1
|
Li Y, Zeng L, Peng Y, Liu J, Li X, Yang H. Study on the active ingredients and mechanism of Huyang Yangkun Formula for treating premature ovarian insufficiency via chemical profiling, network pharmacology, and experimental validation. J Pharm Biomed Anal 2025; 263:116951. [PMID: 40344967 DOI: 10.1016/j.jpba.2025.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Huyang Yangkun Formula (HYF) is a Chinese herbal remedy used for premature ovarian insufficiency (POI), though its active ingredients and mechanisms are not well understood.This study aims to identify HYF's chemical components and investigate its mechanism in treating POI. Using UHPLC-QE Focus HRMS, chemical profiling and quantification were conducted. The therapeutic effects and target validation of HYF were examined using a POI rat model, human ovarian granulosa cells (COV434), and network pharmacology. Molecular docking was used to predict the affinity of active compounds for the key target TP53. 125 compounds were identified in HYF, including flavonoids, organic acids, saponins and phenylethanoid glycosides. By using network pharmacological analysis, a total of 123 potential targets for the HYF treatment of POI were identified. PIK3R1, AKT1, EGFR, MMP2 and TP53 were deduced to be core targets of HYF for treating POI, and the main pathway included HIF-1, PI3K-Akt and P53 signaling pathway. HYF enhances follicle development and ovarian function by reducing apoptosis in ovarian granulosa cells in VCD-POI rats. In vitro, HYF decreased VCD-induced COV434 cell death. qRT-PCR and WB experiments identified the P53-mitochondrial apoptosis signaling pathway as the main target, with molecular docking showing Hyperoside, Isochlorogenic acid B, and Baohuoside I having the highest binding affinity to TP53.The potential active components and mechanisms of HYF in relation to POI were investigated through chemical profiling, network pharmacology, and both in vitro and in vivo experimental validation.
Collapse
Affiliation(s)
- Yang Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Liuxi Zeng
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Bengxi, liaoning 117000, China
| | - Yin Peng
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jian Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiong Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Hongyan Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|
2
|
Huang TT, Chen XL, Chen DW, Yu B, Zheng P, Yan H, He J, Huang ZQ. Integrated meta-analysis, network pharmacology, computational biology, and in vitro experimental verification to reveal the anti-fatigue mechanism of Lycium barbarum. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-14. [PMID: 40207989 DOI: 10.1080/10286020.2025.2488316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
This study aims to elucidate Lycium barbarum (LB)'s anti-fatigue mechanisms. Meta-analysis confirmed LB's anti-fatigue capacity, while network pharmacology, molecular docking, and molecular dynamics simulations identified key targets (SRC, HSP90AA1, EGFR, PRKACA, MAPK1). Furthermore, validation experiments in C2C12 cells demonstrated that LB mitigates H2O2-induced reactive oxygen species (ROS) accumulation and restores cell viability. qPCR analysis further revealed that LB downregulates the mRNA expression of CAT, IL-6 and TNF-α, while modulating the expression of these target genes. In summary, our data confirm the anti-fatigue effects of LB and elucidate that LB exerts multi-component, multi-target, and multi-pathway mechanisms in combating fatigue.
