1
|
Barthelson K, Protzman RA, Snel MF, Hemsley K, Lardelli M. Multi-omics analyses of early-onset familial Alzheimer's disease and Sanfilippo syndrome zebrafish models reveal commonalities in disease mechanisms. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167651. [PMID: 39798820 DOI: 10.1016/j.bbadis.2024.167651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
Sanfilippo syndrome (mucopolysaccharidosis type III, MPSIII) causes childhood dementia, while Alzheimer's disease is the most common type of adult-onset dementia. There is no cure for either of these diseases, and therapeutic options are extremely limited. Increasing evidence suggests commonalities in the pathogenesis of these diseases. However, a direct molecular-level comparison of these diseases has never been performed. Here, we exploited the power of zebrafish reproduction (large families of siblings from single mating events raised together in consistent environments) to conduct sensitive, internally controlled, comparative transcriptome and proteome analyses of zebrafish models of early-onset familial Alzheimer's disease (EOfAD, psen1Q96_K97del/+) and MPSIIIB (nagluA603fs/A603fs) within single families. We examined larval zebrafish (7 days post fertilisation), representing early disease stages. We also examined the brains of 6-month-old zebrafish, which are approximately equivalent to young adults in humans. We identified substantially more differentially expressed genes and pathways in MPS III zebrafish than in EOfAD-like zebrafish. This is consistent with MPS III being a rapidly progressing and earlier onset form of dementia. Similar changes in expression were detected between the two disease models in gene sets representing extracellular matrix receptor interactions in larvae, and the ribosome and lysosome pathways in 6-month-old adult brains. Cell type-specific changes were detected in MPSIIIB brains at 6 months of age, likely reflecting significant disturbances of oligodendrocyte, neural stem cell, and inflammatory cell functions and/or numbers. Our 'omics analyses have illuminated similar disease pathways between EOfAD and MPS III indicating where efforts to find mutually effective therapeutic strategies can be targeted.
Collapse
Affiliation(s)
- Karissa Barthelson
- Childhood Dementia Research Group, College of Medicine & Public Health, Flinders Health and Medical Research Institute, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia; Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia.
| | - Rachael A Protzman
- Proteomics, Metabolomics and MS-Imaging Facility, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Marten F Snel
- Proteomics, Metabolomics and MS-Imaging Facility, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia; School of Physics, Chemistry and Earth Science, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| | - Kim Hemsley
- Childhood Dementia Research Group, College of Medicine & Public Health, Flinders Health and Medical Research Institute, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Delaby C, Alcolea D, Busto G, Gabelle A, Ayrignac X, Bennys K, Muiño E, Villatoro P, Fernández-Cadenas I, Pradeilles N, Bounasri SE, Torres S, Hirtz C, Zetterberg H, Lleó A, Fortea J, Lehmann S. Plasma Hepcidin as a potential informative biomarker of Alzheimer disease and vascular dementia. Alzheimers Res Ther 2025; 17:42. [PMID: 39948603 PMCID: PMC11823057 DOI: 10.1186/s13195-025-01696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/07/2025] [Indexed: 02/16/2025]
Abstract
BACKGROUND Blood-based assays are expected to be integrated into clinical routines across various contexts, including Alzheimer's disease (AD). Vascular dementia (VaD), which is the second most common cause leading to dementia after AD, could also significantly benefit from this advancement. However, no informative fluid biomarker has been identified for VaD. Given the disruption of iron homeostasis in both AD and VaD, this study aims to characterize the potential of the iron-related hormone Hepcidin as a biomarker for these two conditions. We will compare its added value to established AT(N) blood biomarkers. METHODS Blood biomarkers (amyloid-composite, p-Tau181, Neurofilament Light Chain [NfL] and Hepcidin) levels in blood were analyzed in two independent cohorts and compared between AD patients and non-AD individuals. Additionally, blood Hepcidin and NfL were evaluated in the contexts of VaD and CADASIL, with their relative diagnostic value assessed. RESULTS Blood Hepcidin and NfL do not significantly increase the AUC obtained with both p-Tau181 and amyloid composite in the context of AD. In contrast, AUC for VaD diagnosis is significantly higher when combining these two blood biomarkers compared to NfL alone. Hepcidin was not significantly modified in CADASIL patients compared to control subjects. CONCLUSION Blood Hepcidin and NfL have limited interest in the clinical context of AD but determination of these biomarkers shows to be highly informative for the diagnosis of VaD. This result could have important implications for diagnosis and implementation of clinical trials.
Collapse
Affiliation(s)
- Constance Delaby
- Université de Montpellier, INM INSERM LBPC-PPC, IRMB CHU de Montpellier, Montpellier, France.
- Department of Neurology, Sant Pau Memory Unit, Hospital de La Santa Creu I Sant Pau - IIB Sant Pau, Barcelona, Spain.
| | - Daniel Alcolea
- Department of Neurology, Sant Pau Memory Unit, Hospital de La Santa Creu I Sant Pau - IIB Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Germain Busto
- Department of Neurology, Université de Montpellier, Inserm INM NeuroPEPs Team, 34000, Montpellier, France
| | - Audrey Gabelle
- Department of Neurology, Université de Montpellier, Inserm INM NeuroPEPs Team, 34000, Montpellier, France
| | - Xavier Ayrignac
- Department of Neurology, Université de Montpellier, Inserm INM NeuroPEPs Team, 34000, Montpellier, France
| | - Karim Bennys
- Department of Neurology, Université de Montpellier, Inserm INM NeuroPEPs Team, 34000, Montpellier, France
| | - Elena Muiño
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Farmacogenómica y Genética Neurovascular, Sant Quintí 77-79, Barcelona, 08041, Spain
- Unidad de Epilepsia, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, Spain, 08025, Barcelona
| | - Paula Villatoro
- Farmacogenómica y Genética Neurovascular. Institut d'Investigació Biomèdica Sant Pau (IIB, SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain
| | - Israel Fernández-Cadenas
- Farmacogenómica y Genética Neurovascular. Institut d'Investigació Biomèdica Sant Pau (IIB, SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain
| | - Nicolas Pradeilles
- Université de Montpellier, INM INSERM LBPC-PPC, IRMB CHU de Montpellier, Montpellier, France
| | - Shaima El Bounasri
- Department of Neurology, Sant Pau Memory Unit, Hospital de La Santa Creu I Sant Pau - IIB Sant Pau, Barcelona, Spain
| | - Soraya Torres
- Department of Neurology, Sant Pau Memory Unit, Hospital de La Santa Creu I Sant Pau - IIB Sant Pau, Barcelona, Spain
| | - Christophe Hirtz
- Université de Montpellier, INM INSERM LBPC-PPC, IRMB CHU de Montpellier, Montpellier, France
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the , Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Dementia Research Institute at UCL, London, UK
- Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Alberto Lleó
- Department of Neurology, Sant Pau Memory Unit, Hospital de La Santa Creu I Sant Pau - IIB Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Juan Fortea
- Department of Neurology, Sant Pau Memory Unit, Hospital de La Santa Creu I Sant Pau - IIB Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Sylvain Lehmann
- Université de Montpellier, INM INSERM LBPC-PPC, IRMB CHU de Montpellier, Montpellier, France
| |
Collapse
|
3
|
Cao C, Li J, Cui W, Dai J, Guan Z, Wang D, Zhao X. Metalomics Revealed that Changes of Serum Elements were Associated with Oxidative Stress-Induced Inflammation of Cortex in a Mouse Model of Autism. Biol Trace Elem Res 2024:10.1007/s12011-024-04501-0. [PMID: 39733022 DOI: 10.1007/s12011-024-04501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder emerging during early childhood. However, the mechanism underlying the pathogenesis of ASD remains unclear. This study investigated the alterations of elements in serum and prefrontal cortex of BTBR T + tf/J (BTBR) mice and potential mechanisms. The male BTBR mice were used for experimental group and C57BL/6 J (C57) mice were used for control group (n = 15). After behavioral tests were monitored, serum and prefrontal cortex of mice were analyzed by ICP-MS. The results demonstrated that the level of copper (Cu) was increased, and the levels of calcium (Ca), magnesium (Mg), selenium (Se), cobalt (Co), iron (Fe) and zinc (Zn) were decreased in BTBR mice compared to C57 mice (p < 0.01). The levels of above differential elements in serum demonstrated positive correlations with those in prefrontal cortex. Meanwhile, differential elements in prefrontal cortex had correlations with the total distance traveled (open field test) and the number of marbles buried (marble burying test) in BTBR mice (p < 0.05 or p < 0.01). The abnormally changed elements in serum might cross blood-brain-barrier into the brain and lead to oxidative stress, causing inflammation. Furtherly, the levels of inflammation-related indicators including tumor necrosis factor-alpha (TNF-α), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6) and interleukin-1β (IL-1β) were increased in prefrontal cortex of BTBR mice (p < 0.01), which were consistent with the aforementioned results. Our study suggested that the abnormal elements in the serum of BTBR mice may cause oxidative stress and inflammation in prefrontal cortex, which might contribute to increase the understanding of ASD pathogenesis.
