1
|
Radovic M, Gartzke LP, Wink SE, van der Kleij JA, Politiek FA, Krenning G. Targeting the Electron Transport System for Enhanced Longevity. Biomolecules 2025; 15:614. [PMID: 40427507 PMCID: PMC12109555 DOI: 10.3390/biom15050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/15/2025] [Accepted: 04/20/2025] [Indexed: 05/29/2025] Open
Abstract
Damage to mitochondrial DNA (mtDNA) results in defective electron transport system (ETS) complexes, initiating a cycle of impaired oxidative phosphorylation (OXPHOS), increased reactive oxygen species (ROS) production, and chronic low-grade inflammation (inflammaging). This culminates in energy failure, cellular senescence, and progressive tissue degeneration. Rapamycin and metformin are the most extensively studied longevity drugs. Rapamycin inhibits mTORC1, promoting mitophagy, enhancing mitochondrial biogenesis, and reducing inflammation. Metformin partially inhibits Complex I, lowering reverse electron transfer (RET)-induced ROS formation and activating AMPK to stimulate autophagy and mitochondrial turnover. Both compounds mimic caloric restriction, shift metabolism toward a catabolic state, and confer preclinical-and, in the case of metformin, clinical-longevity benefits. More recently, small molecules directly targeting mitochondrial membranes and ETS components have emerged. Compounds such as Elamipretide, Sonlicromanol, SUL-138, and others modulate metabolism and mitochondrial function while exhibiting similarities to metformin and rapamycin, highlighting their potential in promoting longevity. The key question moving forward is whether these interventions should be applied chronically to sustain mitochondrial health or intermittently during episodes of stress. A pragmatic strategy may combine chronic metformin use with targeted mitochondrial therapies during acute physiological stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Guido Krenning
- Department of Clinical Pharmacy and Pharmacology, Section of Experimental Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (AP50), 9713 GZ Groningen, The Netherlands; (M.R.); (J.A.v.d.K.); (F.A.P.)
| |
Collapse
|
2
|
Flaherty S, Song L, Albuquerque B, Rinaldi A, Piper M, Shanthappa D, Chen X, Stansfield J, Asano S, Pashos E, Ross T, Jagarlapudi S, Sheikh A, Zhang B, Wu Z. GDF15 Neutralization Ameliorates Muscle Atrophy and Exercise Intolerance in a Mouse Model of Mitochondrial Myopathy. J Cachexia Sarcopenia Muscle 2025; 16:e13715. [PMID: 39976232 PMCID: PMC11840706 DOI: 10.1002/jcsm.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 11/27/2024] [Accepted: 12/25/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Primary mitochondrial myopathies (PMMs) are disorders caused by mutations in genes encoding mitochondrial proteins and proteins involved in mitochondrial function. PMMs are characterized by loss of muscle mass and strength as well as impaired exercise capacity. Growth/Differentiation Factor 15 (GDF15) was reported to be highly elevated in PMMs and cancer cachexia. Previous studies have shown that GDF15 neutralization is effective in improving skeletal muscle mass and function in cancer cachexia. It remains to be determined if the inhibition of GDF15 could be beneficial for PMMs. The purpose of the present study is to assess whether treatment with a GDF15 neutralizing antibody can alleviate muscle atrophy and physical performance impairment in a mouse model of PMM. METHODS The effects of GDF15 neutralization on PMM were assessed using PolgD257A/D257A (POLG) mice. These mice express a proofreading-deficient version of the mitochondrial DNA polymerase gamma, leading to an increased rate of mutations in mitochondrial DNA (mtDNA). These animals display increased circulating GDF15 levels, reduced muscle mass and function, exercise intolerance, and premature aging. Starting at 9 months of age, the mice were treated with an anti-GDF15 antibody (mAB2) once per week for 12 weeks. Body weight, food intake, body composition, and muscle mass were assessed. Muscle function and exercise capacity were evaluated using in vivo concentric max force stimulation assays, forced treadmill running and voluntary home-cage wheel running. Mechanistic investigations were performed via muscle histology, bulk transcriptomic analysis, RT-qPCR and western blotting. RESULTS Anti-GDF15 antibody treatment ameliorated the metabolic phenotypes of the POLG animals, improving body weight (+13% ± 8%, p < 0.0001), lean mass (+13% ± 15%, p < 0.001) and muscle mass (+35% ± 24%, p < 0.001). Additionally, the treatment improved skeletal muscle max force production (+35% ± 43%, p < 0.001) and exercise performance, including treadmill (+40% ± 29%, p < 0.05) and voluntary wheel running (+320% ± 19%, p < 0.05). Mechanistically, the beneficial effects of GDF15 neutralization are linked to the reversal of the transcriptional dysregulation in genes involved in autophagy and proteasome signalling. The treatment also appears to dampen glucocorticoid signalling by suppressing circulating corticosterone levels in the POLG animals. CONCLUSIONS Our findings highlight the potential of GDF15 neutralization with a monoclonal antibody as a therapeutic avenue to enhance physical performance and mitigate adverse clinical outcomes in patients with PMM.
Collapse
Affiliation(s)
- Stephen E. Flaherty
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
- Obesity and ComplicationsEli LillyBostonMassachusettsUSA
| | - LouJin Song
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
- Diabetes, Obesity and MASH, Global Drug DiscoveryNovo NordiskLexingtonMassachusettsUSA
| | - Bina Albuquerque
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
- Diabetes, Obesity and MASH, Global Drug DiscoveryNovo NordiskLexingtonMassachusettsUSA
| | - Anthony Rinaldi
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
- Program Mamager, Preclinical Sciences, ToxicologyVertex PharmaceuticalsBostonMassachusettsUSA
| | - Mary Piper
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
| | | | - Xian Chen
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
| | - John Stansfield
- Biostatistics, Early Clinical DevelopmentPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
| | - Shoh Asano
- Inflammation and Immunology Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
| | - Evanthia Pashos
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
| | - Trenton Thomas Ross
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
| | - Srinath Jagarlapudi
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
| | - Abdul Sheikh
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
- Diabetes, Obesity and MASH, Global Drug DiscoveryNovo NordiskLexingtonMassachusettsUSA
| | - Bei Zhang
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
- Diabetes, Obesity and MASH, Global Drug DiscoveryNovo NordiskLexingtonMassachusettsUSA
| | - Zhidan Wu
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
- Diabetes, Obesity and MASH, Global Drug DiscoveryNovo NordiskLexingtonMassachusettsUSA
| |
Collapse
|
3
|
Meng X, Mao H, Wan M, Lu L, Chen Z, Zhang L. Mitochondrial homeostasis in odontoblast: Physiology, pathogenesis and targeting strategies. Life Sci 2024; 352:122797. [PMID: 38917871 DOI: 10.1016/j.lfs.2024.122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
Caries and pulpitis remain a major global disease burden and affect the quality of life of patients. Odontoblasts are key players in the progression of caries and pulpitis, not only secreting and mineralizing to form dentin, but also acting as a wall of defense to initiate immune defenses. Mitochondrion is an information processor for numerous cellular activities, and dysregulation of mitochondrion homeostasis not only affects cellular metabolism but also triggers a wide range of diseases. Elucidating mitochondrial homeostasis in odontoblasts can help deepen scholars' understanding of odontoblast-associated diseases. Articles on mitochondrial homeostasis in odontoblasts were evaluated for information pertinent to include in this narrative review. This narrative review focused on understanding the complex interplay between mitochondrial homeostasis in odontoblasts under physiological and pathological conditions. Furthermore, mitochondria-centered therapeutic strategies (including mitochondrial base editing, targeting platforms, and mitochondrial transplantation) were emphasized by resolving key genes that regulate mitochondrial function. Mitochondria are involved in odontoblast differentiation and function, and act as mitochondrial danger-associated molecular patterns (mtDAMPs) to mediate odontoblast pathological progression. Novel mitochondria-centered therapeutic strategies are particularly attractive as emerging therapeutic approaches for the maintenance of mitochondrial homeostasis. It is expected to probe key events of odontoblast differentiation and advance the clinical resolution of dentin formation and mineralization disorders and odontoblast-related diseases.
Collapse
Affiliation(s)
- Xiang Meng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Hanqing Mao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Minting Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Linxin Lu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, HongShan District, LuoYu Road No. 237, Wuhan 430079, China.
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, HongShan District, LuoYu Road No. 237, Wuhan 430079, China.
| |
Collapse
|
4
|
Hinton AO, N'jai AU, Vue Z, Wanjalla C. Connection Between HIV and Mitochondria in Cardiovascular Disease and Implications for Treatments. Circ Res 2024; 134:1581-1606. [PMID: 38781302 PMCID: PMC11122810 DOI: 10.1161/circresaha.124.324296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
HIV infection and antiretroviral therapy alter mitochondrial function, which can progressively lead to mitochondrial damage and accelerated aging. The interaction between persistent HIV reservoirs and mitochondria may provide insight into the relatively high rates of cardiovascular disease and mortality in persons living with HIV. In this review, we explore the intricate relationship between HIV and mitochondrial function, highlighting the potential for novel therapeutic strategies in the context of cardiovascular diseases. We reflect on mitochondrial dynamics, mitochondrial DNA, and mitochondrial antiviral signaling protein in the context of HIV. Furthermore, we summarize how toxicities related to early antiretroviral therapy and current highly active antiretroviral therapy can contribute to mitochondrial dysregulation, chronic inflammation, and poor clinical outcomes. There is a need to understand the mechanisms and develop new targeted therapies. We further consider current and potential future therapies for HIV and their interplay with mitochondria. We reflect on the next-generation antiretroviral therapies and HIV cure due to the direct and indirect effects of HIV persistence, associated comorbidities, coinfections, and the advancement of interdisciplinary research fields. This includes exploring novel and creative approaches to target mitochondria for therapeutic intervention.
