new viewpoint to this field.
Collapse
Affiliation(s)
- Xindi Wei
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shujiao Qian
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yijie Yang
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiaji Mo
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
4
|
Lin M, Gao XL, Li W. IL-33 in patients with periodontitis and chronic obstructive pulmonary disease. Hum Immunol 2024; 85:110811. [PMID: 38755030 DOI: 10.1016/j.humimm.2024.110811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE A link between periodontitis and chronic obstructive pulmonary disease (COPD) has been identified, and interleukin-33 (IL-33) may play an important role in the common inflammatory mechanisms of these diseases. This study analyzed the associations of the serum IL-33 level with the occurrence and severity of periodontitis and COPD. METHODS A total of 161 participants were divided into four groups: healthy volunteers, periodontitis patients, COPD patients, and patients with both COPD and periodontitis. Associations between serum IL-33 levels were measured by enzyme-linked immunosorbent assay, and clinical factors as well as the risks and severity of periodontitis and COPD were analyzed. RESULTS Serum IL-33 levels were lower in all patient groups than in healthy controls. A trend toward lower IL-33 levels was observed among patients with both diseases compared with patients with either disease alone. The serum IL-33 level was also inversely associated with the severity of periodontitis and COPD. The serum IL-33 level was negatively associated with risks of periodontitis and COPD, indicating that IL-33 is likely involved in the pathophysiologic mechanism of the relationship between COPD and periodontitis. CONCLUSION This study advances our understanding of the association between COPD and periodontitis and provides new bases for COPD prevention and treatment.
Collapse
Affiliation(s)
- Mei Lin
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiao-Li Gao
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Wallin-Bengtsson V, Scherdin-Almhöjd U, Roos-Jansåker AM. Supra- and sub-gingival instrumentation of periodontitis with the adjunctive treatment of a chloramine - a one-year randomized clinical trial study. Acta Odontol Scand 2024; 83:1-6. [PMID: 37962876 PMCID: PMC11302644 DOI: 10.1080/00016357.2023.2281486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Periodontitis is a bacterial-induced disease and for this reason controlling the microbiota is a necessity. Therapy includes self-performed daily oral hygiene in combination with supra- and sub-gingival instrumentation. An adjunctive antimicrobial agent may improve the outcome. AIMS To assess whether a chloramine (Perisolv®) has an adjunctive effect to non-surgical periodontal therapy and whether non-surgical periodontal therapy affects quality of life. MATERIAL AND METHODS Thirty-eight patients were randomized to a test or a control group. Clinical indices were performed at baseline and at three and twelve months. In the test group, Perisolv® was applied initially and after the sub-gingival instrumentation in pathological pockets. Oral health-related quality of life was measured with the Oral Health Impact Profile (OHIP) instrument at baseline and twelve months. RESULTS In both groups, an initial probing pocket depth (PPD) of > 4 mm and bleeding on probing (BOP) were statistically reduced (p < 0.002 and p < 0.002 respectively) at twelve months and after adjustment for Bonferroni. There were no significant differences between the test and the control group in terms of the number of PPD, BOP or plaque index, or in the mean OHIP score. CONCLUSIONS Chloramine did not have an adjunctive effect, but the overall therapy was significantly efficacious both clinically and in terms of quality of life. TRIAL REGISTRATION Registered at www. CLINICALTRIALS gov:NCT05757921.
Collapse
Affiliation(s)
- Viveca Wallin-Bengtsson
- Department of Oral Health, Faculty of Oral Health Science, Kristianstad University, Kristianstad, Sweden.
| | | | - Ann-Marie Roos-Jansåker
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden; Department of Periodontology, Blekinge Hospital, Karlskrona, Sweden
| |
Collapse
|
6
|
Xia FW, Guo BW, Zhao Y, Wang JL, Chen Y, Pan X, Li X, Song JX, Wan Y, Feng S, Wu MY. Type I Photosensitizer Targeting Glycans: Overcoming Biofilm Resistance by Inhibiting the Two-Component System, Quorum Sensing, and Multidrug Efflux. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2309797. [PMID: 37973189 DOI: 10.1002/adma.202309797] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Stubborn biofilm infections pose serious threats to human health due to the persistence, recurrence, and dramatically magnified antibiotic resistance. Photodynamic therapy has emerged as a promising approach to combat biofilm. Nevertheless, how to inhibit the bacterial signal transduction system and the efflux pump to conquer biofilm recurrence and resistance remains a challenging and unaddressed issue. Herein, a boric acid-functionalized lipophilic cationic type I photosensitizer, ACR-DMP, is developed, which efficiently generates •OH to overcome the hypoxic microenvironment and photodynamically eradicates methicillin-resistant Staphylococcus aureus (MRSA) and biofilms. Furthermore, it not only alters membrane potential homeostasis and osmotic pressure balance due to its strong binding ability with plasma membrane but also inhibits quorum sensing and the two-component system, reduces virulence factors, and regulates the activity of the drug efflux pump attributed to the glycan-targeting ability, helping to prevent biofilm recurrence and conquer biofilm resistance. In vivo, ACR-DMP successfully obliterates MRSA biofilms attached to implanted medical catheters, alleviates inflammation, and promotes vascularization, thereby combating infections and accelerating wound healing. This work not only provides an efficient strategy to combat stubborn biofilm infections and bacterial multidrug resistance but also offers systematic guidance for the rational design of next-generation advanced antimicrobial materials.
Collapse
Affiliation(s)
- Feng-Wei Xia
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Bing-Wei Guo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yu Zhao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Jia-Li Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yuan Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiu Pan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xin Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Jia-Xing Song
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yu Wan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Ming-Yu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
7
|
Ramachandra SS, Wright P, Han P, Abdal‐hay A, Lee RSB, Ivanovski S. Evaluating models and assessment techniques for understanding oral biofilm complexity. Microbiologyopen 2023; 12:e1377. [PMID: 37642488 PMCID: PMC10464519 DOI: 10.1002/mbo3.1377] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Oral biofilms are three-dimensional (3D) complex entities initiating dental diseases and have been evaluated extensively in the scientific literature using several biofilm models and assessment techniques. The list of biofilm models and assessment techniques may overwhelm a novice biofilm researcher. This narrative review aims to summarize the existing literature on biofilm models and assessment techniques, providing additional information on selecting an appropriate model and corresponding assessment techniques, which may be useful as a guide to the beginner biofilm investigator and as a refresher to experienced researchers. The review addresses previously established 2D models, outlining their advantages and limitations based on the growth environment, availability of nutrients, and the number of bacterial species, while also exploring novel 3D biofilm models. The growth of biofilms on clinically relevant 3D models, particularly melt electrowritten fibrous scaffolds, is discussed with a specific focus that has not been previously reported. Relevant studies on validated oral microcosm models that have recently gaining prominence are summarized. The review analyses the advantages and limitations of biofilm assessment methods, including colony forming unit culture, crystal violet, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt assays, confocal microscopy, fluorescence in situ hybridization, scanning electron microscopy, quantitative polymerase chain reaction, and next-generation sequencing. The use of more complex models with advanced assessment methodologies, subject to the availability of equipment/facilities, may help in developing clinically relevant biofilms and answering appropriate research questions.
Collapse
Affiliation(s)
- Srinivas Sulugodu Ramachandra
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- Preventive Dental Sciences, College of DentistryGulf Medical UniversityAjmanUnited Arab Emirates
| | - Patricia Wright
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| | - Pingping Han
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| | - Abdalla Abdal‐hay
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- Department of Engineering Materials and Mechanical Design, Faculty of EngineeringSouth Valley UniversityQenaEgypt
- Faculty of Industry and Energy Technology, Mechatronics Technology ProgramNew Cairo Technological University, New Cairo‐Fifth SettlementCairoEgypt
| | - Ryan S. B. Lee
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| | - Saso Ivanovski
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
8
|
Biofilm ecology associated with dental caries: Understanding of microbial interactions in oral communities leads to development of therapeutic strategies targeting cariogenic biofilms. ADVANCES IN APPLIED MICROBIOLOGY 2023; 122:27-75. [PMID: 37085193 DOI: 10.1016/bs.aambs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
A biofilm is a sessile community characterized by cells attached to the surface and organized into a complex structural arrangement. Dental caries is a biofilm-dependent oral disease caused by infection with cariogenic pathogens, such as Streptococcus mutans, and associated with frequent exposure to a sugar-rich diet and poor oral hygiene. The virulence of cariogenic biofilms is often associated with the spatial organization of S. mutans enmeshed with exopolysaccharides on tooth surfaces. However, in the oral cavity, S. mutans does not act alone, and several other microbes contribute to cariogenic biofilm formation. Microbial communities in cariogenic biofilms are spatially organized into complex structural arrangements of various microbes and extracellular matrices. The balance of microbiota diversity with reduced diversity and a high proportion of acidogenic-aciduric microbiota within the biofilm is closely related to the disease state. Understanding the characteristics of polymicrobial biofilms and the association of microbial interactions within the biofilm (e.g., symbiosis, cooperation, and competition) in terms of their potential role in the pathogenesis of oral disease would help develop new strategies for interventions in virulent biofilm formation.
