1
|
Liu YL, Mei YM, Xun JQ, Lv ZY, He Q, Liu ZBR, Li L, Xie F, Dai RC. The biological function of integrin-linked kinase on bone formation. Bone Rep 2025; 25:101834. [PMID: 40171447 PMCID: PMC11957501 DOI: 10.1016/j.bonr.2025.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 01/30/2025] [Accepted: 03/08/2025] [Indexed: 04/03/2025] Open
Abstract
Bone remodeling process is the basis for maintaining normal bone microstructure and promoting fracture repair. Recent studies have proven that integrins can promote bone formation and fracture repair. Integrin-linked kinase (ILK), as the proximal effector of the integrin receptor, is a key protein factor linking integrin and cytoskeleton. It is involved in crucial cellular processes including proliferation, survival, differentiation, migration, invasion, and angiogenesis reflects on systemic changes in the kidney, heart, muscle, skin, and vascular system. At present, the regulation effect of ILK in bone formation attracts the attention of researchers. This review emphasizes that ILK as a key molecule affects the functions of bone marrow stromal cells (BMSCs) and osteoblasts, and regulates bone formation. Additionally, ILK plays a key role in the process of"angiogenic-osteogenic coupling ". The present role of ILK in the pathogenesis of osteoporosis is also described. Strategies that target ILK may as a new prospective treatment for osteoporosis (OP).
Collapse
Affiliation(s)
- Yu-ling Liu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yue-ming Mei
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jing-qiong Xun
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhuo-yue Lv
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Qian He
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhou-bo-ran Liu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Lin Li
- Department of Endocrinology and Metabolism, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha 410005, Hunan, China
| | - Fen Xie
- Medicine School, Changsha Social Work College, Changsha 410004, Hunan, China
| | - Ru-chun Dai
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
2
|
Gigi R, Weil Y, Amar E, Sigal A, Ovadia D, Herzenberg JE, Segev E. Osteotomy Site Venting Enhances Femoral Bone Consolidation With Magnetic Intramedullary Lengthening Nails. Clin Orthop Relat Res 2024; 482:2075-2085. [PMID: 38843493 PMCID: PMC11469821 DOI: 10.1097/corr.0000000000003119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/15/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Magnetic intramedullary lengthening nailing has demonstrated benefits over external fixation devices for femoral bone lengthening. These include avoiding uncomfortable external fixation and associated pin site infections, scarring, and inhibition of muscle or joint function. Despite this, little has changed in the field of biologically enhanced bone regeneration. Venting the femoral intramedullary canal at the osteotomy site before reaming creates egress for bone marrow during reaming. The reamings that are extruded from vent holes may function as a prepositioned bone graft at the distraction gap. The relationship between venting and the consolidation of regenerating bone remains unclear. QUESTIONS/PURPOSES (1) Do bone marrow reamings extruded through venting holes enhance the quality of bone regeneration and improve healing indices and consolidation times? (2) Is venting associated with a higher proportion of complications than nonventing? METHODS We performed a retrospective study of femoral lengthening performed at one hospital from December 2012 to February 2022 using a magnetic intramedullary lengthening nail with or without venting at the osteotomy site before reaming. This was a generally sequential series, in which the study groups were assembled as follows: Venting was performed between July 2012 and August 2016 and again from November 2021 onward. Nonventing was used between October 2016 and October 2021 because the senior author opted to create drill holes after the reaming procedure to avoid commitment to the osteotomy level before completing the reaming procedure. Outcomes were evaluated based on bone healing time, time to achieve full weightbearing, and complications. Sixty-one femoral lengthening procedures were studied (in 33 male and 28 female patients); two patients were excluded because of implant breakage. The mean age was 17 ± 5 years. The mean amount of lengthening was 55 ± 13 mm in the venting group and 48 ± 16 mm in the nonventing group (mean difference 7 ± 21 [95% CI 2 to 12]; p = 0.07). The healing index was defined as the time (in days) required for three cortices to bridge with new bone formation divided by the length (in cm) lengthened during the clinical protocol. This index signifies the bone formation rate achieved under the specific conditions of the protocol. Full weightbearing was allowed upon bridging the regenerated gap on three sides. Consolidation time was defined as the total number of days from the completion of the lengthening phase until adequate bone union (all three cortices healed) was achieved and full weightbearing was permitted. This time frame represents the entire healing process after the lengthening is complete divided by the amount of lengthening achieved (in cm). Patient follow-up was conducted meticulously at our institution, and we adhered to a precise schedule, occurring every 2 weeks during the distraction phase and every 4 weeks during the consolidation phase. There were no instances of loss to follow-up. Every patient completed the treatment successfully, reaching the specified milestones of weightbearing and achieving three cortexes of bone bridging. RESULTS The mean healing index time in the venting group was faster than that in the nonventing group (21 ± 6 days/cm versus 31 ± 22 days/cm, mean difference 10 ± 23 [95% CI 4 to 16]; p = 0.02). The mean consolidation time was faster in the venting group than the nonventing group (10 ± 6 days/cm versus 20 ± 22 days/cm; mean difference 10 ± 23 [95% CI 4 to 15]; p = 0.02). No medical complications such as deep vein thrombosis or fat or pulmonary embolism were seen. Two patients had lengthy delays in regenerate union, both of whom were in the nonventing group (healing indexes were 74 and 62 days/cm; consolidation time was 52 and 40 days/cm). CONCLUSION Femoral lengthening with a magnetic intramedullary lengthening nail healed more quickly with prereaming venting than with nonventing, and it allowed earlier full weightbearing without any major associated complications. Future studies should evaluate whether there is a correlation between the number of venting holes and improvement in the healing index and consolidation time. LEVEL OF EVIDENCE Level III, therapeutic study.
Collapse
Affiliation(s)
- Roy Gigi
- Department of Pediatric Orthopedic Surgery, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yehuda Weil
- Department of Pediatric Orthopedic Surgery, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eyal Amar
- Department of Pediatric Orthopedic Surgery, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Amit Sigal
- Department of Pediatric Orthopedic Surgery, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dror Ovadia
- Department of Pediatric Orthopedic Surgery, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - John E. Herzenberg
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Eitan Segev
- Department of Pediatric Orthopedic Surgery, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
3
|
Wang XY, Zhang RZ, Wang YK, Pan S, Yun SM, Li JJ, Xu YJ. An updated overview of the search for biomarkers of osteoporosis based on human proteomics. J Orthop Translat 2024; 49:37-48. [PMID: 39430131 PMCID: PMC11488448 DOI: 10.1016/j.jot.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 10/22/2024] Open
Abstract
Osteoporosis is a chronic metabolic disease that increases bone fragility and, leads to severe osteoporotic fractures. In recent years, the use of high-throughput omics to explore physiological and pathological biomarkers related to bone metabolism has gained popularity. In this review, we first briefly review the technical approaches of proteomics. Additionally, we summarize the relevant literature in the last decade to provide a comprehensive overview of advances in human proteomics related to osteoporosis. We describe the specific roles of various proteins related to human bone metabolism, highlighting their potential as biomarkers for risk assessment, early diagnosis and disease course monitoring in osteoporosis. Finally, we outline the main challenges currently faced by human proteomics in the field of osteoporosis and offer suggestions to address these challenges, to inspire the search for novel osteoporosis biomarkers and a foundation for their clinical translation. In conclusion, proteomics is a powerful tool for discovering osteoporosis-related biomarkers, which can not only provide risk assessment, early diagnosis and disease course monitoring, but also reveal the underlying mechanisms of disease and provide key information for personalized treatment. The translational potential of this article This review provides an insightful summary of recent human-based studies on osteoporosis-associated proteomics, which can aid the search for novel osteoporosis biomarkers based on human proteomics and the clinical translation of research results.
Collapse
Affiliation(s)
- Xiong-Yi Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui-Zhi Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-Ke Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng Pan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Si-Min Yun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun-Jie Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - You-Jia Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Li H, Liao X, Lan M, He J, Gao J, Fan Z, Huang J, Wu X, Chen J, Sun G. Arctigenin Modulates Adipogenic-Osteogenic Balance in the Bone Marrow Microenvironment of Ovariectomized Rats via the MEK1/PPARγ/Wnt/β-Catenin Pathway. Chem Biol Drug Des 2024; 104:e14625. [PMID: 39289148 DOI: 10.1111/cbdd.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024]
Abstract
Arctigenin (Ar) is a promising therapeutic candidate for postmenopausal osteoporosis (PMOP). This study explores its mechanism by examining its effects on adipogenesis and osteogenesis in ovariectomized (OVX) rats. In vitro, Ar effectively suppressed the adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) from OVX rats, reducing lipid droplet formation and downregulating proteins associated with lipid synthesis. In vivo, Ar treatment significantly reduced bone loss, inhibited adipocyte development, improved lipid metabolism, and promoted bone formation in OVX rats. Mechanistically, Ar inhibited the phosphorylation of Mitogen-Activated Protein Kinase 1 (MEK1), downregulated Peroxisome Proliferator-Activated Receptor gamma (PPARγ), promoted the accumulation of β-catenin in the nucleus, and prevented the direct binding of PPARγ to β-catenin in BMSCs. This regulation of the PPARγ/Wnt signaling axis underlies its dual role in inhibiting adipogenesis and promoting osteogenesis. Notably, co-treatment with rosiglitazone (RGZ) reversed the effects of Ar on adipogenesis and osteogenesis without affecting MEK1 inhibition. These findings offer valuable insights into arctigenin's potential as a therapeutic strategy for PMOP by modulating MEK1 signaling and regulating the PPARγ/Wnt axis.
Collapse
Affiliation(s)
- Hongbo Li
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Xingen Liao
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Min Lan
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Jianying He
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Jingping Gao
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Zhiqiang Fan
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Jiayu Huang
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Xin Wu
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Jiaxin Chen
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Guicai Sun
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Niu H, Zhou M, Xu X, Xu X. Bone Marrow Adipose Tissue as a Critical Regulator of Postmenopausal Osteoporosis - A Concise Review. Clin Interv Aging 2024; 19:1259-1272. [PMID: 39011312 PMCID: PMC11249116 DOI: 10.2147/cia.s466446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a major health problem affecting millions of women worldwide. PMOP patients are often accompanied by abnormal accumulation of bone marrow adipose tissue (BMAT). BMAT is a critical regulator of bone homeostasis, and an increasing BMAT volume is negatively associated with bone mass reduction or fracture. BMAT regulates bone metabolism via adipokines, cytokines and the immune system, but the specific mechanisms are largely unknown. This review emphasizes the impact of estrogen deficiency on bone homeostasis and BMAT expansion, and the mechanism by which BMAT regulates PMOP, providing a promising strategy for targeting BMAT in preventing and treating PMOP.
Collapse
Affiliation(s)
- Huifang Niu
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Minfeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Xiaojuan Xu
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
6
|
Zhu Y, Hu Y, Pan Y, Li M, Niu Y, Zhang T, Sun H, Zhou S, Liu M, Zhang Y, Wu C, Ma Y, Guo Y, Wang L. Fatty infiltration in the musculoskeletal system: pathological mechanisms and clinical implications. Front Endocrinol (Lausanne) 2024; 15:1406046. [PMID: 39006365 PMCID: PMC11241459 DOI: 10.3389/fendo.2024.1406046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Fatty infiltration denotes the anomalous accrual of adipocytes in non-adipose tissue, thereby generating toxic substances with the capacity to impede the ordinary physiological functions of various organs. With aging, the musculoskeletal system undergoes pronounced degenerative alterations, prompting heightened scrutiny regarding the contributory role of fatty infiltration in its pathophysiology. Several studies have demonstrated that fatty infiltration affects the normal metabolism of the musculoskeletal system, leading to substantial tissue damage. Nevertheless, a definitive and universally accepted generalization concerning the comprehensive effects of fatty infiltration on the musculoskeletal system remains elusive. As a result, this review summarizes the characteristics of different types of adipose tissue, the pathological mechanisms associated with fatty infiltration in bone, muscle, and the entirety of the musculoskeletal system, examines relevant clinical diseases, and explores potential therapeutic modalities. This review is intended to give researchers a better understanding of fatty infiltration and to contribute new ideas to the prevention and treatment of clinical musculoskeletal diseases.