Collapse
Affiliation(s)
- Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (A.O.H., Z.V.)
| | - Alhaji U N'jai
- Biological Sciences, Fourah Bay College and College of Medicine and Allied Health Sciences (COMAHS), University of Sierra Leone, Freetown, Sierra Leone and Koinadugu College, Kabala (A.U.N.)
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (A.O.H., Z.V.)
| | - Celestine Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.W.)
| |
Collapse
|
5
|
Long X, Liu M, Nan Y, Chen Q, Xiao Z, Xiang Y, Ying X, Sun J, Huang Q, Ai K. Revitalizing Ancient Mitochondria with Nano-Strategies: Mitochondria-Remedying Nanodrugs Concentrate on Disease Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308239. [PMID: 38224339 DOI: 10.1002/adma.202308239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Mitochondria, widely known as the energy factories of eukaryotic cells, have a myriad of vital functions across diverse cellular processes. Dysfunctions within mitochondria serve as catalysts for various diseases, prompting widespread cellular demise. Mounting research on remedying damaged mitochondria indicates that mitochondria constitute a valuable target for therapeutic intervention against diseases. But the less clinical practice and lower recovery rate imply the limitation of traditional drugs, which need a further breakthrough. Nanotechnology has approached favorable regiospecific biodistribution and high efficacy by capitalizing on excellent nanomaterials and targeting drug delivery. Mitochondria-remedying nanodrugs have achieved ideal therapeutic effects. This review elucidates the significance of mitochondria in various cells and organs, while also compiling mortality data for related diseases. Correspondingly, nanodrug-mediate therapeutic strategies and applicable mitochondria-remedying nanodrugs in disease are detailed, with a full understanding of the roles of mitochondria dysfunction and the advantages of nanodrugs. In addition, the future challenges and directions are widely discussed. In conclusion, this review provides comprehensive insights into the design and development of mitochondria-remedying nanodrugs, aiming to help scientists who desire to extend their research fields and engage in this interdisciplinary subject.
Collapse
Affiliation(s)
- Xingyu Long
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750002, P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Yuting Xiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Xiaohong Ying
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Jian Sun
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, P. R. China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China
| |
Collapse
|
6
|
Zhang D, Lin R, Yamamoto N, Wang Z, Lin H, Okada K, Liu Y, Xiang X, Zheng T, Zheng H, Yi X, Noutoshi Y, Zheng A. Mitochondrial-targeting effector RsIA_CtaG/Cox11 in Rhizoctonia solani AG-1 IA has two functions: plant immunity suppression and cell death induction mediated by a rice cytochrome c oxidase subunit. MOLECULAR PLANT PATHOLOGY 2024; 25:e13397. [PMID: 37902589 PMCID: PMC10799210 DOI: 10.1111/mpp.13397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023]
Abstract
Rhizoctonia solani AG-1 IA causes a necrotrophic rice disease and is a serious threat to rice production. To date, only a few effectors have been characterized in AG-1 IA. We previously identified RsIA_CtaG/Cox11 and showed that infiltration of the recombinant protein into rice leaves caused disease-like symptoms. In the present study, we further characterized the functionality of RsIA_CtaG/Cox11. RsIA_CtaG/Cox11 is an alternative transcript of cytochrome c oxidase copper chaperone Cox11 that starts from the second AUG codon, but contains a functional secretion signal peptide. RNA interference with RsIA_CtaG/Cox11 reduced the pathogenicity of AG-1 IA towards rice and Nicotiana benthamiana without affecting its fitness or mycelial morphology. Transient expression of the RsIA_CtaG/Cox11-GFP fusion protein demonstrated the localization of RsIA_CtaG/Cox11 to mitochondria. Agro-infiltration of RsIA_CtaG/Cox11 into N. benthamiana leaves inhibited cell death by BAX and INF1. In contrast to rice, agro-infiltration of RsIA_CtaG/Cox11 did not induce cell death in N. benthamiana. However, cell death was observed when it was coinfiltrated with Os_CoxVIIa, which encodes a subunit of cytochrome c oxidase. Os_CoxVIIa appeared to interact with RsIA_CtaG/Cox11. The cell death triggered by coexpression of RsIA_CtaG/Cox11 and Os_CoxVIIa is independent of the leucine-rich repeat receptor kinases BAK1/SOBIR1 and enhanced the susceptibility of N. benthamiana to AG-1 IA. Two of the three evolutionarily conserved cysteine residues at positions 25 and 126 of RsIA_CtaG/Cox11 were essential for its immunosuppressive activity, but not for cell death induction. This report suggests that RsIA_CtaG/Cox11 appears to have a dual role in immunosuppression and cell death induction during pathogenesis.
Collapse
Affiliation(s)
- Danhua Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- School of AgronomySichuan Agricultural UniversityChengduChina
| | - Runmao Lin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests Ministry of EducationHainan UniversityHaikouChina
| | - Naoki Yamamoto
- School of AgronomySichuan Agricultural UniversityChengduChina
| | - Zhaoyilin Wang
- Rice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Hui Lin
- School of AgronomySichuan Agricultural UniversityChengduChina
| | - Kazunori Okada
- Agro‐Biotechnology Research CenterThe University of TokyoTokyoJapan
| | - Yao Liu
- Key Laboratory of Sichuan Province, Crop Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Xing Xiang
- School of AgronomySichuan Agricultural UniversityChengduChina
| | - Tengda Zheng
- School of AgronomySichuan Agricultural UniversityChengduChina
| | | | - Xiaoqun Yi
- School of AgronomySichuan Agricultural UniversityChengduChina
| | - Yoshiteru Noutoshi
- Graduate School of Environmental, Life, and Natural Science and TechnologyOkayama UniversityOkayamaJapan
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- School of AgronomySichuan Agricultural UniversityChengduChina
| |
Collapse
|
7
|
Sagar S, Gustafsson AB. Cardiovascular aging: the mitochondrial influence. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:33. [PMID: 37583788 PMCID: PMC10426788 DOI: 10.20517/jca.2023.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Age-associated cardiovascular disease is becoming progressively prevalent due to the increased lifespan of the population. However, the fundamental mechanisms underlying the aging process and the corresponding decline in tissue functions are still poorly understood. The heart has a very high energy demand and the cellular energy needed to sustain contraction is primarily generated by mitochondrial oxidative phosphorylation. Mitochondria are also involved in supporting various metabolic processes, as well as activation of the innate immune response and cell death pathways. Given the central role of mitochondria in energy metabolism and cell survival, the heart is highly susceptible to the effects of mitochondrial dysfunction. These key organelles have been implicated as underlying drivers of cardiac aging. Here, we review the evidence demonstrating the mitochondrial contribution to the cardiac aging process and disease susceptibility. We also discuss the potential mechanisms responsible for the age-related decline in mitochondrial function.
Collapse
Affiliation(s)
- Shakti Sagar
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Asa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Ahmed M, Cerda I, Maloof M. Breaking the vicious cycle: The interplay between loneliness, metabolic illness, and mental health. Front Psychiatry 2023; 14:1134865. [PMID: 36970267 PMCID: PMC10030736 DOI: 10.3389/fpsyt.2023.1134865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Loneliness, or perceived social isolation, is a leading predictor of all-cause mortality and is increasingly considered a public health epidemic afflicting significant portions of the general population. Chronic loneliness is itself associated with two of the most pressing public health epidemics currently facing the globe: the rise of mental illness and metabolic health disorders. Here, we highlight the epidemiological associations between loneliness and mental and metabolic health disorders and argue that loneliness contributes to the etiology of these conditions by acting as a chronic stressor that leads to neuroendocrine dysregulation and downstream immunometabolic consequences that manifest in disease. Specifically, we describe how loneliness can lead to overactivation of the hypothalamic-pituitary-adrenal axis and ultimately cause mitochondrial dysfunction, which is implicated in mental and metabolic disease. These conditions can, in turn, lead to further social isolation and propel a vicious cycle of chronic illness. Finally, we outline interventions and policy recommendations that can reduce loneliness at both the individual and community levels. Given its role in the etiology of the most prevalent chronic diseases of our time, focusing resources on alleviating loneliness is a vitally important and cost-effective public health strategy.