Collapse
|
9
|
El Mobadder M, Nammour S, Matys J, Grzech-Leśniak K. Sodium Hypochlorite and Diode Laser in Non-Surgical Treatment of Periodontitis: Clinical and Bacteriological Study with Real Time Polymerase Chain Reaction (PCR). Life (Basel) 2022; 12:life12101637. [PMID: 36295072 PMCID: PMC9605566 DOI: 10.3390/life12101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022] Open
Abstract
Increasing the disinfection during non-surgical treatment of periodontitis is primordial. This study assesses the effectiveness of sodium hypochlorite and a 980 nm diode laser in non-surgical treatment of periodontitis. Thirty sites of localized periodontitis with a probing pocket depth (PPD) of ≥ 6 mm were included. Fifteen underwent scaling root planing (SRP group) and 15 underwent SRP + 0.5% NaOCl and a 980 nm diode laser (study group). A biological molecular test and real time polymerase chain reaction (RT-PCR) were performed before (T0) and after intervention (T1). Total bacterial count and counts of Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, Prevotella intermedia, Peptostreptococcus micros, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Eubacterium nodatum, Capnocytophaga gingivalis were assessed. Plaque index (PI), bleeding on probing (BOP), gingival recession (GR), PPD and clinical attachment loss (CAL) were evaluated at T0, and 3 and 6 months after. Study group showed a statistically significant reduction of TBC (5.66 × 108 CFU/mL) compared to SRP (6.2 × 109 CFU/mL). Both groups showed a statistically significant reduction of Treponema denticola, Tannerella forsythia, Prevotella intermedia, Peptostrep. (micromonas) micros and Fusobacterium nucleatum; however, a significant reduction of Eubacterium nodatum and Capnocytophaga gingivalis was observed in the study group. At T6, both groups had a statistically significant reduction of PI, BOP, GR, PD and CAL. The study group showed more GR compared to SRP and a significant reduction of PD (4.03 mm ± 0.49) compared to SRP (5.28 mm ± 0.67). This study reveals that NaOCl and a diode laser are effective as an adjunctive to the non-surgical treatment of periodontitis.
Collapse
Affiliation(s)
- Marwan El Mobadder
- Dental Surgery Department, Wroclaw Medical University, 50-425 Wroclaw, Poland
- Correspondence: or ; Tel.: +961-71343767
| | - Samir Nammour
- Department of Dental Sciences, Faculty of Medicine, University of Liege, 4000 Liege, Belgium
| | - Jacek Matys
- Dental Surgery Department, Wroclaw Medical University, 50-425 Wroclaw, Poland
| | | |
Collapse
|
10
|
Antibacterial Adhesion Strategy for Dental Titanium Implant Surfaces: From Mechanisms to Application. J Funct Biomater 2022; 13:jfb13040169. [PMID: 36278638 PMCID: PMC9589972 DOI: 10.3390/jfb13040169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Dental implants are widely used to restore missing teeth because of their stability and comfort characteristics. Peri-implant infection may lead to implant failure and other profound consequences. It is believed that peri-implantitis is closely related to the formation of biofilms, which are difficult to remove once formed. Therefore, endowing titanium implants with anti-adhesion properties is an effective method to prevent peri-implant infection. Moreover, anti-adhesion strategies for titanium implant surfaces are critical steps for resisting bacterial adherence. This article reviews the process of bacterial adhesion, the material properties that may affect the process, and the anti-adhesion strategies that have been proven effective and promising in practice. This article intends to be a reference for further improvement of the antibacterial adhesion strategy in clinical application and for related research on titanium implant surfaces.
Collapse
|
11
|
Hr R, Jagwani S, Shenoy PA, Jadhav K, Shaikh S, Mutalik SP, Mullick P, Mutalik S, Jalalpure S, Sikarwar MS, Dhamecha D. Thermoreversible gel of green tea extract: Formulation and evaluation for the management of periodontitis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Immune Response to Biofilm Growing Pulmonary Pseudomonas aeruginosa Infection. Biomedicines 2022; 10:biomedicines10092064. [PMID: 36140163 PMCID: PMC9495460 DOI: 10.3390/biomedicines10092064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Biofilm infections are tolerant to the host responses and recalcitrance to antibiotic drugs and disinfectants. The induced host-specific innate and adaptive immune responses by established biofilms are significantly implicated and contributes to the course of the infections. Essentially, the host response may be the single one factor impacting the outcome most, especially in cases where the biofilm is caused by low virulent opportunistic bacterial species. Due to the chronicity of biofilm infections, activation of the adaptive immune response mechanisms is frequently experienced, and instead of clearing the infection, the adaptive response adds to the pathogenesis. To a high degree, this has been reported for chronic Pseudomonas aeruginosa lung infections, where both a pronounced antibody response and a skewed Th1/Th2 balance has been related to a poorer outcome. In addition, detection of an adaptive immune response can be used as a significant indicator of a chronic P. aeruginosa lung infection and is included in the clinical definitions as such. Those issues are presented in the present review, along with a characterization of the airway structure in relation to immune responses towards P. aeruginosa pulmonary infections.
Collapse
|
13
|
Chatzopoulos GS, Karakostas P, Kavakloglou S, Assimopoulou A, Barmpalexis P, Tsalikis L. Clinical Effectiveness of Herbal Oral Care Products in Periodontitis Patients: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10061. [PMID: 36011693 PMCID: PMC9408146 DOI: 10.3390/ijerph191610061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The use of herbal products in oral cavity has shown an increased popularity and potential benefits due to their additional anti-inflammatory and antioxidant properties as well as the lack of side effects related to their use. OBJECTIVE To assess the clinical effectiveness of herbal dental products (mouthwash, dentifrice, gel) when compared to conventional products or placebo in periodontitis patients. MATERIAL AND METHODS A systematic review with 22 studies was carried out using MEDLINE/Pubmed, EMBASE and Web of Science databases in addition to hand searches. Randomized and non-randomized clinical trials that evaluated the effect of any herbal dental product and compared it with conventional products or placebo in periodontitis patients and published up to March 2022, were screened. RESULTS Herbal products used as adjuncts to scaling and root planing (SRP) or supragingival debridement (SPD) led to superior clinical outcomes than placebo or no adjuncts (8 studies). In conjunction with SRP, these products showed comparable outcomes with chlorhexidine (6 studies) or better (4 studies). When used as adjuncts to SPD, herbal oral care products demonstrated comparable outcomes with chlorhexidine and conventional products (4 studies). CONCLUSIONS Within the limitations of this systematic review, herbal oral care products may play a key role in the management of periodontal disease. Further well-designed studies are needed to establish their efficacy.
Collapse
Affiliation(s)
- Georgios S. Chatzopoulos
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Developmental and Surgical Sciences, Division of Periodontology, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Panagiotis Karakostas
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stefania Kavakloglou
- Faculty of Dentistry, Medical University of Sofia, 1431 Sofia, Bulgaria
- 424 General Military Training Hospital, 56429 Thessaloniki, Greece
| | - Andreana Assimopoulou
- School of Chemical Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Lazaros Tsalikis
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
14
|
Isolation, characterization and complete genome analysis of a novel bacteriophage vB_EfaS-SRH2 against Enterococcus faecalis isolated from periodontitis patients. Sci Rep 2022; 12:13268. [PMID: 35918375 PMCID: PMC9346004 DOI: 10.1038/s41598-022-16939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Periodontitis is a chronic inflammatory condition that can damage soft tissues and supporting teeth. Enterococcus faecalis is an opportunistic pathogen usually living in the oral cavity and plays a critical role in apical periodontitis that significantly threatens human health. The use of bacteriophages as an alternative way to eliminate bacterial infections is a promising approach. E. faecalis was isolated from the depth of dental packets of patients with periodontitis. Antimicrobial susceptibility was tested using 16 antimicrobial agents. Also, a specific virulent bacteriophage (vB_EfaS-SRH2) with an irregular pentagonal morphology of the head and a non-contractile tail belonging to the Siphoviridae, was isolated from wastewater in East of Isfahan, Iran, and its physiological and genomic specifications were investigated. The genome was double-strand DNA with 38,746 bp length and encoded 62 putative ORFs. In addition, eight Anti-CRISPERs and 30 Rho-dependent terminators were found. No tRNA was found. It had a short latent period of 15 min and a large burst size of ~ 125. No undesirable genes (antibiotic resistance, lysogenic dependence, and virulence factors) were identified in the genome. Based on physiological properties and genomic characteristics, this phage can be used as a suitable choice in phage therapy for periodontitis and root canal infection.
Collapse
|
15
|
Hwang G. In it together: Candida-bacterial oral biofilms and therapeutic strategies. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:183-196. [PMID: 35218311 PMCID: PMC8957517 DOI: 10.1111/1758-2229.13053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 05/16/2023]
Abstract
Under natural environmental settings or in the human body, the majority of microorganisms exist in complex polymicrobial biofilms adhered to abiotic and biotic surfaces. These microorganisms exhibit symbiotic, mutualistic, synergistic, or antagonistic relationships with other species during biofilm colonization and development. These polymicrobial interactions are heterogeneous, complex and hard to control, thereby often yielding worse outcomes than monospecies infections. Concerning fungi, Candida spp., in particular, Candida albicans is often detected with various bacterial species in oral biofilms. These Candida-bacterial interactions may induce the transition of C. albicans from commensal to pathobiont or dysbiotic organism. Consequently, Candida-bacterial interactions are largely associated with various oral diseases, including dental caries, denture stomatitis, periodontitis, peri-implantitis, and oral cancer. Given the severity of oral diseases caused by cross-kingdom consortia that develop hard-to-remove and highly drug-resistant biofilms, fundamental research is warranted to strategically develop cost-effective and safe therapies to prevent and treat cross-kingdom interactions and subsequent biofilm development. While studies have shed some light, targeting fungal-involved polymicrobial biofilms has been limited. This mini-review outlines the key features of Candida-bacterial interactions and their impact on various oral diseases. In addition, current knowledge on therapeutic strategies to target Candida-bacterial polymicrobial biofilms is discussed.