Collapse
Affiliation(s)
- Teng-Teng Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Ling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Dai-Wen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi-Qing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Kong M, Li J, Jin R, Zhang Y, You J, Wang N, Tong N. Lycium barbarum polysaccharide alleviates H 2O 2-induced premature senescence by downregulating miRNA-34a-5p in ARPE-19 cells. Cell Stress Chaperones 2025; 30:130-142. [PMID: 40112947 PMCID: PMC12002617 DOI: 10.1016/j.cstres.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
The premature senescence of retinal pigment epithelium (RPE) plays a significant role in the development of age-related macular degeneration. This study aimed to investigate the potential protective effect of Lycium barbarum polysaccharide (LBP) against H2O2-induced premature senescence and to elucidate the underlying mechanisms. The ARPE-19 cell line was subjected to H2O2 exposure to create a model of premature senescence. The modulation of microRNA-34a-5p expression was accomplished using antagomir and agomir, as assessed by quantitative real-time polymerase chain reaction. The senescence model was successfully established by treating cells with 200 μM H2O2 for 2 hours daily over a span of three consecutive days. This oxidative stress resulted in a notable increase in the proportion of senescence-associated beta-galactosidase-positive cells, reaching 33.5%, without significant alterations in cell viability or apoptosis. In the ARPE-19 cells undergoing premature senescence, there was a marked increase in reactive oxygen species (ROS) production and malondialdehyde levels, coupled with a significant decrease in the activity of total superoxide dismutase, glutathione peroxidase, and catalase. Additionally, microRNA-34a-5p was found to be overexpressed in these cells. Treatment with LBP alleviated H2O2-induced premature senescence, diminished the overexpression of microRNA-34a-5p, and suppressed ROS production. Moreover, the incubation with ago-34a reversed the protective effect of LBP in ARPE-19 cells. In conclusion, the overexpression of microRNA-34a-5p contributes to the H2O2-induced premature senescence of ARPE-19 cells. LBP appears to mitigate this premature senescence, at least in part, by downregulating microRNA-34a-5p expression and reducing oxidative stress.
Collapse
Affiliation(s)
- Meng Kong
- School of Medicine, Qingdao University, 266001, Qingdao, China; Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China
| | - Jingwen Li
- School of Medicine, Qingdao University, 266001, Qingdao, China; Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China
| | - Rong Jin
- Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China; Department of Pediatrics, Affiliated Hospital of Qingdao University, 266001, Qingdao, China
| | - Yi Zhang
- School of Medicine, Qingdao University, 266001, Qingdao, China; Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China
| | - Jia You
- Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China; Department of Ophthalmology, Qingdao Central Hospital, 266001, Qingdao, China
| | - Nan Wang
- School of Medicine, Qingdao University, 266001, Qingdao, China; Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China
| | - Nianting Tong
- School of Medicine, Qingdao University, 266001, Qingdao, China; Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China.
| |
Collapse
|
4
|
Huang J, Wu H, Gao R, Wu L, Wang M, Chu Y, Shi Y, Xiang L, Yin Q. Integrated Multi-Omics Analysis Reveals Glycosylation Involving 2-O-β-D-Glucopyranosyl-L-Ascorbic Acid Biosynthesis in Lycium barbarum. Int J Mol Sci 2025; 26:1558. [PMID: 40004023 PMCID: PMC11855784 DOI: 10.3390/ijms26041558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
L-ascorbic acid (vitamin C, AA) is widely present in plants, but humans lack the ability to synthesize it independently. As a potent reducing agent, AA is susceptible to oxidation, making the enhancement of its stability crucial. 2-O-β-D-glucopyranosyl-L-ascorbic acid (AA-2βG) is a stable natural derivative of AA with glycosylation, initially discovered in the fruits of Lycium barbarum. Understanding the biosynthesis of AA-2βG is crucial for enhancing its production in L. barbarum. While the established biosynthesis pathway of AA constitutes the upstream of AA-2βG biosynthesis, the conclusive step of β-glycosylation remains unclear. We identified a L. barbarum cultivar by UPLC, ZN01, with a high content of AA-2βG, and compared its leaves, immature fruits, and mature fruits to a normal AA-2βG content L. barbarum cultivar for metabolomic and transcriptomic analysis. The RNA-seq and RT-qPCR analysis revealed that the expression levels of genes involved in the AA biosynthesis pathway did not consistently correlate with AA-2βG content, suggesting that the final glycosylation step may be a key determinant of AA-2βG accumulation. Subsequently, utilizing phylogenetic and co-expression analysis, we identified ten UDP-glycosyltransferases (UGTs) and three β-glucosidases (BGLUs) which may be involved in