Collapse
Affiliation(s)
- Can Cao
- School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Jian Li
- School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Wenqi Cui
- School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Jiaohua Dai
- School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Zhiyu Guan
- School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Dan Wang
- School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China.
| | - Xiujuan Zhao
- School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
4
|
Wang D, Wang J, Yu Z, Yao R, Zhang J, Zhao X. Quercetin Alleviates Perimenopausal Depression Induced by Ovariectomy Combined with Chronic Unpredictable Mild Stress Through Regulating Serum Elements and Inhibiting Ferroptosis in Prefrontal Cortex of Rats. Biol Trace Elem Res 2024; 202:5596-5611. [PMID: 38388751 DOI: 10.1007/s12011-024-04106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
This study investigated the effects of quercetin on the alterations of serum elements in perimenopausal depression rat model induced by ovariectomy combined with chronic unpredictable mild stress (OVX-CUMS) and possible mechanisms. According to the results of the sucrose preference test, the rats were randomly assigned to four groups: sham, OVX-CUMS, OVX-CUMS + 17β-estradiol (17β-estradiol: 0.27 mg/kg.bw), and OVX-CUMS + Quercetin (Quercetin: 50 mg/kg.bw). At the end of experiment, serum and prefrontal cortex of rats were collected. The inductively coupled plasma mass spectrometry (ICP-MS) analysis showed that levels of calcium (Ca), magnesium (Mg), selenium (Se), cobalt (Co) and zinc (Zn) decreased, and levels of iron (Fe) and copper (Cu) increased in serum and prefrontal cortex of OVX-CUMS rats compared with sham group (p < 0.01). Meanwhile, the levels of the above elements in prefrontal cortex had correlation with behavioral characteristics in OVX-CUMS rats (p < 0.05 or p < 0.01). The abnormal elements in serum may cross blood-brain-barrier into the brain and induce oxidative stress, leading to ferroptosis. Furtherly, the expressions of ferroptosis-related protein including GPX4 and SLC7A11 were decreased in prefrontal cortex of OVX-CUMS rats (p < 0.01), which confirmed the above results. Quercetin treatment restored the above abnormal indicators (p < 0.05 or p < 0.01) induced by OVX-CUMS in rats. Our study suggested that quercetin regulated variation of elements in serum and prefrontal cortex, further inhibiting ferroptosis in prefrontal cortex through alleviating oxidative stress in OVX-CUMS rats.
Collapse
Affiliation(s)
- Dan Wang
- Department of Nutrition and Food Hygiene, Key Laboratory of Precision Nutrition and Health, Ministry of Education, School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Jing Wang
- Department of Nutrition and Food Hygiene, Key Laboratory of Precision Nutrition and Health, Ministry of Education, School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Ziran Yu
- Department of Nutrition and Food Hygiene, Key Laboratory of Precision Nutrition and Health, Ministry of Education, School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Ranqi Yao
- Department of Nutrition and Food Hygiene, Key Laboratory of Precision Nutrition and Health, Ministry of Education, School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Jingnan Zhang
- Department of Nutrition and Food Hygiene, Key Laboratory of Precision Nutrition and Health, Ministry of Education, School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Xiujuan Zhao
- Department of Nutrition and Food Hygiene, Key Laboratory of Precision Nutrition and Health, Ministry of Education, School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
5
|
Cui L, Zhou H, Hao Y, Yang X, Li Z, Gao Y, Zhang Z, Ren L, Ji L, Sun R, Wang Y, Wang X. Effect of ferric citrate on hippocampal iron accumulation and widespread molecular alterations associated with cognitive disorder in an ovariectomized mice model. CNS Neurosci Ther 2024; 30:e70018. [PMID: 39252474 PMCID: PMC11386256 DOI: 10.1111/cns.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
OBJECTIVE Nowadays, the prevalence of cognitive impairment in women has gradually increased, especially in postmenopausal women. There were few studies on the mechanistic effects of iron exposure on neurotoxicity in postmenopausal women. The aim of this study is to investigate the effect of iron accumulation on cognitive ability in ovariectomized mice and its possible mechanism and to provide a scientific basis for the prevention of cognitive dysfunction in postmenopausal women. METHODS Female C57BL/6N ovariectomized model mice were induced with ferric citrate (FAC). The mice were randomly divided into 5 groups: control, sham, ovariectomized (Ovx), Ovx + 50 mg/kg FAC (Ovx + l), and Ovx + 100 mg/kg FAC (Ovx + h). The impact of motor and cognitive function was verified by a series of behavioral tests. The levels of serum iron parameters, malondialdehyde, and superoxide dismutase were measured. The ultrastructure of mice hippocampal microglia was imaged by transmission electron microscopy. The differential expression of hippocampal proteins was analyzed by Tandem Mass Tag labeling. RESULTS Movement and cognitive function in Ovx + l/Ovx + h mice were significantly decreased compared to control and Sham mice. Then, iron exposure caused histopathological changes in the hippocampus of mice. In addition, proteomic analysis revealed that 29/27/41 proteins were differentially expressed in the hippocampus when compared by Ovx vs. Sham, Ovx + l vs. Ovx, as well as Ovx + h vs. Ovx + l groups, respectively. Moreover, transferrin receptor protein (TFR1) and divalent metal transporter 1 (DMT1) protein expression were significantly increased in the iron accumulation mice model with ovariectomy. CONCLUSION Iron exposure could cause histopathological damage in the hippocampus of ovariectomised mice and, by altering hippocampal proteomics, particularly the expression of hippocampal iron metabolism-related proteins, could further influence cognitive impairment in ovariectomized mice.
Collapse
Affiliation(s)
- Lingling Cui
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Huijun Zhou
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Yudan Hao
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Xiaoli Yang
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Zhiqian Li
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Yuting Gao
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Zhengya Zhang
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Lina Ren
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Linpu Ji
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Ruijie Sun
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Yibo Wang
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Xian Wang
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
6
|
Spence H, Mengoa-Fleming S, Sneddon AA, McNeil CJ, Waiter GD. Associations between sex, systemic iron and inflammatory status and subcortical brain iron. Eur J Neurosci 2024; 60:5069-5085. [PMID: 39113267 DOI: 10.1111/ejn.16467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Brain iron increases in several neurodegenerative diseases are associated with disease progression. However, the causes of increased brain iron remain unclear. This study investigates relationships between subcortical iron, systemic iron and inflammatory status. Brain magnetic resonance imaging (MRI) scans and blood plasma samples were collected from cognitively healthy females (n = 176, mean age = 61.4 ± 4.5 years, age range = 28-72 years) and males (n = 152, mean age = 62.0 ± 5.1 years, age range = 32-74 years). Regional brain iron was quantified using quantitative susceptibility mapping. To assess systemic iron, haematocrit, ferritin and soluble transferrin receptor were measured, and total body iron index was calculated. To assess systemic inflammation, C-reactive protein (CRP), neutrophil:lymphocyte ratio (NLR), macrophage colony-stimulating factor 1 (MCSF), interleukin 6 (IL6) and interleukin 1β (IL1β) were measured. We demonstrated that iron levels in the right hippocampus were higher in males compared with females, while iron in the right caudate was higher in females compared with males. There were no significant associations observed between subcortical iron levels and blood markers of iron and inflammatory status indicating that such blood measures are not markers of brain iron. These results suggest that brain iron may be regulated independently of blood iron and so directly targeting global iron change in the treatment of neurodegenerative disease may have differential impacts on blood and brain iron.
Collapse
Affiliation(s)
- Holly Spence
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Stephanie Mengoa-Fleming
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Christopher J McNeil
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
7
|
Peng J, Liu B, Tan W, Hu S, Li B, Zhou J, Xu G, Sun Y, Snetselaar LG, Wallace RB, Rong S, Bao W. Association between Body Iron Status and Cognitive Task Performance in a Nationally Representative Sample of Older Adults. Aging Dis 2024; 16:1141-1148. [PMID: 38739935 PMCID: PMC11964420 DOI: 10.14336/ad.2019.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Iron is an essential micronutrient that is necessary for proper cognitive function. However, the dose-response relationship between body iron status and cognitive function remains unclear. The objective of this study was to investigate the association between serum ferritin concentrations, an indicator of body iron status, and cognitive function in older adults. Based on the National Health and Nutrition Examination Survey (NHANES) 1999-2002 in the United States, nationally representative data was collected from 2,567 adults aged 60 years and older who had objectively measured serum ferritin levels and cognitive performance. High ferritin levels were defined as a serum ferritin level >200 ng/mL in women and >300 ng/mL in men. Low ferritin levels were defined as a serum ferritin level <30 ng/mL. The digit symbol substitution test (DSST) was employed to assess cognitive function. Multivariable logistic regression analyses with survey weights were performed after the DSST was dichotomized at the median score. The weighted prevalence of adults with normal, low, and high serum ferritin levels were 73.98%, 9.12%, and 16.91%, respectively. A U-shaped association between serum ferritin concentrations and cognitive task performance was observed. After adjusting for demographic, socioeconomic, lifestyle, and C-reactive protein factors, the odds ratio (95% confidence intervals) for lower cognitive performance was 1.39 (1.11, 1.74) in adults with high ferritin levels and 1.38 (0.86, 2.22) in adults with low ferritin levels, compared with those with normal ferritin levels. The association between serum ferritin levels and lower cognitive performance was stronger in adults aged 60 to 69 years old than those aged 70 years and older. In conclusion, in a nationally representative sample of older adults in the United States, a high serum ferritin level was significantly associated with worse cognitive task performance. Thus, the relationship between low serum ferritin concentrations and cognitive task performance warrants further investigation.
Collapse
Affiliation(s)
- Jianying Peng
- Academy of Nutrition and Health, Department of Nutrition and Food Hygiene, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.
| | - Buyun Liu
- Department of Nursing, The First Affiliated Hospital of USTC, Institute of Public Health Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Wei Tan
- Academy of Nutrition and Health, Department of Nutrition and Food Hygiene, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.
- Chief Physician/Professor, Wuhan University of Science and Technology Hospital, Wuhan, Hubei, China.
| | - Shouzhang Hu
- Academy of Nutrition and Health, Department of Nutrition and Food Hygiene, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.