Collapse
Affiliation(s)
- Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding Author: Geelsu Hwang,
| |
Collapse
|
16
|
Wollanke B, Gerhards H, Ackermann K. Infectious Uveitis in Horses and New Insights in Its Leptospiral Biofilm-Related Pathogenesis. Microorganisms 2022; 10:387. [PMID: 35208842 PMCID: PMC8875353 DOI: 10.3390/microorganisms10020387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
Uveitis is a sight-threatening eye disease in equids known worldwide that leads to considerable pain and suffering. By far the most common type of uveitis in Germany and neighboring countries is classical equine recurrent uveitis (ERU), which is caused by chronic intraocular leptospiral infection and is the main cause of infectious uveitis in horses. Other infectious causes are extremely rare and are usually clinically distinguishable from ERU. ERU can be treated very effectively by vitreous cavity lavage (vitrectomy). For proper indications of this demanding surgery, it is necessary to differentiate ERU from other types of uveitis in which vitrectomy is not helpful. This can be conducted on the basis of anamnesis in combination with ophthalmologic findings and by aqueous humor examination. During vitrectomy, vitreous material is obtained. These vitreous samples have historically been used for numerous etiologic studies. In this way, a chronic intraocular leptospiral infection has been shown to be the cause of typical ERU and, among other findings, ERU has also been recognized as a biofilm infection, providing new insights into the pathogenesis of ERU and explaining some thus far unexplainable phenomena of ERU. ERU may not only have transmissible aspects to some types of uveitis in humans but may also serve as a model for a spontaneously occurring biofilm infection. Vitreous material obtained during therapeutically indicated vitrectomy can be used for further studies on in vivo biofilm formation, biofilm composition and possible therapeutic approaches.
Collapse
Affiliation(s)
- Bettina Wollanke
- Equine Clinic, Ludwig-Maximilians-University, 80539 Munich, Germany; (H.G.); (K.A.)
| | | | | |
Collapse
|
17
|
Gheorghe DN, Popescu DM, Salan A, Boldeanu MV, Ionele CM, Pitru A, Turcu-Stiolica A, Camen A, Florescu C, Rogoveanu I, Surlin P. Non-Surgical Periodontal Therapy Could Improve the Periodontal Inflammatory Status in Patients with Periodontitis and Chronic Hepatitis C. J Clin Med 2021; 10:5275. [PMID: 34830557 PMCID: PMC8619210 DOI: 10.3390/jcm10225275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
Non-surgical periodontal therapy (NSPT) is the first essential step for the management of any periodontitis patient. This study aims to evaluate the impact of NSPT on pro-inflammatory mediators' regulation and on clinical parameters in periodontitis patients who suffer from chronic hepatitis C. At baseline, selected patients were clinically evaluated for their periodontal status. A subsequent quantitative assessment of C-reactive protein and pentraxin-3 in samples of gingival fluid was performed by Enzyme-Linked Immunosorbent Assay (ELISA). Afterwards, NSPT was performed. Three months after NSPT, the clinical and ELISA assessments were repeated. The results show an improvement of the clinical parameters in periodontitis patients at the three-month recall. In chronic hepatitis C patients with periodontitis, the gingival fluid levels of pro-inflammatory markers reduced significantly. The targeted markers also expressed significant correlations with the clinical parameters used for the assessment of periodontitis' severity. The results suggest that, while chronic hepatitis C patients exhibited a more negative periodontal status at baseline as compared to non-hepatitis ones, NSPT is effective in decreasing the local periodontal inflammatory reaction and in proving the periodontal status of this type of patients. Given the limitation of the study, periodontal screening and NSPT should be included in the integrated therapeutical approach of chronic hepatitis C patients, for its impact on the local inflammatory response.
Collapse
Affiliation(s)
- Dorin Nicolae Gheorghe
- Department of Periodontology, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.N.G.); (P.S.)
| | - Dora Maria Popescu
- Department of Periodontology, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.N.G.); (P.S.)
| | - Alex Salan
- Department of Oral Surgery, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.S.); (A.C.)
| | - Mihail Virgil Boldeanu
- Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Claudiu Marinel Ionele
- Department of Gastroenterology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.I.); (I.R.)
| | - Allma Pitru
- Department of Oral Pathology, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Adina Turcu-Stiolica
- Department of Pharmacoeconomics and Statistical Analysis, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Adrian Camen
- Department of Oral Surgery, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.S.); (A.C.)
| | - Cristina Florescu
- Department of Internal Medicine and Cardiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ion Rogoveanu
- Department of Gastroenterology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.I.); (I.R.)
| | - Petra Surlin
- Department of Periodontology, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.N.G.); (P.S.)
| |
Collapse
|
18
|
Wang L, Huang B, Duan X, Jiang G, Xiong Y, Zhong S, Wang J, Liao X. The development of three ruthenium-based antimicrobial metallodrugs: Design, synthesis, and activity evaluation against Staphylococcus aureus. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211055098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of new classes of antimicrobial is urgently needed due to the widespread occurrence of multi-resistant pathogens. In this study, three novel ruthenium complexes: [Ru(dmob)2(BTPIP)](PF6)2 (Ru(II)-1), [Ru(dbp)2(BTPIP)](PF6)2 (Ru(II)-2), and [Ru(dpa)2(BTPIP)](PF6)2 (Ru(II)-3) (dpa = 2,2’-dipyridylamine, dmob = 4,4’-dimethoxy-2,2’-bipyridyl, dbp = 4,4’-di- tert-butyl-2,2’-dipyridyl, BTPIP = 4-(benzo[ b]thiophen-2-yl)phenyl-1 H-imidazo[4,5- f][1,10]phenanthroline) are synthesized and investigated as antimicrobial metallodrugs. We demonstrate that all three complexes have significant antimicrobial activity against Staphylococcus aureus by testing their minimal inhibitory concentrations = 0.0015–0.0125 mg/mL. The antibacterial activity of the best active complex Ru(II)-3 is 13 times that of ofloxacin (minimal inhibitory concentration = 19.5 μg/mL). Importantly, Ru(II)-3 not only increases the susceptibility of Staphylococcus aureus to existing common antibiotics but also shows noticeably delayed and decreased resistance in Staphylococcus aureus since the minimal inhibitory concentration values of Ru(II)-3 only increased eightfold times after 20 passages. Furthermore, the biofilms formation and rabbit erythrocyte hemolysis assays verified that Ru(II)-3 also efficiently inhibit the biofilm formation and toxin secretion of Staphylococcus aureus.
Collapse
Affiliation(s)
- Liqiang Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Bin Huang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, P.R. China
| | - Xuemin Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Guijuan Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Yanshi Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Shengfei Zhong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Jintao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Xiangwen Liao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| |
Collapse
|
19
|
Ali Mohammed MM, Pettersen VK, Nerland AH, Wiker HG, Bakken V. Label-free quantitative proteomic analysis of the oral bacteria Fusobacterium nucleatum and Porphyromonas gingivalis to identify protein features relevant in biofilm formation. Anaerobe 2021; 72:102449. [PMID: 34543761 DOI: 10.1016/j.anaerobe.2021.102449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/24/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The opportunistic pathogens Fusobacterium nucleatum and Porphyromonas gingivalis are Gram-negative bacteria associated with oral biofilm and periodontal disease. This study investigated interactions between F. nucleatum and P. gingivalis proteomes with the objective to identify proteins relevant in biofilm formation. METHODS We applied liquid chromatography-tandem mass spectrometry to determine the expressed proteome of F. nucleatum and P. gingivalis cells grown in biofilm or planktonic culture, and as mono- and dual-species models. The detected proteins were classified into functional categories and their label-free quantitative (LFQ) intensities statistically compared. RESULTS The proteomic analyses detected 1,322 F. nucleatum and 966 P. gingivalis proteins, including abundant virulence factors. Using univariate statistics, we identified significant changes between biofilm and planktonic culture (p-value ≤0.05) in 0,4% F. nucleatum, 7% P. gingivalis, and 14% of all proteins in the dual-species model. For both species, proteins involved in vitamin B2 (riboflavin) metabolism had significantly increased levels in biofilm. In both mono- and dual-species biofilms, P. gingivalis increased the production of proteins for translation, oxidation-reduction, and amino acid metabolism compared to planktonic cultures. However, when we compared LFQ intensities between mono- and dual-species, over 90% of the significantly changed P. gingivalis proteins had their levels reduced in biofilm and planktonic settings of the dual-species model. CONCLUSIONS The findings suggest that P. gingivalis reduces the production of multiple proteins because of the F. nucleatum presence. The results highlight the complex interactions of bacteria contributing to oral biofilms, which need to be considered in the design of prevention strategies.