Collapse
Affiliation(s)
- Minhal Ahmed
- Harvard Medical School, Boston, MA, United States
| | - Ivo Cerda
- Harvard Medical School, Boston, MA, United States
| | - Molly Maloof
- Adamo Bioscience, Inc., Fernandina Beach, FL, United States
| |
Collapse
|
9
|
Kyrgiafini MA, Giannoulis T, Moutou KA, Mamuris Z. Investigating the Impact of a Curse: Diseases, Population Isolation, Evolution and the Mother's Curse. Genes (Basel) 2022; 13:2151. [PMID: 36421825 PMCID: PMC9690142 DOI: 10.3390/genes13112151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 09/08/2024] Open
Abstract
The mitochondrion was characterized for years as the energy factory of the cell, but now its role in many more cellular processes is recognized. The mitochondrion and mitochondrial DNA (mtDNA) also possess a set of distinct properties, including maternal inheritance, that creates the Mother's Curse phenomenon. As mtDNA is inherited from females to all offspring, mutations that are harmful to males tend to accumulate more easily. The Mother's Curse is associated with various diseases, and has a significant effect on males, in many cases even affecting their reproductive ability. Sometimes, it even leads to reproductive isolation, as in crosses between different populations, the mitochondrial genome cannot cooperate effectively with the nuclear one resulting in a mito-nuclear incompatibility and reduce the fitness of the hybrids. This phenomenon is observed both in the laboratory and in natural populations, and have the potential to influence their evolution and speciation. Therefore, it turns out that the study of mitochondria is an exciting field that finds many applications, including pest control, and it can shed light on the molecular mechanism of several diseases, improving successful diagnosis and therapeutics. Finally, mito-nuclear co-adaptation, paternal leakage, and kin selection are some mechanisms that can mitigate the impact of the Mother's Curse.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Katerina A. Moutou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
10
|
Kishimoto-Urata M, Urata S, Fujimoto C, Yamasoba T. Role of Oxidative Stress and Antioxidants in Acquired Inner Ear Disorders. Antioxidants (Basel) 2022; 11:1469. [PMID: 36009187 PMCID: PMC9405327 DOI: 10.3390/antiox11081469] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Oxygen metabolism in the mitochondria is essential for biological activity, and reactive oxygen species (ROS) are produced simultaneously in the cell. Once an imbalance between ROS production and degradation (oxidative stress) occurs, cells are damaged. Sensory organs, especially those for hearing, are constantly exposed during daily life. Therefore, almost all mammalian species are liable to hearing loss depending on their environment. In the auditory pathway, hair cells, spiral ganglion cells, and the stria vascularis, where mitochondria are abundant, are the main targets of ROS. Excessive generation of ROS in auditory sensory organs is widely known to cause sensorineural hearing loss, and mitochondria-targeted antioxidants are candidates for treatment. This review focuses on the relationship between acquired hearing loss and antioxidant use to provide an overview of novel antioxidants, namely medicines, supplemental nutrients, and natural foods, based on clinical, animal, and cultured-cell studies.
Collapse
Affiliation(s)
| | | | | | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655, Japan; (M.K.-U.); (S.U.); (C.F.)
| |
Collapse
|
11
|
Rani L, Ranjan Sahu M, Chandra Mondal A. Age-related Mitochondrial Dysfunction in Parkinson's Disease: New Insights Into the Disease Pathology. Neuroscience 2022; 499:152-169. [PMID: 35839924 DOI: 10.1016/j.neuroscience.2022.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022]
Abstract
Aging is a progressive loss of physiological function that increases risk of disease and death. Among the many factors that contribute to human aging, mitochondrial dysfunction has emerged as one of the most prominent features of the aging process. It has been linked to the development of various age-related pathologies, including Parkinson's disease (PD). Mitochondria has a complex quality control system that ensures mitochondrial integrity and function. Perturbations in these mitochondrial mechanisms have long been linked to various age-related neurological disorders. Even though research has shed light on several aspects of the disease pathology, the underlying mechanism of age-related factors responsible for individuals developing this disease is still unknown. This review article aims to discuss the role of mitochondria in the transition from normal brain aging to pathological brain aging, which leads to the progression of PD. We have discussed the emerging evidence on how age-related disruption of mitochondrial quality control mechanisms contributes to the development of PD-related pathophysiology.
Collapse
Affiliation(s)
- Linchi Rani
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India.
| |
Collapse
|
12
|
Mitochondrial DNA Profiling by Fractal Lacunarity to Characterize the Senescent Phenotype as Normal Aging or Pathological Aging. FRACTAL AND FRACTIONAL 2022. [DOI: 10.3390/fractalfract6040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biocomplexity, chaos, and fractality can explain the heterogeneity of aging individuals by regarding longevity as a “secondary product” of the evolution of a dynamic nonlinear system. Genetic-environmental interactions drive the individual senescent phenotype toward normal, pathological, or successful aging. Mitochondrial dysfunctions and mitochondrial DNA (mtDNA) mutations represent a possible mechanism shared by disease(s) and the aging process. This study aims to characterize the senescent phenotype and discriminate between normal (nA) and pathological (pA) aging by mtDNA mutation profiling. MtDNA sequences from hospitalized and non-hospitalized subjects (age-range: 65–89 years) were analyzed and compared to the revised Cambridge Reference Sequence (rCRS). Fractal properties of mtDNA sequences were displayed by chaos game representation (CGR) method, previously modified to deal with heteroplasmy. Fractal lacunarity analysis was applied to characterize the senescent phenotype on the basis of mtDNA sequence mutations. Lacunarity parameter β, from our hyperbola model function, was statistically different (p < 0.01) between the nA and pA groups. Parameter β cut-off value at 1.26 × 10−3 identifies 78% nA and 80% pA subjects. This also agrees with the presence of MT-CO gene variants, peculiar to nA (C9546m, 83%) and pA (T9900w, 80%) mtDNA, respectively. Fractal lacunarity can discriminate the senescent phenotype evolving as normal or pathological aging by individual mtDNA mutation profile.
Collapse
|
13
|
Wang H, Han Y, Li S, Chen Y, Chen Y, Wang J, Zhang Y, Zhang Y, Wang J, Xia Y, Yuan J. Mitochondrial DNA Depletion Syndrome and Its Associated Cardiac Disease. Front Cardiovasc Med 2022; 8:808115. [PMID: 35237671 PMCID: PMC8882844 DOI: 10.3389/fcvm.2021.808115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/23/2021] [Indexed: 12/06/2022] Open
Abstract
Mitochondria is a ubiquitous, energy-supplying (ATP-based) organelle found in nearly all eukaryotes. It acts as a “power plant” by producing ATP through oxidative phosphorylation, providing energy for the cell. The bioenergetic functions of mitochondria are regulated by nuclear genes (nDNA). Mitochondrial DNA (mtDNA) and respiratory enzymes lose normal structure and function when nuclear genes encoding the related mitochondrial factors are impaired, resulting in deficiency in energy production. Massive generation of reactive oxygen species and calcium overload are common causes of mitochondrial diseases. The mitochondrial depletion syndrome (MDS) is associated with the mutations of mitochondrial genes in the nucleus. It is a heterogeneous group of progressive disorders characterized by the low mtDNA copy number. TK2, FBXL4, TYPM, and AGK are genes known to be related to MDS. More recent studies identified new mutation loci associated with this disease. Herein, we first summarize the structure and function of mitochondria, and then discuss the characteristics of various types of MDS and its association with cardiac diseases.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Physiology, Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yijun Han
- Clinical Medical College, Jining Medical University, Jining, China
| | - Shenwei Li
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yunan Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yafen Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Jing Wang
- Dongying Fifth People's Hospital, Dongying, China
| | - Yuqing Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yawen Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Jingsuo Wang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
- Yong Xia
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, China
- *Correspondence: Jinxiang Yuan
| |
Collapse
|
14
|
Yoshinaga N, Numata K. Rational Designs at the Forefront of Mitochondria-Targeted Gene Delivery: Recent Progress and Future Perspectives. ACS Biomater Sci Eng 2022; 8:348-359. [PMID: 34979085 DOI: 10.1021/acsbiomaterials.1c01114] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria play an essential role in cellular metabolism and generate energy in cells. To support these functions, several proteins are encoded in the mitochondrial DNA (mtDNA). The mutation of mtDNA causes mitochondrial dysfunction and ultimately results in a variety of inherited diseases. To date, gene delivery systems targeting mitochondria have been developed to ameliorate mtDNA mutations. However, applications of these strategies in mitochondrial gene therapy are still being explored and optimized. Thus, from this perspective, we herein highlight recent mitochondria-targeting strategies for gene therapy and discuss future directions for effective mitochondria-targeted gene delivery.
Collapse
Affiliation(s)
- Naoto Yoshinaga
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Keiji Numata
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan.,Department of Material Chemistry, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Relationship between oxidative stress and lifespan in Daphnia pulex. Sci Rep 2022; 12:2354. [PMID: 35149730 PMCID: PMC8837783 DOI: 10.1038/s41598-022-06279-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Macromolecular damage leading to cell, tissue and ultimately organ dysfunction is a major contributor to aging. Intracellular reactive oxygen species (ROS) resulting from normal metabolism cause most damage to macromolecules and the mitochondria play a central role in this process as they are the principle source of ROS. The relationship between naturally occurring variations in the mitochondrial (MT) genomes leading to correspondingly less or more ROS and macromolecular damage that changes the rate of aging associated organismal decline remains relatively unexplored. MT complex I, a component of the electron transport chain (ETC), is a key source of ROS and the NADH dehydrogenase subunit 5 (ND5) is a highly conserved core protein of the subunits that constitute the backbone of complex I. Using Daphnia as a model organism, we explored if the naturally occurring sequence variations in ND5 correlate with a short or long lifespan. Our results indicate that the short-lived clones have ND5 variants that correlate with reduced complex I activity, increased oxidative damage, and heightened expression of ROS scavenger enzymes. Daphnia offers a unique opportunity to investigate the association between inherited variations in components of complex I and ROS generation which affects the rate of aging and lifespan.