Collapse
Affiliation(s)
- Yihua Zhu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yue Hu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Traditional Chinese Medicine (TCM) Nursing Intervention Laboratory of Chronic Disease Key Laboratory, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Muzhe Li
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuanyuan Niu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tianchi Zhang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haitao Sun
- Department of Orthopedic Surgery, Affiliated Huishan Hospital of Xinglin College of Nantong University, Wuxi, Jiangsu, China
| | - Shijie Zhou
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengmin Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yili Zhang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chengjie Wu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng TCM Hospital, Yancheng, Jiangsu, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Chinese Medicine Centre (International Collaboration between Western Sydney University and Beijing University of Chinese Medicine), Western Sydney University, Sydney, Australia
| |
Collapse
|
7
|
Zhang X, Tian L, Majumdar A, Scheller EL. Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Compr Physiol 2024; 14:5521-5579. [PMID: 39109972 PMCID: PMC11725182 DOI: 10.1002/cphy.c230016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Bone marrow adipose tissue (BMAT) is a metabolically and clinically relevant fat depot that exists within bone. Two subtypes of BMAT, regulated and constitutive, reside in hematopoietic-rich red marrow and fatty yellow marrow, respectively, and exhibit distinct characteristics compared to peripheral fat such as white and brown adipose tissues. Bone marrow adipocytes (BMAds) are evolutionally preserved in most vertebrates, start development after birth and expand throughout life, and originate from unique progenitor populations that control bone formation and hematopoiesis. Mature BMAds also interact closely with other cellular components of the bone marrow niche, serving as a nearby energy reservoir to support the skeletal system, a signaling hub that contributes to both local and systemic homeostasis, and a final fuel reserve for survival during starvation. Though BMAT and bone are often inversely correlated, more BMAT does not always mean less bone, and the prevention of BMAT expansion as a strategy to prevent bone loss remains questionable. BMAT adipogenesis and lipid metabolism are regulated by the nervous systems and a variety of circulating hormones. This contributes to the plasticity of BMAT, including BMAT expansion in common physiological or pathological conditions, and BMAT catabolism under certain extreme circumstances, which are often associated with malnutrition and/or systemic inflammation. Altogether, this article provides a comprehensive overview of the local and systemic functions of BMAT and discusses the regulation and plasticity of this unique adipose tissue depot in health and disease. © 2024 American Physiological Society. Compr Physiol 14:5521-5579, 2024.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Linda Tian
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Wang ZX, Lin X, Cao J, Liu YW, Luo ZW, Rao SS, Wang Q, Wang YY, Chen CY, Zhu GQ, Li FXZ, Tan YJ, Hu Y, Yin H, Li YY, He ZH, Liu ZZ, Yuan LQ, Zhou Y, Wang ZG, Xie H. Young osteocyte-derived extracellular vesicles facilitate osteogenesis by transferring tropomyosin-1. J Nanobiotechnology 2024; 22:208. [PMID: 38664789 PMCID: PMC11046877 DOI: 10.1186/s12951-024-02367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) can undergo inadequate osteogenesis or excessive adipogenesis as they age due to changes in the bone microenvironment, ultimately resulting in decreased bone density and elevated risk of fractures in senile osteoporosis. This study aims to investigate the effects of osteocyte senescence on the bone microenvironment and its influence on BMSCs during aging. RESULTS Primary osteocytes were isolated from 2-month-old and 16-month-old mice to obtain young osteocyte-derived extracellular vesicles (YO-EVs) and senescent osteocyte-derived EVs (SO-EVs), respectively. YO-EVs were found to significantly increase alkaline phosphatase activity, mineralization deposition, and the expression of osteogenesis-related genes in BMSCs, while SO-EVs promoted BMSC adipogenesis. Neither YO-EVs nor SO-EVs exerted an effect on the osteoclastogenesis of primary macrophages/monocytes. Our constructed transgenic mice, designed to trace osteocyte-derived EV distribution, revealed abundant osteocyte-derived EVs embedded in the bone matrix. Moreover, mature osteoclasts were found to release osteocyte-derived EVs from bone slices, playing a pivotal role in regulating the functions of the surrounding culture medium. Following intravenous injection into young and elderly mouse models, YO-EVs demonstrated a significant enhancement of bone mass and biomechanical strength compared to SO-EVs. Immunostaining of bone sections revealed that YO-EV treatment augmented the number of osteoblasts on the bone surface, while SO-EV treatment promoted adipocyte formation in the bone marrow. Proteomics analysis of YO-EVs and SO-EVs showed that tropomyosin-1 (TPM1) was enriched in YO-EVs, which increased the matrix stiffness of BMSCs, consequently promoting osteogenesis. Specifically, the siRNA-mediated depletion of Tpm1 eliminated pro-osteogenic activity of YO-EVs both in vitro and in vivo. CONCLUSIONS Our findings suggested that YO-EVs played a crucial role in maintaining the balance between bone resorption and formation, and their pro-osteogenic activity declining with aging. Therefore, YO-EVs and the delivered TPM1 hold potential as therapeutic targets for senile osteoporosis.
Collapse
Affiliation(s)
- Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Xiao Lin
- The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jia Cao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Yi-Wei Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
| | - Zhong-Wei Luo
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
| | - Shan-Shan Rao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Qiang Wang
- Department of Laboratory Medicine, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, Zhejiang, China
| | - Yi-Yi Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Guo-Qiang Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
| | - Fu-Xing-Zi Li
- The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yi-Juan Tan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
| | - Yin Hu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hao Yin
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
| | - You-You Li
- Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ze-Hui He
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
| | - Zheng-Zhao Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Ling-Qing Yuan
- The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yong Zhou
- Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zheng-Guang Wang
- Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| |
Collapse
|
9
|
Li Y, Yang S, Yang S. IFT20 and WWTR1 govern bone homeostasis via synchronously regulating the expression and stability of TβRII in osteoblast lineage cells. RESEARCH SQUARE 2024:rs.3.rs-4009802. [PMID: 38562782 PMCID: PMC10984095 DOI: 10.21203/rs.3.rs-4009802/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Balance of bone and marrow fat formation is critical for bone homeostasis. The imbalance of bone homeostasis will cause various bone diseases, such as osteoporosis. However, the precise mechanisms governing osteoporotic bone loss and marrow adipose tissue (MAT) accumulation remain poorly understood. By analysis of publicly available databases from bone samples of osteoporosis patients, we found that the expression of intraflagellar transport 20 (IFT20) and WW domain containing transcription regulator 1 (WWTR1) were significantly downregulated in osteoblast lineage cells. Additionally, we found that double deletions of IFT20 and WWTR1 in osteoblasts resulted in a significant accumulation of MAT and bone loss. Moreover, IFT20 and WWTR1 deficiency in osteoblasts exacerbated bone-fat imbalance in ovariectomy (OVX)- and high-fat-diet (HFD)-induced osteoporosis mouse models. Mechanistically, we found that deletions of IFT20 and WWTR1 in osteoblasts synergistically inhibited osteogenesis and promoted adipogenesis and osteoclastogenesis. We also found that IFT20 interacted with TGF-β receptor type II (TβRII) to enhance TβRII stability by blocking c-Cbl-mediated ubiquitination and degradation of TβRII. WWTR1 transcriptionally upregulated TβRII expression by directly binding its promoter. These findings indicate that targeting IFT20/WWTR1 may be a potential therapeutic strategy for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Yang Li
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Orthopaedic Surgery, School of Medicine, Johns Hopkins University Baltimore, MD 21205, USA
| | - Shuting Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Liu J, Bao X, Huang J, Chen R, Tan Y, Zhang Z, Xiao B, Kong F, Gu C, Du J, Wang H, Qi J, Tan J, Ma D, Shi C, Xu G. TMEM135 maintains the equilibrium of osteogenesis and adipogenesis by regulating mitochondrial dynamics. Metabolism 2024; 152:155767. [PMID: 38154611 DOI: 10.1016/j.metabol.2023.155767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Disturbance in the differentiation process of bone marrow mesenchymal stem cells (BMSCs) leads to osteoporosis. Mitochondrial dynamics plays a pivotal role in the metabolism and differentiation of BMSCs. However, the mechanisms underlying mitochondrial dynamics and their impact on the differentiation equilibrium of BMSCs remain unclear. METHODS We investigated the mitochondrial morphology and markers related to mitochondrial dynamics during BMSCs osteogenic and adipogenic differentiation. Bioinformatics was used to screen potential genes regulating BMSCs differentiation through mitochondrial dynamics. Subsequently, we evaluated the impact of Transmembrane protein 135 (TMEM135) deficiency on bone homeostasis by comparing Tmem135 knockout mice with their littermates. The mechanism of TMEM135 in mitochondrial dynamics and BMSCs differentiation was also investigated in vivo and in vitro. RESULTS Distinct changes in mitochondrial morphology were observed between osteogenic and adipogenic differentiation of BMSCs, manifesting as fission in the late stage of osteogenesis and fusion in adipogenesis. Additionally, we revealed that TMEM135, a modulator of mitochondrial dynamics, played a functional role in regulating the equilibrium between adipogenesis and osteogenesis. The TMEM135 deficiency impaired mitochondrial fission and disrupted crucial mitochondrial energy metabolism during osteogenesis. Tmem135 knockout mice showed osteoporotic phenotype, characterized by reduced osteogenesis and increased adipogenesis. Mechanistically, TMEM135 maintained intracellular calcium ion homeostasis and facilitated the dephosphorylation of dynamic-related protein 1 at Serine 637 in BMSCs. CONCLUSIONS Our findings underscore the significant role of TMEM135 as a modulator in orchestrating the differentiation trajectory of BMSCs and promoting a shift in mitochondrial dynamics toward fission. This ultimately contributes to the osteogenesis process. This work has provided promising biological targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Jia Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Xiaogang Bao
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Jian Huang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Rukun Chen
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Yixuan Tan
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Zheng Zhang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Bing Xiao
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Fanqi Kong
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Changjiang Gu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Jianhang Du
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Haotian Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Junqiang Qi
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Junming Tan
- Department of Orthopedics, The 72nd Army Hospital of the People's Liberation Army, Huzhou 313099, PR China
| | - Duan Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Changgui Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China.
| | - Guohua Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China.
| |
Collapse
|
11
|
Wang W, Zheng X, Wang H, Zuo B, Chen S, Li J. Mechanical Unloading Promotes Osteoclastic Differentiation and Bone Resorption by Modulating the MSC Secretome to Favor Inflammation. Cell Transplant 2024; 33:9636897241236584. [PMID: 38501500 PMCID: PMC10953070 DOI: 10.1177/09636897241236584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
Aging, space flight, and prolonged bed rest have all been linked to bone loss, and no effective treatments are clinically available at present. Here, with the rodent hindlimb unloading (HU) model, we report that the bone marrow (BM) microenvironment was significantly altered, with an increased number of myeloid cells and elevated inflammatory cytokines. In such inflammatory BM, the osteoclast-mediated bone resorption was greatly enhanced, leading to a shifted bone remodeling balance that ultimately ends up with disuse-induced osteoporosis. Using Piezo1 conditional knockout (KO) mice (Piezo1fl/fl;LepRCre), we proved that lack of mechanical stimuli on LepR+ mesenchymal stem cells (MSCs) is the main reason for the pathological BM inflammation. Mechanically, the secretome of MSCs was regulated by mechanical stimuli. Inadequate mechanical load leads to increased production of inflammatory cytokines, such as interleukin (IL)-1α, IL-6, macrophage colony-stimulating factor 1 (M-CSF-1), and so on, which promotes monocyte proliferation and osteoclastic differentiation. Interestingly, transplantation of 10% cyclic mechanical stretch (CMS)-treated MSCs into HU animals significantly alleviated the BM microenvironment and rebalanced bone remodeling. In summary, our research revealed a new mechanism underlying mechanical unloading-induced bone loss and suggested a novel stem cell-based therapy to potentially prevent disuse-induced osteoporosis.
Collapse
Affiliation(s)
- Wanyuji Wang
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Xueling Zheng
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Hehe Wang
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Bin Zuo
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sisi Chen
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiao Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
12
|
吴 秀, 范 应, 叶 永, 李 萍, 朱 青, 陈 泽, 李 博, 王 文, 郑 磊. [A transcriptomic study of osteoporosis induced by ketogenic diet in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1440-1446. [PMID: 37712283 PMCID: PMC10505562 DOI: 10.12122/j.issn.1673-4254.2023.08.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE To investigate the molecular mechanism of osteoporosis caused by ketogenic diet (KD) using transcriptomic analysis. METHODS Sixteen 8-week-old female C57BL/6J mice were divided into KD group and sham group for feeding with KD and normal diet for 3 months, respectively. Body weight, blood glucose and blood ketone levels of the mice were measured every two weeks. Microstructure of the cancellous bone in the distal femur was observed with Micro-CT. Total RNA was extracted from bone marrow cells for transcriptomic analysis and bioinformatics analysis. RT-qPCR was used to verify the expression levels of the genes with significant differential expression between the groups. RESULTS KD obviously weakened the microstructure of the cancellous bone in mice. Compared with those in the sham group, the mice in KD group showed 165 differentially expressed genes (94 up-regulated and 71 down-regulated ones), including Acot1, Mpig6b, Gp9, Ppbp, Slc2a9, etc. KEGG pathway enrichment analysis showed obvious enrichment of the Apelin signaling pathway, PI3K- Akt signaling pathway and ECM-receptor interaction signal transduction pathway with greater number of differential genes. RTqPCR results showed that the 5 differential genes screened by transcriptomics were significantly upregulated in KD group, among which Acot1, Mpig6b and Ppbp were upregulated by over two folds (2.49 ± 0.665, 2.58 ± 0.470, and 2.59 ± 0.611, respectively), suggesting their involvement in KD-induced osteoporosis. CONCLUSION The differentially expressed genes and enriched pathways identified in the mouse models provide new clues for studying the molecular mechanism and prevention of KD-induced osteoporosis.