Collapse
Affiliation(s)
| | | | - Audun H Nerland
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Harald G Wiker
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Vidar Bakken
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
20
|
Liao X, Wang J, Jiang G, Lingyu M, Jiang G, Wang J, Huang B. Identification of ruthenium (II) complexes with furan-substituted ligands as possible antibacterial agents against Staphylococcus aureus. Chem Biol Drug Des 2021; 98:885-893. [PMID: 34453495 DOI: 10.1111/cbdd.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/23/2021] [Accepted: 08/01/2021] [Indexed: 11/28/2022]
Abstract
The growing burden of antibiotic resistance worldwide calls for developing new classes of antimicrobial strategy. Recently years, the use of adjuvants that rescue antibiotics identified as a promising strategy for overcoming bacterial resistance. In this study, three ruthenium complexes functionalized with furan-substituted ligands([Ru(phen)2 (CAPIP)](ClO4 )2 (Ru(Ⅱ)-1), [Ru(dmp)2 (CAPIP)](ClO4 )2 (Ru(Ⅱ)-2) and [Ru(dmb)2 (CAPIP)](ClO4 )2 (Ru(Ⅱ)-3) (dmb=4,4'-dimethyl-2,2'-bipyridine, phen=1,10-phenanthroline, dmp=2,9-dimethyl-1,10-phenanthroline, CAPIP=(E)-2- (2-(furan-2-yl)vinyl)-1H-imidazo[4,5-f][1,10]phenanthroline)) were designed and synthesized. The antimicrobial activities of all compounds against S. aureus were assessed by growth inhibition assays. The MIC values of three complexes range from 0.015 to 0.050 mg/ml. Subsequently, the Ru(II)-2 complexes which exhibited strongest antibacterial activity were further tested against bacteria biofilms formation and toxin secretion. In addition, aimed to test whether ruthenium complexes have potential value as antimicrobial adjuvants, the synergism between Ru(Ⅱ)-2 and some antibiotics against S. aureus were examined through checkerboard method. Interestingly, Ru(Ⅱ)-2 could not only effectively inhibit biofilms formation of S. aureus and inhibit the hemolysin toxin secretion, but also selectivity show synergism with two common antibiotics. More importantly, mouse infection study also verified Ru(Ⅱ)-2 were highly effective against S. aureus in vivo.
Collapse
Affiliation(s)
- Xiangwen Liao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Jing Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Guijuan Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Mao Lingyu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jintao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Bin Huang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
21
|
Sedghizadeh PP, Sun S, Jones AC, Sodagar E, Cherian P, Chen C, Junka AF, Neighbors JD, McKenna CE, Russell RGG, Ebetino FH. Bisphosphonates in dentistry: Historical perspectives, adverse effects, and novel applications. Bone 2021; 147:115933. [PMID: 33757899 PMCID: PMC8076070 DOI: 10.1016/j.bone.2021.115933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
Studies of the potential role of bisphosphonates in dentistry date back to physical chemical research in the 1960s, and the genesis of the discovery of bisphosphonate pharmacology in part can be linked to some of this work. Since that time, parallel research on the effects of bisphosphonates on bone metabolism continued, while efforts in the dental field included studies of bisphosphonate effects on dental calculus, caries, and alveolar bone loss. While some utility of this drug class in the dental field was identified, leading to their experimental use in various dentrifice formulations and in some dental applications clinically, adverse effects of bisphosphonates in the jaws have also received attention. Most recently, certain bisphosphonates, particularly those with strong bone targeting properties, but limited biochemical effects (low potency bisphosphonates), are being studied as a local remedy for the concerns of adverse effects associated with other more potent members of this drug class. Additionally, low potency bisphosphonate analogs are under study as vectors to target active drugs to the mineral surfaces of the jawbones. These latter efforts have been devised for the prevention and treatment of oral problems, such as infections associated with oral surgery and implants. Advances in the utility and mechanistic understanding of the bisphosphonate class may enable additional oral therapeutic options for the management of multiple aspects of dental health.
Collapse
Affiliation(s)
- Parish P Sedghizadeh
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America.
| | - Shuting Sun
- BioVinc LLC, Pasadena, California, United States of America
| | - Allan C Jones
- General Dental Practice; Torrance, California, United States
| | - Esmat Sodagar
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Philip Cherian
- BioVinc LLC, Pasadena, California, United States of America
| | - Casey Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Adam F Junka
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw; Wroclaw Research Centre EIT, Wroclaw, Poland
| | - Jeffrey D Neighbors
- BioVinc LLC, Pasadena, California, United States of America; Department of Pharmacology and Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States of America
| | - R Graham G Russell
- The Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, University of Oxford, United Kingdom; The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, University of Sheffield, United Kingdom
| | - Frank H Ebetino
- BioVinc LLC, Pasadena, California, United States of America.
| |
Collapse
|
22
|
Zhang T, Kalimuthu S, Rajasekar V, Xu F, Yiu YC, Hui TKC, Neelakantan P, Chu Z. Biofilm inhibition in oral pathogens by nanodiamonds. Biomater Sci 2021; 9:5127-5135. [PMID: 33997876 DOI: 10.1039/d1bm00608h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Complex microbial communities, e.g., biofilms residing in our oral cavity, have recognized clinical significance, as they are typically the main cause for infections. Particularly, they show high resistance to conventional antibiotics, and alternatives including nanotechnology are being intensively explored nowadays to provide more efficient therapeutics. Diamond nanoparticles, namely, nanodiamonds (NDs) with many promising physico-chemical properties, have been demonstrated to work as an effective antibacterial agent against planktonic cells (free-floating state). However, little is known about the behaviors of NDs against biofilms (sessile state). In this study, we uncovered their role in inhibiting biofilm formation and their disrupting effect on preformed biofilms in several selected orally and systemically important organisms. The current findings will advance the mechanistic understanding of NDs on oral pathogens and might accelerate corresponding clinical translation.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhao Z, Li H, Tao X, Xie Y, Yang L, Mao ZW, Xia W. Light-Triggered Nitric Oxide Release by a Photosensitizer to Combat Bacterial Biofilm Infections. Chemistry 2021; 27:5453-5460. [PMID: 33220013 DOI: 10.1002/chem.202004698] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/18/2020] [Indexed: 01/09/2023]
Abstract
Bacterial biofilms are a serious global health concern, often responsible for persistent infections. New strategies to prevent and treat bacterial infections by eradication of the biofilms are urgently needed. A novel ruthenium-based compound is reported in this study that functions as both a boronic acid-decorated photosensitizer (PS) and a light-triggered nitric oxide (NO) releasing agent. The compound can selectively attach to the bacterial membrane and biofilms and it is highly potent at eradicating Pseudomonas aeruginosa biofilms through the simultaneous release of NO and reactive oxygen species (ROS). The compound, which is more effective than clinical antibiotic tobramycin, also has excellent bacterial specificity and shows no significant cytotoxicity to human cells. The results reveal potential applications of this innovative dual-functional photoactivated ruthenium compound to combat bacterial biofilm infections.
Collapse
Affiliation(s)
- Zhennan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huinan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xuan Tao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanxuan Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
24
|
Hwang G, Blatz MB, Wolff MS, Steier L. Diagnosis of Biofilm-Associated Peri-Implant Disease Using a Fluorescence-Based Approach. Dent J (Basel) 2021; 9:dj9030024. [PMID: 33673438 PMCID: PMC7996852 DOI: 10.3390/dj9030024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 01/05/2023] Open
Abstract
Dental implants have become a routine component of daily dental practice and the demand for dental implants is expected to increase significantly in the future. Despite the high success rates of dental implants, failures do occur, resulting in discomfort, rampant destruction of the oral health, or painful and costly surgical replacement of a failed implant. Peri-implant diseases are inflammatory conditions affecting the soft/hard tissues surrounding a functional dental implant. Plenty of experimental evidence indicates that the accumulation of dental plaque at the soft tissue-implant interface and the subsequent local inflammatory response seems to be key in the pathogenesis of the peri-implant mucositis. Such peri-implant-soft tissue interface is less effective than natural teeth in resisting bacterial invasion, enhancing vulnerability to subsequent peri-implant disease. Furthermore, in certain individuals, it will progress to peri-implantitis, resulting in alveolar bone loss and implant failure. Although early diagnosis and accurate identification of risk factors are extremely important to effectively prevent peri-implant diseases, current systematic reviews revealed that a uniform classification and diagnostic methodology for peri-implantitis are lacking. Recent progress on fluorescence-based technology enabled rapid diagnosis of the disease and effective removal of plaques. Here, we briefly review biofilm-associated peri-implant diseases and propose a fluorescence-based approach for more accurate and objective diagnoses. A fluorescence-based diagnosis tool through headlights combined with special-filtered dental loupes may serve as a hands-free solution for both precise diagnosis and effective removal of plaque-biofilms.
Collapse
Affiliation(s)
- Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (G.H.); (M.B.B.); (M.S.W.)
- Center for Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Markus B. Blatz
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (G.H.); (M.B.B.); (M.S.W.)
| | - Mark S. Wolff
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (G.H.); (M.B.B.); (M.S.W.)
| | - Liviu Steier
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (G.H.); (M.B.B.); (M.S.W.)
- Correspondence:
| |
Collapse
|
25
|
Moser C, Jensen PØ, Thomsen K, Kolpen M, Rybtke M, Lauland AS, Trøstrup H, Tolker-Nielsen T. Immune Responses to Pseudomonas aeruginosa Biofilm Infections. Front Immunol 2021; 12:625597. [PMID: 33692800 PMCID: PMC7937708 DOI: 10.3389/fimmu.2021.625597] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a key pathogen of chronic infections in the lungs of cystic fibrosis patients and in patients suffering from chronic wounds of diverse etiology. In these infections the bacteria congregate in biofilms and cannot be eradicated by standard antibiotic treatment or host immune responses. The persistent biofilms induce a hyper inflammatory state that results in collateral damage of the adjacent host tissue. The host fails to eradicate the biofilm infection, resulting in hindered remodeling and healing. In the present review we describe our current understanding of innate and adaptive immune responses elicited by P. aeruginosa biofilms in cystic fibrosis lung infections and chronic wounds. This includes the mechanisms that are involved in the activation of the immune responses, as well as the effector functions, the antimicrobial components and the associated tissue destruction. The mechanisms by which the biofilms evade immune responses, and potential treatment targets of the immune response are also discussed.