- Medical Imaging Department, Wuhan University of Science and Technology Hospital, Wuhan, Hubei, China.
| | - Benchao Li
- Academy of Nutrition and Health, Department of Nutrition and Food Hygiene, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.
| | - Jin Zhou
- Shiyan Center for Disease Control and Prevention, Shiyan, China.
| | - Guifeng Xu
- Department of Pediatrics, The First Affiliated Hospital of USTC, Institute of Public Health Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Yangbo Sun
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa, IA 52242, USA.
| | - Linda G. Snetselaar
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa, IA 52242, USA.
| | - Robert B. Wallace
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa, IA 52242, USA.
| | - Shuang Rong
- Academy of Nutrition and Health, Department of Nutrition and Food Hygiene, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.
| | - Wei Bao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Institute of Public Health Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
8
|
Wang X, Wang B, Yang F, Shang K, Chen S, Zhang Y. Associations between plasma metal elements and risk of cognitive impairment among Chinese older adults. Front Aging Neurosci 2024; 16:1353286. [PMID: 38384934 PMCID: PMC10879289 DOI: 10.3389/fnagi.2024.1353286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Background The relationship between plasma metal elements and cognitive function is unclear, especially in extremely older individuals. This present study aimed to explore the association between plasma metal concentrations and the risk of cognitive impairment (CI) in Chinese extremely older adults. Methods Individuals aged ≥90 years with plasm metal concentration data from the fifth wave of the 2008 Chinese Longitudinal Healthy Longevity Survey were included. Plasma selenium (Se), manganese (Mn), magnesium (Mg), calcium (Ca), iron (Fe), copper (Cu), and zinc (Zn) concentrations were measured using inductively coupled plasma optical emission spectroscopy. Cognitive function was assessed by the Chinese version of the mini-mental state examination. Results The study enrolled 408 participants. Participants with CI had significantly lower plasma Se, Mn, and Fe levels and higher Ca levels than those with normal cognitive function (p < 0.05). Plasma Se, Mn, Ca, and Fe concentrations were significantly associated with CI risk in both single- and multiple-element logistic regression models. Additionally, the multiple-element model results showed that the adjusted odds ratios for CI were 0.042 (95% confidence interval 0.016-0.109), 0.106 (0.044-0.255), 7.629 (3.211-18.124) and 0.092 (0.036-0.233) for the highest quartiles compared to the lowest quartiles of Se, Mn, Ca, and Fe, respectively. Moreover, subgroup analyses by age, sex, and body mass index suggested a consistent significant correlation (p < 0.05). Conclusion Therefore, decreased plasma Se, Mn, and Fe and increased plasma Ca levels were associated with CI risk in Chinese older adults. These findings are of great significance for the development of programs to delay cognitive decline in the elderly.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Binbin Wang
- School of Life Science, Shanxi Normal University, Taiyuan, China
| | - Fuwen Yang
- Department of Neurology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaijian Shang
- Department of Emergency Medicine, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shaowei Chen
- Department of Hematology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yue Zhang
- School of Public Health, Department of Epidemiology, Shanxi Medical University, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry Education, Taiyuan, China
| |
Collapse
|
9
|
Davaanyam D, Lee H, Seol SI, Oh SA, Kim SW, Lee JK. HMGB1 induces hepcidin upregulation in astrocytes and causes an acute iron surge and subsequent ferroptosis in the postischemic brain. Exp Mol Med 2023; 55:2402-2416. [PMID: 37907744 PMCID: PMC10689467 DOI: 10.1038/s12276-023-01111-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 11/02/2023] Open
Abstract
Dysregulation of brain iron levels causes functional disturbances and damages neurons. Hepcidin (a peptide hormone) plays a principal role in regulating intracellular iron levels by modulating ferroportin (FPN, the only known iron exporter) through triggering its internalization and lysosomal degradation. We observed a significant and rapid iron surge in the cortices of ischemic hemispheres at 3 h after cerebral ischemia (middle cerebral artery occlusion, MCAO) that was maintained until 4 d post-MCAO. We showed upregulation of hepcidin expression in the brain as early as 3 h post-MCAO, mainly in astrocytes, and significant hepcidin accumulation in serum from 6 h post-MCAO, and these inductions were maintained for 1 day and 7 days, respectively. High mobility group box 1 (HMGB1), a prototypic danger-associated molecular pattern, accumulates markedly after transient MCAO and plays critical roles in damage aggravation via its proinflammatory effects. Here, we demonstrated that treatment with recombinant HMGB1 stimulated astrocytes to induce hepcidin expression in a TLR4- and CXCR4-dependent manner. Furthermore, hepcidin-mediated intracellular iron accumulation in neurons was confirmed by an experiment using N-methyl-D-aspartate (NMDA)-conditioned medium-treated primary astrocytes and fresh primary cortical neurons treated with hepcidin-containing astrocyte-conditioned medium. Moreover, HMGB1-mediated local hepcidin upregulation and subsequent local iron surge were found to cause ferroptosis in the postischemic brain, which was suppressed by the functional blocking of HMGB1 using intranasally administered HMGB1 A box or anti-HMGB1 antibody. These findings show that HMGB1 serves as a ferroptosis inducer by upregulating hepcidin in astrocytes and thus aggravates acute damage in the postischemic brain.
Collapse
Affiliation(s)
- Dashdulam Davaanyam
- Department of Anatomy, Inha University School of Medicine, Incheon, 22212, Korea
| | - Hahnbi Lee
- Department of Anatomy, Inha University School of Medicine, Incheon, 22212, Korea
| | - Song-I Seol
- Department of Anatomy, Inha University School of Medicine, Incheon, 22212, Korea
| | - Sang-A Oh
- Department of Anatomy, Inha University School of Medicine, Incheon, 22212, Korea
| | - Seung-Woo Kim
- Department of Biomedical Sciences, Inha University School of Medicine, Inchon, 22212, Korea
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Incheon, 22212, Korea.
| |
Collapse
|
10
|
MELEK İM, KUŞ B, KAPTAN Z, PETEKKAYA E. Correlation of metal ions with specific brain region volumes in neurodegenerative diseases. Turk J Med Sci 2023; 53:1465-1475. [PMID: 38812995 PMCID: PMC10763799 DOI: 10.55730/1300-0144.5714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/26/2023] [Accepted: 08/26/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim There are reports stating that deteriorations in metal homeostasis in neurodegenerative diseases promote abnormal protein accumulation. In this study, the serum metal levels in Alzheimer's disease (AD) and Parkinson's disease (PD) and its relationship with the cortical regions of the brain were investigated. Materials and methods The patients were divided into 3 groups consisting of the AD group, PD group, and healthy control group (n = 15 for each). The volumes of specific brain regions were measured over the participants' 3-dimensional magnetic resonance images, and they were compared across the groups. Copper, zinc, iron, and ferritin levels in the serums were determined, and their correlations with the brain region volumes were examined. Results The volumes of left hippocampus and right substantia nigra were lower in the AD and PD groups, while the volume of the left nucleus caudatus (CdN) and bilateral insula were lower in the AD group compared to the control group. Serum zinc levels were lower in the AD and PD groups, while the iron level was lower in the PD group in comparison to the control group. In addition, the serum ferritin level was higher in the AD group than in the control group. Serum zinc and copper levels in the AD group were positively correlated with the volumes of the right entorhinal cortex, thalamus, CdN, and insula. Serum zinc and copper levels in the PD group showed a negative correlation with the left nucleus accumbens (NAc), right putamen, and right insula volumes. While the serum ferritin level in the PD group displayed a positive correlation with the bilateral CdN, putamen, and NAc, as well as the right hippocampus and insula volumes, no area was detected that showed a correlation with the serum ferritin level in the AD group. Conclusion A relationship was determined between the serum metal levels in the AD and PD groups and certain brain cortical regions that showed volumetric changes, which can be important for the early diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- İsmet Murat MELEK
- Department of Neurology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay,
Turkiye
| | - Berna KUŞ
- Department of Biochemistry, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay,
Turkiye
| | - Zülal KAPTAN
- Department of Physiology, Faculty of Medicine, Beykent University, İstanbul,
Turkiye
| | - Emine PETEKKAYA
- Department of Anatomy, Faculty of Medicine, Kastamonu University, Kastamonu,
Turkiye
| |
Collapse
|
11
|
Mandal PK, Dwivedi D, Joon S, Goel A, Ahasan Z, Maroon JC, Singh P, Saxena R, Roy RG. Quantitation of Brain and Blood Glutathione and Iron in Healthy Age Groups Using Biophysical and In Vivo MR Spectroscopy: Potential Clinical Application. ACS Chem Neurosci 2023. [PMID: 37257017 DOI: 10.1021/acschemneuro.3c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
The antioxidant glutathione (GSH) and pro-oxidant iron levels play a balancing role in the modulation of oxidative stress (OS). There is a significant depletion of GSH in the left hippocampus (LH) in patients with Alzheimer's disease (AD) with concomitant elevation of iron level. However, the correlation of GSH and iron distribution patterns between the brain and the peripheral system (blood) is not yet known. We measured GSH and magnetic susceptibility (e.g., iron) in the LH region along with GSH in plasma and iron in serum across four age groups consisting of healthy volunteers (age range 18-72 y, n = 70). We report non-variability of the mean GSH in the plasma and LH region across mentioned age groups. The mean iron level in the LH region does not change, but the iron level in the serum in the 51-72 y age group increases non-significantly. Regression analysis of our data indicated that GSH and iron levels (both in blood and in brain) are not related to age. This research pave the way for the identification of a risk/susceptibility biomarker for AD and Parkinson's disease from the evaluation of GSH (in plasma) and iron (in serum) levels concomitantly.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, 122052 Haryana, India
- Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne 3052, VIC, Australia
| | - Divya Dwivedi
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, 122052 Haryana, India
| | - Shallu Joon
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, 122052 Haryana, India
| | - Anshika Goel
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, 122052 Haryana, India
| | - Zoheb Ahasan
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, 122052 Haryana, India
| | - Joseph C Maroon
- Department of Neurosurgery, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania 15260, United States
| | - Padam Singh
- Department of Biostatistics, Medanta Medicity, Gurgaon 122001, Haryana, India
| | - Renu Saxena
- Department of Laboratory Medicine, Medanta Medicity, Gurgaon 122001, Haryana, India
| | - Rimil Guha Roy
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, 122052 Haryana, India
| |
Collapse
|
12
|
Delaby C, Hirtz C, Lehmann S. Overview of the blood biomarkers in Alzheimer's disease: Promises and challenges. Rev Neurol (Paris) 2023; 179:161-172. [PMID: 36371265 DOI: 10.1016/j.neurol.2022.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
The increasing number of people with advanced Alzheimer's disease (AD) represents a significant psychological and financial cost to the world population. Accurate detection of the earliest phase of preclinical AD is of major importance for the success of preventive and therapeutic strategies (Cullen et al., 2021). Advances in analytical techniques have been essential for the development of sensitive, specific and reliable diagnostic tests for AD biomarkers in biological fluids (cerebrospinal fluid and blood). Blood biomarkers hold promising potential for early and minimally invasive detection of AD, but also for differential diagnosis of dementia and for monitoring the course of the disease. The aim of this review is to provide an overview of current blood biomarkers of AD, from tau proteins and amyloid peptides to biomarkers of neuronal degeneration and inflammation, reactive and metabolic factors. We thus discuss the informative value of currently candidate blood biomarkers and their potential to be integrated into clinical practice for the management of AD in the near future.