the crucial step of the conversion from AA to AA-2βG, and the UGTs' activities were predicted through molecular docking. Lastly, we speculated that the presence of the glycosylation process of AA might have a crucial role in maintaining AA homeostasis in L. barbarum, and deliberated on potential correlations between AA, carotenoids, and anthocyanins. Our integrated multi-omics analysis provides valuable insights into AA-2βG biosynthesis in L. barbarum, identifying thirteen candidate genes and highlighting the complex interplay between AA, carotenoids, and anthocyanins. These findings have implications for improving AA-2βG content in L. barbarum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Xiang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qinggang Yin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
5
|
Yue H, Tang Y, Li A, Zhang L, Niu Y, Zhang Y, Wang H, Luo J, Zhao Y, He S, Chen C, Chen R. Enzyme Repertoires and Genomic Insights into Lycium barbarum Pectin Polysaccharide Biosynthesis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 22:qzae079. [PMID: 39495135 PMCID: PMC12011363 DOI: 10.1093/gpbjnl/qzae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/08/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Lycium barbarum, a member of the Solanaceae family, is an important eudicot with applications in both food and medicine. L. barbarum pectin polysaccharides (LBPPs) are key bioactive compounds of L. barbarum, notable for being among the few polysaccharides with both biocompatibility and biomedical activity. Although studies have analyzed the functional properties of LBPPs, the mechanisms underlying their biosynthesis and transport by key enzymes remain poorly understood. In this study, we assembled a 2.18-Gb reference genome of L. barbarum, reconstructed the first complete biosynthesis pathway of LBPPs, and elucidated the sugar transport system. We also characterized the important genes responsible for backbone extension, sidechain synthesis, and modification of LBPPs. Furthermore, we characterized the long non-coding RNAs (lncRNAs) associated with polysaccharide metabolism. We identified a specific rhamnogalacturonan I (RG-I) rhamnosyltransferase, RRT3020, which enhances RG-I biosynthesis within LBPPs. These newly identified enzymes and pivotal genes endow L. barbarum with unique pectin biosynthesis capabilities, distinguishing it from other Solanaceae species. Our findings thus provide a foundation for evolutionary studies and molecular breeding to expand the diverse applications of L. barbarum.
Collapse
Affiliation(s)
- Haiyan Yue
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiheng Tang
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Aixuan Li
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Chinese University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Lili Zhang
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwei Niu
- CAS Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Zhang
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Wang
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Luo
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhao
- Beijing University of Chinese Medicine, Beijing 100029, China
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Shunmin He
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Runsheng Chen
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Wang L, Zhu X, Liu H, Sun B. Medicine and food homology substances: A review of bioactive ingredients, pharmacological effects and applications. Food Chem 2025; 463:141111. [PMID: 39260169 DOI: 10.1016/j.foodchem.2024.141111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
In recent years, the idea of medicine and food homology (MFH), which highlights the intimate relationship between food and medicine, has gained international recognition. Specifically, MFH substances have the ability to serve as both food and medicine. Many foods have been reported to have good nutritional and medical values, not only for satiety but also for nourishing the body and treating diseases pharmacologically. As modern scientific research has progressed, the concept of MFH has been emphasized and developed in a way that has never been seen before. Therefore, in this paper, we reviewed the development history of MFH substances, summarized some typical bioactive ingredients, and recognized pharmacological effects. In addition, we further discussed the application of MFH substances in the food field, with the goal of providing ideas and references for the research and development of MFH in the food industry as well as the progress of related industries.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Xuecheng Zhu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
7
|