Collapse
Affiliation(s)
- Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Sofie Lauland
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hannah Trøstrup
- Department of Plastic Surgery and Breast Surgery, Zealand University Hospital, Roskilde, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Chappell TC, Nair NU. Engineered lactobacilli display anti-biofilm and growth suppressing activities against Pseudomonas aeruginosa. NPJ Biofilms Microbiomes 2020; 6:48. [PMID: 33127888 PMCID: PMC7599214 DOI: 10.1038/s41522-020-00156-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Biofilms are an emerging target for new therapeutics in the effort to address the continued increase in resistance and tolerance to traditional antimicrobials. In particular, the distinct nature of the biofilm growth state often means that traditional antimcirobials, developed to combat planktonic cells, are ineffective. Biofilm treatments are designed to both reduce pathogen load at an infection site and decrease the development of resistance by rendering the embedded organisms more susceptible to treatment at lower antimicrobial concentrations. In this work, we developed a new antimicrobial treatment modality using engineered lactic acid bacteria (LAB). We first characterized the natural capacity of two lactobacilli, L. plantarum and L. rhamnosus, to inhibit P. aeruginosa growth, biofilm formation, and biofilm viability, which we found to be dependent upon the low pH generated during culture of the LAB. We further engineered these LAB to secrete enzymes known to degrade P. aeruginosa biofilms and show that our best performing engineered LAB, secreting a pathogen-derived enzyme (PelAh), degrades up to 85% of P. aeruginosa biofilm.
Collapse
Affiliation(s)
- Todd C Chappell
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA, USA
| | - Nikhil U Nair
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
27
|
Bhardwaj SB, Mehta M, Sood S, Sharma J. Isolation of a Novel Phage and Targeting Biofilms of Drug-Resistant Oral Enterococci. J Glob Infect Dis 2020; 12:11-15. [PMID: 32165796 PMCID: PMC7045759 DOI: 10.4103/jgid.jgid_110_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/03/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Enterococci are now recognized as the second most cause of nosocomial infections worldwide. The emergence of multidrug-resistant strains in the organism has given rise to alternative strategies such as phage therapy. In this study, an Enterococcus faecalis infecting phage was isolated and its efficiency against biofilms formed by drug-resistant enterococci obtained from chronic periodontitis was evaluated. MATERIALS AND METHODS Bacteriophage against E. faecalis was isolated from sewage sample. The phage was propagated and identified using transmission electron microscope (TEM). In vitro biofilm formation was assessed. RESULTS TEM microscopy showed that the phage belonged to Siphoviridae family. In the presence of the novel phage, the metabolic activity of enterococci biofilm was reduced at 48 h of contact. A difference of at least 5 log CFU/ml was seen in the live cells of the control biofilm, and the phage treated biofilm of enterococci isolates. CONCLUSION The study shows that the novel phage inhibits biofilm production in oral enterococci isolates from periodontitis patients but has a narrow host range. The role of bacteriophages as strong biotechnological and natural therapeutic agents for E. faecalis in chronic periodontitis can be considered.
Collapse
Affiliation(s)
- Sonia Bhonchal Bhardwaj
- Departments of Microbiology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Manjula Mehta
- Departments of Microbiology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Shaveta Sood
- Department of Periodontics, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Jyoti Sharma
- Departments of Microbiology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| |
Collapse
|
28
|
Orazi G, O'Toole GA. "It Takes a Village": Mechanisms Underlying Antimicrobial Recalcitrance of Polymicrobial Biofilms. J Bacteriol 2019; 202:e00530-19. [PMID: 31548277 PMCID: PMC6932244 DOI: 10.1128/jb.00530-19] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic infections are frequently caused by polymicrobial biofilms. Importantly, these infections are often difficult to treat effectively in part due to the recalcitrance of biofilms to antimicrobial therapy. Emerging evidence suggests that polymicrobial interactions can lead to dramatic and unexpected changes in the ability of antibiotics to eradicate biofilms and often result in decreased antimicrobial efficacy in vitro In this review, we discuss the influence of polymicrobial interactions on the antibiotic susceptibility of biofilms, and we highlight the studies that first documented the shifted antimicrobial susceptibilities of mixed-species cultures. Recent studies have identified several mechanisms underlying the recalcitrance of polymicrobial biofilm communities, including interspecies exchange of antibiotic resistance genes, β-lactamase-mediated inactivation of antibiotics, changes in gene expression induced by metabolites and quorum sensing signals, inhibition of the electron transport chain, and changes in properties of the cell membrane. In addition to elucidating multiple mechanisms that contribute to the altered drug susceptibility of polymicrobial biofilms, these studies have uncovered novel ways in which polymicrobial interactions can impact microbial physiology. The diversity of findings discussed highlights the importance of continuing to investigate the efficacy of antibiotics against biofilm communities composed of different combinations of microbial species. Together, the data presented here illustrate the importance of studying microbes as part of mixed-species communities rather than in isolation. In light of our greater understanding of how interspecies interactions alter the efficacy of antimicrobial agents, we propose that the methods for measuring the drug susceptibility of polymicrobial infections should be revisited.
Collapse
Affiliation(s)
- Giulia Orazi
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
29
|
Gondil VS, Kalaiyarasan T, Bharti VK, Chhibber S. Antibiofilm potential of Seabuckthorn silver nanoparticles (SBT@AgNPs) against Pseudomonas aeruginosa. 3 Biotech 2019; 9:402. [PMID: 31681523 PMCID: PMC6800877 DOI: 10.1007/s13205-019-1947-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022] Open
Abstract
In era of antibiotic resistance, antibacterial silver nanoparticles are considered as potential alternative therapeutic agent to combat drug resistant pathogens. The aim of present study was to evaluate the antibacterial, antibiofilm and biocompatible potential of green synthesized Seabuckthorn silver nanoparticles (SBT@AgNPs). In the study, antibacterial efficiency of SBT@AgNPs was studied against Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli and methicillin resistant Staphylococcus aureus. SBT@AgNPs were found to possess high antibacterial activity which was indicated in terms of low minimum inhibitory and bactericidal concentrations (2-4 µg/ml) obtained against test pathogens. Anti-biofilm activity of SBT@AgNPs on young as well as mature P. aeruginosa biofilms was also evaluated. SBT@AgNPs were able to eradicate the P. aeruginosa biofilms, which was further confirmed by field emission scanning electron microscopy and confocal laser scanning microscopy. Quorum sensing assay also revealed the quorum quenching activity of SBT@AgNPs. Biocompatibility and cytocompatibility results demonstrated SBT@AgNPs to exhibit first-rate non-toxicity as no membrane damage on RBCs or detrimental morphology variation was seen in human dermal fibroblast. LC-MS analysis was also carried out to analyze the potential antibacterial chemical compounds present in aqueous extract of Seabuckthorn leaves. To the best of our knowledge this is first study in which green synthesized silver nanoparticles were exploited to eradicate young as well as mature biofilms of P. aeruginosa. Results showed that SBT@AgNPs are highly antibacterial, antibiofilm, nontoxic in nature and consequently can aid in biomedical applications.
Collapse
Affiliation(s)
- Vijay Singh Gondil
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, 160014 India
| | | | - Vijay K. Bharti
- Defence Institute of High Altitude Research (DIHAR), DRDO, Leh-Ladakh, J&K 194101 India
| | - Sanjay Chhibber
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, 160014 India
| |
Collapse
|
30
|
Moon JH, Noh MH, Jang EY, Yang SB, Kang SW, Kwack KH, Ryu JI, Lee JY. Effects of Sodium Tripolyphosphate on Oral Commensal and Pathogenic Bacteria. Pol J Microbiol 2019; 68:263-268. [PMID: 31257792 PMCID: PMC7256694 DOI: 10.33073/pjm-2019-029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 12/20/2022] Open
Abstract
Polyphosphate (polyP) is a food additive with antimicrobial activity. Here we evaluated the effects of sodium tripolyphosphate (polyP3, Na5P3O10) on four major oral bacterial species, in both single- and mixed-culture. PolyP3 inhibited three opportunistic pathogenic species: Fusobacterium nucleatum, Prevotella intermedia, and Porphyromonas gingivalis. On the contrary, a commensal bacterium Streptococcus gordonii was relatively less susceptible to polyP3 than the pathogens. When all bacterial species were co-cultured, polyP3 (≥ 0.09%) significantly reduced their total growth and biofilm formation, among which the three pathogenic bacteria were selectively inhibited. Collectively, polyP3 may be an alternative antibacterial agent to control oral pathogenic bacteria.