Collapse
Affiliation(s)
- C Delaby
- LBPC-PPC, Université Montpellier, CHU Montpellier, INM Inserm, Montpellier, France; Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Hirtz
- LBPC-PPC, Université Montpellier, CHU Montpellier, INM Inserm, Montpellier, France
| | - S Lehmann
- LBPC-PPC, Université Montpellier, CHU Montpellier, INM Inserm, Montpellier, France.
| |
Collapse
|
13
|
Li K, Li A, Mei Y, Zhao J, Zhou Q, Li Y, Yang M, Xu Q. Trace elements and Alzheimer dementia in population-based studies: A bibliometric and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120782. [PMID: 36464120 DOI: 10.1016/j.envpol.2022.120782] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/05/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Alterations in the concentrations of trace elements may play a vital role in Alzheimer dementia progression. However, previous research results are inconsistent, and there is still a lack of review on the relationship between all the studied-trace elements and AD from various perspectives of population-based studies. In this study, we systematically reviewed previous population-based studies and identified the altered trace elements in AD patients. We searched the Web of Science Core Collection, PubMed, and Scopus database, and ultimately included 73 articles. A bibliometric analysis was conducted to explore the evolution of the field from an epidemiological perspective. Bibliometric data such as trace elements, biological materials, detection methods, cognitive tests, co-occurrence and co-citation statistics are all analyzed and presented in a quantitative manner. The 73 included studies analyzed 39 trace elements in total. In a further meta-analysis, standardized mean differences (SMDs) of 13 elements were calculated to evaluate their altered in AD patients, including copper, iron, zinc, selenium, manganese, lead, aluminum, cadmium, chromium, arsenic, mercury, cobalt, and manganese. We identified four trace elements-copper (serum), iron (plasma), zinc (hair), and selenium (plasma)-altered in AD patients, with SMDs of 0.37 (95% confidence interval [CI]: 0.10, 0.65), -0.68 (95% CI: -1.34, -0.02), -0.35 (95% CI: -0.62, -0.08), and -0.61 (95% CI: -0.97, -0.25), respectively. Finally, we formed a database of various trace element levels in AD patients and healthy controls. Our study can help future researchers gain a comprehensive understanding of the advancements in the field, and our results provide comprehensive population-based data for future research.
Collapse
Affiliation(s)
- Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
14
|
Pal A, Cerchiaro G, Rani I, Ventriglia M, Rongioletti M, Longobardi A, Squitti R. Iron in Alzheimer's Disease: From Physiology to Disease Disabilities. Biomolecules 2022; 12:1248. [PMID: 36139084 PMCID: PMC9496246 DOI: 10.3390/biom12091248] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Abstract
Reactive oxygen species (ROS) play a key role in the neurodegeneration processes. Increased oxidative stress damages lipids, proteins, and nucleic acids in brain tissue, and it is tied to the loss of biometal homeostasis. For this reason, attention has been focused on transition metals involved in several biochemical reactions producing ROS. Even though a bulk of evidence has uncovered the role of metals in the generation of the toxic pathways at the base of Alzheimer's disease (AD), this matter has been sidelined by the advent of the Amyloid Cascade Hypothesis. However, the link between metals and AD has been investigated in the last two decades, focusing on their local accumulation in brain areas known to be critical for AD. Recent evidence revealed a relation between iron and AD, particularly in relation to its capacity to increase the risk of the disease through ferroptosis. In this review, we briefly summarize the major points characterizing the function of iron in our body and highlight why, even though it is essential for our life, we have to monitor its dysfunction, particularly if we want to control our risk of AD.
Collapse
Affiliation(s)
- Amit Pal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, West Bengal, India
| | - Giselle Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Avenida dos Estados, 5001, Bl.B, Santo André 09210-580, SP, Brazil
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar University (MMU), Mullana, Ambala 133203, Haryana, India
| | - Mariacarla Ventriglia
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, 00186 Rome, Italy
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, Fatebenefratelli Isola Tiberina, Gemelli Isola, 00186 Rome, Italy
| | - Antonio Longobardi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Rosanna Squitti
- Department of Laboratory Medicine, Research and Development Division, Fatebenefratelli Isola Tiberina, Gemelli Isola, 00186 Rome, Italy
| |
Collapse
|
15
|
Tran D, DiGiacomo P, Born DE, Georgiadis M, Zeineh M. Iron and Alzheimer's Disease: From Pathology to Imaging. Front Hum Neurosci 2022; 16:838692. [PMID: 35911597 PMCID: PMC9327617 DOI: 10.3389/fnhum.2022.838692] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a debilitating brain disorder that afflicts millions worldwide with no effective treatment. Currently, AD progression has primarily been characterized by abnormal accumulations of β-amyloid within plaques and phosphorylated tau within neurofibrillary tangles, giving rise to neurodegeneration due to synaptic and neuronal loss. While β-amyloid and tau deposition are required for clinical diagnosis of AD, presence of such abnormalities does not tell the complete story, and the actual mechanisms behind neurodegeneration in AD progression are still not well understood. Support for abnormal iron accumulation playing a role in AD pathogenesis includes its presence in the early stages of the disease, its interactions with β-amyloid and tau, and the important role it plays in AD related inflammation. In this review, we present the existing evidence of pathological iron accumulation in the human AD brain, as well as discuss the imaging tools and peripheral measures available to characterize iron accumulation and dysregulation in AD, which may help in developing iron-based biomarkers or therapeutic targets for the disease.
Collapse
Affiliation(s)
- Dean Tran
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Phillip DiGiacomo
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Donald E. Born
- Department of Pathology, Stanford School of Medicine, Stanford, CA, United States
| | - Marios Georgiadis
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Michael Zeineh
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
16
|
Sternberg Z, Podolsky R, Nir A, Yu J, Nir R, Halvorsen SW, Quinn JF, Kaye J, Kolb C. Elevated spermidine serum levels in mild cognitive impairment, a potential biomarker of progression to Alzheimer dementia, a pilot study. J Clin Neurosci 2022; 100:169-174. [PMID: 35487023 DOI: 10.1016/j.jocn.2022.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/07/2022] [Accepted: 04/22/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND/AIMS There is a close link between iron and polyamine biosynthesis and metabolism. In a recent study, we reported alterations in the serum levels of hepcidin and other iron-related proteins in Alzheimer's disease (AD) patients (Sternberg et al., 2017). Based on these findings, this pilot study compared serum levels of one of the polyamines, Spermidine, between AD, mild cognitive impairment (MCI), and control subjects, correlating the levels with the existing clinical and neuroimaging data. METHODS This cross-sectional study measured Spermidine levels in frozen serum samples of 43 AD patients, 12 MCI patients, and 21 age-matched controls, provided by the Oregon Alzheimer's Disease Center Bio-repository, using enzyme-linked immunosorbent assay. RESULTS MCI patients showed significantly higher mean Spermidine serum levels compared to controls (P = 0.01), with a non-significant trend for higher Spermidine serum levels in pure AD (P = 0.08) participants compared to controls. Spermidine serum levels correlated with the values of cognitive assessment tests including MMSE (r = -0.705, P = 0.003), CDR (r = 0.751, P = 0.002), and CDR-SOB (r = 0.704, P = 0.007), in "pure" AD subgroup, suggesting that higher Spermidine serum levels in MCI can be a potential biomarker of conversion to dementia in subjects with AD underlying pathology. Furthermore, Spermidine serum levels correlated with serum levels of the chief iron regulatory protein, hepcidin in AD participants with a more advanced disease stage, indicated by MMSE (strata of 8-19, P = 0.02), and CDR-SOB (strata of 6-12, P = 0.03). CONCLUSION Studies with larger cohort are warranted for defining the role of Spermidine in AD pathophysiology, and the utility of polyamines as biomarkers of progression of MCI to AD.