Collapse
Affiliation(s)
- 秀华 吴
- 南方医科大学南方医院检验医学科, 广东 广州 510515Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- 南方医科大学南方医院脊柱骨科, 广东 广州 510515Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 应静 范
- 南方医科大学南方医院检验医学科, 广东 广州 510515Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 永浓 叶
- 广州市番禺区中医院药学部, 广东 广州 511400Department of Pharmacy, Panyu Hospital of Traditional Chinese Medicine, Guangzhou 511400, China
| | - 萍 李
- 南方医科大学南方医院脊柱骨科, 广东 广州 510515Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 青安 朱
- 南方医科大学南方医院脊柱骨科, 广东 广州 510515Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 泽森 陈
- 南方医科大学南方医院脊柱骨科, 广东 广州 510515Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 博 李
- 南方医科大学南方医院检验医学科, 广东 广州 510515Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 文 王
- 南方医科大学南方医院检验医学科, 广东 广州 510515Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 磊 郑
- 南方医科大学南方医院检验医学科, 广东 广州 510515Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
13
|
Bhattarai G, Sim HJ, So HS, Lee JC, Kook SH. Exposure of newborns to atmospherically relevant artificial particulate matter induces hematopoietic stem cell senescence. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131293. [PMID: 37002998 DOI: 10.1016/j.jhazmat.2023.131293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Research on the negative impacts of PM2.5 have been focused on lung, brain, immune, and metabolism-related diseases. However, little is known about the mechanism underlying the effects of PM2.5 on the modulation of hematopoietic stem cell (HSC) fate. Maturation of the hematopoietic system and differentiation of hematopoietic stem progenitor cells (HSPCs) occurs soon after birth when infants are susceptible to external stresses. We investigated how exposure to atmospherically relevant artificial particulate matter of diameter < 2.5 µm (termed, PM2.5) affects HSPCs in newborns. The lungs of newborn mice exposed to PM2.5 exhibited higher levels of oxidative stress and inflammasome activation, which continued during aging. PM2.5 also stimulated oxidative stress and inflammasome activation in bone marrow (BM). PM2.5-exposed infant mice at 12 months but not at 6 months displayed progressive senescence of HSCs accompanied by preferential impairment of the BM microenvironment with age-related phenotypes, as evidenced by colony-forming assay and serial transplantation and animal survival experiments. Further, PM2.5-exposed middle-aged mice did not exhibit radioprotective potential. Collectively, exposure of newborns to PM2.5 causes progressive senescence of HSCs. These findings revealed a novel mechanism by which PM2.5 affects the fate of HSCs, highlighting the crucial role of early life exposure to air pollution in determining human health outcomes.
Collapse
Affiliation(s)
- Govinda Bhattarai
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea; Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyun-Jaung Sim
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Han-Sol So
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea; Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
14
|
Zhang X, Liu L, Liu X, Huang Q, Liu L, Liu H, Ren S, Wei P, Cheng P, Yao M, Song W, Zhang H, Chen M. Chidamide suppresses adipogenic differentiation of bone marrow derived mesenchymal stem cells via increasing REEP2 expression. iScience 2023; 26:106221. [PMID: 36879811 PMCID: PMC9985040 DOI: 10.1016/j.isci.2023.106221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/11/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Increased propensity of bone marrow-derived mesenchymal stem cells (BM-MSCs) toward adipogenic differentiation at the expense of osteogenesis has been implicated in obesity, diabetes, and age-related osteoporosis as well as various hematopoietic disorders. Defining small molecules with role in rectifying the adipo-osteogenic differentiation imbalance is of great significance. Here, we unexpectedly found that Chidamide, a selective histone deacetylases inhibitor, exhibited remarkably suppressive effect on the in vitro induced adipogenic differentiation of BM-MSCs. Multifaceted alterations in the spectrum of gene expression were observed in Chidamide-managed BM-MSCs during adipogenic induction. Finally, we focused on REEP2, which presented decreased expression in BM-MSCs-mediated adipogenesis and was restored by Chidamide treatment. REEP2 was subsequently demonstrated as a negative regulator of adipogenic differentiation of BM-MSCs and mediated the suppressive effect of Chidamide on adipocyte development. Our findings provide the theoretical and experimental foundation for the clinical application of Chidamide for disorders associated with excessive marrow adipocytes.
Collapse
Affiliation(s)
- Xianning Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Lulu Liu
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Xin Liu
- Department of Graduate School, Jining Medical University, Jining 272000, Shandong Province, China
| | - Qian Huang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Lei Liu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Haihui Liu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Saisai Ren
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Peng Wei
- Department of Radiation Oncology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Panpan Cheng
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Mingkang Yao
- Department of Graduate School, Jining Medical University, Jining 272000, Shandong Province, China
| | - Wenjun Song
- Department of Graduate School, Jining Medical University, Jining 272000, Shandong Province, China
| | - Hao Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Mingtai Chen
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| |
Collapse
|
15
|
Freiberger RN, López CAM, Sviercz FA, Cevallos C, Guano AD, Jarmoluk P, Quarleri J, Delpino MV. B. abortus Infection Promotes an Imbalance in the Adipocyte-Osteoblast Crosstalk Favoring Bone Resorption. Int J Mol Sci 2023; 24:5617. [PMID: 36982692 PMCID: PMC10054538 DOI: 10.3390/ijms24065617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Osteoarticular injury is the most common presentation of active brucellosis in humans. Osteoblasts and adipocytes originate from mesenchymal stem cells (MSC). Since those osteoblasts are bone-forming cells, the predilection of MSC to differentiate into adipocytes or osteoblasts is a potential factor involved in bone loss. In addition, osteoblasts and adipocytes can be converted into each other according to the surrounding microenvironment. Here, we study the incumbency of B. abortus infection in the crosstalk between adipocytes and osteoblasts during differentiation from its precursors. Our results indicate that soluble mediators present in culture supernatants from B. abotus-infected adipocytes inhibit osteoblast mineral matrix deposition in a mechanism dependent on the presence of IL-6 with the concomitant reduction of Runt-related transcription factor 2 (RUNX-2) transcription, but without altering organic matrix deposition and inducing nuclear receptor activator ligand kβ (RANKL) expression. Secondly, B. abortus-infected osteoblasts stimulate adipocyte differentiation with the induction of peroxisome proliferator-activated receptor γ (PPAR-γ) and CCAAT enhancer binding protein β (C/EBP-β). We conclude that adipocyte-osteoblast crosstalk during B. abortus infection could modulate mutual differentiation from its precursor cells, contributing to bone resorption.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - María Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Consejo de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Paraguay 2155, piso 11, Buenos Aires C1121 ABG, Argentina
| |
Collapse
|
16
|
Nagasaki K, Nagasaki A, Taylor JM, Kear BD, Ma Y, Somerman MJ, Gavrilova O. The RGD region of bone sialoprotein affects metabolic activity in mice. FRONTIERS IN DENTAL MEDICINE 2023; 4:1124084. [PMID: 39916931 PMCID: PMC11797800 DOI: 10.3389/fdmed.2023.1124084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/23/2023] [Indexed: 02/09/2025] Open
Abstract
Introduction Bone sialoprotein (BSP) is a key regulator of mineralized tissue formation. Previously, we generated BSP-KAE knock-in mice (KAEKI mice) by substituting a non-function KAE (lysine-alanine-glutamic acid) for the integrin-binding RGD (arginine-glycine-aspartic acid) sequence and reported a vital role of the BSP-RGD motif in modulating the periodontal ligament (PDL). Specifically, a histological disorganization of the PDL was noted, resulting in a weakened function of the PDL as measured by dynamic mechanical analysis. Intriguingly, also noted was a weight gain as KAEKI mice aged. While several proteins associated with mineralized tissues are reported to affect energy metabolism, the metabolic role of the BSP-RGD region has yet to be elucidated. Here we focus on defining the role of the BSP-RGD region in metabolic activity. Methods Body weight, body composition, and caloric intake were measured in wild type (WT) and KAEKI mice. Energy expenditure was estimated using energy balance technique. Epididymal fat, interscapular fat, and liver were harvested for histological analysis. The systemic metabolic phenotype was assessed by sera analyses, insulin tolerance and glucose tolerance tests. Results The results showed that KAEKI mice developed mild obesity starting from 13 weeks postnatal (wpn). The increase in body weight correlated with an increase in lean mass and visceral adiposity. Histological examination revealed adipocyte hypertrophy in white epididymal fat and interscapular brown fat in KAEKI vs. WT mice at 17 wpn. Metabolic profiling indicated that KAEKI mice had dyslipidemia and hyperleptinemia but no significant changes in glucose metabolism. Energy balance analyses revealed that hyperphagia preceded weight gain in KAEKI mice. Conclusion These data suggest that the RGD region of BSP affects energy metabolism by regulating food intake, with further studies warranted to uncover the underlying mechanisms.
Collapse
Affiliation(s)
- Karin Nagasaki
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Atsuhiro Nagasaki
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Jocelyn M. Taylor
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Bernice D. Kear
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yinyan Ma
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Martha J. Somerman
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
17
|
Zheng X, Wang W, Chen S, Zuo B, Li J. Transplanted mesenchymal stromal cells are unable to migrate to the bone surface and subsequently improve osteogenesis in glucocorticoid-induced osteoporosis. Cytotherapy 2023; 25:472-482. [PMID: 36863932 DOI: 10.1016/j.jcyt.2023.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/14/2022] [Accepted: 01/07/2023] [Indexed: 03/03/2023]
Abstract
Long-term or high-dose use of glucocorticoids causes bone loss and low bone formation. We previously demonstrated that dexamethasone (Dex) administration caused the shifted differentiation balance of mesenchymal stromal cells (MSCs) to favor adipogenic lineage over osteoblastic lineage, which is one of the key mechanisms for Dex-induced osteoporosis (DIO). These findings indicate that supplementing functional allogeneic MSCs could be a therapeutic strategy for DIO. Here, we found that transplanting MSCs by intramedullary injection had little effect in promoting new bone formation. Fluorescent-labeled lineage tracing revealed that 1 week after transplantation, green fluorescent protein (GFP)-MSCs were found to migrate to the bone surface (BS) in control mice but not in DIO mice. As expected, GFP-MSCs on the BS were mostly Runx2-positive; however, GFP-MSCs located away from the BS failed to differentiate into osteoblasts. We further discovered that the levels of transforming growth factor beta 1 (TGF-β1), one of the main chemokines for MSC migration, is significantly decreased in the bone marrow fluid of DIO mice, which is insufficient to direct MSC migration. Mechanistically, Dex inhibits TGF-β1 expression by down-regulating its promoter activity, which decreases bone matrix-deposited TGF-β1 as well as active TGF-β1 released during osteoclast-mediated bone resorption. This study indicates that blocking MSC migration in osteoporotic BM contributes to bone loss and suggests that MSC mobilization to the BS may be a promising target for treating osteoporosis.
Collapse
Affiliation(s)
- Xueling Zheng
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Wanyuji Wang
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Sisi Chen
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Zuo
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiao Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
18
|
Kim DY, Ko SH. Common Regulators of Lipid Metabolism and Bone Marrow Adiposity in Postmenopausal Women. Pharmaceuticals (Basel) 2023; 16:322. [PMID: 37259464 PMCID: PMC9967016 DOI: 10.3390/ph16020322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 09/13/2024] Open
Abstract
A variety of metabolic disorders are associated with a decrease in estradiol (E2) during natural or surgical menopause. Postmenopausal women are prone to excessive fat accumulation in skeletal muscle and adipose tissue due to the loss of E2 via abnormalities in lipid metabolism and serum lipid levels. In skeletal muscle and adipose tissue, genes related to energy metabolism and fatty acid oxidation, such as those encoding peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and estrogen-related receptor alpha (ERRα), are downregulated, leading to increased fat synthesis and lipid metabolite accumulation. The same genes regulate lipid metabolism abnormalities in the bone marrow. In this review, abnormalities in lipid metabolism caused by E2 deficiency were investigated, with a focus on genes able to simultaneously regulate not only skeletal muscle and adipose tissue but also bone metabolism (e.g., genes encoding PGC-1α and ERRα). In addition, the mechanisms through which mesenchymal stem cells lead to adipocyte differentiation in the bone marrow as well as metabolic processes related to bone marrow adiposity, bone loss, and osteoporosis were evaluated, focusing on the loss of E2 and lipid metabolic alterations. The work reviewed here suggests that genes underlying lipid metabolism and bone marrow adiposity are candidate therapeutic targets for bone loss and osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Dae-Yong Kim
- CEO, N- BIOTEK, Inc., 402-803, Technopark, 655, Pyeongcheon-ro, Bucheon-si 14502, Gyeonggi-do, Republic of Korea
| | - Seong-Hee Ko
- Regenerative Medicine Research Team, N- BIOTEK, Inc., 104-706, Technopark Ssangyong 3Cha, 397, Seokcheon-ro, Bucheon-si 14449, Gyeonggi-do, Republic of Korea
| |
Collapse
|
19
|
Chen L, Yu C, Xu W, Xiong Y, Cheng P, Lin Z, Zhang Z, Knoedler L, Panayi AC, Knoedler S, Wang J, Mi B, Liu G. Dual-Targeted Nanodiscs Revealing the Cross-Talk between Osteogenic Differentiation of Mesenchymal Stem Cells and Macrophages. ACS NANO 2023; 17:3153-3167. [PMID: 36715347 PMCID: PMC9933878 DOI: 10.1021/acsnano.2c12440] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Ongoing research has highlighted the significance of the cross-play of macrophages and mesenchymal stem cells (MSCs). Lysine-specific demethylase 6B (KDM6B) has been shown to control osteogenic differentiation of MSCs by depleting trimethylated histone 3 lysine 27 (H3K27me3). However, to date, the role of KDM6B in bone marrow-derived macrophages (BMDMs) remains controversial. Here, a chromatin immunoprecipitation assay (ChIP) proved that KDM6B derived from osteogenic-induced BMSCs could bind to the promoter region of BMDMs' brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein-1 (BMAL1) gene in a coculture system and activate BMAL1. Transcriptome sequencing and experiments in vitro showed that the overexpression of BMAL1 in BMDM could inhibit the TLR2/NF-κB signaling pathway, reduce pyroptosis, and decrease the M1/M2 ratio, thereby promoting osteogenic differentiation of BMSCs. Furthermore, bone and macrophage dual-targeted GSK-J4 (KDM6B inhibitor)-loaded nanodiscs were synthesized via binding SDSSD-apoA-1 peptide analogs (APA) peptide, which indirectly proved the critical role of KDM6B in osteogenesis in vivo. Overall, we demonstrated that KDM6B serves as a positive circulation trigger during osteogenic differentiation by decreasing the ratio of M1/M2 both in vitro and in vivo. Collectively, these results provide insight into basic research in the field of osteoporosis and bone repair.