Collapse
|
16
|
Chen Y, Li Y. Metabolic reprogramming and immunity in cancer. CANCER IMMUNOLOGY AND IMMUNOTHERAPY 2022:137-196. [DOI: 10.1016/b978-0-12-823397-9.00006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Mitochondrial genome stability in human: understanding the role of DNA repair pathways. Biochem J 2021; 478:1179-1197. [DOI: 10.1042/bcj20200920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022]
Abstract
Mitochondria are semiautonomous organelles in eukaryotic cells and possess their own genome that replicates independently. Mitochondria play a major role in oxidative phosphorylation due to which its genome is frequently exposed to oxidative stress. Factors including ionizing radiation, radiomimetic drugs and replication fork stalling can also result in different types of mutations in mitochondrial DNA (mtDNA) leading to genome fragility. Mitochondria from myopathies, dystonia, cancer patient samples show frequent mtDNA mutations such as point mutations, insertions and large-scale deletions that could account for mitochondria-associated disease pathogenesis. The mechanism by which such mutations arise following exposure to various DNA-damaging agents is not well understood. One of the well-studied repair pathways in mitochondria is base excision repair. Other repair pathways such as mismatch repair, homologous recombination and microhomology-mediated end joining have also been reported. Interestingly, nucleotide excision repair and classical nonhomologous DNA end joining are not detected in mitochondria. In this review, we summarize the potential causes of mitochondrial genome fragility, their implications as well as various DNA repair pathways that operate in mitochondria.
Collapse
|
18
|
Alwehaidah MS, Al-Kafaji G, Bakhiet M, Alfadhli S. Next-generation sequencing of the whole mitochondrial genome identifies novel and common variants in patients with psoriasis, type 2 diabetes mellitus and psoriasis with comorbid type 2 diabetes mellitus. Biomed Rep 2021; 14:41. [PMID: 33728047 PMCID: PMC7953201 DOI: 10.3892/br.2021.1417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Recent studies have shown the role of mitochondrial DNA (mtDNA) variants in the pathogenesis of both psoriasis (Ps) and type 2 diabetes (T2D) amongst different ethnicities. However, no studies have investigated the mtDNA variants present in patients with Ps, T2D, and both Ps and T2D (Ps-T2D) in the Arab population. The entire mitochondrial genomes of Kuwaiti subjects with Ps, T2D, Ps-T2D and healthy controls were sequenced using Ion Torrent next-generation sequencing. A total of 36 novel mutations and 51 previously reported mutations were identified in the patient groups that were absent in the controls. Amongst the novel mutations, eight were non-synonymous and exhibited amino acid changes. Of these, two missense mutations (G5262A and A12397G) in the ND genes were detected in the Ps group and a C15735T missense mutation in the CYB gene was detected in Ps-T2D. Other known sequence variations were seen more frequently in all or certain patient groups compared with the controls (P<0.05). Additionally, the A8701G missense mutation in the ATPase 6 gene missense mutation was also observed in a higher frequency in the Ps group compared with the control. The present study is the first to perform a complete mitochondrial genome sequence analysis of Kuwaiti subjects with Ps, T2D and Ps-T2D, and both novel and known mtDNA variants were discovered. The patient-specific novel non-synonymous mutations may be co-responsible in the determination of these diseases. The higher frequency of certain mtDNA variants in the patients compared with the controls may suggest a role in predisposing patients to these diseases. Further functional analyses are required to reveal the role of the identified mutations in these disease conditions.
Collapse
Affiliation(s)
- Materah Salem Alwehaidah
- Department of Medical Laboratory, Faculty of Allied Health, Kuwait University, Sulaibekhat 90805, State of Kuwait
| | - Ghada Al-Kafaji
- Department of Molecular Medicine, College of Medical and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Moiz Bakhiet
- Department of Molecular Medicine, College of Medical and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Suad Alfadhli
- Department of Medical Laboratory, Faculty of Allied Health, Kuwait University, Sulaibekhat 90805, State of Kuwait
| |
Collapse
|
19
|
Lee Y, Kim T, Lee M, So S, Karagozlu MZ, Seo GH, Choi IH, Lee PCW, Kim CJ, Kang E, Lee BH. De Novo Development of mtDNA Deletion Due to Decreased POLG and SSBP1 Expression in Humans. Genes (Basel) 2021; 12:genes12020284. [PMID: 33671400 PMCID: PMC7922481 DOI: 10.3390/genes12020284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023] Open
Abstract
Defects in the mitochondrial genome (mitochondrial DNA (mtDNA)) are associated with both congenital and acquired disorders in humans. Nuclear-encoded DNA polymerase subunit gamma (POLG) plays an important role in mtDNA replication, and proofreading and mutations in POLG have been linked with increased mtDNA deletions. SSBP1 is also a crucial gene for mtDNA replication. Here, we describe a patient diagnosed with Pearson syndrome with large mtDNA deletions that were not detected in the somatic cells of the mother. Exome sequencing was used to evaluate the nuclear factors associated with the patient and his family, which revealed a paternal POLG mutation (c.868C > T) and a maternal SSBP1 mutation (c.320G > A). The patient showed lower POLG and SSBP1 expression than his healthy brothers and the general population of a similar age. Notably, c.868C in the wild-type allele was highly methylated in the patient compared to the same site in both his healthy brothers. These results suggest that the co- deficient expression of POLG and SSBP1 genes could contribute to the development of mtDNA deletion.
Collapse
Affiliation(s)
- Yeonmi Lee
- Department of Convergence Medicine and Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.L.); (M.L.); (S.S.); (M.Z.K.)
| | - Taeho Kim
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (T.K.); (G.H.S.); (I.H.C.)
| | - Miju Lee
- Department of Convergence Medicine and Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.L.); (M.L.); (S.S.); (M.Z.K.)
| | - Seongjun So
- Department of Convergence Medicine and Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.L.); (M.L.); (S.S.); (M.Z.K.)
| | - Mustafa Zafer Karagozlu
- Department of Convergence Medicine and Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.L.); (M.L.); (S.S.); (M.Z.K.)
| | - Go Hun Seo
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (T.K.); (G.H.S.); (I.H.C.)
| | - In Hee Choi
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (T.K.); (G.H.S.); (I.H.C.)
| | - Peter C. W. Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Chong-Jai Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Eunju Kang
- Department of Convergence Medicine and Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.L.); (M.L.); (S.S.); (M.Z.K.)
- Correspondence: (E.K.); (B.H.L.); Tel.: +82-2-3010-8547 (E.K.); +82-2-3010-5950 (B.H.L.)
| | - Beom Hee Lee
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (T.K.); (G.H.S.); (I.H.C.)
- Correspondence: (E.K.); (B.H.L.); Tel.: +82-2-3010-8547 (E.K.); +82-2-3010-5950 (B.H.L.)
| |
Collapse
|
20
|
Nicaise AM, Willis CM, Crocker SJ, Pluchino S. Stem Cells of the Aging Brain. Front Aging Neurosci 2020; 12:247. [PMID: 32848716 PMCID: PMC7426063 DOI: 10.3389/fnagi.2020.00247] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
The adult central nervous system (CNS) contains resident stem cells within specific niches that maintain a self-renewal and proliferative capacity to generate new neurons, astrocytes, and oligodendrocytes throughout adulthood. Physiological aging is associated with a progressive loss of function and a decline in the self-renewal and regenerative capacities of CNS stem cells. Also, the biggest risk factor for neurodegenerative diseases is age, and current in vivo and in vitro models of neurodegenerative diseases rarely consider this. Therefore, combining both aging research and appropriate interrogation of animal disease models towards the understanding of the disease and age-related stem cell failure is imperative to the discovery of new therapies. This review article will highlight the main intrinsic and extrinsic regulators of neural stem cell (NSC) aging and discuss how these factors impact normal homeostatic functions within the adult brain. We will consider established in vivo animal and in vitro human disease model systems, and then discuss the current and future trajectories of novel senotherapeutics that target aging NSCs to ameliorate brain disease.
Collapse
Affiliation(s)
- Alexandra M Nicaise
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Cory M Willis
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
21
|
Testosterone enhances mitochondrial complex V function in the substantia nigra of aged male rats. Aging (Albany NY) 2020; 12:10398-10414. [PMID: 32445551 PMCID: PMC7346067 DOI: 10.18632/aging.103265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/20/2020] [Indexed: 01/21/2023]
Abstract
Deficits in coordinated motor behavior and mitochondrial complex V activity have been observed in aged males. Testosterone supplementation can improve coordinated motor behavior in aged males. We investigated the effects of testosterone supplementation on mitochondrial complex V function in the substantia nigra (a brain region that regulates motor activity) in aged male rats. These rats exhibited diminished ATP levels, attenuated mitochondrial complex V activity, and reduced expression of 3 of the 17 mitochondrial complex V subunits (ATP6, ATP8 and ATP5C1) in the substantia nigra. Testosterone supplementation increased ATP levels, mitochondrial complex V activity, and ATP6, ATP8 and ATP5C1 expression in the substantia nigra of the rats. Conversely, orchiectomy reduced mitochondrial complex V activity, downregulated ATP6 and ATP8 expression, and upregulated ATP5C1, ATP5I and ATP5L expression in the substantia nigra. Testosterone replacement reversed those effects. Thus, testosterone enhanced mitochondrial complex V function in the substantia nigra of aged male rats by upregulating ATP6 and ATP8. As potential testosterone targets, these two subunits may to some degree maintain nigrostriatal dopaminergic function in aged males.