Collapse
Affiliation(s)
- Zohara Sternberg
- Department of Neurology, Stroke Center, Buffalo Medical Center, Buffalo, NY, USA.
| | - Rebecca Podolsky
- Department of Neurology, Stroke Center, Buffalo Medical Center, Buffalo, NY, USA
| | | | - Jihnhee Yu
- Department of Biostatistics, University of Buffalo, Buffalo, NY, USA
| | | | - Stanley W Halvorsen
- Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY, USA
| | - Joseph F Quinn
- Layton Aging & Alzheimer's Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Jeffrey Kaye
- Layton Aging & Alzheimer's Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Channa Kolb
- Department of Neurology, Stroke Center, Buffalo Medical Center, Buffalo, NY, USA
| |
Collapse
|
17
|
Sterling JK, Kam TI, Guttha S, Park H, Baumann B, Mehrabani-Tabari AA, Schultz H, Anderson B, Alnemri A, Chou SC, Troncoso JC, Dawson VL, Dawson TM, Dunaief JL. Interleukin-6 triggers toxic neuronal iron sequestration in response to pathological α-synuclein. Cell Rep 2022; 38:110358. [PMID: 35172141 PMCID: PMC8898592 DOI: 10.1016/j.celrep.2022.110358] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/30/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
α-synuclein (α-syn) aggregation and accumulation drive neurodegeneration in Parkinson's disease (PD). The substantia nigra of patients with PD contains excess iron, yet the underlying mechanism accounting for this iron accumulation is unclear. Here, we show that misfolded α-syn activates microglia, which release interleukin 6 (IL-6). IL-6, via its trans-signaling pathway, induces changes in the neuronal iron transcriptome that promote ferrous iron uptake and decrease cellular iron export via a pathway we term the cellular iron sequestration response, or CISR. The brains of patients with PD exhibit molecular signatures of the IL-6-mediated CISR. Genetic deletion of IL-6, or treatment with the iron chelator deferiprone, reduces pathological α-syn toxicity in a mouse model of sporadic PD. These data suggest that IL-6-induced CISR leads to toxic neuronal iron accumulation, contributing to synuclein-induced neurodegeneration.
Collapse
Affiliation(s)
- Jacob K Sterling
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Diana Helis Henry and Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
| | - Samyuktha Guttha
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bailey Baumann
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Amir A Mehrabani-Tabari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hannah Schultz
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Brandon Anderson
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ahab Alnemri
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shih-Ching Chou
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan C Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Diana Helis Henry and Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Diana Helis Henry and Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA.
| | - Joshua L Dunaief
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Gaburjáková M, Gaburjáková J, Krejčíová E, Kosnáč D, Kosnáčová H, Nagy Š, Polák Š, Sabo M, Trnka M, Kopáni M. Blocking effect of ferritin on the ryanodine receptor-isoform 2. Arch Biochem Biophys 2021; 712:109031. [PMID: 34534540 DOI: 10.1016/j.abb.2021.109031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Iron, an essential element for most living organism, participates in a wide variety of physiological processes. Disturbance in iron homeostasis has been associated with numerous pathologies, particularly in the heart and brain, which are the most susceptible organs. Under iron-overload conditions, the generation of reactive oxygen species leads to impairment in Ca2+ signaling, fundamentally implicated in cardiac and neuronal physiology. Since iron excess is accompanied by increased expression of iron-storage protein, ferritin, we examined whether ferritin has an effect on the ryanodine receptor - isoform 2 (RYR2), which is one of the major components of Ca2+ signaling. Using the method of planar lipid membranes, we show that ferritin induced an abrupt, permanent blockage of the RYR2 channel. The ferritin effect was strongly voltage dependent and competitively antagonized by cytosolic TEA+, an impermeant RYR2 blocker. Our results collectively indicate that monomeric ferritin highly likely blocks the RYR2 channel by a direct electrostatic interaction within the wider region of the channel permeation pathway.
Collapse
Affiliation(s)
- Marta Gaburjáková
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Gaburjáková
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eva Krejčíová
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Daniel Kosnáč
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Helena Kosnáčová
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Slovak Academy of Sciences, Department of Genetics, Cancer Research Institute, Biomedical Research Center, Bratislava, Slovakia
| | - Štefan Nagy
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Štefan Polák
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Michal Sabo
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Michal Trnka
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Martin Kopáni
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
19
|
Variability in Cardiometabolic and Inflammatory Parameters and Cognitive Decline. Am J Prev Med 2021; 61:e181-e189. [PMID: 34144817 DOI: 10.1016/j.amepre.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/22/2021] [Accepted: 04/09/2021] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The relationship between variability in cardiometabolic and inflammatory parameters and cognitive changes is unknown. This study investigates the association of visit-to-visit variability in BMI, mean arterial pressure, total cholesterol, triglycerides, HbA1c, high-sensitivity C-reactive protein, ferritin, and fibrinogen with cognitive decline. METHODS This population-based cohort study included 2,260 individuals (mean age=63.0 [SD=7.5] years) free of cognitive diseases who underwent ≥3 clinical measurements from 2004 to 2019. Variability was expressed as variability independent of the mean across visits. Participants were divided on the basis of quartiles of variability score, a scoring system generated to explore the composite effect of parameter variability (range=0-24), where 0 points were assigned for Quartile 1, 1 point was assigned for Quartile 2, 2 points were assigned for Quartile 3, and 3 points were assigned for Quartile 4, each for the variability of 8 parameters measured as variability independent of the mean. Linear mixed models evaluated the longitudinal associations with cognitive decline in memory and verbal fluency. All analyses were conducted in 2020-2021. RESULTS Higher BMI, mean arterial pressure, total cholesterol, HbA1c, and ferritin variability were linearly associated with cognitive decline irrespective of their mean values. In addition, participants in the highest quartile of variability score had a significantly worse cognitive decline rate in memory (-0.0224 points/year, 95% CI= -0.0319, -0.0129) and verbal fluency (-0.0088 points/year, 95% CI= -0.0168, -0.0008) than those in the lowest quartile. CONCLUSIONS A higher variability in cardiometabolic and inflammatory parameters was significantly associated with cognitive decline. Stabilizing these parameters may serve as a target to preserve cognitive functioning.
Collapse
|
20
|
Belaya I, Kucháriková N, Górová V, Kysenius K, Hare DJ, Crouch PJ, Malm T, Atalay M, White AR, Liddell JR, Kanninen KM. Regular Physical Exercise Modulates Iron Homeostasis in the 5xFAD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22168715. [PMID: 34445419 PMCID: PMC8395833 DOI: 10.3390/ijms22168715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of brain iron metabolism is one of the pathological features of aging and Alzheimer's disease (AD), a neurodegenerative disease characterized by progressive memory loss and cognitive impairment. While physical inactivity is one of the risk factors for AD and regular exercise improves cognitive function and reduces pathology associated with AD, the underlying mechanisms remain unclear. The purpose of the study is to explore the effect of regular physical exercise on modulation of iron homeostasis in the brain and periphery of the 5xFAD mouse model of AD. By using inductively coupled plasma mass spectrometry and a variety of biochemical techniques, we measured total iron content and level of proteins essential in iron homeostasis in the brain and skeletal muscles of sedentary and exercised mice. Long-term voluntary running induced redistribution of iron resulted in altered iron metabolism and trafficking in the brain and increased iron content in skeletal muscle. Exercise reduced levels of cortical hepcidin, a key regulator of iron homeostasis, coupled with interleukin-6 (IL-6) decrease in cortex and plasma. We propose that regular exercise induces a reduction of hepcidin in the brain, possibly via the IL-6/STAT3/JAK1 pathway. These findings indicate that regular exercise modulates iron homeostasis in both wild-type and AD mice.
Collapse
Affiliation(s)
- Irina Belaya
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Nina Kucháriková
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Veronika Górová
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Kai Kysenius
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (P.J.C.); (J.R.L.)
| | - Dominic J. Hare
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Atomic Medicine Initiative, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Peter J. Crouch
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (P.J.C.); (J.R.L.)
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Mustafa Atalay
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Anthony R. White
- Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Jeffrey R. Liddell
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (P.J.C.); (J.R.L.)
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
- Correspondence:
| |
Collapse
|
21
|
Guo HH, Xiong L, Pan JX, Lee D, Liu K, Ren X, Wang B, Yang X, Cui S, Mei L, Xiong WC. Hepcidin contributes to Swedish mutant APP-induced osteoclastogenesis and trabecular bone loss. Bone Res 2021; 9:31. [PMID: 34108442 PMCID: PMC8190093 DOI: 10.1038/s41413-021-00146-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023] Open
Abstract
Patients with Alzheimer's disease (AD) often have lower bone mass than healthy individuals. However, the mechanisms underlying this change remain elusive. Previously, we found that Tg2576 mice, an AD animal model that ubiquitously expresses Swedish mutant amyloid precursor protein (APPswe), shows osteoporotic changes, reduced bone formation, and increased bone resorption. To understand how bone deficits develop in Tg2576 mice, we used a multiplex antibody array to screen for serum proteins that are altered in Tg2576 mice and identified hepcidin, a master regulator of iron homeostasis. We further investigated hepcidin's function in bone homeostasis and found that hepcidin levels were increased not only in the serum but also in the liver, muscle, and osteoblast (OB) lineage cells in Tg2576 mice at both the mRNA and protein levels. We then generated mice selectively expressing hepcidin in hepatocytes or OB lineage cells, which showed trabecular bone loss and increased osteoclast (OC)-mediated bone resorption. Further cell studies suggested that hepcidin increased OC precursor proliferation and differentiation by downregulating ferroportin (FPN) expression and increasing intracellular iron levels. In OB lineage cells, APPswe enhanced hepcidin expression by inducing ER stress and increasing OC formation, in part through hepcidin. Together, these results suggest that increased hepcidin expression in hepatocytes and OB lineage cells in Tg2576 mice contributes to enhanced osteoclastogenesis and trabecular bone loss, identifying the hepcidin-FPN-iron axis as a potential therapeutic target to prevent AD-associated bone loss.