Collapse
Affiliation(s)
- Lang Chen
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Chenyan Yu
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Wanting Xu
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School
of Pharmaceutical Sciences, Shenzhen Campus
of Sun Yat-sen University, Shenzhen 518100, China
| | - Yuan Xiong
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Peng Cheng
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Ze Lin
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Zhenhe Zhang
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Leonard Knoedler
- Department
of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg 93053, Germany
- Leibniz
Institute of Immunotherapy, University of
Regensburg, Regensburg 93053, Germany
| | - Adriana C. Panayi
- Department
of Plastic Surgery, Brigham and Women’s
Hospital, Harvard Medical School, Boston, Massachusetts 02152, United States
- Department
of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center,
BG Trauma Center Ludwigshafen, University
of Heidelberg, Ludwig-Guttmann-Strasse
13, Ludwigshafen/Rhine 67071, Germany
| | - Samuel Knoedler
- Department
of Plastic Surgery, Brigham and Women’s
Hospital, Harvard Medical School, Boston, Massachusetts 02152, United States
- Institute
of Regenerative Biology and Medicine, Helmholtz
Zentrum München, Max-Lebsche-Platz 31, Munich 81377, Germany
| | - Junqing Wang
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School
of Pharmaceutical Sciences, Shenzhen Campus
of Sun Yat-sen University, Shenzhen 518100, China
| | - Bobin Mi
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Guohui Liu
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| |
Collapse
|
20
|
Li F, Lun D, Liu D, Jia Z, Zhu Z, Liu Z, Li X. Melatonin activates mitochondrial unfolded protein response to preserve osteogenic potential of senescent BMSCs via upregulating PDI-6. Biochimie 2023; 209:44-51. [PMID: 36708867 DOI: 10.1016/j.biochi.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023]
Abstract
Bone marrow stromal cells (BMSCs) possess the capability to differentiate into osteogenic or adipogenic lineages. With aging, BMSCs suffer from mitochondrial dysfunction and undergo senescence, favoring adipogenesis at the expense of osteoblastogenesis. It leads to decreased bone formation and contributes to senile osteoporosis (SOP). In the current study, RNA-seq analysis unveiled that senescent BMSCs from mice exhibited a significant suppression in the expression of the protein disulfide isomerase PDI-6, an important regulator of mitochondrial unfolded protein response (UPRmt) as well as maintenance of mitochondrial homeostasis. Overexpression of PDI-6 in senescent BMSCs partially rescued mitochondrial function and enhanced osteogenic differentiation. In contrast, osteoblastogenesis of BMSCs remarkably deteriorated under the condition of PDI-6 silencing. Furthermore, melatonin, an endocrine hormone, effectively enhanced PDI-6 expression and repaired injured mitochondria, and the effect of melatonin on PDI-6 expression was melatonin receptor dependent. We further identified that PDI-6 was a downstream effector of Wnt/β-catenin pathway, as the inhibitor of Wnt3A/TCF signaling, Wnt-C59, inhibited PDI-6 expression. Potential β-catenin-TCF/LEF binding sites on the promoter of PDI-6 gene were also validated by chromatin immunoprecipitation (ChIP) assay. Thus, our study suggests that PDI-6 is a pharmacological target of melatonin for the intervention of age-related osteoporosis via mitigating mitochondrial dysfunction in senescent BMSCs.
Collapse
Affiliation(s)
- Feng Li
- Department of Orthopaedics, Weifang People's Hospital, Weifang, Shandong, China
| | - Dengxing Lun
- Department of Orthopaedics, Weifang People's Hospital, Weifang, Shandong, China
| | - Dayong Liu
- Department of Orthopaedics, Weifang People's Hospital, Weifang, Shandong, China
| | - Zesen Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Rd, Heping, Tianjin, China
| | - Zhenye Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Rd, Heping, Tianjin, China
| | - Zhiqiang Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Rd, Heping, Tianjin, China
| | - Xiaopeng Li
- Department of Orthopaedics, Weifang People's Hospital, Weifang, Shandong, China.
| |
Collapse
|
21
|
García-García P, Reyes R, García-Sánchez D, Pérez-Campo FM, Rodríguez-Rey JC, Évora C, Díaz-Rodríguez P, Delgado A. Nanoparticle-mediated selective Sfrp-1 silencing enhances bone density in osteoporotic mice. J Nanobiotechnology 2022; 20:462. [PMID: 36309688 PMCID: PMC9618188 DOI: 10.1186/s12951-022-01674-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/06/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoporosis (OP) is characterized by a loss in bone mass and mineral density. The stimulation of the canonical Wnt/β-catenin pathway has been reported to promote bone formation, this pathway is controlled by several regulators as secreted frizzled-related protein-1 (Sfrp-1), antagonist of the pathway. Thus, Sfrp-1 silencing therapies could be suitable for enhancing bone growth. However, the systemic stimulation of Wnt/β-catenin has been correlated with side effects. This work hypothesizes the administration of lipid-polymer NPs (LPNPs) functionalized with a MSC specific aptamer (Apt) and carrying a SFRP1 silencing GapmeR, could favor bone formation in OP with minimal undesired effects. Suitable SFRP1 GapmeR-loaded Apt-LPNPs (Apt-LPNPs-SFRP1) were administered in osteoporotic mice and their biodistribution, toxicity and bone induction capacity were evaluated. The aptamer functionalization of the NPs modified their biodistribution profile showing a four-fold increase in the bone accumulation and a ten-fold decrease in the hepatic accumulation compared to naked LPNPs. Moreover, the histological evaluation revealed evident changes in bone structure observing a more compact trabecular bone and a cortical bone thickness increase in the Apt-LPNPs-SFRP1 treated mice with no toxic effects. Therefore, these LPNPs showed suitable properties and biodistribution profiles leading to an enhancement on the bone density of osteoporotic mice.
Collapse
Affiliation(s)
- Patricia García-García
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38206, La Laguna, Spain
- Institute of Biomedical Technologies (ITB), Universidad de La Laguna, 38320, La Laguna, Spain
| | - Ricardo Reyes
- Institute of Biomedical Technologies (ITB), Universidad de La Laguna, 38320, La Laguna, Spain
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38206, La Laguna, Spain
| | - Daniel García-Sánchez
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria-IDIVAL, 39012, Santander, Spain
| | - Flor María Pérez-Campo
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria-IDIVAL, 39012, Santander, Spain
| | - José Carlos Rodríguez-Rey
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria-IDIVAL, 39012, Santander, Spain
| | - Carmen Évora
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38206, La Laguna, Spain
- Institute of Biomedical Technologies (ITB), Universidad de La Laguna, 38320, La Laguna, Spain
| | - Patricia Díaz-Rodríguez
- Institute of Biomedical Technologies (ITB), Universidad de La Laguna, 38320, La Laguna, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Araceli Delgado
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38206, La Laguna, Spain.
- Institute of Biomedical Technologies (ITB), Universidad de La Laguna, 38320, La Laguna, Spain.
| |
Collapse
|
22
|
Nagasaki K, Gavrilova O, Hajishengallis G, Somerman MJ. Does the RGD region of certain proteins affect metabolic activity? FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.974862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A better understanding of the role of mineralized tissues and their associated factors in governing whole-body metabolism should be of value toward informing clinical strategies to treat mineralized tissue and metabolic disorders, such as diabetes and obesity. This perspective provides evidence suggesting a role for the arginine-glycine-aspartic acid (RGD) region, a sequence identified in several proteins secreted by bone cells, as well as other cells, in modulating systemic metabolic activity. We focus on (a) two of the SIBLING (small integrin-binding ligand, N-linked glycoprotein) family genes/proteins, bone sialoprotein (BSP) and osteopontin (OPN), (b) insulin-like growth factor-binding protein-1 & 2 (IGFBP-1, IGFBP-2) and (c) developmental endothelial locus 1 (DEL1) and milk fat globule–EGF factor-8 (MFG-E8). In addition, for our readers to appreciate the mounting evidence that a multitude of bone secreted factors affect the activity of other tissues, we provide a brief overview of other proteins, to include fibroblast growth factor 23 (FGF23), phosphatase orphan 1 (PHOSPHO1), osteocalcin (OCN/BGLAP), tissue non-specific alkaline phosphatase (TNAP) and acidic serine aspartic-rich MEPE-associated motif (ASARM), along with known/suggested functions of these factors in influencing energy metabolism.
Collapse
|
23
|
Zhu M, Fan Z. The role of the Wnt signalling pathway in the energy metabolism of bone remodelling. Cell Prolif 2022; 55:e13309. [PMID: 35811348 DOI: 10.1111/cpr.13309] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Bone remodelling is necessary to repair old and impaired bone caused by aging and its effects. Injury in the process of bone remodelling generally leads to the development of various bone diseases. Energy metabolism plays crucial roles in bone cell formation and function, the disorder of which will disrupt the balance between bone formation and bone resorption. MATERIALS AND METHODS Here, we review the intrinsic interactions between bone remodelling and energy metabolism and the role of the Wnt signalling pathway. RESULTS We found a close interplay between metabolic pathways and bone homeostasis, demonstrating that bone plays an important role in the regulation of energy balance. We also discovered that Wnt signalling is associated with multiple biological processes regulating energy metabolism in bone cells. CONCLUSIONS Thus, targeted regulation of Wnt signalling and the recovery of the energy metabolism function of bone cells are key means for the treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Mengyuan Zhu
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Peng X, Zhou X, Yin Y, Luo B, Liu Y, Yang C. Inflammatory Microenvironment Accelerates Bone Marrow Mesenchymal Stem Cell Aging. Front Bioeng Biotechnol 2022; 10:870324. [PMID: 35646835 PMCID: PMC9133389 DOI: 10.3389/fbioe.2022.870324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
MSC senescence is considered a contributing factor in aging-related diseases. We investigated the influence of the inflammatory microenvironment on bone marrow mesenchymal stem cells (BMSCs) under aging conditions and the underlying mechanism to provide new ideas for stem cell therapy for age-related osteoporosis. The BMSCs were cultured until passage 3 (P3) (young group) and passage 10 (P10) (aging group) in vitro. The supernatant was collected as the conditioned medium (CM). The young BMSCs were cultured in the CM of P3 or P10 cells. The effects of CM from different groups on the aging and stemness of the young BMSCs were examined. A Quantibody® mouse inflammation array on serum extracts from young (aged 8 weeks) and old (aged 78 weeks) mice was performed, and differentially expressed factors were screened out. We discovered that the CM from senescent MSCs changed the physiology of young BMSCs. Systemic inflammatory microenvironments changed with age in the mice. In particular, the pro-inflammatory cytokine IL-6 increased, and the anti-inflammatory cytokine IL-10 decreased. The underlying mechanism was investigated by GO and KEGG analyses, and there was a change in the JAK-STAT signaling pathway, which is closely related to IL-6 and IL-10. Collectively, our results demonstrated that the age-related inflammatory microenvironment has a significant effect on the biological functions of BMSCs. Targeted reversal of this inflammatory environment may provide a new strategy for stem cell therapy to treat aging-related skeletal diseases.