Collapse
Affiliation(s)
- Ji-Hoi Moon
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University , Seoul , Republic of Korea ; Department of Life and Nanopharmaceutical Sciences, Kyung Hee University , Seoul , Republic of Korea
| | - Mi Hee Noh
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University , Seoul , Republic of Korea
| | - Eun-Young Jang
- Department of Dentistry, Graduate School, Kyung Hee University , Seoul , Republic of Korea
| | - Seok Bin Yang
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University , Seoul , Republic of Korea
| | - Sang Wook Kang
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University , Seoul , Republic of Korea
| | - Kyu Hwan Kwack
- Institute of Oral Biology, School of Dentistry, Graduate school, Kyung Hee University , Seoul , Republic of Korea
| | - Jae-In Ryu
- Department of Preventive Dentistry, School of Dentistry, Kyung Hee University , Seoul , Republic of Korea
| | - Jin-Yong Lee
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University , Seoul , Republic of Korea
| |
Collapse
|
31
|
Liu J, Ruan J, Weir MD, Ren K, Schneider A, Wang P, Oates TW, Chang X, Xu HHK. Periodontal Bone-Ligament-Cementum Regeneration via Scaffolds and Stem Cells. Cells 2019; 8:E537. [PMID: 31167434 PMCID: PMC6628570 DOI: 10.3390/cells8060537] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is a prevalent infectious disease worldwide, causing the damage of periodontal support tissues, which can eventually lead to tooth loss. The goal of periodontal treatment is to control the infections and reconstruct the structure and function of periodontal tissues including cementum, periodontal ligament (PDL) fibers, and bone. The regeneration of these three types of tissues, including the re-formation of the oriented PDL fibers to be attached firmly to the new cementum and alveolar bone, remains a major challenge. This article represents the first systematic review on the cutting-edge researches on the regeneration of all three types of periodontal tissues and the simultaneous regeneration of the entire bone-PDL-cementum complex, via stem cells, bio-printing, gene therapy, and layered bio-mimetic technologies. This article primarily includes bone regeneration; PDL regeneration; cementum regeneration; endogenous cell-homing and host-mobilized stem cells; 3D bio-printing and generation of the oriented PDL fibers; gene therapy-based approaches for periodontal regeneration; regenerating the bone-PDL-cementum complex via layered materials and cells. These novel developments in stem cell technology and bioactive and bio-mimetic scaffolds are highly promising to substantially enhance the periodontal regeneration including both hard and soft tissues, with applicability to other therapies in the oral and maxillofacial region.
Collapse
Affiliation(s)
- Jin Liu
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an 710004, China.
- Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an 710004, China.
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Jianping Ruan
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an 710004, China.
- Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an 710004, China.
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Ke Ren
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA.
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
- Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Ping Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Xiaofeng Chang
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an 710004, China.
- Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an 710004, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
- Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
32
|
Černáková L, Light C, Salehi B, Rogel-Castillo C, Victoriano M, Martorell M, Sharifi-Rad J, Martins N, Rodrigues CF. Novel Therapies for Biofilm-Based Candida spp. Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1214:93-123. [DOI: 10.1007/5584_2019_400] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Bonner M, Fresno M, Gironès N, Guillén N, Santi-Rocca J. Reassessing the Role of Entamoeba gingivalis in Periodontitis. Front Cell Infect Microbiol 2018; 8:379. [PMID: 30420943 PMCID: PMC6215854 DOI: 10.3389/fcimb.2018.00379] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
The protozoan Entamoeba gingivalis resides in the oral cavity and is frequently observed in the periodontal pockets of humans and pets. This species of Entamoeba is closely related to the human pathogen Entamoeba histolytica, the agent of amoebiasis. Although E. gingivalis is highly enriched in people with periodontitis (a disease in which inflammation and bone loss correlate with changes in the microbial flora), the potential role of this protozoan in oral infectious diseases is not known. Periodontitis affects half the adult population in the world, eventually leads to edentulism, and has been linked to other pathologies, like diabetes and cardiovascular diseases. As aging is a risk factor for the disorder, it is considered an inevitable physiological process, even though it can be prevented and cured. However, the impact of periodontitis on the patient's health and quality of life, as well as its economic burden, are underestimated. Commonly accepted models explain the progression from health to gingivitis and then periodontitis by a gradual change in the identity and proportion of bacterial microorganisms in the gingival crevices. Though not pathognomonic, inflammation is always present in periodontitis. The recruitment of leukocytes to inflamed gums and their passage to the periodontal pocket lumen are speculated to fuel both tissue destruction and the development of the flora. The individual contribution to the disease of each bacterial species is difficult to establish and the eventual role of protozoa in the fate of this disease has been ignored. Following recent scientific findings, we discuss the relevance of these data and propose that the status of E. gingivalis be reconsidered as a potential pathogen contributing to periodontitis.
Collapse
Affiliation(s)
- Mark Bonner
- International Institute of Periodontology Victoriaville, QC, Canada
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Nancy Guillén
- Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, CNRS-ERL9195, Paris, France
| | | |
Collapse
|
34
|
Schroeder M, Horne SM, Prüß BM. Efficacy of β-phenylethylamine as a novel anti-microbial and application as a liquid catheter flush. J Med Microbiol 2018; 67:1778-1788. [PMID: 30325301 DOI: 10.1099/jmm.0.000840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
With this study, we introduce a liquid flush for catheters and other tubing-based applications that consists of a solution of β-phenylethylamine (PEA) in tryptic soy broth. The initial experiments in multiwell polystyrene plates were conducted with Escherichia coli K-12 to assess the effectiveness of PEA at reducing planktonic growth, as well as the biomass and adenosine triphosphate (ATP) content of biofilm; PEA reduced these growth parameters as a function of increasing concentration. This effect was also seen in mutants of PEA catabolism, which leads us to believe that the PEA effect is due to PEA itself and not one of its degradation products. Since PEA reduced planktonic growth and biofilm when added at the time of inoculation, as well as at later time points, we propose PEA as a novel compound for the prevention and treatment of biofilm. PEA reduced planktonic growth and the ATP content of the biofilm for five bacterial pathogens, including an enterohemorrhagic E. coli, two uropathogenic E. coli, Pseudomonas aeruginosa and Staphylococcus aureus. A major finding of this study is the reduction of the ATP content of biofilm that formed in silicone tubing by periodic flushes of PEA. This experiment was performed to model antibiotic-lock treatment of an intravenous catheter. It was found that 10 mg ml-1 of PEA reduced the ATP content of biofilm of five bacterial strains by 96.3 % or more after 2 weeks of incubation and three treatments with PEA. For P. aeruginosa, the reduction in ATP content was paralleled by an identical percentage reduction in viable cells in the biofilm.
Collapse
Affiliation(s)
- Meredith Schroeder
- Department of Microbiological Sciences, North Dakota State University, 1523 Centennial Blvd, Fargo ND, 58108-6050, USA
| | - Shelley M Horne
- Department of Microbiological Sciences, North Dakota State University, 1523 Centennial Blvd, Fargo ND, 58108-6050, USA
| | - Birgit M Prüß
- Department of Microbiological Sciences, North Dakota State University, 1523 Centennial Blvd, Fargo ND, 58108-6050, USA
| |
Collapse
|
35
|
Small HY, Migliarino S, Czesnikiewicz-Guzik M, Guzik TJ. Hypertension: Focus on autoimmunity and oxidative stress. Free Radic Biol Med 2018; 125:104-115. [PMID: 29857140 DOI: 10.1016/j.freeradbiomed.2018.05.085] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022]
Abstract
Understanding the causal role of the immune and inflammatory responses in hypertension has led to questions regarding the links between hypertension and autoimmunity. Immune pathology in primary hypertension mimics several autoimmune mechanisms observed in the pathogenesis of systemic lupus erythematosus, psoriasis, systemic sclerosis, rheumatoid arthritis and periodontitis. More importantly, the prevalence of hypertension in patients with these autoimmune diseases is significantly increased, when compared to control populations. Clinical and epidemiological evidence is reviewed along with possible mechanisms linking hypertension and autoimmunity. Inflammation and oxidative stress are linked in a self-perpetuating cycle that significantly contributes to the vascular dysfunction and renal damage associated with hypertension. T cell, B cell, macrophage and NK cell infiltration into these organs is essential for this pathology. Effector cytokines such as IFN-γ, TNF-α and IL-17 affect Na+/H+ exchangers in the kidney. In blood vessels, they lead to endothelial dysfunction and loss of nitric oxide bioavailability and cause vasoconstriction. Both renal and vascular effects are, in part, mediated through induction of reactive oxygen species-producing enzymes such as superoxide anion generating NADPH oxidases and dysfunction of anti-oxidant systems. These mechanisms have recently become important therapeutic targets of novel therapies focused on scavenging oxidative (isolevuglandin) modification of neo-antigenic peptides. Effects of classical immune targeted therapies focused on immunosuppression and anti-cytokine treatments are also reviewed.
Collapse
Affiliation(s)
- Heather Y Small
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Serena Migliarino
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Marta Czesnikiewicz-Guzik
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Dental Prophylaxis and Experimental Dentistry, Dental School of Jagiellonian University, Krakow, Poland
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK; Department of Internal and Agricultural Medicine, Jagiellonian University Collegium Medicum, Krakow, Poland.
| |
Collapse
|
36
|
Inhibition and Eradication of Pseudomonas aeruginosa Biofilms by Host Defence Peptides. Sci Rep 2018; 8:10446. [PMID: 29993029 PMCID: PMC6041282 DOI: 10.1038/s41598-018-28842-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/29/2018] [Indexed: 01/07/2023] Open
Abstract
P. aeruginosa is a notorious biofilm producer that causes a wide variety of acute and chronic infections. In this study the in vitro anti-biofilm activity of 13 Host Defence Peptides from different species was tested against P. aeruginosa biofilms. Most HDPs were able to prevent biofilm attachment, due to their antimicrobial effect on planktonic bacteria in the starting inoculum. Activity of HDPs against pre-formed biofilms was also observed, although mainly at short incubation times. Several HDPs were able to kill bacteria in the biofilm (colony counting of biofilm associated bacteria) but only CRAMP eradicated the whole biofilm (crystal violet staining). These results were quantitatively confirmed by confocal microscopy studies using a live/dead stain of the biofilms. Furthermore, for chicken CATH-2 (one of the more potent HDPs) it was shown that the peptide could indeed penetrate the biofilm structures and kill bacteria within the biofilm. These studies highlight the potency but also the limitations of HDPs as new potential anti-biofilm agents.