Collapse
Affiliation(s)
- Hao-Han Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kevin Liu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Bo Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Xiao Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shun Cui
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
22
|
Chatterjee P, Mohammadi M, Goozee K, Shah TM, Sohrabi HR, Dias CB, Shen K, Asih PR, Dave P, Pedrini S, Ashton NJ, Hye A, Taddei K, Lovejoy DB, Zetterberg H, Blennow K, Martins RN. Serum Hepcidin Levels in Cognitively Normal Older Adults with High Neocortical Amyloid-β Load. J Alzheimers Dis 2020; 76:291-301. [PMID: 32538848 PMCID: PMC7369053 DOI: 10.3233/jad-200162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND/OBJECTIVE Hepcidin, an iron-regulating hormone, suppresses the release of iron by binding to the iron exporter protein, ferroportin, resulting in intracellular iron accumulation. Given that iron dyshomeostasis has been observed in Alzheimer's disease (AD) together with elevated serum hepcidin levels, the current study examined whether elevated serum hepcidin levels are an early event in AD pathogenesis by measuring the hormone in cognitively normal older adults at risk of AD, based on high neocortical amyloid-β load (NAL). METHODS Serum hepcidin levels in cognitively normal participants (n = 100) aged between 65-90 years were measured using ELISA. To evaluate NAL, all participants underwent 18F-florbetaben positron emission tomography. A standard uptake value ratio (SUVR)<1.35 was classified as low NAL (n = 65) and ≥1.35 (n = 35) was classified as high NAL. RESULTS Serum hepcidin was significantly higher in participants with high NAL compared to those with low NAL before and after adjusting for covariates: age, gender, and APOEɛ4 carriage (p < 0.05). A receiver operating characteristic curve based on a logistic regression of the same covariates, the base model, distinguished high from low NAL (area under the curve, AUC = 0.766), but was outperformed when serum hepcidin was added to the base model (AUC = 0.794) and further improved with plasma Aβ42/40 ratio (AUC = 0.829). CONCLUSION The present findings indicate that serum hepcidin is increased in individuals at risk for AD and contribute to the body of evidence supporting iron dyshomeostasis as an early event of AD. Further, hepcidin may add value to a panel of markers that contribute toward identifying individuals at risk of AD; however, further validation studies are required.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Maryam Mohammadi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Kathryn Goozee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia.,Anglicare, Sydney, Castle Hill, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
| | - Tejal M Shah
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - Hamid R Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia.,Centre for Healthy Ageing, School of Psychology and Exercise Science, Murdoch University, South Street, Murdoch, WA, Australia
| | - Cintia B Dias
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Kaikai Shen
- Australian eHealth Research Centre, CSIRO, Floreat, WA, Australia
| | - Prita R Asih
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Preeti Dave
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,Anglicare, Sydney, Castle Hill, NSW, Australia
| | - Steve Pedrini
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Abdul Hye
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Kevin Taddei
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - David B Lovejoy
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom.,UK Dementia Research Institute at UCL, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ralph N Martins
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,The Cooperative Research Centre for Mental Health, Carlton South, VA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| |
Collapse
|
23
|
Fleszar MG, Wiśniewski J, Berdowska I, Zieliński B, Zboch M, Diakowska D, Gamian A, Krzystek-Korpacka M. Systemic hepcidin quantified with LC-MS/MS in dementia in association with disease pathology and severity and with structural changes in the brain. Peptides 2019; 122:170169. [PMID: 31563540 DOI: 10.1016/j.peptides.2019.170169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/03/2019] [Accepted: 09/25/2019] [Indexed: 02/03/2023]
Abstract
Hepcidin is a peptide hormone regulating iron metabolism, the dyshomeostasis of which has been implicated in dementia. Yet, data on hepcidin status in dementia are scanty, limited to Alzheimer's disease (AD) and inconsistent due to methodological problems with its determination using immunoassays and/or lack of homogeneity of evaluated groups. Hepcidin association with vascular dementia (VaD) remains unknown. We proposed a mass spectrometry method of hepcidin quantification in sera and aimed at determining hepcidin systemic status in patients with dementia of AD, VaD, or mixed (MD) pathology, with reference to the degree of cognitive loss and structural changes in the brain as well as at evaluating the diagnostic potential of hepcidin as a biomarker. We found that hepcidin concentrations were significantly elevated in VaD and insignificantly so in AD or MD and that they positively correlated with the Clinical Dementia Rating and inversely with the Mini Mental State Examination. Hepcidin tended to be more pronouncedly elevated in patients with advanced cortical atrophy and white matter lesions. It displayed a biphasic relationship with the Hachinski Ischemic Scale and a good accuracy as dementia but not differential marker. Taken together, our results demonstrated that dementia of vascular and not neurodegenerative pathology is associated with significant elevation of systemic hepcidin. Hepcidin elevation reflects the degree of cognitive loss as well as the severity of structural changes in the brain. If confirmed in a prospective study, hepcidin quantification may hold promise as a diagnostic marker; its accuracy as a differential marker of VaD is insufficient.
Collapse
Affiliation(s)
- Mariusz G Fleszar
- Department of Medical Biochemistry, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland; Łukasiewicz Research Network - PORT Polish Center For Technology Development, ul. Stablowicka 147, 54-066 Wrocław, Poland.
| | - Jerzy Wiśniewski
- Department of Medical Biochemistry, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Izabela Berdowska
- Department of Medical Biochemistry, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Bogdan Zieliński
- Department of Medical Biochemistry, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Marzena Zboch
- Alzheimer Center, Wroclaw Medical University, ul. Jana Pawla II 12, 59-330 Scinawa, Poland
| | - Dorota Diakowska
- Division of Nervous System Diseases, Wroclaw Medical University, ul. K. Bartla 5, 51-61 Wroclaw, Poland
| | - Andrzej Gamian
- Department of Medical Biochemistry, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland
| | | |
Collapse
|
24
|
Lavado LK, Zhang MH, Patel K, Khan S, Patel UK. Biometals as Potential Predictors of the Neurodegenerative Decline in Alzheimer's Disease. Cureus 2019; 11:e5573. [PMID: 31695992 PMCID: PMC6820671 DOI: 10.7759/cureus.5573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s Disease (AD) is a debilitating neurodegenerative disease that is diagnosed by gradual memory loss and certain cognitive impairments involving attention, reasoning, and language. Most of the research on Alzheimer’s disease focuses on the correlation of its neuropathological changes in the neurofibrillary tangles caused by hyper-phosphorylated tau protein and β-amyloid plaques with respect to cognitive impairment. Its pathology, however, remains incompletely understood. Currently, research has demonstrated that environmental factors such as biometals play a crucial role in exacerbating AD progression. The present review examines the role of metals in AD progression and how metal dyshomeostasis attributes to AD pathogenesis. It was found that certain metals possess both beneficial and harmful properties in terms of AD progression. Depending upon the concentration of the metal of interest, copper, zinc, iron, and selenium have general beneficial properties. However, when present in excess, they can lead to oxidative stress and hyperphosphorylation of tau protein, amongst other harmful effects, while calcium and magnesium were seen to have beneficial effects by regulating biometal uptake. In this review, we have provided evidential studies that focus on the involvement of certain metals in antioxidant pathways leading to the formation of reactive species indicative of neurodegeneration.
Collapse
Affiliation(s)
| | - Michelle H Zhang
- Psychological & Brain Sciences and Biology, Johns Hopkins University, Baltimore, USA
| | - Karan Patel
- Neuroscience, Johns Hopkins University, Baltimore, USA
| | - Sohim Khan
- Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Urvish K Patel
- Neurology and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
25
|
Qian ZM, Ke Y. Hepcidin and its therapeutic potential in neurodegenerative disorders. Med Res Rev 2019; 40:633-653. [PMID: 31471929 DOI: 10.1002/med.21631] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
Abnormally high brain iron, resulting from the disrupted expression or function of proteins involved in iron metabolism in the brain, is an initial cause of neuronal death in neuroferritinopathy and aceruloplasminemia, and also plays a causative role in at least some of the other neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Friedreich's ataxia. As such, iron is believed to be a novel target for pharmacological intervention in these disorders. Reducing iron toward normal levels or hampering the increases in iron associated with age in the brain is a promising therapeutic strategy for all iron-related neurodegenerative disorders. Hepcidin is a crucial regulator of iron homeostasis in the brain. Recent studies have suggested that upregulating brain hepcidin levels can significantly reduce brain iron content through the regulation of iron transport protein expression in the blood-brain barrier and in neurons and astrocytes. In this review, we focus on the discussion of the therapeutic potential of hepcidin in iron-associated neurodegenerative diseases and also provide a systematic overview of recent research progress on how misregulated brain iron metabolism is involved in the development of multiple neurodegenerative disorders.
Collapse
Affiliation(s)
- Zhong-Ming Qian
- Institute of Translational & Precision Medicine, Nantong University, Nantong, Jiangsu, China.,Laboratory of Neuropharmacology, School of Pharmacy & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
26
|
Zhu S, Wei X, Yang X, Huang Z, Chang Z, Xie F, Yang Q, Ding C, Xiang W, Yang H, Xia Y, Feng ZP, Sun HS, Yenari MA, Shi L, Mok VC, Wang Q. Plasma Lipoprotein-associated Phospholipase A2 and Superoxide Dismutase are Independent Predicators of Cognitive Impairment in Cerebral Small Vessel Disease Patients: Diagnosis and Assessment. Aging Dis 2019; 10:834-846. [PMID: 31440388 PMCID: PMC6675532 DOI: 10.14336/ad.2019.0304] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/04/2019] [Indexed: 01/06/2023] Open
Abstract
Lipoprotein-associated phospholipase A2 (Lp-PLA2) and superoxide dismutase (SOD) are linked to regulating vascular/neuro-inflammation and stroke. Using a retrospective design, we investigated whether circulating Lp-PLA2 and SOD in cerebral small vessel disease (CSVD) patients were associated with cognitive impairment. Eighty-seven CSVD patients were recruited. Plasma Lp-PLA2 and SOD were determined, and cognitive status was measured by the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). The severity of white matter hypoerintensities (WMHs) in CSVD patients was rated according to Fazekas scales, and Lp-PLA2/SOD levels and MMSE/MoCA were compared. Multiple linear regressions were used to evaluate the relationship between Lp-PLA2 and SOD and the cognitive impairment. Ordinal logistic regression and generalized linear models (OLRGLMs) were applied to confirm whether Lp-PLA2 and SOD are independent risk factors for cognitive impairment in CVSD. Lp-PLA2 and SOD with mild or severe cognitive impairment were lower than those with normal congnition. Lp-PLA2 and SOD in CSVD patients with severe WMHs were significantly lower than those with mild or moderate WMH lesions. We noted positive linear associations of Lp-PLA and SOD with cognitive impairment in CSVD, independent of LDL-C. OLRGLMs confirmed that Lp-PLA2 and SOD were independent risk factors of cognitive impairment in CSVD. Lp-PLA2 and SOD are independently associated with cognitive impairment and WMH lesion, and may be useful for the rapid evaluation of cognitive impairment in CSVD. Lp-PLA2/SOD are modifiable factors that may be considered as therapeutic targets for preventing cognitive impairment in CSVD.