Collapse
Affiliation(s)
- Xin Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xin Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | | | | | - Yang Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Cheng Yang, ; Yang Liu,
| | - Cheng Yang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Cheng Yang, ; Yang Liu,
| |
Collapse
|
25
|
Wu J, Lakomy DS, Fellman BM, Salcedo MP, Sood AK, Jhingran A, Klopp AH, Iyer RB, Jimenez C, Colbert LE, Eifel PJ, Schmeler KM, Lin LL. Longitudinal Changes in Bone Mineral Measurements Inside and Outside Radiation Fields Used for Cervical Cancer Treatment. Pract Radiat Oncol 2022; 12:e423-e433. [PMID: 35390531 DOI: 10.1016/j.prro.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE We compared the magnitude of changes in bone mineral density (BMD), within and outside the radiation field, among women who received pelvic radiotherapy (RT) with or without chemotherapy for cervical cancer. PATIENTS & METHODS In this secondary analysis of a prospective study, we analyzed serial CT scans and dual-energy X-ray absorptiometry (DXA) scans from 78 patients who received definitive RT or chemoradiation (CRT) for cervical cancer at a single institution from 2008 to 2015. BMD values at L1, L2, L3 and L4 were measured. We compared changes in BMD within the radiation field (i.e., at L4) with those outside the field (i.e., at L1). Linear mixed models were also used to examine the effect of RT on changes in BMD over time and covariate adjustment. RESULTS The median age of the 78 patients was 45.5 years (range 23-88); all received RT and 76 (97%) received concurrent CRT. Treatment was associated with significant declines in BMD in all 4 lumbar vertebral bodies over time (P<0.05), with nadir at 3 months for L4 and at 1 year for L1. Pairwise comparisons at 3 months and 2 years after treatment indicated that BMD in L4 (within the RT field) had improved (P=0.037), but BMD in L1 (outside the RT field) was no different at 3 months and 2 years. CONCLUSIONS Significant BMD declines were observed in all lumbar vertebral bodies immediately following RT. However, in-field vertebral bodies reached nadir BMD earlier than those located outside the RT field. Our results suggest that treatment and patient-related factors other than RT may contribute to declines in BMD after treatment for cervical cancer. Routine bone density screening and post-RT therapy with hormones may be beneficial for selected patients who receive CRT for cervical cancer.
Collapse
Affiliation(s)
- Juliana Wu
- University of Texas Medical Branch, Galveston, TX; Departments of Radiation Oncology, Houston, TX
| | - David S Lakomy
- Departments of Radiation Oncology, Houston, TX; Dartmouth Geisel School of Medicine, Hanover, NH
| | | | - Mila P Salcedo
- Departments of Gynecologic Oncology and Reproductive Medicine, Houston, TX; Obstetrics and Gynecology Department, Federal University of Health Sciences/Irmandade Santa Casa de Misericordia, Porto Alegre, Brazil
| | - Anil K Sood
- Departments of Gynecologic Oncology and Reproductive Medicine, Houston, TX
| | | | - Ann H Klopp
- Departments of Radiation Oncology, Houston, TX
| | | | - Camilo Jimenez
- Departments of Endocrinology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | - Lilie L Lin
- Departments of Radiation Oncology, Houston, TX.
| |
Collapse
|
26
|
Tan L, Liu X, Dou H, Hou Y. Characteristics and regulation of mesenchymal stem cell plasticity by the microenvironment — specific factors involved in the regulation of MSC plasticity. Genes Dis 2022; 9:296-309. [PMID: 35224147 PMCID: PMC8843883 DOI: 10.1016/j.gendis.2020.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs), multipotent stromal cells, have attracted extensive attention in the field of regenerative medicine and cell therapy due to the capacity of self-renewal, multilineage differentiation, and immune regulation. MSCs have different cellular effects in different diseases, and even have markedly different curative effects with different tissue sources, indicating the plasticity of MSCs. The phenotypes, secreted factors, and proliferative, migratory, differentiating, and immunomodulatory effects of MSCs depend on certain mediators present in their microenvironment. Understanding microenvironmental factors and their internal mechanisms in MSC responses may help in subsequent prediction and improvement of clinical benefits. This review highlighted the recent advances in MSC plasticity in the physiological and pathological microenvironment and multiple microenvironmental factors regulating MSC plasticity. It also highlighted some progress in the underlying molecular mechanisms of MSC remodeling in the microenvironment. It might provide references for the improvement in vitro culture of MSCs, clinical application, and in vivo induction.
Collapse
|
27
|
Ko KR, Lee H, Han SH, Ahn W, Kim DK, Kim IS, Jung BS, Lee S. Substance P, A Promising Therapeutic Target in Musculoskeletal Disorders. Int J Mol Sci 2022; 23:ijms23052583. [PMID: 35269726 PMCID: PMC8910130 DOI: 10.3390/ijms23052583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
A large number of studies have focused on the role of substance P (SP) and the neurokinin-1 receptor (NK1R) in the pathogenesis of a variety of medical conditions. This review provides an overview of the role of the SP-NK1R pathway in the pathogenesis of musculoskeletal disorders and the evidence for its role as a therapeutic target for these disorders, which are major public health problems in most countries. To summarize, the brief involvement of SP may affect tendon healing in an acute injury setting. SP combined with an adequate conjugate can be a regenerative therapeutic option in osteoarthritis. The NK1R antagonist is a promising agent for tendinopathy, rheumatoid arthritis, and osteoarthritis. Research on the SP-NK1R pathway will be helpful for developing novel drugs for osteoporosis.
Collapse
Affiliation(s)
- Kyung Rae Ko
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (K.R.K.); (I.-S.K.)
| | - Hyunil Lee
- Department of Orthopedic Surgery, Ilsan Paik Hospital, Inje University, 170 Juhwa-ro, Ilsanseo-gu, Goyang-si 10380, Gyeonggi-do, Korea;
| | - Soo-Hong Han
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
| | - Wooyeol Ahn
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
| | - Do Kyung Kim
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
| | - Il-Su Kim
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (K.R.K.); (I.-S.K.)
| | - Bo Sung Jung
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
- Correspondence: (B.S.J.); (S.L.); Tel.: +82-31-780-5289 (B.S.J. & S.L.); Fax: +82-31-881-7114 (B.S.J. & S.L.)
| | - Soonchul Lee
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
- Correspondence: (B.S.J.); (S.L.); Tel.: +82-31-780-5289 (B.S.J. & S.L.); Fax: +82-31-881-7114 (B.S.J. & S.L.)
| |
Collapse
|
28
|
LncRNA NEAT1 controls the lineage fates of BMSCs during skeletal aging by impairing mitochondrial function and pluripotency maintenance. Cell Death Differ 2022; 29:351-365. [PMID: 34497381 PMCID: PMC8816946 DOI: 10.1038/s41418-021-00858-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
Aged bone marrow mesenchymal stem cells (BMSCs) exhibit aberrant self-renewal and lineage specification, which contribute to imbalanced bone-fat and progressive bone loss. In addition to known master regulators of lineage commitment, it is crucial to identify pivotal switches governing the specific differentiation fate of aged BMSCs. Here, we profiled differences in epigenetic regulation between adipogenesis and osteogenesis and identified super-enhancer associated lncRNA nuclear-enriched abundant transcript 1 (NEAT1) as a key bone-fat switch in aged BMSCs. We validated that NEAT1 with high enhancer activity was transcriptionally activated by ATF2 and directed aged BMSCs to a greater propensity to differentiate toward adipocytes than osteoblasts by mediating mitochondrial function. Furthermore, we confirmed NEAT1 as a protein-binding scaffold in which phosphorylation modification of SOX2 Ser249/250 by CDK2 impaired SOX2/OCT4 complex stability and dysregulated downstream transcription networks of pluripotency maintenance. In addition, by sponging miR-27b-3p, NEAT1 upregulated BNIP3L, BMP2K, and PPARG expression to shape mitochondrial function and osteogenic/adipogenic differentiation commitment, respectively. In extracellular communication, NEAT1 promoted CSF1 secretion from aged BMSCs and then strengthened osteoclastic differentiation by extracellular vesicle delivery. Notably, Neat1 small interfering RNA delivery induced increased bone mass in aged mice and decreased fat accumulation in the bone marrow. These findings suggest that NEAT1 regulates the lineage fates of BMSCs by orchestrating mitochondrial function and pluripotency maintenance, and might be a potential therapeutic target for skeletal aging.
Collapse
|
29
|
Ning K, Liu S, Yang B, Wang R, Man G, Wang DE, Xu H. Update on the Effects of Energy Metabolism in Bone Marrow Mesenchymal Stem Cells Differentiation. Mol Metab 2022; 58:101450. [PMID: 35121170 PMCID: PMC8888956 DOI: 10.1016/j.molmet.2022.101450] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background As common progenitor cells of osteoblasts and adipocytes, bone marrow mesenchymal (stromal) stem cells (BMSCs) play key roles in bone homeostasis, tissue regeneration, and global energy homeostasis; however, the intrinsic mechanism of BMSC differentiation is not well understood. Plasticity in energy metabolism allows BMSCs to match the divergent demands of osteo-adipogenic differentiation. Targeting BMSC metabolic pathways may provide a novel therapeutic perspective for BMSC differentiation unbalance related diseases. Scope of review This review covers the recent studies of glucose, fatty acids, and amino acids metabolism fuel the BMSC differentiation. We also discuss recent findings about energy metabolism in BMSC differentiation. Major conclusions Glucose, fatty acids, and amino acids metabolism provide energy to fuel BMSC differentiation. Moreover, some well-known regulators including environmental stress, hormone drugs, and biological and pathological factors may also influence BMSC differentiation by altering metabolism. This offers insight to the significance of metabolism on BMSC fate determination and provides the possibility of treating diseases related to BMSC differentiation, such as obesity and osteoporosis, from a metabolic perspective.
Collapse
|
30
|
Perico ME, Maluta T, Conti G, Vella A, Provezza L, Cestari T, De Cao G, Segalla L, Tecchio C, Benedetti F, Santini F, Bronte V, Magnan B, Sbarbati A, Ramarli D. The Cross-Talk between Myeloid and Mesenchymal Stem Cells of Human Bone Marrow Represents a Biomarker of Aging That Regulates Immune Response and Bone Reabsorption. Cells 2021; 11:cells11010001. [PMID: 35011569 PMCID: PMC8750773 DOI: 10.3390/cells11010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
One of the mechanisms that characterizes the aging process of different organs is the accumulation of fat. Different authors have demonstrated that adipose tissue replaces the loss of other cell types, deriving from mesenchymal cells. During aging, there is substitution or trans-differentiation of mesenchymal cells with other cells having the same embryological origin. Newly formed adipocytes were also observed in the trabecular matrix of elderly people’s bones, associated with myeloid cells. In this study, we have investigated the relationship between immature myeloid-derived suppressor cells (I-MDSCs) and mesenchymal stem cells (MSCs) in bone marrow (BM) samples harvested from 57 patients subjected to different orthopedic surgeries. Patients aged from 18 to 92 years were considered in order to compare the cellular composition of bone marrow of young and elderly people, considered a biomarker of immunity, inflammation, and bone preservation. The I-MDSC percentage was stable during aging, but in elderly people, it was possible to observe a strong basal immunosuppression of autologous and heterologous T cells’ proliferation. We hypothesized that this pattern observed in elders depends on the progressive accumulation in the BM of activating stimuli, including cell–cell contact, or the production of different cytokines and proteins that induce the differentiation of bone marrow mesenchymal stem cells in adipocytes. The collected data provided underline the importance of specific biomarkers of aging that promote a reduction in immune response and incremented inflammatory pathways, leading to bone reabsorption in elderly people.
Collapse
Affiliation(s)
- Maria Elisa Perico
- Section of Immunology, Department of Medicine, University of Verona, Policlinico GB Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (A.V.); (L.P.); (T.C.); (V.B.)
- Correspondence: ; Tel.: +39-045-8027266
| | - Tommaso Maluta
- Orthopedic and Traumatology Clinic, Department of Surgery, University of Verona, 37134 Verona, Italy; (T.M.); (G.D.C.); (B.M.)
| | - Giamaica Conti
- Section of Anatomy and Histology, Department of Neuroscience, Biomedicine and Movement Science, University of Verona, 37134 Verona, Italy; (G.C.); (L.S.); (A.S.)
| | - Antonio Vella
- Section of Immunology, Department of Medicine, University of Verona, Policlinico GB Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (A.V.); (L.P.); (T.C.); (V.B.)
| | - Lisa Provezza
- Section of Immunology, Department of Medicine, University of Verona, Policlinico GB Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (A.V.); (L.P.); (T.C.); (V.B.)
| | - Tiziana Cestari
- Section of Immunology, Department of Medicine, University of Verona, Policlinico GB Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (A.V.); (L.P.); (T.C.); (V.B.)
| | - Giulia De Cao
- Orthopedic and Traumatology Clinic, Department of Surgery, University of Verona, 37134 Verona, Italy; (T.M.); (G.D.C.); (B.M.)
| | - Lydia Segalla
- Section of Anatomy and Histology, Department of Neuroscience, Biomedicine and Movement Science, University of Verona, 37134 Verona, Italy; (G.C.); (L.S.); (A.S.)
| | - Cristina Tecchio
- Section of Hematology and Bone Marrow Transplant Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (C.T.); (F.B.)
| | - Fabio Benedetti
- Section of Hematology and Bone Marrow Transplant Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (C.T.); (F.B.)
| | - Francesco Santini
- Section of Cardio Surgery, Department of Surgery, University of Verona, 37134 Verona, Italy;
| | - Vincenzo Bronte
- Section of Immunology, Department of Medicine, University of Verona, Policlinico GB Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (A.V.); (L.P.); (T.C.); (V.B.)
| | - Bruno Magnan
- Orthopedic and Traumatology Clinic, Department of Surgery, University of Verona, 37134 Verona, Italy; (T.M.); (G.D.C.); (B.M.)
| | - Andrea Sbarbati
- Section of Anatomy and Histology, Department of Neuroscience, Biomedicine and Movement Science, University of Verona, 37134 Verona, Italy; (G.C.); (L.S.); (A.S.)
| | - Dunia Ramarli
- Section of Immunology, Azienda Ospedaliera Universitaria Integrata, 37134 Verona, Italy;
| |
Collapse
|
31
|
RIPK1 Coordinates Bone Marrow Mesenchymal Stem Cell Survival by Maintaining Mitochondrial Homeostasis via p53. Stem Cells Int 2021; 2021:5540149. [PMID: 34840579 PMCID: PMC8626202 DOI: 10.1155/2021/5540149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
Survival of mesenchymal stem cells in the bone marrow is essential for bone marrow microenvironment homeostasis, but the molecular mechanisms remain poorly understood. RIPK1 has emerged as a critical molecule of programmed cell death in tissue homeostasis. However, little is known about the regulation of RIPK1 on bone marrow mesenchymal stem cells (MSCs). Here, we have investigated for the first time the role of RIPK1 in bone marrow MSCs. We have found that RIPK1 knockdown suppressed proliferation, differentiation, and migration in bone marrow MSCs. Furthermore, RIPK1 knockdown resulted in the opening of mitochondrial permeability transition pore (mPTP) and mtDNA damage, leading to mitochondrial dysfunction, and consequently induced apoptosis and necroptosis in bone marrow MSCs. Moreover, we identified that the p53-PUMA axis pathway was involved in mitochondrial dysfunction in RIPK1-deficient bone marrow MSCs. Together, our findings highlighted that RIPK1 was indispensable for bone marrow MSC survival.