Collapse
|
22
|
Ruiz-Ramos DV, Schiebelhut LM, Hoff KJ, Wares JP, Dawson MN. An initial comparative genomic autopsy of wasting disease in sea stars. Mol Ecol 2020; 29:1087-1102. [PMID: 32069379 DOI: 10.1111/mec.15386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
Beginning in 2013, sea stars throughout the Eastern North Pacific were decimated by wasting disease, also known as "asteroid idiopathic wasting syndrome" (AIWS) due to its elusive aetiology. The geographic extent and taxonomic scale of AIWS meant events leading up to the outbreak were heterogeneous, multifaceted, and oftentimes unobserved; progression from morbidity to death was rapid, leaving few tell-tale symptoms. Here, we take a forensic genomic approach to discover candidate genes that may help explain sea star wasting syndrome. We report the first genome and annotation for Pisaster ochraceus, along with differential gene expression (DGE) analyses in four size classes, three tissue types, and in symptomatic and asymptomatic individuals. We integrate nucleotide polymorphisms associated with survivors of the wasting disease outbreak, DGE associated with temperature treatments in P. ochraceus, and DGE associated with wasting in another asteroid Pycnopodia helianthoides. In P. ochraceus, we found DGE across all tissues, among size classes, and between asymptomatic and symptomatic individuals; the strongest wasting-associated DGE signal was in pyloric caecum. We also found previously identified outlier loci co-occur with differentially expressed genes. In cross-species comparisons of symptomatic and asymptomatic individuals, consistent responses distinguish genes associated with invertebrate innate immunity and chemical defence, consistent with context-dependent stress responses, defensive apoptosis, and tissue degradation. Our analyses thus highlight genomic constituents that may link suspected environmental drivers (elevated temperature) with intrinsic differences among individuals (age/size, alleles associated with susceptibility) that elicit organismal responses (e.g., coelomocyte proliferation) and manifest as sea star wasting mass mortality.
Collapse
Affiliation(s)
- Dannise V Ruiz-Ramos
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Lauren M Schiebelhut
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Katharina J Hoff
- Institute for Computer Science and Mathematics, University of Greifswald, Greifswald, Germany.,Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - John P Wares
- Department of Genetics and the Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Michael N Dawson
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
23
|
Weaver RJ. Hypothesized Evolutionary Consequences of the Alternative Oxidase (AOX) in Animal Mitochondria. Integr Comp Biol 2020; 59:994-1004. [PMID: 30912813 DOI: 10.1093/icb/icz015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The environment in which eukaryotes first evolved was drastically different from what they experience today, and one of the key limiting factors was the availability of oxygen for mitochondrial respiration. During the transition to a fully oxygenated Earth, other compounds such as sulfide posed a considerable constraint on using mitochondrial aerobic respiration for energy production. The ancestors of animals, and those that first evolved from the simpler eukaryotes have mitochondrial respiratory components that are absent from later-evolving animals. Specifically, mitochondria of most basal metazoans have a sulfide-resistant alternative oxidase (AOX), which provides a secondary oxidative pathway to the classical cytochrome pathway. In this essay, I argue that because of its resistance to sulfide, AOX respiration was critical to the evolution of animals by enabling oxidative metabolism under otherwise inhibitory conditions. I hypothesize that AOX allowed for metabolic flexibility during the stochastic oxygen environment of early Earth which shaped the evolution of basal metazoans. I briefly describe the known functions of AOX, with a particular focus on the decreased production of reactive oxygen species (ROS) during stress conditions. Then, I propose three evolutionary consequences of AOX-mediated protection from ROS observed in basal metazoans: 1) adaptation to stressful environments, 2) the persistence of facultative sexual reproduction, and 3) decreased mitochondrial DNA mutation rates. Recognizing the diversity of mitochondrial respiratory systems present in animals may help resolve the mechanisms involved in major evolutionary processes such as adaptation and speciation.
Collapse
Affiliation(s)
- Ryan J Weaver
- Department of Biological Sciences, Auburn University, 331 Funchess Hall, Auburn, AL 36849, USA
| |
Collapse
|
24
|
Zolotarenko AD, Chekalin EV, Bruskin SA. Modern Molecular Genetic Methods for Age Estimation in Forensics. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795419120147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Alcoholic Cardiomyopathy: Is it Time for Genetic Testing? J Am Coll Cardiol 2019; 71:2303-2305. [PMID: 29773158 DOI: 10.1016/j.jacc.2018.03.463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 03/23/2018] [Indexed: 11/23/2022]
|
26
|
Gómez-Gómez ME, Zapico SC. Frailty, Cognitive Decline, Neurodegenerative Diseases and Nutrition Interventions. Int J Mol Sci 2019; 20:ijms20112842. [PMID: 31212645 PMCID: PMC6600148 DOI: 10.3390/ijms20112842] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
Currently the human population is aging faster. This leads to higher dependency rates and the transformation of health and social care to adapt to this aged population. Among the changes developed by this population is frailty. It is defined as a clinically detectable syndrome, related to the aging of multiple physiological systems, which prompts a situation of vulnerability. The etiology of frailty seems to be multifactorial and its pathophysiology is influenced by the interaction of numerous factors. Morley et al. propose four main mechanisms triggering the frailty: atherosclerosis, sarcopenia, cognitive deterioration and malnutrition, with their respective metabolic alterations. Malnutrition is associated with cognitive impairment or functional loss, but it is also known that an inadequate nutritional status predisposes to cognitive frailty. Additionally, nutritional factors that may influence vascular risk factors will potentially have an effect on dementia decline among patients with cognitive frailty. This review aims to describe the nutritional factors that have been researched so far which may lead to the development of frailty, and especially cognitive decline.
Collapse
Affiliation(s)
| | - Sara C Zapico
- International Forensic Research Institute and Chemistry Department, Florida International University, 11200 SW 8 St., CP323, Miami, FL 33199, USA.
- Anthropology Department, Smithsonian Institution, NMNH, MRC 112, 10th and Constitution Ave, NW, PO Box 37012, Washington, DC 20560, USA.
| |
Collapse
|
27
|
Steele LD, Coates BS, Seong KM, Valero MC, Mittapalli O, Sun W, Clark J, Pittendrigh BR. Variation in Mitochondria-Derived Transcript Levels Associated With DDT Resistance in the 91-R Strain of Drosophila melanogaster (Diptera: Drosophilidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5153340. [PMID: 30383265 PMCID: PMC6209762 DOI: 10.1093/jisesa/iey101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Indexed: 06/08/2023]
Abstract
The organochloride insecticide dichlorodiphenyltrichloroethane (DDT) and its metabolites can increase cellular levels of reactive oxygen species (ROS), cause mitochondrial dysfunction, and induce apoptosis. The highly DDT-resistant Drosophila melanogaster Meigen 1830 (Drosophila) strain, 91-R, and its susceptible control, 91-C, were used to investigate functional and structural changes among mitochondrial-derived pathways. Resequencing of mitochondrial genomes (mitogenomes) detected no structural differences between 91-R and 91-C, whereas RNA-seq suggested the differential expression of 221 mitochondrial-associated genes. Reverse transcriptase-quantitative PCR validation of 33 candidates confirmed that transcripts for six genes (Cyp12d1-p, Cyp12a4, cyt-c-d, COX5BL, COX7AL, CG17140) were significantly upregulated and two genes (Dif, Rel) were significantly downregulated in 91-R. Among the upregulated genes, four genes are duplicated within the reference genome (cyt-c-d, CG17140, COX5BL, and COX7AL). The predicted functions of the differentially expressed genes, or known functions of closely related genes, suggest that 91-R utilizes existing ROS regulation pathways of the mitochondria to combat increased ROS levels from exposure to DDT. This study represents, to our knowledge, the initial investigation of mitochondrial genome sequence variants and functional adaptations in responses to intense DDT selection and provides insights into potential adaptations of ROS management associated with DDT selection in Drosophila.
Collapse
Affiliation(s)
- Laura D Steele
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL
| | - Brad S Coates
- United States Department of Agriculture—Agricultural Research Service, Corn Insect and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University Ames, IA
| | - Keon Mook Seong
- Department of Entomology, Michigan State University, East Lansing, MI
| | - M Carmen Valero
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL
| | | | - Weilin Sun
- Department of Entomology, Michigan State University, East Lansing, MI
| | - John Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA
| | | |
Collapse
|
28
|
Ryzhkova AI, Sazonova MA, Sinyov VV, Galitsyna EV, Chicheva MM, Melnichenko AA, Grechko AV, Postnov AY, Orekhov AN, Shkurat TP. Mitochondrial diseases caused by mtDNA mutations: a mini-review. Ther Clin Risk Manag 2018; 14:1933-1942. [PMID: 30349272 PMCID: PMC6186303 DOI: 10.2147/tcrm.s154863] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There are several types of mitochondrial cytopathies, which cause a set of disorders, arise as a result of mitochondria’s failure. Mitochondria’s functional disruption leads to development of physical, growing and cognitive disabilities and includes multiple organ pathologies, essentially disturbing the nervous and muscular systems. The origins of mitochondrial cytopathies are mutations in genes of nuclear DNA encoding mitochondrial proteins or in mitochondrial DNA. Nowadays, numerous mtDNA mutations significant to the appearance and progress of pathologies in humans are detected. In this mini-review, we accent on the mitochondrial cytopathies related to mutations of mtDNA. As well known, there are definite set of symptoms of mitochondrial cytopathies distinguishing or similar for different syndromes. The present article contains data about mutations linked with cytopathies that facilitate diagnosis of different syndromes by using genetic analysis methods. In addition, for every individual, more effective therapeutic approach could be developed after wide-range mutant background analysis of mitochondrial genome.