Collapse
Affiliation(s)
| | | | | | | | | | - Fen Xie
- 1Department of Neurology and
| | | | - Changhai Ding
- 2Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangdong, China.,3Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Wei Xiang
- 4Department of Neurology, Guangzhou General Hospital of Guangzhou Military Command, Guangdong, China
| | - Hongjun Yang
- 4Department of Neurology, Guangzhou General Hospital of Guangzhou Military Command, Guangdong, China
| | - Ying Xia
- 5Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | | | - Hong-Shuo Sun
- 6Department of Physiology and.,7Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Midori A Yenari
- 8Department of Neurology, University of California, San Francisco & the San Francisco Veterans Affairs Medical Center, San Francisco, USA
| | - Lin Shi
- 9Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.,10BrainNow Research Institute, Shenzhen, China
| | - Vincent Ct Mok
- 11Gerald Choa Neuroscience Centre, Department of Medicine and Therapeutics, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
27
|
Clinical utility of serum hepcidin and iron profile measurements in Alzheimer's disease. J Neurol Sci 2019; 403:85-91. [PMID: 31233974 DOI: 10.1016/j.jns.2019.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 01/13/2023]
Abstract
OBJECTIVES There are no generally accepted serum biomarkers for Alzheimer's disease (AD). We investigated the clinical usefulness of measuring the serum hepcidin levels and iron profile in patients with AD. MATERIALS & METHODS The iron profile and hepcidin levels were measured in patients with AD (N = 70), minimal cognitive impairment (MCI, N = 39), and vascular dementia (VD, N = 25) and normal controls (N = 124). General cognitive tests were performed, and the relationships between cognition and hepcidin levels or the iron profile were assessed. RESULTS Patients with AD had higher hepcidin values than those with MCI and VD and normal controls (median value: 39.00 vs. 30.81, 32.52, and 5.51 ng/ml, respectively, P < 0.001), and these differences were found in both men and women. The total iron-binding capacity was significantly lower in the AD group than in any other groups (308.0 vs. 332.0, 329.0, and 330.5 μg/dl, respectively, P = 0.018), and serum iron levels were lower in the AD group than controls (79.1 vs. 107.2 μg/dl, P = 0.007). Hepcidin levels were statistically significantly correlated with the clinical dementia rating (CDR, P = 0.040) with a Pearson's correlation coefficient of 0.253, and the patients with AD with a CDR value >1 had significantly higher hepcidin values than those with a CDR value of 1 (65.26 vs. 23.49 ng/ml, P = 0.020). CONCLUSION The measurement of serum hepcidin levels and the iron profile in patients with early manifestations of cognitive functional loss might aid in the diagnosis of AD and the assessment of disease severity when combined with other diagnostic parameters.
Collapse
|
28
|
Ingrassia R, Garavaglia B, Memo M. DMT1 Expression and Iron Levels at the Crossroads Between Aging and Neurodegeneration. Front Neurosci 2019; 13:575. [PMID: 31231185 PMCID: PMC6560079 DOI: 10.3389/fnins.2019.00575] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Iron homeostasis is an essential prerequisite for metabolic and neurological functions throughout the healthy human life, with a dynamic interplay between intracellular and systemic iron metabolism. The development of different neurodegenerative diseases is associated with alterations of the intracellular transport of iron and heavy metals, principally mediated by Divalent Metal Transporter 1 (DMT1), responsible for Non-Transferrin Bound Iron transport (NTBI). In addition, DMT1 regulation and its compartmentalization in specific brain regions play important roles during aging. This review highlights the contribution of DMT1 to the physiological exchange and distribution of body iron and heavy metals during aging and neurodegenerative diseases. DMT1 also mediates the crosstalk between central nervous system and peripheral tissues, by systemic diffusion through the Blood Brain Barrier (BBB), with the involvement of peripheral iron homeostasis in association with inflammation. In conclusion, a survey about the role of DMT1 and iron will illustrate the complex panel of interrelationship with aging, neurodegeneration and neuroinflammation.
Collapse
Affiliation(s)
- Rosaria Ingrassia
- Section of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maurizio Memo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
29
|
Sternberg Z, Podolsky R, Nir A, Yu J, Nir R, Halvorsen SW, Chadha K, Quinn JF, Kaye J, Kolb C. Increased free prostate specific antigen serum levels in Alzheimer's disease, correlation with Cognitive Decline. J Neurol Sci 2019; 400:188-193. [PMID: 30981123 DOI: 10.1016/j.jns.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/07/2019] [Accepted: 04/03/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIMS Prostate specific antigen (PSA) is regulated by steroid hormones, such as testosterone, the serum levels of which are altered in patients with Alzheimer's disease (AD).This pilot study compared serum levels of the free (f) PSA between AD, mild cognitive impairment (MCI), and control subjects, and evaluated the relationship between fPSA serum levels and cognitive assessment tests and neuroimaging data. In addition, in a subgroup of AD patients, we correlated fPSA serum levels with the existing data on serum levels of amyloid-beta (Aβ), and iron-related proteins, including hepcidin and ferritin. METHODS Frozen serum samples from the Oregon Tissue Bank were used to measure serum levels of fPSA using enzyme-linked immunosorbent assay. RESULTS fPSA serum levels calculated as median ± SD were higher in AD males (663.6 ± 821.0 pg/ml) compared to control males (152.0 ± 207.0 pg/ml), p = 0.003. A similar Pattern emerged when comparing MCI males (310.7 ± 367.0 pg/ml) to control males (P = 0.02). Correlation studies showed a significant association between fPSA and CDR (r = 0.56, P = 0.006) and CDR-SOB (r = 0.54, P = 0.009) in AD males. CONCLUSION Additional studies in a larger cohort are required for determining whether fPSA can be used as biomarker of AD disease progression and whether it has the potential to identify male subjects at risk of AD dementia.
Collapse
Affiliation(s)
- Zohara Sternberg
- Department of Neurology, Stroke Center, Buffalo Medical Center, Buffalo, NY, USA.
| | - Rebecca Podolsky
- Department of Neurology, Stroke Center, Buffalo Medical Center, Buffalo, NY, USA
| | | | - Jihnhee Yu
- Department of Biostatistics, University of Buffalo, Buffalo, NY, USA
| | | | - Stanley W Halvorsen
- Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY, USA
| | - Kailash Chadha
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Joseph F Quinn
- Layton Aging & Alzheimer's Research Center, Oregon Health and Science University, Portland, OH, USA
| | - Jeffrey Kaye
- Layton Aging & Alzheimer's Research Center, Oregon Health and Science University, Portland, OH, USA
| | - Channa Kolb
- Department of Neurology, Stroke Center, Buffalo Medical Center, Buffalo, NY, USA
| |
Collapse
|
30
|
Kanamori Y, Murakami M, Sugiyama M, Hashimoto O, Matsui T, Funaba M. Hepcidin and IL-1β. VITAMINS AND HORMONES 2019; 110:143-156. [PMID: 30798809 DOI: 10.1016/bs.vh.2019.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepcidin expression is determined through transcriptional regulation by systemic iron status. However, acute or chronic inflammation also increases the expression of hepcidin, which is associated with the dysregulation of iron metabolism in pathological conditions. Interleukin (IL)-6 has been suggested to be a principal molecule to confer inflammation-related hepcidin transcription, which is mediated via signal transducer and activator of transcription (STAT)-binding site on the hepcidin promoter. Recently, it has been uncovered that another pro-inflammatory cytokine IL-1β stimulates hepcidin expression through the distinct mechanism underlying IL-6-mediated hepcidin transcription. In addition to IL-6 induction, IL-1β stimulates expression of CCAAT-enhancer-binding protein (C/EBP)δ, a transcription factor, leading to transcriptional activation of hepcidin via C/EBP-binding site on the hepcidin promoter. Thus, hepcidin transcription is stimulated through multiple elements in response to proinflammatory cytokines. Relationships between increased production of IL-1β and dysregulated iron metabolism have been suggested in various diseases, which may be linked to overproduction of hepcidin.