Collapse
|
37
|
Hevener KE, Santarsiero BD, Lee H, Jones JA, Boci T, Johnson ME, Mehboob S. Structural characterization of Porphyromonas gingivalis enoyl-ACP reductase II (FabK). Acta Crystallogr F Struct Biol Commun 2018; 74:105-112. [PMID: 29400320 PMCID: PMC5947681 DOI: 10.1107/s2053230x18000262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/04/2018] [Indexed: 01/24/2023] Open
Abstract
Enoyl-acyl carrier protein (ACP) reductase II (FabK) is a critical rate-limiting enzyme in the bacterial type II fatty-acid synthesis (FAS II) pathway. FAS II pathway enzymes are markedly disparate from their mammalian analogs in the FAS I pathway in both structure and mechanism. Enzymes involved in bacterial fatty-acid synthesis represent viable drug targets for Gram-negative pathogens, and historical precedent exists for targeting them in the treatment of diseases of the oral cavity. The Gram-negative organism Porphyromonas gingivalis represents a key causative agent of the costly and highly prevalent disease known as chronic periodontitis, and exclusively expresses FabK as its enoyl reductase enzyme in the FAS-II pathway. Together, these characteristics distinguish P. gingivalis FabK (PgFabK) as an attractive and novel narrow-spectrum antibacterial target candidate. PgFabK is a flavoenzyme that is dependent on FMN and NADPH as cofactors for the enzymatic reaction, which reduces the enoyl substrate via a ping-pong mechanism. Here, the structure of the PgFabK enzyme as determined using X-ray crystallography is reported to 1.9 Å resolution with endogenous FMN fully resolved and the NADPH cofactor partially resolved. PgFabK possesses a TIM-barrel motif, and all flexible loops are visible. The determined structure has allowed insight into the structural basis for the NADPH dependence observed in PgFabK and the role of a monovalent cation that has been observed in previous studies to be stringently required for FabK activity. The PgFabK structure and the insights gleaned from its analysis will facilitate structure-based drug-discovery efforts towards the prevention and treatment of P. gingivalis infection.
Collapse
Affiliation(s)
- Kirk E. Hevener
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Suite 571, Memphis, TN 38163-2198, USA
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Suite 3100, Chicago, IL 60607-7173, USA
| | - Bernard D. Santarsiero
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Suite 3100, Chicago, IL 60607-7173, USA
| | - Hyun Lee
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Suite 3100, Chicago, IL 60607-7173, USA
| | - Jesse A. Jones
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Suite 571, Memphis, TN 38163-2198, USA
| | - Teuta Boci
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Suite 3100, Chicago, IL 60607-7173, USA
| | - Michael E. Johnson
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Suite 3100, Chicago, IL 60607-7173, USA
| | - Shahila Mehboob
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Suite 3100, Chicago, IL 60607-7173, USA
- Novalex Therapeutics, Chicago, IL 60612, USA
| |
Collapse
|
38
|
Akrivopoulou C, Green IM, Donos N, Nair SP, Ready D. Aggregatibacter actinomycetemcomitans serotype prevalence and antibiotic resistance in a UK population with periodontitis. J Glob Antimicrob Resist 2017; 10:54-58. [DOI: 10.1016/j.jgar.2017.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 11/28/2022] Open
|
39
|
Ebersole JL, Dawson D, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, Thompson K, Peyyala R, Al-Attar A, Lethbridge K, Kirakodu S, Gonzalez OA. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75:52-115. [DOI: 10.1111/prd.12222] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
You M, Chan Y, Lacap-Bugler DC, Huo YB, Gao W, Leung WK, Watt RM. Oral treponeme major surface protein: Sequence diversity and distributions within periodontal niches. Mol Oral Microbiol 2017; 32:455-474. [PMID: 28453906 DOI: 10.1111/omi.12185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
Treponema denticola and other species (phylotypes) of oral spirochetes are widely considered to play important etiological roles in periodontitis and other oral infections. The major surface protein (Msp) of T. denticola is directly implicated in several pathological mechanisms. Here, we have analyzed msp sequence diversity across 68 strains of oral phylogroup 1 and 2 treponemes; including reference strains of T. denticola, Treponema putidum, Treponema medium, 'Treponema vincentii', and 'Treponema sinensis'. All encoded Msp proteins contained highly conserved, taxon-specific signal peptides, and shared a predicted 'three-domain' structure. A clone-based strategy employing 'msp-specific' polymerase chain reaction primers was used to analyze msp gene sequence diversity present in subgingival plaque samples collected from a group of individuals with chronic periodontitis (n=10), vs periodontitis-free controls (n=10). We obtained 626 clinical msp gene sequences, which were assigned to 21 distinct 'clinical msp genotypes' (95% sequence identity cut-off). The most frequently detected clinical msp genotype corresponded to T. denticola ATCC 35405T , but this was not correlated to disease status. UniFrac and libshuff analysis revealed that individuals with periodontitis and periodontitis-free controls harbored significantly different communities of treponeme clinical msp genotypes (P<.001). Patients with periodontitis had higher levels of clinical msp genotype diversity than periodontitis-free controls (Mann-Whitney U-test, P<.05). The relative proportions of 'T. vincentii' clinical msp genotypes were significantly higher in the control group than in the periodontitis group (P=.018). In conclusion, our data clearly show that both healthy and diseased individuals commonly harbor a wide diversity of Treponema clinical msp genotypes within their subgingival niches.
Collapse
Affiliation(s)
- M You
- Department of Oral Radiology and State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Y Chan
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Sai Ying Pun, Hong Kong SAR, China
| | - D C Lacap-Bugler
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Y-B Huo
- Zhujiang New Town Dental Clinic, Guanghua School and Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - W Gao
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Sai Ying Pun, Hong Kong SAR, China
| | - W K Leung
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Sai Ying Pun, Hong Kong SAR, China
| | - R M Watt
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Sai Ying Pun, Hong Kong SAR, China
| |
Collapse
|
41
|
Moser C, Pedersen HT, Lerche CJ, Kolpen M, Line L, Thomsen K, Høiby N, Jensen PØ. Biofilms and host response - helpful or harmful. APMIS 2017; 125:320-338. [PMID: 28407429 DOI: 10.1111/apm.12674] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 01/09/2023]
Abstract
Biofilm infections are one of the modern medical world's greatest challenges. Probably, all non-obligate intracellular bacteria and fungi can establish biofilms. In addition, there are numerous biofilm-related infections, both foreign body-related and non-foreign body-related. Although biofilm infections can present in numerous ways, one common feature is involvement of the host response with significant impact on the course. A special characteristic is the synergy of the innate and the acquired immune responses for the induced pathology. Here, we review the impact of the host response for the course of biofilm infections, with special focus on cystic fibrosis, chronic wounds and infective endocarditis.
Collapse
Affiliation(s)
- Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hannah Trøstrup Pedersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christian Johann Lerche
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Laura Line
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Mohammed MMA, Pettersen VK, Nerland AH, Wiker HG, Bakken V. Quantitative proteomic analysis of extracellular matrix extracted from mono- and dual-species biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis. Anaerobe 2017; 44:133-142. [PMID: 28285095 DOI: 10.1016/j.anaerobe.2017.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/02/2017] [Accepted: 03/03/2017] [Indexed: 01/08/2023]
Abstract
The Gram-negative bacteria Fusobacterium nucleatum and Porphyromonas gingivalis are members of a complex dental biofilm associated with periodontal disease. In this study, we cultured F. nucleatum and P. gingivalis as mono- and dual-species biofilms, and analyzed the protein composition of the biofilms extracellular polymeric matrix (EPM) by high-resolution liquid chromatography-tandem mass spectrometry. Label-free quantitative proteomic analysis was used for identification of proteins and sequence-based functional characterization for their classification and prediction of possible roles in EPM. We identified 542, 93 and 280 proteins in the matrix of F. nucleatum, P. gingivalis, and the dual-species biofilm, respectively. Nearly 70% of all EPM proteins in the dual-species biofilm originated from F. nucleatum, and a majority of these were cytoplasmic proteins, suggesting an enhanced lysis of F. nucleatum cells. The proteomic analysis also indicated an interaction between the two species: 22 F. nucleatum proteins showed differential levels between the mono and dual-species EPMs, and 11 proteins (8 and 3 from F. nucleatum and P. gingivalis, respectively) were exclusively detected in the dual-species EPM. Oxidoreductases and chaperones were among the most abundant proteins identified in all three EPMs. The biofilm matrices in addition contained several known and hypothetical virulence proteins, which can mediate adhesion to the host cells and disintegration of the periodontal tissues. This study demonstrated that the biofilm matrix of two important periodontal pathogens consists of a multitude of proteins whose amounts and functionalities vary largely. Relatively high levels of several of the detected proteins might facilitate their potential use as targets for the inhibition of biofilm development.