Collapse
|
32
|
Aging, Bone Marrow and Next-Generation Sequencing (NGS): Recent Advances and Future Perspectives. Int J Mol Sci 2021; 22:ijms222212225. [PMID: 34830107 PMCID: PMC8620539 DOI: 10.3390/ijms222212225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 12/28/2022] Open
Abstract
The aging of bone marrow (BM) remains a very imperative and alluring subject, with an ever-increasing interest among fellow scientists. A considerable amount of progress has been made in this field with the established ‘hallmarks of aging’ and continued efforts to investigate the age-related changes observed within the BM. Inflammaging is considered as a low-grade state of inflammation associated with aging, and whilst the possible mechanisms by which aging occurs are now largely understood, the processes leading to the underlying changes within aged BM remain elusive. The ability to identify these changes and detect such alterations at the genetic level are key to broadening the knowledgebase of aging BM. Next-generation sequencing (NGS) is an important molecular-level application presenting the ability to not only determine genomic base changes but provide transcriptional profiling (RNA-seq), as well as a high-throughput analysis of DNA–protein interactions (ChIP-seq). Utilising NGS to explore the genetic alterations occurring over the aging process within alterative cell types facilitates the comprehension of the molecular and cellular changes influencing the dynamics of aging BM. Thus, this review prospects the current landscape of BM aging and explores how NGS technology is currently being applied within this ever-expanding field of research.
Collapse
|
33
|
Cadé M, Muñoz-Garcia J, Babuty A, Fouassier M, Heymann MF, Monahan PE, Heymann D. FVIII at the crossroad of coagulation, bone and immune biology: Emerging evidence of biological activities beyond hemostasis. Drug Discov Today 2021; 27:102-116. [PMID: 34311113 DOI: 10.1016/j.drudis.2021.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/27/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
Hemophilia A is an X-linked hereditary disorder that results from deficient coagulation factor VIII (FVIII) activity, leading to spontaneous bleeding episodes, particularly in joints and muscles. FVIII deficiency has been associated with altered bone remodeling, dysregulated macrophage polarization, and inflammatory processes that are associated with the neoformation of abnormal blood vessels. Treatment based on FVIII replacement can lead to the development of inhibitors that render FVIII concentrate infusion ineffective. In this context, hemophilia has entered a new therapeutic era with the development of new drugs, such as emicizumab, that seek to restore the hemostatic balance by bypassing pathologically acquired antibodies. We discuss the potential extrahemostatic functions of FVIII that may be crucial for defining future therapies in hemophilia.
Collapse
Affiliation(s)
- Marie Cadé
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France
| | - Javier Muñoz-Garcia
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France
| | - Antoine Babuty
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France; Department of Haemostasis, CHU de Nantes, France
| | | | - Marie-Francoise Heymann
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France
| | - Paul E Monahan
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Dominique Heymann
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France; University of Sheffield, Department of Oncology and Metabolism, Sheffield, UK.
| |
Collapse
|
34
|
Zhou B, Peng K, Wang G, Chen W, Kang Y. Silencing Proteasome 26S Subunit ATPase 2 (PSMC2) Protects the Osteogenic Differentiation In Vitro and Osteogenesis In Vivo. Calcif Tissue Int 2021; 109:44-54. [PMID: 33625534 DOI: 10.1007/s00223-021-00819-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
Osteoporosis is a commonly seen degenerative bone disorder in the elderly and postmenopausal women, with a low bone mineral density as a major risk factor. The osteogenic potential of bone marrow stromal cells (BMSCs) showed to be impaired during osteoporosis. We established a postmenopausal osteoporosis model in ovariectomized (OVX) mice and found the upregulation of proteasome 26S subunit ATPase 2 (PSMC2) in OVX mice. PSMC2 silencing improved OVX-impaired biomechanical properties of mice femur, OVX-decreased BMD, and OVX-destroyed bone structure. Histopathological analysis indicated that PSMC2 silencing improved bone trabecular structure and increased the contents of collagen fibers and newly formed bone or cartilage in OVX mice. In the meantime, PSMC2 silencing increased Runx2, PI3K, Wnt3a, and β-catenin protein contents while reduced CTSK protein. Within BMSCs isolated from OVX mice, PSMC2 silencing promoted BMSC osteogenic differentiation and elevated osteogenic markers' protein contents, including HOXA10, Runx2, OCN, OPN, and COL1A2. In conclusion, PSMC2 expression is upregulated in the postmenopausal osteoporosis model in OVX mice. PSMC2 silencing promotes the osteogenic differentiation of BMSCs in vitro, promotes bone formation, and inhibits bone resorption in vivo.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Kun Peng
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Guoqiang Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Weihua Chen
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yijun Kang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
35
|
Fonseca H, Bezerra A, Coelho A, Duarte JA. Association between Visceral and Bone Marrow Adipose Tissue and Bone Quality in Sedentary and Physically Active Ovariectomized Wistar Rats. Life (Basel) 2021; 11:life11060478. [PMID: 34070279 PMCID: PMC8225130 DOI: 10.3390/life11060478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Obesity is considered protective for bone mass, but this view has been progressively challenged. Menopause is characterized by low bone mass and increased adiposity. Our aim was to determine how visceral and bone marrow adiposity change following ovariectomy (OVX), how they correlate with bone quality and if they are influenced by physical activity. Methods: Five-month-old Wistar rats were OVX or sham-operated and maintained in sedentary or physically active conditions for 9 months. Visceral and bone marrow adiposity as well as bone turnover, femur bone quality and biomechanical properties were assessed. Results: OVX resulted in higher weight, visceral and bone marrow adiposity. Visceral adiposity correlated inversely with femur Ct.Th (r = −0.63, p < 0.001), BV/TV (r = −0.67, p < 0.001), Tb.N (r = −0.69, p < 0.001) and positively with Tb.Sp (r = 0.58, p < 0.001). Bone marrow adiposity also correlated with bone resorption (r = 0.47, p < 0.01), bone formation rate (r = −0.63, p < 0.01), BV/TV (r = −0.85, p < 0.001), Ct.Th (r = −0.51, p < 0.0.01), and with higher empty osteocyte lacunae (r = 0.39, p < 0.05), higher percentage of osteocytes with oxidative stress (r = 0.64, p < 0.0.01) and lower femur maximal stress (r = −0.58, p < 0.001). Physical activity correlated inversely with both visceral (r = −0.74, p < 0.01) and bone marrow adiposity (r = −0.92, p < 0.001). Conclusions: OVX increases visceral and bone marrow adiposity which are associated with inferior bone quality and biomechanical properties. Physical activity could contribute to reduce adipose tissue and thereby improve bone quality.
Collapse
Affiliation(s)
- Hélder Fonseca
- Faculty of Sport, University of Porto (FADE/UP), 4200-450 Porto, Portugal; (A.B.); (A.C.); (J.A.D.)
- Research Center of Physical Activity, Health and Leisure (CIAFEL), 4200-450 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Correspondence: ; Tel.: +351-220-425-239
| | - Andrea Bezerra
- Faculty of Sport, University of Porto (FADE/UP), 4200-450 Porto, Portugal; (A.B.); (A.C.); (J.A.D.)
- Research Center of Physical Activity, Health and Leisure (CIAFEL), 4200-450 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Ana Coelho
- Faculty of Sport, University of Porto (FADE/UP), 4200-450 Porto, Portugal; (A.B.); (A.C.); (J.A.D.)
- Research Center of Physical Activity, Health and Leisure (CIAFEL), 4200-450 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - José Alberto Duarte
- Faculty of Sport, University of Porto (FADE/UP), 4200-450 Porto, Portugal; (A.B.); (A.C.); (J.A.D.)
- Research Center of Physical Activity, Health and Leisure (CIAFEL), 4200-450 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Polytechnic and University Higher Education Cooperative (CESPU), 4485-116 Gandra Campus, 4050-600 Porto, Portugal
| |
Collapse
|
36
|
Zheng X, Wang Q, Xie Z, Li J. The elevated level of IL-1α in the bone marrow of aged mice leads to MSC senescence partly by down-regulating Bmi-1. Exp Gerontol 2021; 148:111313. [PMID: 33740618 DOI: 10.1016/j.exger.2021.111313] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/30/2022]
Abstract
Osteoporosis is becoming increasingly prevalent with individual aging. Recent studies found that bone marrow mesenchymal stem cells (MSCs) undergo senescence along with the progression of age-related osteoporosis, leading to a decreased rate of new bone formation and fracture repair. The underlying mechanism of MSC senescence in the aged bone marrow has not been clarified yet. Here we found that MSCs from aged mice (12-month-old, O-MSCs) exhibited apparent senescent phenotypes compared with those from young controls (2-month-old, Y-MSCs), including lower proliferation rate, impaired self-renewal capacity, increased p16Ink4a expression and shifted differentiation balance to favor adipocytes over osteoblasts. Bmi-1, one of the main factors that regulate stem cell self-renewal, is dramatically decreased in O-MSCs. Knocking-down of Bmi-1 in Y-MSCs lead to cellular senescence, while over-expression of it rejuvenated O-MSCs. We further showed that the level of IL-1α is much higher in the bone marrow fluid of aged mice, which significantly inhibited Bmi-1 expression in MSCs. Our present study indicated that IL-1α, a key component of the senescence-associated secretory phenotype (SASP), is elevated in the aged bone marrow microenvironment, leading to decreased Bmi-1 expression in MSCs and consequently, MSC senescence.
Collapse
Affiliation(s)
- Xueling Zheng
- Department of Cell Biology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qianxing Wang
- Department of Cell Biology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zhuo Xie
- Department of Cell Biology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiao Li
- Department of Cell Biology, Zunyi Medical University, Zunyi 563000, Guizhou, China.
| |
Collapse
|
37
|
The Chemokine Receptor CCR3 Is Potentially Involved in the Homing of Prostate Cancer Cells to Bone: Implication of Bone-Marrow Adipocytes. Int J Mol Sci 2021; 22:ijms22041994. [PMID: 33671469 PMCID: PMC7922974 DOI: 10.3390/ijms22041994] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022] Open
Abstract
Bone metastasis remains the most frequent and the deadliest complication of prostate cancer (PCa). Mechanisms leading to the homing of tumor cells to bone remain poorly characterized. Role of chemokines in providing navigational cues to migrating cancer cells bearing specific receptors is well established. Bone is an adipocyte-rich organ since 50 to 70% of the adult bone marrow (BM) volume comprise bone marrow adipocytes (BM-Ads), which are likely to produce chemokines within the bone microenvironment. Using in vitro migration assays, we demonstrated that soluble factors released by human primary BM-Ads are able to support the directed migration of PCa cells in a CCR3-dependent manner. In addition, we showed that CCL7, a chemokine previously involved in the CCR3-dependent migration of PCa cells outside of the prostate gland, is released by human BM-Ads. These effects are amplified by obesity and ageing, two clinical conditions known to promote aggressive and metastatic PCa. In human tumors, we found an enrichment of CCR3 in bone metastasis vs. primary tumors at mRNA levels using Oncomine microarray database. In addition, immunohistochemistry experiments demonstrated overexpression of CCR3 in bone versus visceral metastases. These results underline the potential importance of BM-Ads in the bone metastatic process and imply a CCR3/CCL7 axis whose pharmacological interest needs to be evaluated.