Collapse
Affiliation(s)
- Anastasia I Ryzhkova
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation, .,Department of Virology, K.I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology-MVA, Moscow, Russian Federation,
| | - Margarita A Sazonova
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation, .,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Vasily V Sinyov
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation,
| | - Elena V Galitsyna
- Department of Genetics, Southern Federal University, Rostov-on-Don, Russian Federation
| | - Mariya M Chicheva
- Department of Genetics, Southern Federal University, Rostov-on-Don, Russian Federation
| | | | - Andrey V Grechko
- Federal Research and Clinical Center of Reanimatology and Rehabilitology, Moscow, Russian Federation
| | - Anton Yu Postnov
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation,
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation.,Institute for Atherosclerosis Research, Skolkovo Innovative Centre, Moscow Region, Russian Federation
| | - Tatiana P Shkurat
- Department of Genetics, Southern Federal University, Rostov-on-Don, Russian Federation
| |
Collapse
|
29
|
Cruz ACP, Ferrasa A, Muotri AR, Herai RH. Frequency and association of mitochondrial genetic variants with neurological disorders. Mitochondrion 2018; 46:345-360. [PMID: 30218715 DOI: 10.1016/j.mito.2018.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/24/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
Mitochondria are small cytosolic organelles and the main source of energy production for the cells, especially in the brain. This organelle has its own genome, the mitochondrial DNA (mtDNA), and genetic variants in this molecule can alter the normal energy metabolism in the brain, contributing to the development of a wide assortment of Neurological Disorders (ND), including neurodevelopmental syndromes, neurodegenerative diseases and neuropsychiatric disorders. These ND are comprised by a heterogeneous group of syndromes and diseases that encompass different cognitive phenotypes and behavioral disorders, such as autism, Asperger's syndrome, pervasive developmental disorder, attention deficit hyperactivity disorder, Huntington disease, Leigh Syndrome and bipolar disorder. In this work we carried out a Systematic Literature Review (SLR) to identify and describe the mitochondrial genetic variants associated with the occurrence of ND. Most of genetic variants found in mtDNA were associated with Single Nucleotide Polimorphisms (SNPs), ~79%, with ~15% corresponding to deletions, ~3% to Copy Number Variations (CNVs), ~2% to insertions and another 1% included mtDNA replication problems and genetic rearrangements. We also found that most of the variants were associated with coding regions of mitochondrial proteins but were also found in regulatory transcripts (tRNA and rRNA) and in the D-Loop replication region of the mtDNA. After analysis of mtDNA deletions and CNV, none of them occur in the D-Loop region. This SLR shows that all transcribed mtDNA molecules have mutations correlated with ND. Finally, we describe that all mtDNA variants found were associated with deterioration of cognitive (dementia) and intellectual functions, learning disabilities, developmental delays, and personality and behavior problems.
Collapse
Affiliation(s)
- Ana Carolina P Cruz
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná 80215-901, Brazil
| | - Adriano Ferrasa
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná 80215-901, Brazil; Department of Informatics (DEINFO), Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, Paraná 84030-900, Brazil
| | - Alysson R Muotri
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92037-0695, USA
| | - Roberto H Herai
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná 80215-901, Brazil; Lico Kaesemodel Institute (ILK), Curitiba, Paraná 80240-000, Brazil.
| |
Collapse
|
30
|
Angajala A, Lim S, Phillips JB, Kim JH, Yates C, You Z, Tan M. Diverse Roles of Mitochondria in Immune Responses: Novel Insights Into Immuno-Metabolism. Front Immunol 2018; 9:1605. [PMID: 30050539 PMCID: PMC6052888 DOI: 10.3389/fimmu.2018.01605] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
Lack of immune system cells or impairment in differentiation of immune cells is the basis for many chronic diseases. Metabolic changes could be the root cause for this immune cell impairment. These changes could be a result of altered transcription, cytokine production from surrounding cells, and changes in metabolic pathways. Immunity and mitochondria are interlinked with each other. An important feature of mitochondria is it can regulate activation, differentiation, and survival of immune cells. In addition, it can also release signals such as mitochondrial DNA (mtDNA) and mitochondrial ROS (mtROS) to regulate transcription of immune cells. From current literature, we found that mitochondria can regulate immunity in different ways. First, alterations in metabolic pathways (TCA cycle, oxidative phosphorylation, and FAO) and mitochondria induced transcriptional changes can lead to entirely different outcomes in immune cells. For example, M1 macrophages exhibit a broken TCA cycle and have a pro-inflammatory role. By contrast, M2 macrophages undergo β-oxidation to produce anti-inflammatory responses. In addition, amino acid metabolism, especially arginine, glutamine, serine, glycine, and tryptophan, is critical for T cell differentiation and macrophage polarization. Second, mitochondria can activate the inflammatory response. For instance, mitochondrial antiviral signaling and NLRP3 can be activated by mitochondria. Third, mitochondrial mass and mobility can be influenced by fission and fusion. Fission and fusion can influence immune functions. Finally, mitochondria are placed near the endoplasmic reticulum (ER) in immune cells. Therefore, mitochondria and ER junction signaling can also influence immune cell metabolism. Mitochondrial machinery such as metabolic pathways, amino acid metabolism, antioxidant systems, mitochondrial dynamics, mtDNA, mitophagy, and mtROS are crucial for immune functions. Here, we have demonstrated how mitochondria coordinate to alter immune responses and how changes in mitochondrial machinery contribute to alterations in immune responses. A better understanding of the molecular components of mitochondria is necessary. This can help in the development of safe and effective immune therapy or prevention of chronic diseases. In this review, we have presented an updated prospective of the mitochondrial machinery that drives various immune responses.
Collapse
Affiliation(s)
- Anusha Angajala
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States.,Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Sangbin Lim
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Joshua B Phillips
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Jin-Hwan Kim
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Clayton Yates
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Zongbing You
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Ming Tan
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
31
|
Giorgi C, Marchi S, Simoes IC, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jȩdrak P, Pierzynowska K, Szymański J, Wang DQ, Portincasa P, Wȩgrzyn G, Zischka H, Dobrzyn P, Bonora M, Duszynski J, Rimessi A, Karkucinska-Wieckowska A, Dobrzyn A, Szabadkai G, Zavan B, Oliveira PJ, Sardao VA, Pinton P, Wieckowski MR. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:209-344. [PMID: 30072092 PMCID: PMC8127332 DOI: 10.1016/bs.ircmb.2018.05.006] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging has been linked to several degenerative processes that, through the accumulation of molecular and cellular damage, can progressively lead to cell dysfunction and organ failure. Human aging is linked with a higher risk for individuals to develop cancer, neurodegenerative, cardiovascular, and metabolic disorders. The understanding of the molecular basis of aging and associated diseases has been one major challenge of scientific research over the last decades. Mitochondria, the center of oxidative metabolism and principal site of reactive oxygen species (ROS) production, are crucial both in health and in pathogenesis of many diseases. Redox signaling is important for the modulation of cell functions and several studies indicate a dual role for ROS in cell physiology. In fact, high concentrations of ROS are pathogenic and can cause severe damage to cell and organelle membranes, DNA, and proteins. On the other hand, moderate amounts of ROS are essential for the maintenance of several biological processes, including gene expression. In this review, we provide an update regarding the key roles of ROS-mitochondria cross talk in different fundamental physiological or pathological situations accompanying aging and highlighting that mitochondrial ROS may be a decisive target in clinical practice.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Ines C.M. Simoes
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ziyu Ren
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Giampaolo Morciano
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Maria Pia Hospital, GVM Care & Research, Torino, Italy
| | - Mariasole Perrone
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Paulina Jȩdrak
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | - Jȩdrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - David Q. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences & Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Grzegorz Wȩgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Pawel Dobrzyn
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Massimo Bonora
- Departments of Cell Biology and Gottesman Institute for Stem Cell & Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jerzy Duszynski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alessandro Rimessi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Barbara Zavan
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paulo J. Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Vilma A. Sardao
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Paolo Pinton
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Mariusz R. Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
32
|
Ghanbary F, Seydi E, Naserzadeh P, Salimi A. Toxicity of nanotitanium dioxide (TiO 2-NP) on human monocytes and their mitochondria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6739-6750. [PMID: 29260482 DOI: 10.1007/s11356-017-0974-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/06/2017] [Indexed: 05/25/2023]
Abstract
The effect of nanotitanium dioxide (TiO2-NP) in human monocytes is still unknown. Therefore, an understanding of probable cytotoxicity of TiO2-NP on human monocytes and underlining the mechanisms involved is of significant interest. The aim of this study was to assess the cytotoxicity of TiO2-NP on human monocytes. Using biochemical and flow cytometry assessments, we demonstrated that addition of TiO2-NP at 10 μg/ml concentration to monocytes induced cytotoxicity following 12 h. The TiO2-NP-induced cytotoxicity on monocytes was associated with intracellular reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) collapse, lysosomal membrane injury, lipid peroxidation, and depletion of glutathione. According to our results, TiO2-NP triggers oxidative stress and organelles damages in monocytes which are important cells in defense against foreign agents. Finally, our findings suggest that use of antioxidants and mitochondrial/lysosomal protective agents could be of benefit for the people in the exposure with TiO2-NP.