Collapse
Affiliation(s)
- Marwan Mansoor Ali Mohammed
- The Gade Research Group for Infection and Immunity, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.
| | - Veronika Kuchařová Pettersen
- The Gade Research Group for Infection and Immunity, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.
| | - Audun H Nerland
- The Gade Research Group for Infection and Immunity, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.
| | - Harald G Wiker
- The Gade Research Group for Infection and Immunity, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.
| | - Vidar Bakken
- The Gade Research Group for Infection and Immunity, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.
| |
Collapse
|
43
|
Khalifa L, Shlezinger M, Beyth S, Houri-Haddad Y, Coppenhagen-Glazer S, Beyth N, Hazan R. Phage therapy against Enterococcus faecalis in dental root canals. J Oral Microbiol 2016; 8:32157. [PMID: 27640530 PMCID: PMC5027333 DOI: 10.3402/jom.v8.32157] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022] Open
Abstract
Antibiotic resistance is an ever-growing problem faced by all major sectors of health care, including dentistry. Recurrent infections related to multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus, carbapenem-resistant Enterobacteriaceae, and vancomycin-resistant enterococci (VRE) in hospitals are untreatable and question the effectiveness of notable drugs. Two major reasons for these recurrent infections are acquired antibiotic resistance genes and biofilm formation. None of the traditionally known effective techniques have been able to efficiently resolve these issues. Hence, development of a highly effective antibacterial practice has become inevitable. One example of a hard-to-eradicate pathogen in dentistry is Enterococcus faecalis, which is one of the most common threats observed in recurrent root canal treatment failures, of which the most problematic to treat are its biofilm-forming VRE strains. An effective response against such infections could be the use of bacteriophages (phages). Phage therapy was found to be highly effective against biofilm and multidrug-resistant bacteria and has other advantages like ease of isolation and possibilities for genetic manipulations. The potential of phage therapy in dentistry, in particular against E. faecalis biofilms in root canals, is almost unexplored. Here we review the efforts to develop phage therapy against biofilms. We also focus on the phages isolated against E. faecalis and discuss the possibility of using phages against E. faecalis biofilm in root canals.
Collapse
Affiliation(s)
- Leron Khalifa
- Institute of Dental Science, The Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Mor Shlezinger
- Department of Prosthodontics, The Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Shaul Beyth
- Orthopedic Surgery Complex, Hadassah University Hospital, Jerusalem, Israel
| | - Yael Houri-Haddad
- Department of Prosthodontics, The Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Shunit Coppenhagen-Glazer
- Institute of Dental Science, The Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Nurit Beyth
- Department of Prosthodontics, The Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Ronen Hazan
- Institute of Dental Science, The Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel;
| |
Collapse
|
44
|
CONTE NETO N, SPOLIDORIO LC, ANDRADE CRD, ESTEVES JC, MARCANTONIO JR E. Experimental osteonecrosis: development of a model in rodents administered alendronate. Braz Oral Res 2016; 30:e99. [DOI: 10.1590/1807-3107bor-2016.vol30.0099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 06/09/2016] [Indexed: 11/22/2022] Open
|
45
|
Zimmermann H, Hagenfeld D, Diercke K, El-Sayed N, Fricke J, Greiser KH, Kühnisch J, Linseisen J, Meisinger C, Pischon N, Pischon T, Samietz S, Schmitter M, Steinbrecher A, Kim TS, Becher H. Pocket depth and bleeding on probing and their associations with dental, lifestyle, socioeconomic and blood variables: a cross-sectional, multicenter feasibility study of the German National Cohort. BMC Oral Health 2015; 15:7. [PMID: 25604448 PMCID: PMC4324664 DOI: 10.1186/1472-6831-15-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/03/2015] [Indexed: 12/21/2022] Open
Abstract
Background To investigate the periodontal disease status in a multi-center cross-sectional study in Germany. Associations of dental, socio-economic, blood and biomedical variables with periodontal outcome parameters were evaluated. Methods From 4 different centers N = 311 persons were included, drawn randomly from the registration offices. Maximal pocket depth (PD) was used as primary indicator for periodontitis. It was classified as: no/mild ≤3 mm, moderate 4-5 mm, severe ≥6 mm. Associations between socioeconomic (household income, education), lifestyle, and biomedical factors and PD or bleeding on probing (BOP) per site (“Yes”/”No”) was analyzed with logistic regression analysis. Results Mean age of subjects was 46.4 (range 20–77) years. A significantly higher risk of deeper pockets for smokers (OR = 2.4, current vs. never smoker) or persons with higher BMI (OR = 1.6, BMI increase by 5) was found. Severity of periodontitis was significantly associated with caries lesions (p = 0.01), bridges (p < .0001), crowns (p < .0001), leukocytes (p = 0.04), HbA1c (p < .0001) and MCV (p = 0.04). PD was positively correlated with BOP. No significant associations with BOP were found in regression analysis. Conclusions Earlier findings for BMI and smoking with severity of PD were confirmed. Dental variables might be influenced by potential confounding factors e.g. dental hygiene. For blood parameters interactions with unknown systemic diseases may exist.
Collapse
Affiliation(s)
- Heiko Zimmermann
- Institute of Public Health, University of Heidelberg, lm Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Microbial biofilms are able to destroy hydroxyapatite in the absence of host immunity in vitro. J Oral Maxillofac Surg 2014; 73:451-64. [PMID: 25544303 DOI: 10.1016/j.joms.2014.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/19/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE It is widely thought that inflammation and osteoclastogenesis result in hydroxyapatite (HA) resorption and sequestrum formation during osseous infections, and microbial biofilm pathogens induce the inflammatory destruction of HA. We hypothesized that biofilms associated with infectious bone disease can directly resorb HA in the absence of host inflammation or osteoclastogenesis. Therefore we developed an in vitro model to test this hypothesis. MATERIALS AND METHODS Customized HA discs were manufactured as a substrate for growing clinically relevant biofilm pathogens. Single-species biofilms of Streptococcus mutans, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans and mixed-species biofilms of C albicans plus S mutans were incubated on HA discs for 72 hours to grow mature biofilms. Three different non-biofilm control groups also were established for testing. HA discs were then evaluated by means of scanning electron microscopy, micro-computed tomography metrotomography, x-ray spectroscopy, and confocal microscopy with planimetric analysis. In addition, quantitative cultures and pH assessment were performed. Analysis of variance was used to test for significance between treatment and control groups. RESULTS All investigated biofilms were able to cause significant (P < .05) and morphologically characteristic alterations in HA structure as compared with controls. The highest number of alterations observed was caused by mixed biofilms of C albicans plus S mutans. S mutans biofilm incubated in medium with additional sucrose content was the most detrimental to HA surfaces among single-species biofilms. CONCLUSIONS Our findings suggest that direct microbial resorption of bone is possible in addition to immune-mediated destruction, which has important translational implications for the pathogenesis of chronic bone infections and for targeted antimicrobial therapeutics.
Collapse
|
47
|
Sano Y, Okamoto-Shibayama K, Tanaka K, Ito R, Shintani S, Yakushiji M, Ishihara K. Dentilisin involvement in coaggregation between Treponema denticola and Tannerella forsythia. Anaerobe 2014; 30:45-50. [DOI: 10.1016/j.anaerobe.2014.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 12/11/2022]
|
48
|
Zbinden A, Bostanci N, Belibasakis GN. The novel species Streptococcus tigurinus and its association with oral infection. Virulence 2014; 6:177-82. [PMID: 25483862 PMCID: PMC4601397 DOI: 10.4161/21505594.2014.970472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Streptococcus tigurinus is a novel species of viridans streptococci, shown to cause severe invasive infections such as infective endocarditis, spondylodiscitis and meningitis. S. tigurinus belongs to the Streptococcus mitis group and is most closely related to Streptococcus mitis, Streptococcus oralis, Streptococcus pneumoniae, Streptococcus pseudopneumoniae and Streptococcus infantis. The presence of S. tigurinus in the human oral cavity has been documented, including in patients with periodontal disease. This review addresses the available scientific knowledge on S. tigurinus and its association with closely related streptococci, and discusses its putative involvement in common oral infections. While there is as yet no strong evidence on the involvement of S. tigurinus with oral infections, its presence in the oral cavity and its association with endocarditis warrants special attention for a link between oral and systemic infection.
Collapse
Affiliation(s)
- Andrea Zbinden
- a Institute of Medical Virology; University of Zurich ; Zurich , Switzerland
| | | | | |
Collapse
|
49
|
Abstract
Chronic unexplained inflammation remains a prevalent and clinically significant problem for patients with end-stage kidney disease (ESKD), especially in the dialysis population. The causes of persistent inflammation are likely to be multifactorial, but the underlying mechanisms remain to be elucidated. Endotoxins are reported to play a significant role in the pathogenesis of inflammation in patients with ESKD. However, blood endotoxin measurement with the Limulus amoebocyte lysate (LAL) assay is difficult with current detection systems. The reported degree and prevalence of endotoxemia varies in the literature. There are questions as to whether endotoxemia is truly present; whether the varied findings are due to methodological issues with the LAL assay and whether any endotoxemia that might be present plays a role in chronic inflammation frequently observed in ESKD patients. This review will discuss the challenges of accurate blood endotoxin detection, the potential source of blood endotoxins, and the significance of endotoxemia to patient with ESKD.
Collapse
Affiliation(s)
- Jonathan Wong
- Department of Renal Medicine, Lister Hospital, Stevenage, Hertfordshire, UK; Department of Postgraduate Medicine, University of Hertfordshire, Hatfield, Hertfordshire, UK
| | | | | |
Collapse
|
50
|
Belibasakis GN, Thurnheer T. Validation of Antibiotic Efficacy on In Vitro Subgingival Biofilms. J Periodontol 2014; 85:343-8. [DOI: 10.1902/jop.2013.130167] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|