Collapse
|
38
|
Amengual-Peñafiel L, Córdova LA, Constanza Jara-Sepúlveda M, Brañes-Aroca M, Marchesani-Carrasco F, Cartes-Velásquez R. Osteoimmunology drives dental implant osseointegration: A new paradigm for implant dentistry. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:12-19. [PMID: 33737990 PMCID: PMC7946347 DOI: 10.1016/j.jdsr.2021.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/30/2020] [Accepted: 01/14/2021] [Indexed: 01/08/2023] Open
Abstract
There is a complex interaction between titanium dental implants, bone, and the immune system. Among them, specific immune cells, macrophages play a crucial role in the osseointegration dynamics. Infiltrating macrophages and resident macrophages (osteomacs) contribute to achieving an early pro-regenerative peri-implant environment. Also, multinucleated giant cells (MNGCs) in the bone-implant interface and their polarization ability, maintain a peri-implant immunological balance to preserve osseointegration integrity. However, dental implants can display cumulative levels of antigens (ions, nano and microparticles and bacterial antigens) at the implant–tissue interface activating an immune-inflammatory response. If the inflammation is not resolved or reactivated due to the stress signals and the immunogenicity of elements present, this could lead implants to aseptic loosening, infections, and subsequent bone loss. Therefore, to maintain osseointegration and prevent bone loss of implants, a better understanding of the osteoimmunology of the peri-implant environment would lead to the development of new therapeutic approaches. In this line, depicting osteoimmunological mechanisms, we discuss immunomodulatory strategies to improve and preserve a long-term functional integration between dental implants and the human body. Scientific field of dental science: implant dentistry.
Collapse
Affiliation(s)
| | - Luis A Córdova
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Chile.,Department of Oral and Maxillofacial Surgery, Clínica Las Condes, Santiago, Chile.,Department of Oral and Maxillofacial Surgery, Complejo Hospitalario San José. Craneofacial Translational Research Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
39
|
Rozenfeld PA, Crivaro AN, Ormazabal M, Mucci JM, Bondar C, Delpino MV. Unraveling the mystery of Gaucher bone density pathophysiology. Mol Genet Metab 2021; 132:76-85. [PMID: 32782168 DOI: 10.1016/j.ymgme.2020.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023]
Abstract
Gaucher disease (GD) is caused by pathogenic mutations in GBA1, the gene that encodes the lysosomal enzyme β-glucocerebrosidase. Despite the existence of a variety of specific treatments for GD, they cannot completely reverse bone complications. Many studies have evidenced the impairment in bone tissue of GD, and molecular mechanisms of bone density alterations in GD are being studied during the last years and different reports emphasized its efforts trying to unravel why and how bone tissue is affected. The cause of skeletal density affection in GD is a matter of debates between research groups. and there are two opposing hypotheses trying to explain reduced bone mineral density in GD: increased bone resorption versus impaired bone formation. In this review, we discuss the diverse mechanisms of bone alterations implicated in GD revealed until the present, along with a presentation of normal bone physiology and its regulation. With this information in mind, we discuss effectiveness of specific therapies, introduce possible adjunctive therapies and present a novel model for GD-associated bone density pathogenesis. Under the exposed evidence, we may conclude that both sides of the balance of remodeling process are altered. In GD the observed osteopenia/osteoporosis may be the result of contribution of both reduced bone formation and increased bone resorption.
Collapse
Affiliation(s)
- P A Rozenfeld
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina.
| | - A N Crivaro
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - M Ormazabal
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - J M Mucci
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - C Bondar
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - M V Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Av. Córdoba 2351, (C1120ABG), Buenos Aires, Argentina
| |
Collapse
|
40
|
Fan J, Lee CS, Kim S, Zhang X, Pi-Anfruns J, Guo M, Chen C, Rahnama M, Li J, Wu BM, Aghaloo TL, Lee M. Trb3 controls mesenchymal stem cell lineage fate and enhances bone regeneration by scaffold-mediated local gene delivery. Biomaterials 2021; 264:120445. [PMID: 33069136 PMCID: PMC7655726 DOI: 10.1016/j.biomaterials.2020.120445] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/26/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Aberrant lineage commitment of mesenchymal stem cells (MSCs) in marrow contributes to abnormal bone formation due to reduced osteogenic and increased adipogenic potency. While several major transcriptional factors associated with lineage differentiation have been found during the last few decades, the molecular switch for MSC fate determination and its role in skeletal regeneration remains largely unknown, limiting creation of effective therapeutic approaches. Tribbles homolog 3 (Trb3), a member of tribbles family pseudokinases, is known to exert diverse roles in cellular differentiation. Here, we investigated the reciprocal role of Trb3 in the regulation of osteogenic and adipogenic differentiation of MSCs in the context of bone formation, and examined the mechanisms by which Trb3 controls the adipo-osteogenic balance. Trb3 promoted osteoblastic commitment of MSCs at the expense of adipocyte differentiation. Mechanistically, Trb3 regulated cell-fate choice of MSCs through BMP/Smad and Wnt/β-catenin signals. Importantly, in vivo local delivery of Trb3 using a novel gelatin-conjugated caffeic acid-coated apatite/PLGA (GelCA-PLGA) scaffold stimulated robust bone regeneration and inhibited fat-filled cyst formation in rodent non-healing mandibular defect models. These findings demonstrate Trb3-based therapeutic strategies that favor osteoblastogenesis over adipogenesis for improved skeletal regeneration and future treatment of bone-loss disease. The distinctive approach implementing a scaffold-mediated local gene transfer may further broaden the translational use of targeting specific therapeutic gene related to lineage commitment for clinical bone treatment.
Collapse
Affiliation(s)
- Jiabing Fan
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Chung-Sung Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Soyon Kim
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Xiao Zhang
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Joan Pi-Anfruns
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Mian Guo
- Department of Neurosurgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Chen Chen
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Matthew Rahnama
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Jiong Li
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Benjamin M Wu
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Tara L Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Min Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
41
|
Li Z, Wang Y, Li S, Li Y. Exosomes Derived From M2 Macrophages Facilitate Osteogenesis and Reduce Adipogenesis of BMSCs. Front Endocrinol (Lausanne) 2021; 12:680328. [PMID: 34295306 PMCID: PMC8290518 DOI: 10.3389/fendo.2021.680328] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/11/2021] [Indexed: 01/20/2023] Open
Abstract
Bone regeneration is a complex process that requires the coordination of osteogenesis and osteoclastogenesis. The balance between osteogenesis and adipogenesis of bone marrow mesenchymal stem cells (BMSCs) plays a major role in the process of bone formation. Recently, intercellular communication between bone cells and surrounding cells has been gradually recognized, and macrophages on the surface of bone have been proven to regulate bone metabolism. However, the underlying mechanisms have not been fully elucidated. Recent studies have indicated that exosomes are vital messengers for cell-cell communication in various biological processes. In this experiment, we found that exosomes derived from M2 macrophages (M2D-Exos) could inhibit adipogenesis and promote osteogenesis of BMSCs. M2D-Exo intervention increased the expression of miR-690, IRS-1, and TAZ in BMSCs. Additionally, miR-690 knockdown in M2 macrophages with a miR-690 inhibitor partially counteracted the effect of M2D-Exos on BMSC differentiation and the upregulation of IRS-1 and TAZ expression. Taken together, the results of our study indicate that exosomes isolated from M2 macrophages could facilitate osteogenesis and reduce adipogenesis through the miR-690/IRS-1/TAZ axis and might be a therapeutic tool for bone loss diseases.
Collapse
Affiliation(s)
- Ziyi Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yafei Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shilun Li
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Yukun Li,
| |
Collapse
|
42
|
Al Saedi A, Myers DE, Stupka N, Duque G. 1,25(OH) 2D 3 ameliorates palmitate-induced lipotoxicity in human primary osteoblasts leading to improved viability and function. Bone 2020; 141:115672. [PMID: 33011427 DOI: 10.1016/j.bone.2020.115672] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Contributing to bone loss with aging is a progressive reduction in osteoblast number and function leading to decreased bone formation. In aging bone, mesenchymal stem cells decrease in number and their differentiation potential into osteoblasts is reduced. Instead, there is a shift towards adipogenic differentiation and increased lipid accumulation in the marrow of osteoporotic bones. Bone marrow adipocytes produce palmitic acid (PA), a saturated fatty acid, which is toxic to osteoblasts in vitro. Vitamin D (1,25(OH)2D3) stimulates osteoblastogenesis and has known anti-apoptotic effects on osteoblasts, as such it may protect human primary osteoblasts from PA-induced lipotoxicity. Here, the effects of PA (250 μM) or 1,25(OH)2D3 (10-8 M), alone or in combination, on osteoblast differentiation and mineralization, viability and autophagy were investigated. In PA-treated osteoblasts, 1,25(OH)2D3 ameliorated the decrease in the mRNA transcript abundance of representative palmitoylation (ZDHHC1, ZDHHC2 and ZDHHC12) and osteogenic (alkaline phosphatase and osteocalcin) genes. Collectively these gene regulate signaling pathways pertinent to osteoblastogenesis. In osteoblasts treated with PA and 1,25(OH)2D3, the capacity to undergo differentiation and mineralization was recovered and cell viability was increased when compared to osteoblasts treated with PA alone. 1,25(OH)2D3, irrespective of PA treatment, increased the expression of key osteogenic signaling proteins; specifically, SMAD1-3,5, Runx2 and β-catenin. 1,25(OH)2D3 also attenuated the high level of impaired autophagy induced by PA and potentiated a shift towards activated, functional autophagy and increased flux through autolysosomes. Altogether, these findings provide in vitro evidence regarding the potential of 1,25(OH)2D3 to protect osteoblasts from lipotoxicity by modulating autophagy and facilitating cell differentiation, which may enhance bone formation in an osteoporotic microenvironment with a high level of marrow adipose tissue.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Damian E Myers
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Nicole Stupka
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia.
| |
Collapse
|
43
|
Piao J, Park JS, Hwang DY, Son Y, Hong HS. Substance P blocks ovariectomy-induced bone loss by modulating inflammation and potentiating stem cell function. Aging (Albany NY) 2020; 12:20753-20777. [PMID: 33109775 PMCID: PMC7655156 DOI: 10.18632/aging.104008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022]
Abstract
Osteoporosis is an age-related disease caused by imbalanced bone remodeling resulting from excessive bone resorption. Osteoporosis is tightly linked with induction of chronic inflammation, which activates osteoclasts and impairs osteoprogenitor in bone marrow. T helper 17 (Th17) cells have been recently recognized as one of major inducers in the pathophysiology of bone loss by secreting IL-17. Thus, modulation of Th17 development is anticipated to affect the progression of osteoporosis. Substance P (SP) is reported to provide anti-inflammatory effects by controlling immune cell profile and also, promote restoration of damaged stem cell niches—the bone marrow—by repopulating BMSCs or potentiating its paracrine ability. This study aimed to explore the therapeutic effects of systemically injected SP on ovariectomy (OVX)-induced osteoporosis. Resultantly, SP injection obviously blocked OVX-induced impairment of bone microarchitecture and reduction of the mineral density. In osteoporotic condition, SP could ameliorate chronic inflammation by promoting Treg cell polarization and inhibiting the development of osteoclastogenic Th17 cells. Moreover, SP could rejuvenate stem cell and enable stem cells to repopulate and differentiate into osteoblast. Collectively, our study strongly suggests that SP treatment can block osteoporosis and furthermore, SP treatment provides therapeutic effect on chronic disease with inflammation and stem cell dysfunction.
Collapse
Affiliation(s)
- Jiyuan Piao
- Graduate School of Biotechnology and Department of Genetic Engineering, College of Life Science, Kyung Hee University, Seochun-dong, Kiheung-ku, Yong In, Republic of Korea
| | - Jeong Seop Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, Republic of Korea
| | - Dae Yeon Hwang
- Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Youngsook Son
- Graduate School of Biotechnology and Department of Genetic Engineering, College of Life Science, Kyung Hee University, Seochun-dong, Kiheung-ku, Yong In, Republic of Korea.,Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, Republic of Korea.,Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea.,East-West Medical Research Institute, Kyung Hee University Hospital, Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
44
|
Ren L, Chen X, Chen X, Li J, Cheng B, Xia J. Mitochondrial Dynamics: Fission and Fusion in Fate Determination of Mesenchymal Stem Cells. Front Cell Dev Biol 2020; 8:580070. [PMID: 33178694 PMCID: PMC7593605 DOI: 10.3389/fcell.2020.580070] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are pivotal to tissue homeostasis, repair, and regeneration due to their potential for self-renewal, multilineage differentiation, and immune modulation. Mitochondria are highly dynamic organelles that maintain their morphology via continuous fission and fusion, also known as mitochondrial dynamics. MSCs undergo specific mitochondrial dynamics during proliferation, migration, differentiation, apoptosis, or aging. Emerging evidence suggests that mitochondrial dynamics are key contributors to stem cell fate determination. The coordination of mitochondrial fission and fusion is crucial for cellular function and stress responses, while abnormal fission and/or fusion causes MSC dysfunction. This review focuses on the role of mitochondrial dynamics in MSC commitment under physiological and stress conditions. We highlight mechanistic insights into modulating mitochondrial dynamics and mitochondrial strategies for stem cell-based regenerative medicine. These findings shed light on the contribution of mitochondrial dynamics to MSC fate and MSC-based tissue repair.