Collapse
Affiliation(s)
- Fatemeh Ghanbary
- Department of Chemistry, Mahabad Branch, Islamic Azad University, Mahabad, Islamic Republic of Iran
| | - Enaytollah Seydi
- Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran
- Department of Occupational Health Engineering, Alborz University of Medical Sciences, Karaj, Iran
| | - Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Science, P.O. Box: 56189-53141, Ardabil, Iran.
| |
Collapse
|
33
|
Eghbal MA, Yusefi E, Tavakoli-Ardakani M, Ramazani M, Zarei MH, Salimi A, Pourahmad J. Exposure to Antineoplastic Agents Induces Cytotoxicity in Nurse Lymphocytes: Role of Mitochondrial Damage and Oxidative Stress. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:43-52. [PMID: 29796028 PMCID: PMC5958323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytotoxicity and mitochondrial parameters were studied in isolated lymphocytes and their mitochondria obtained from occupationally exposed nurses through inhalation exposure to antineoplastic drugs and results were compared to those of unexposed nurses. The group of occupationally exposed nurses consisted of 50 individuals ranging in age from 30 to 35 years. The control group included 50 nurses who were not occupationally exposed to the preparation and handling of antineoplastic drugs and their anthropometric and biochemical characteristics were similar to those of the expose group. All cytotoxicity and mitochondrial parameters evaluated in exposed group were significantly increased (P < 0.05) compared to the unexposed control group. Finally, the results of our study suggest that using antioxidant, mitochondrial and lysosomal protective agents can be promising drug candidates for the hospital staff in the risk of exposure to exposure to antineoplastic drugs.
Collapse
Affiliation(s)
- Mohmmad Ali Eghbal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tehran, Iran.
| | - Elham Yusefi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tehran, Iran.
| | - Maria Tavakoli-Ardakani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maral Ramazani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hadi Zarei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Science, Ardabil, Iran.
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Chan SSL. Inherited mitochondrial genomic instability and chemical exposures. Toxicology 2017; 391:75-83. [PMID: 28756246 DOI: 10.1016/j.tox.2017.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/12/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022]
Abstract
There are approximately 1500 proteins that are needed for mitochondrial structure and function, most of which are encoded in the nuclear genome (Calvo et al., 2006). Each mitochondrion has its own genome (mtDNA), which in humans encodes 13 polypeptides, 22 tRNAs and 2 rRNAs required for oxidative phosphorylation. The mitochondrial genome of humans and most vertebrates is approximately 16.5kbp, double-stranded, circular, with few non-coding bases. Thus, maintaining mtDNA stability, that is, the ability of the cell to maintain adequate levels of mtDNA template for oxidative phosphorylation is essential and can be impacted by the level of mtDNA mutation currently within the cell or mitochondrion, but also from errors made during normal mtDNA replication, defects in mitochondrial quality control mechanisms, and exacerbated by exposures to exogenous and/or endogenous genotoxic agents. In this review, we expand on the origins and consequences of mtDNA instability, the current state of research regarding the mechanisms by which mtDNA instability can be overcome by cellular and chemical interventions, and the future of research and treatments for mtDNA instability.
Collapse
Affiliation(s)
- Sherine S L Chan
- Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC 29425, United States; Neuroene Therapeutics, Mt. Pleasant, SC 29464, United States.
| |
Collapse
|
35
|
Cellular and molecular perspectives in rheumatoid arthritis. Semin Immunopathol 2017; 39:343-354. [PMID: 28508153 DOI: 10.1007/s00281-017-0633-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 04/17/2017] [Indexed: 12/13/2022]
Abstract
Synovial immunopathology in rheumatoid arthritis is complex involving both resident and infiltrating cells. The synovial tissue undergoes significant neovascularization, facilitating an influx of lymphocytes and monocytes that transform a typically acellular loose areolar membrane into an invasive tumour-like pannus. The microvasculature proliferates to form straight regularly-branching vessels; however, they are highly dysfunctional resulting in reduced oxygen supply and a hypoxic microenvironment. Autoantibodies such as rheumatoid factor and anti-citrullinated protein antibodies are found at an early stage, often before arthritis has developed, and they have been implicated in the pathogenesis of RA. Abnormal cellular metabolism and mitochondrial dysfunction thus ensue and, in turn, through the increased production of reactive oxygen species actively induce inflammation. Key pro-inflammatory cytokines, chemokines and growth factors and their signalling pathways, including nuclear factor κB, Janus kinase-signal transducer, are highly activated when immune cells are exposed to hypoxia in the inflamed rheumatoid joint show adaptive survival reactions by activating. This review attempts to highlight those aberrations in the innate and adaptive immune systems including the role of genetic and environmental factors, autoantibodies, cellular alterations, signalling pathways and metabolism that are implicated in the pathogenesis of RA and may therefore provide an opportunity for therapeutic intervention.
Collapse
|
36
|
Li S, Wan P, Peng T, Xiao K, Su M, Shang L, Xu B, Su Z, Ye X, Peng N, Qin Q, Li L. Associations between sequence variations in the mitochondrial DNA D-loop region and outcome of hepatocellular carcinoma. Oncol Lett 2016; 11:3723-3728. [PMID: 27313683 DOI: 10.3892/ol.2016.4466] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/24/2016] [Indexed: 11/05/2022] Open
Abstract
The association between mitochondrial DNA (mtDNA) polymorphisms or mutations and the prognoses of cancer have been investigated previously, but the results have been ambiguous. In the present study, the associations between sequence variations in the mtDNA D-loop region and the outcomes of patients with hepatocellular carcinoma (HCC) were analysed. A total of 140 patients with HCC (123 males and 17 females), who were hospitalised to undergo radical resection, were studied. Polymerase chain reaction and direct sequencing were performed to detect the sequence variations in the mtDNA D-loop region. Multivariate and univariate analyses were conducted to determine important factors in the prognosis of HCC. A total of 150 point sequence variations were observed in the 140 cases (13 point mutations, 8 insertions, 20 deletions and 116 polymorphisms). The variation rate was 13.4% (150/1, 122). mtDNA nucleotide 150 (C/T) was an independent factor in the logistic regression for early/late recurrence of HCC. Patients with 150T appeared to have later recurrences. In a Cox proportional hazards regression model, hepatitis B virus DNA, Child-Pugh class, differentiation degree, tumour-node-metastasis (TNM) stage, nucleotide 16263 (T/C) and nucleotide 315 (N/insertion C) were independent factors for tumour-free survival time. Patients with the 16263T allele had a greater tumour-free survival time than patients with the 16263C allele. Similarly, patients with 315 insertion C had a superior tumour-free survival time when compared with patients with 315 N (normal). In the Cox proportional hazards regression model, recurrence type (early/late), Child-Pugh class, TNM stage and adjuvant treatment after tumour recurrence (none or one/more than one treatment) were independent factors for overall survival. None of the mtDNA variations served as independent factors. Patients with late recurrence, Child-Pugh class A, and low TNM stages and/or those who received more than one adjuvant treatment following tumour recurrence had favourable outcomes. mtDNA D-loop polymorphisms were associated with early recurrence and tumour-free survival time, but not with overall survival. mtDNA D-loop mutations in HCC were infrequent and lacked prognostic utility. The detection of mtDNA D-loop polymorphisms may assist in identifying risk factors for HCC prognosis, particularly for the short-term outcome, thereby aiding the construction of an appropriate therapeutic strategy.
Collapse
Affiliation(s)
- Shilai Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Peiqi Wan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Kaiyin Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ming Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Liming Shang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Banghao Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhixiong Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ning Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Quanlin Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lequn Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
37
|
Zhao J, Yu S, Zheng Y, Yang H, Zhang J. Oxidative Modification and Its Implications for the Neurodegeneration of Parkinson’s Disease. Mol Neurobiol 2016; 54:1404-1418. [DOI: 10.1007/s12035-016-9743-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/22/2016] [Indexed: 12/21/2022]
|
38
|
Kapetanovic R, Bokil NJ, Sweet MJ. Innate immune perturbations, accumulating DAMPs and inflammasome dysregulation: A ticking time bomb in ageing. Ageing Res Rev 2015; 24:40-53. [PMID: 25725308 DOI: 10.1016/j.arr.2015.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/29/2015] [Accepted: 02/16/2015] [Indexed: 01/11/2023]
Abstract
Ageing has pronounced effects on the immune system, including on innate immune cells. Whilst most studies suggest that total numbers of different innate immune cell populations do not change dramatically during ageing, many of their functions such as phagocytosis, antigen presentation and inflammatory molecule secretion decline. In contrast, many endogenous damage-associated molecular patterns (DAMPs) accumulate during ageing. These include reactive oxygen species (ROS) released from damaged mitochondria, extracellular nucleotides like ATP, high mobility group box (HMGB) 1 protein, oxidized low density lipoprotein, amyloid-beta (Aβ), islet amyloid polypeptide and particulates like monosodium urate (MSU) crystals and cholesterol crystals. Some of these DAMPs trigger the activation of inflammasomes, cytosolic danger sensing signalling platforms that drive both the maturation of specific pro-inflammatory mediators such as IL-1β, as well as the initiation of pro-inflammatory pyroptotic cell death. Herein, we review the evidence that dysregulated inflammasome activation, via altered innate immune cell functions and elevated levels of DAMPs, contributes to the establishment of chronic, low-grade inflammation (characterized by elevated levels of IL-6 and C-reactive protein) and the development of age-related pathological processes.