Collapse
Affiliation(s)
- Yohei Kanamori
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Osamu Hashimoto
- Laboratory of Experimental Animal Science, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Tohru Matsui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
31
|
Zhai C, Cui M, Cheng X, Ao X, Zhao T, Wu W, Shao Q, Ge D, Song H, Qi F, Ling Q, Ma M, Xu M, Jiao D. Vitamin B12 Levels in Methamphetamine Addicts. Front Behav Neurosci 2019; 12:320. [PMID: 30618670 PMCID: PMC6305445 DOI: 10.3389/fnbeh.2018.00320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
Objective: It has been established that reduced vitamin B12 serum levels are associated with cognitive decline and mental illness. The chronic use of methamphetamine (MA), which is a highly addictive drug, can induce cognitive impairment and psychopathological symptoms. There are few studies addressing the association of MA with vitamin B12 serum levels. This study examined whether the serum levels of B12 are associated with MA addiction. Methods: Serum vitamin B12, homocysteine (Hcy), glucose and triglyceride concentrations were measured in 123 MA addicts and 108 controls. In addition, data were collected on their age, marital status, level of education and Body Mass Index (BMI) for all participants. In the patient group, the data for each subject were collected using the Fagerstrom Test for Nicotine Dependence (FTND), the Alcohol Use Disorders Identification Test (AUDIT), and a drug use history, which included the age of onset, total duration of MA use, the number of relapses and addiction severity. Results: Our results showed that MA addicts had lower vitamin B12 levels (p < 0.05) than those of healthy controls, but Hcy levels were not significantly different between the two groups (p > 0.05). Serum B12 levels were negatively correlated with the number of relapses in the MA group. Furthermore, binary logistics regression analysis indicated that the B12 was an influencing factor contributing to addiction severity. Conclusion: The findings of this study suggest that some MA addicts might have vitamin B12 deficiency, and serum B12 levels may be involved in the prognosis of MA addiction.
Collapse
Affiliation(s)
| | - Ming Cui
- Anhui Province Veterans Hospital, Bengbu, China
| | - Xiaodong Cheng
- Compulsory Isolated Drug Rehabilitation Center, Bengbu, China
| | - Xiang Ao
- Anhui Province Veterans Hospital, Bengbu, China
| | | | - Wei Wu
- Anhui Province Veterans Hospital, Bengbu, China
| | - Qun Shao
- Anhui Province Veterans Hospital, Bengbu, China
| | - Dexue Ge
- Anhui Province Veterans Hospital, Bengbu, China
| | | | - Fangzhi Qi
- Compulsory Isolated Drug Rehabilitation Center, Bengbu, China
| | - Qiang Ling
- Compulsory Isolated Drug Rehabilitation Center, Bengbu, China
| | - Mengdi Ma
- Department of Psychiatry, Bengbu Medical College, Bengbu, China
| | - Mengyuan Xu
- Department of Psychiatry, Bengbu Medical College, Bengbu, China
| | - Dongliang Jiao
- Department of Psychiatry, Bengbu Medical College, Bengbu, China
| |
Collapse
|
32
|
Sfera A, Gradini R, Cummings M, Diaz E, Price AI, Osorio C. Rusty Microglia: Trainers of Innate Immunity in Alzheimer's Disease. Front Neurol 2018; 9:1062. [PMID: 30564191 PMCID: PMC6288235 DOI: 10.3389/fneur.2018.01062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease, the most common form of dementia, is marked by progressive cognitive and functional impairment believed to reflect synaptic and neuronal loss. Recent preclinical data suggests that lipopolysaccharide (LPS)-activated microglia may contribute to the elimination of viable neurons and synapses by promoting a neurotoxic astrocytic phenotype, defined as A1. The innate immune cells, including microglia and astrocytes, can either facilitate or inhibit neuroinflammation in response to peripherally applied inflammatory stimuli, such as LPS. Depending on previous antigen encounters, these cells can assume activated (trained) or silenced (tolerized) phenotypes, augmenting or lowering inflammation. Iron, reactive oxygen species (ROS), and LPS, the cell wall component of gram-negative bacteria, are microglial activators, but only the latter can trigger immune tolerization. In Alzheimer's disease, tolerization may be impaired as elevated LPS levels, reported in this condition, fail to lower neuroinflammation. Iron is closely linked to immunity as it plays a key role in immune cells proliferation and maturation, but it is also indispensable to pathogens and malignancies which compete for its capture. Danger signals, including LPS, induce intracellular iron sequestration in innate immune cells to withhold it from pathogens. However, excess cytosolic iron increases the risk of inflammasomes' activation, microglial training and neuroinflammation. Moreover, it was suggested that free iron can awaken the dormant central nervous system (CNS) LPS-shedding microbes, engendering prolonged neuroinflammation that may override immune tolerization, triggering autoimmunity. In this review, we focus on iron-related innate immune pathology in Alzheimer's disease and discuss potential immunotherapeutic agents for microglial de-escalation along with possible delivery vehicles for these compounds.
Collapse
Affiliation(s)
- Adonis Sfera
- Psychiatry, Loma Linda University, Loma Linda, CA, United States.,Patton State Hospital, San Bernardino, CA, United States
| | - Roberto Gradini
- Department of Pathology, La Sapienza University of Rome, Rome, Italy
| | | | - Eddie Diaz
- Patton State Hospital, San Bernardino, CA, United States
| | - Amy I Price
- Evidence Based Medicine, University of Oxford, Oxford, United Kingdom
| | - Carolina Osorio
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
33
|
JNK facilitates IL-1β-induced hepcidin transcription via JunB activation. Cytokine 2018; 111:295-302. [DOI: 10.1016/j.cyto.2018.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/16/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022]
|
34
|
Liu JL, Fan YG, Yang ZS, Wang ZY, Guo C. Iron and Alzheimer's Disease: From Pathogenesis to Therapeutic Implications. Front Neurosci 2018; 12:632. [PMID: 30250423 PMCID: PMC6139360 DOI: 10.3389/fnins.2018.00632] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022] Open
Abstract
As people age, iron deposits in different areas of the brain may impair normal cognitive function and behavior. Abnormal iron metabolism generates hydroxyl radicals through the Fenton reaction, triggers oxidative stress reactions, damages cell lipids, protein and DNA structure and function, and ultimately leads to cell death. There is an imbalance in iron homeostasis in Alzheimer's disease (AD). Excessive iron contributes to the deposition of β-amyloid and the formation of neurofibrillary tangles, which in turn, promotes the development of AD. Therefore, iron-targeted therapeutic strategies have become a new direction. Iron chelators, such as desferoxamine, deferiprone, deferasirox, and clioquinol, have received a great deal of attention and have obtained good results in scientific experiments and some clinical trials. Given the limitations and side effects of the long-term application of traditional iron chelators, alpha-lipoic acid and lactoferrin, as self-synthesized naturally small molecules, have shown very intriguing biological activities in blocking Aβ-aggregation, tauopathy and neuronal damage. Despite a lack of evidence for any clinical benefits, the conjecture that therapeutic chelation, with a special focus on iron ions, is a valuable approach for treating AD remains widespread.
Collapse
Affiliation(s)
- Jun-Lin Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yong-Gang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zheng-Sheng Yang
- Department of Dermatology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China.,Key Laboratory of Medical Cell Biology of Ministry of Education, Institute of Health Sciences, China Medical University, Shenyang, China
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
35
|
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93:1518-1557. [PMID: 29575574 PMCID: PMC6055827 DOI: 10.1111/brv.12407] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre-eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially 'external' causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress-induced iron dysregulation, and (ii) its ability to awaken dormant, non-replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of ChemistryThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- The Manchester Institute of BiotechnologyThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| | - Etheresia Pretorius
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| |
Collapse
|
36
|
Vela D. Hepcidin, an emerging and important player in brain iron homeostasis. J Transl Med 2018; 16:25. [PMID: 29415739 PMCID: PMC5803919 DOI: 10.1186/s12967-018-1399-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/31/2018] [Indexed: 02/08/2023] Open
Abstract
Hepcidin is emerging as a new important factor in brain iron homeostasis. Studies suggest that there are two sources of hepcidin in the brain; one is local and the other comes from the circulation. Little is known about the molecular mediators of local hepcidin expression, but inflammation and iron-load have been shown to induce hepcidin expression in the brain. The most important source of hepcidin in the brain are glial cells. Role of hepcidin in brain functions has been observed during neuronal iron-load and brain hemorrhage, where secretion of abundant hepcidin is related with the severity of brain damage. This damage can be reversed by blocking systemic and local hepcidin secretion. Studies have yet to unveil its role in other brain conditions, but the rationale exists, since these conditions are characterized by overexpression of the factors that stimulate brain hepcidin expression, such as inflammation, hypoxia and iron-overload.
Collapse
Affiliation(s)
- Driton Vela
- Department of Physiology, Faculty of Medicine, University of Prishtina, Martyr's Boulevard n.n., 10000, Prishtina, Kosova.
| |
Collapse
|
37
|
Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res 2017; 341:154-175. [PMID: 29289598 DOI: 10.1016/j.bbr.2017.12.036] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
Ferroptosis is a unique form of programmed death, characterised by cytosolic accumulation of iron, lipid hydroperoxides and their metabolites, and effected by the fatal peroxidation of polyunsaturated fatty acids in the plasma membrane. It is a major driver of cell death in neurodegenerative neurological diseases. Moreover, cascades underpinning ferroptosis could be active drivers of neuropathology in major psychiatric disorders. Oxidative and nitrosative stress can adversely affect mechanisms and proteins governing cellular iron homeostasis, such as the iron regulatory protein/iron response element system, and can ultimately be a source of abnormally high levels of iron and a source of lethal levels of lipid membrane peroxidation. Furthermore, neuroinflammation leads to the upregulation of divalent metal transporter1 on the surface of astrocytes, microglia and neurones, making them highly sensitive to iron overload in the presence of high levels of non-transferrin-bound iron, thereby affording such levels a dominant role in respect of the induction of iron-mediated neuropathology. Mechanisms governing systemic and cellular iron homeostasis, and the related roles of ferritin and mitochondria are detailed, as are mechanisms explaining the negative regulation of ferroptosis by glutathione, glutathione peroxidase 4, the cysteine/glutamate antiporter system, heat shock protein 27 and nuclear factor erythroid 2-related factor 2. The potential role of DJ-1 inactivation in the precipitation of ferroptosis and the assessment of lipid peroxidation are described. Finally, a rational approach to therapy is considered, with a discussion on the roles of coenzyme Q10, iron chelation therapy, in the form of deferiprone, deferoxamine (desferrioxamine) and deferasirox, and N-acetylcysteine.
Collapse
|