Collapse
Affiliation(s)
- Lin Ren
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaodan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaobing Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jiayan Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
45
|
Park JS, Piao J, Park G, Yoo KS, Hong HS. Osteoporotic Conditions Influence the Activity of Adipose-Derived Stem Cells. Tissue Eng Regen Med 2020; 17:875-885. [PMID: 32946062 DOI: 10.1007/s13770-020-00289-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Estrogen deficiency decreases bone density and increases the risk of osteoporosis and fracture, thereby necessitating reconstruction of bone regeneration. As bone marrow mesenchymal stem cell (BMSCs) lose viability and differentiation potential under osteoporotic conditions, it is impossible to use autologous BMSCs for osteoporosis treatment. As an alternative, adipose-derived stem cells (ADSCs) may serve as the source of therapeutic cells. METHOD We evaluated the effects of osteoporosis on the functional characteristics of ADSCs. Osteoporosis was induced in ovariectomy (OVX) rat model, and the ADSCs from Sham and OVX groups were cultured and analyzed comparatively. RESULTS As a result, the viability was higher for the ADSCs from Sham group than those from OVX group. The analysis of the paracrine potential of ADSCs revealed the elevated levels of inflammatory and cellular senescence factors in the ADSCs from OVX group. The ADSCs from OVX group had much higher differentiation potential into adipocytes than those from the Sham group. Osteoporotic environment had no effect on the osteogenic potential of ADSCs. CONCLUSION Osteoporosis may reduce the activity and influence immune response of ADSCs by modulating paracrine action and adipogenic potential. These characteristics of ADSCs should be given consideration for therapeutic purpose.
Collapse
Affiliation(s)
- Jeong Seop Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jiyuan Piao
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Gabee Park
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Kyung Sang Yoo
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea. .,East-West Medical Research Institute, Kyung Hee University Hospital, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea. .,Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
46
|
Delgado D, Garate A, Sánchez P, Bilbao AM, García Del Caño G, Salles J, Sánchez M. Biological and structural effects after intraosseous infiltrations of age-dependent platelet-rich plasma: An in vivo study. J Orthop Res 2020; 38:1931-1941. [PMID: 32129513 DOI: 10.1002/jor.24646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/09/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
Platelet-rich plasma (PRP) is an increasingly widespread treatment for joint pathologies. Its characteristics and administration route are variables that may influence the clinical outcome. The aim of this in vivo study was to analyze in aged rats the biological and structure effects of intraosseous infiltrations of two different types of PRP obtained from young and old donors. During 6 months intraosseous infiltrations were performed and 4 days after the last infiltration, animals were sacrificed, and bones were extracted for micro-computed tomography (micro-CT) and histological analysis. Molecular composition of the PRP of aged donors presented higher levels of proinflammatory molecules. The histological studies showed a greater cellularity of bone marrow in groups treated with PRP. Concerning micro-CT analysis, young PRP showed a better femoral bone structure according to values of percentage of trabecular bone, trabecular space, trabecular density, and subchondral bone plate volume. In summary, this study has demonstrated that intraosseous infiltrations of PRP from young donors prevent from age-related bone degeneration. This treatment could stimulate the biological processes that maintain homeostasis and bone structure and avoid osteoarticular pathologies.
Collapse
Affiliation(s)
- Diego Delgado
- Advanced Biological Therapy Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Ane Garate
- Advanced Biological Therapy Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Ane Miren Bilbao
- Arthroscopic Surgery Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Gontzal García Del Caño
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Joan Salles
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Mikel Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain.,Arthroscopic Surgery Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| |
Collapse
|
47
|
Hu X, Liu X, Lv L, Zhang X, Liu Y, Zhang P, Zhou Y. UNC-5 netrin receptor B regulates adipogenesis of human adipose-derived stem cells through JNK pathway. J Oral Rehabil 2020; 47 Suppl 1:91-98. [PMID: 32762046 DOI: 10.1111/joor.13067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/09/2020] [Accepted: 07/29/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND There is a balance between adipogenic differentiation and osteogenic differentiation of human adipose-derived stem cells (hASCs). It is essential to explore the mechanism of hASCs lineage commitment. In our previous study, UNC-5 netrin receptor B (UNC5B) was identified as a positive regulator for osteogenesis. OBJECTIVE To further explore the potential roles and mechanisms of UNC5B during adipogenic differentiation and to provide a new method to regulate adipogenesis and osteogenesis of hASCs. METHODS Lentivirus containing UNC5B shRNA was used for UNC5B knockdown. Plasmids overexpressing UNC5B gene were used for UNC5B upregulation. To investigate the role of UNC5B in adipogenesis in vitro and in vivo, Oil Red O staining, RT-qPCR and transplantation into nude mice were performed. Western blotting analyses were performed to explore the mechanisms of UNC5B in adipogenic differentiation. RESULTS UNC5B expression in hASCs was significantly increased during adipogenic differentiation. Knockdown of UNC5B enhanced adipogenic differentiation in vitro. Both H&E staining and Oil Red O staining showed more adipose tissue-like constructs in UNC5B-knockdown cells in vivo. Upregulation of UNC5B significantly impaired adipogenic differentiation in vitro. Downregulation of UNC5B could increase phosphorylation of JNK in hASCs. JNK inhibitors reduced adipogenic differentiation of hASCs. CONCLUSION Our findings showed that UNC5B inhibited adipogenesis of hASCs through JNK signalling. As a whole, UNC5B regulates both adipogenesis and osteogenesis of hASCs.
Collapse
Affiliation(s)
- Xinyi Hu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Stomatology, Shenzhen University General Hospital, Xili University Town, Shenzhen, China
| | - Xuejiao Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
48
|
Crivaro A, Bondar C, Mucci JM, Ormazabal M, Feldman RA, Delpino MV, Rozenfeld PA. Gaucher disease-associated alterations in mesenchymal stem cells reduce osteogenesis and favour adipogenesis processes with concomitant increased osteoclastogenesis. Mol Genet Metab 2020; 130:274-282. [PMID: 32536424 DOI: 10.1016/j.ymgme.2020.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 01/18/2023]
Abstract
Gaucher disease (GD) is caused by pathogenic mutations in GBA1, the gene that encodes the lysosomal enzyme β-glucocerebrosidase. Until now, treatments for GD cannot completely reverse bone problems. The aim of this work was to evaluate the potential of MSCs from GD patients (GD MSCs) to differentiate towards the osteoblast (GD Ob) and adipocyte (GD Ad) lineages, and their role in osteoclastogenesis. We observed that GD Ob exhibited reduced mineralization, collagen deposition and alkaline phosphatase activity (ALP), as well as decreased gene expression of RUNX2, COLA1 and ALP. We also evaluated the process of osteoclastogenesis and observed that conditioned media from GD MSCs supernatants induced an increase in the number of osteoclasts. In this model, osteoclastogenesis was induced by RANKL and IL-1β. Furthermore, results showed that in GD MSCs there was a promotion in NLRP3 and PPAR-γ gene expression. Adipogenic differentiation revealed that GD Ad had an increase in PPAR-γ and a reduced RUNX2 gene expression, promoting adipocyte differentiation. In conclusion, our results show that GD MSCs exhibited deficient GD Ob differentiation and increased adipogenesis. In addition, we show that GD MSCs promoted increased osteoclastogenesis through RANKL and IL-1β. These changes in GD MSCs are likely to contribute to skeletal imbalance observed in GD patients.
Collapse
Affiliation(s)
- A Crivaro
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - C Bondar
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - J M Mucci
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - M Ormazabal
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - R A Feldman
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Hospital de Clínicas "José de San Martín", Facultad de Medicina, CONICET-Universidad de Buenos Aires, Paraguay 2155, (C1121ABG), Buenos Aires, Argentina
| | - M V Delpino
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - P A Rozenfeld
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina.
| |
Collapse
|
49
|
Drela K, Stanaszek L, Snioch K, Kuczynska Z, Wrobel M, Sarzynska S, Legosz P, Maldyk P, Lukomska B. Bone marrow-derived from the human femoral shaft as a new source of mesenchymal stem/stromal cells: an alternative cell material for banking and clinical transplantation. Stem Cell Res Ther 2020; 11:262. [PMID: 32605638 PMCID: PMC7328271 DOI: 10.1186/s13287-020-01697-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/16/2020] [Accepted: 04/28/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Mesenchymal stem/stromal cells (MSC) are commonly used in regenerative medicine. Among different tissues, iliac crest bone marrow (BM) represents the most exploited source, but its disadvantages are a painful aspiration procedure and low cell number. An alternative, readily available source of MSC for research would be beneficial for regenerative medicine development. This work aimed to propose a new source of bone marrow isolation in which the femoral shaft is taken during total hip arthroplasty (THA). METHODS In preliminary experiments, three different gradient methods for cell separation (Ficoll-Paque 1.078 g/mL, 17% sucrose gradient, BM seeding fraction) were tested with regard to the time of primary culture, initial cell number, the phenotype, and morphology of MSC. Then human bone marrow MSC derived from two different sources, iliac crest aspirate (BM-MSCi) or femoral shaft (BM-MSCt), were analyzed in terms of cell number and colony-forming ability followed by differentiation potential of MSC into osteo-, chondro-, and adipogenic lineages as well as mRNA expression of a variety of cytokines and growth factors. RESULTS Our studies showed that MSC isolated from the bone marrow of two different sources and cultured under appropriate conditions had similar characteristics and comparable propensity to differentiate into mesodermal cells. MSC derived from BM-MSCi or BM-MSCt expressed various growth factors. Interestingly, the expression of EGF, FGF, IGF, and PDGF-A was much higher in BM-MSCt than BM-MSCi. CONCLUSIONS The results of our study demonstrate that human MSC isolated from the BM of the femoral shaft have similar biological characteristics as MSC derived from the iliac crest, suggesting the femoral shaft as a possible alternative source for mesenchymal stem/stromal cells.
Collapse
Affiliation(s)
- Katarzyna Drela
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, Pawinskiego, 02-106, Warsaw, Poland
| | - Luiza Stanaszek
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, Pawinskiego, 02-106, Warsaw, Poland
| | - Konrad Snioch
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, Pawinskiego, 02-106, Warsaw, Poland
| | - Zuzanna Kuczynska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, Pawinskiego, 02-106, Warsaw, Poland
| | - Mikolaj Wrobel
- Ortopedika, Centre for Specialized Surgery, Warsaw, Poland
| | - Sylwia Sarzynska
- Department of Orthopedics and Traumatology, 1st Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Pawel Legosz
- Department of Orthopedics and Traumatology, 1st Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Pawel Maldyk
- Department of Orthopedics and Traumatology, 1st Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Barbara Lukomska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, Pawinskiego, 02-106, Warsaw, Poland.
| |
Collapse
|
50
|
Qi S, He J, Zheng H, Chen C, Jiang H, Lan S. Zinc Supplementation Increased Bone Mineral Density, Improves Bone Histomorphology, and Prevents Bone Loss in Diabetic Rat. Biol Trace Elem Res 2020; 194:493-501. [PMID: 31363990 DOI: 10.1007/s12011-019-01810-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022]
Abstract
Diabetic osteoporosis (DOP) is a complication of diabetes, with the characteristics of bone mineral density (BMD) reduction and bone structure destruction. Zinc was reported has a benefit effect on postmenopausal osteoporosise, it was also has hypoglycemic effect, whether zinc was beneficial on diabetes-induced osteoporosis has not been reported. So in the present study, we established a diabetic rat model by streptozotocin injection (60 mg/kg), and administered zinc sulfate by oral gavage to investigate the protective effects of zinc on DOP and the underline possible mechanism. Thirty six Sprague Dawley rats were divided into T1DM group (diabetic rats), control group (vehicle treatment), and T1DM-Zinc group (diabetic rats administered zinc sulfate 0.25 mg/kg by oral gavage). The bone histomorphological parameters, serum bone metabolism markers (including ALP, OPG, RUNX 2, and RANKL), BMD, and bone marrow adipocyte numbers were detected after eight weeks of zinc sulfate treatment. The results showed zinc sulfate administration (0.25 mg/kg/d) decreased blood glucose, increased the BMD, decreased serum ALP, and RANKL, increased serum OPG and RUNX 2 levels, as well as OPG/RANKL ratio of T1DM rats. Meanwhile, the bone histomorphological parameters, bone marrow adipocytes numbers were returned to be normal. The RUNX 2, and OPG mRNA expression levels in bone tissues of T1DM-Zinc group rats were increased after zinc sulfate treatment compared with the diabetic rats (P < 0.05). Those indicating that zinc sulfate can prevent DOP, the protective mechanism were mainly related to its hypoglycemic effect, bone marrow lipogenesis inhibition effect, OPG/RANKL ratio and RUNX 2 up-regulation effect.
Collapse
Affiliation(s)
- Shanshan Qi
- Vitamin D Research Institute, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| | - Jia He
- Vitamin D Research Institute, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| | - Hongxing Zheng
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China.
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Hai Jiang
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Shiqiang Lan
- Vitamin D Research Institute, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| |
Collapse
|