Collapse
Affiliation(s)
- Ronan Kapetanovic
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
| | - Nilesh J Bokil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia.
| |
Collapse
|
39
|
Wierman MB, Matecic M, Valsakumar V, Li M, Smith DL, Bekiranov S, Smith JS. Functional genomic analysis reveals overlapping and distinct features of chronologically long-lived yeast populations. Aging (Albany NY) 2015; 7:177-94. [PMID: 25769345 PMCID: PMC4394729 DOI: 10.18632/aging.100729] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Yeast chronological lifespan (CLS) is extended by multiple genetic and environmental manipulations, including caloric restriction (CR). Understanding the common changes in molecular pathways induced by such manipulations could potentially reveal conserved longevity mechanisms. We therefore performed gene expression profiling on several long-lived yeast populations, including an ade4∆ mutant defective in de novo purine (AMP) biosynthesis, and a calorie restricted WT strain. CLS was also extended by isonicotinamide (INAM) or expired media derived from CR cultures. Comparisons between these diverse long-lived conditions revealed a common set of differentially regulated genes, several of which were potential longevity biomarkers. There was also enrichment for genes that function in CLS regulation, including a long-lived adenosine kinase mutant (ado1∆) that links CLS regulation to the methyl cycle and AMP. Genes co-regulated between the CR and ade4∆ conditions were dominated by GO terms related to metabolism of alternative carbon sources, consistent with chronological longevity requiring efficient acetate/acetic acid utilization. Alternatively, treating cells with isonicotinamide (INAM) or the expired CR media resulted in GO terms predominantly related to cell wall remodeling, consistent with improved stress resistance and protection against external insults like acetic acid. Acetic acid therefore has both beneficial and detrimental effects on CLS.
Collapse
Affiliation(s)
- Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mirela Matecic
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Veena Valsakumar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mingguang Li
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 5233, USA.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 5233, USA.,Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL 5233, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jeffrey S Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
40
|
Castri L, Luiselli D, Pettener D, Melendez-Obando M, Villegas-Palma R, Barrantes R, Madrigal L. A mitochondrial haplogroup is associated with decreased longevity in a historic new world population. Hum Biol 2015; 86:251-9. [PMID: 25959692 DOI: 10.13110/humanbiology.86.4.0251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Interest in mitochondrial influences on extended longevity has been mounting, as evidenced by a growing literature. Such work has demonstrated that some haplogroups are associated with increased longevity and that such associations are population specific. Most previous work, however, suffers from the methodological shortcoming that long-lived individuals are compared with "controls" who are born decades after the aged individuals. The only true controls of the elderly are people who were born in the same time period but who did not have extended longevity. Here we present results of a study in which we are able to test whether longevity is independent of haplogroup type, controlling for time period, by using mtDNA genealogies. Since mtDNA does not recombine, we know the mtDNA haplogroup of the maternal ancestors of our living participants. Thus, we can compare the haplogroup of people with and without extended longevity who were born during the same time period. Our sample is an admixed New World population that has haplogroups of Amerindian, European, and African origin. We show that women who belong to Amerindian, European, and African haplogroups do not differ in their mean longevity. Therefore, to the extent that ethnicity was tied in this population to mtDNA make-up, such ethnicity did not impact longevity. In support of previous suggestions that the link between mtDNA haplogroups and longevity is specific to the population being studied, we found an association between haplogroup C and decreased longevity. Interestingly, the lifetime reproductive success and the number of grandchildren produced via a daughter of women with haplogroup C are not reduced. Our diachronic approach to the mtDNA and longevity link allowed us to determine that the same haplogroup is associated with decreased longevity during different time periods and allowed us to compare the haplogroup of short- and long-lived individuals born during the same time period. By controlling for time period, we minimized the effect of different cultural and ecological environments on differential longevity. With our diachronic approach, we investigated the mtDNA and longevity link with a biocultural perspective.
Collapse
Affiliation(s)
- Loredana Castri
- 1 Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Reactive oxygen species, apoptosis, and mitochondrial dysfunction in hearing loss. BIOMED RESEARCH INTERNATIONAL 2015; 2015:617207. [PMID: 25874222 PMCID: PMC4385658 DOI: 10.1155/2015/617207] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/10/2014] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) production is involved in several apoptotic and necrotic cell death pathways in auditory tissues. These pathways are the major causes of most types of sensorineural hearing loss, including age-related hearing loss, hereditary hearing loss, ototoxic drug-induced hearing loss, and noise-induced hearing loss. ROS production can be triggered by dysfunctional mitochondrial oxidative phosphorylation and increases or decreases in ROS-related enzymes. Although apoptotic cell death pathways are mostly activated by ROS production, there are other pathways involved in hearing loss that do not depend on ROS production. Further studies of other pathways, such as endoplasmic reticulum stress and necrotic cell death, are required.
Collapse
|
42
|
Müller M, Lu K, Reichert AS. Mitophagy and mitochondrial dynamics in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2766-74. [PMID: 25753536 DOI: 10.1016/j.bbamcr.2015.02.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/10/2015] [Accepted: 02/27/2015] [Indexed: 12/13/2022]
Abstract
Mitochondria fulfill central cellular functions including energy metabolism, iron-sulfur biogenesis, and regulation of apoptosis and calcium homeostasis. Accumulation of dysfunctional mitochondria is observed in ageing and many human diseases such as cancer and various neurodegenerative disorders. Appropriate quality control of mitochondria is important for cell survival in most eukaryotic cells. One important pathway in this respect is mitophagy, a selective form of autophagy which removes excess and dysfunctional mitochondria. In the past decades a series of essential factors for mitophagy have been identified and characterized. However, little is known about the molecular mechanisms regulating mitophagy. The role of mitochondrial dynamics in mitophagy is controversially discussed. Here we will review recent advances in this context promoting our understanding on the molecular regulation of mitophagy in Saccharomyces cerevisiae and on the role of mitochondrial dynamics in mitochondrial quality control.
Collapse
Affiliation(s)
- Matthias Müller
- Mitochondrial Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Germany; Mitochondrial Biology, Medical School, Goethe University Frankfurt am Main, Germany
| | - Kaihui Lu
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Andreas S Reichert
- Mitochondrial Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Germany; Mitochondrial Biology, Medical School, Goethe University Frankfurt am Main, Germany; Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
43
|
Ande SR, Padilla-Meier GP, Mishra S. Assessment of posttranslational modification of mitochondrial proteins. Methods Mol Biol 2015; 1264:331-41. [PMID: 25631026 DOI: 10.1007/978-1-4939-2257-4_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Mitochondria play vital roles in the maintenance of cellular homeostasis. They are a storehouse of cellular energy and antioxidative enzymes. Because of its immense role and function in the development of an organism, this organelle is required for the survival. Defects in mitochondrial proteins lead to complex mitochondrial disorders and heterogeneous diseases such as cancer, type 2 diabetes, and cardiovascular and neurodegenerative diseases. It is widely known in the literature that some of the mitochondrial proteins are regulated by posttranslational modifications. Hence, designing methods to assess these modifications in mitochondria will be an important way to study the regulatory roles of mitochondrial proteins in greater detail. In this chapter, we outlined procedures to isolate mitochondria from cells and separate the mitochondrial proteins by two-dimensional gel electrophoresis and identify the different posttranslational modifications in them by using antibodies specific to each posttranslational modification.
Collapse
Affiliation(s)
- Sudharsana R Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | | |
Collapse
|
44
|
Bharti SK, Sommers JA, Zhou J, Kaplan DL, Spelbrink JN, Mergny JL, Brosh RM. DNA sequences proximal to human mitochondrial DNA deletion breakpoints prevalent in human disease form G-quadruplexes, a class of DNA structures inefficiently unwound by the mitochondrial replicative Twinkle helicase. J Biol Chem 2014; 289:29975-93. [PMID: 25193669 DOI: 10.1074/jbc.m114.567073] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the "Pattern Finder" G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase.
Collapse
Affiliation(s)
- Sanjay Kumar Bharti
- From the Laboratory of Molecular Gerontology, NIA, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland 21224
| | - Joshua A Sommers
- From the Laboratory of Molecular Gerontology, NIA, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland 21224
| | - Jun Zhou
- the ARNA Laboratory, University of Bordeaux, F-33000 Bordeaux, France, INSERM U869, Institut Européen de Chimie et Biologie (IECB), F-33600 Pessac, France
| | - Daniel L Kaplan
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32312
| | - Johannes N Spelbrink
- the FinMIT Centre of Excellence, BioMediTech and Tampere University Hospital, Pirkanmaa Hospital District, University of Tampere, FI-33014 Tampere, Finland, and the Department of Pediatrics, Nijmegan Centre for Mitochondrial Disorders, Radboud University Medical Centre, Geert Grooteplein 10, P. O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Jean-Louis Mergny
- the ARNA Laboratory, University of Bordeaux, F-33000 Bordeaux, France, INSERM U869, Institut Européen de Chimie et Biologie (IECB), F-33600 Pessac, France
| | - Robert M Brosh
- From the Laboratory of Molecular Gerontology, NIA, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland 21224,
| |
Collapse
|