Tu M, Cai G, Ma L, Yan L, Wang T, Shi Z, Wang C, Chen Z. Effects of Different Levels of Lycium barbarum Flavonoids on Growth Performance, Immunity, Intestinal Barrier and Antioxidant Capacity of Meat Ducks. Antioxidants (Basel) 2025; 14:67. [PMID: 39857401 PMCID: PMC11761579 DOI: 10.3390/antiox14010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background: In vitro findings on the biological functions of Lycium barbarum flavonoids (LBFs) as feed additives are limited. This study aimed to explore the effects of different concentrations of LBFs on the growth performance, immune function, intestinal barrier, and antioxidant capacity of meat ducks. A total of 240 one-day-old male meat ducks were randomly allocated to four groups, each receiving a basal diet supplemented with 0 (control), 250, 500, or 1000 mg/kg of LBFs for 42 d. Results: The results showed that dietary supplementation with 500 mg/kg of LBFs resulted in a significant increase in average daily feed intake, body weight, average daily gain, and feed conversion ratio. Dietary supplementation with 500 or 1000 mg/kg of LBFs resulted in significant decreases in serum levels of D-lactic acid and lipopolysaccharide. Dietary supplementation with 500 mg/kg LBFs significantly decreased diamine oxidase activity and enhanced the activities of catalase, total antioxidant capacity, and glutathione peroxidase in the jejunal mucosa, as well as the activity of total superoxide dismutase and the content of glutathione in the ileal mucosa, while significantly lowering the content of malondialdehyde in the ileal mucosa. Dietary supplementation with 500 mg/kg LBFs significantly up-regulated the mRNA expression of genes associated with intestinal barrier function and antioxidant capacity in the jejunal and ileal mucosa, as well as the protein expression of these antioxidant genes, and led to a significant reduction in the mRNA expression of pro-apoptotic and inflammatory-related genes. Conclusions: The addition of LBFs to the diet improved the growth performance, intestinal barrier function, immune response, and antioxidant capacity of the ducks, which may be closely associated with the activation of the Nrf2 signaling pathway and the inhibition of the NF-κB signaling pathway. The optimal dietary inclusion level of LBFs in ducks was 500 mg/kg.
Collapse
Affiliation(s)
- Minhang Tu
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Gentan Cai
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Longfei Ma
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Leyan Yan
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (Z.S.)
- Integrated Crop-Livestock Systems Key Laboratory, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Tian Wang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Zhendan Shi
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (Z.S.)
- Integrated Crop-Livestock Systems Key Laboratory, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Chao Wang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Zhe Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (Z.S.)
- Integrated Crop-Livestock Systems Key Laboratory, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| |
Collapse
|
8
|
Lin XM, Wang M, Xiao X, Shi YL, Zheng YS, Huang ZH, Cheng YT, Huang RT, Huang F, Li K, Sun J, Sun WY, Kurihara H, Li YF, Duan WJ, He RR. Wolfberry (Lycium barbarum) glycopeptide attenuates dopaminergic neurons loss by inhibiting lipid peroxidation in Parkinson's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156275. [PMID: 39644762 DOI: 10.1016/j.phymed.2024.156275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disorder characterized clinically by motor dysfunction due to gradual loss of dopaminergic neurons in the nigrostriatal system. Currently, medications such as levodopa preparations, offer only temporary symptomatic relief without preventing neuronal loss or halting disease progression. In traditional Chinese medicine (TCM), a particular type of wolfberry or goji berry, the fruit of Lycium barbarum L., has been historically regarded for its neuroprotective properties, potentially offering therapeutic benefits for PD. However, scientific validation of these effects remains limited. PURPOSE This study aims to investigate the neuroprotective effects of wolfberry glycopeptide (WGP) on PD progression in various animal models, and to elucidate the underlying mechanisms responsible for its therapeutic action. STUDY DESIGN Diverse canonical animal models, including 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, 6-hydroxydopamine (6-OHDA)-treated rats, and α-synuclein overexpressed hSNCAA53T mice, were used to evaluate WGP's anti-PD efficacy. Behavioral deficits and pathological damage to dopaminergic neurons were assessed to determine WGP's neuroprotective potential. METHODS After establishing the animal models and administering WGP treatment, PD-like behaviors were assessed using pole test, rotarod test and gait analysis. Dopaminergic neurons loss in the midbrain and striatum was detected by means of immunohistochemistry, immunofluorescence and Western blot analysis. Inflammatory markers in these brain regions were measured by ELISA. RESULTS WGP treatment significantly alleviated motor deficits as well as progressive dopaminergic neurons loss. Mechanistically, WGP exerted its neuroprotective effects by regulating iron homeostasis, specifically through the modulation of key proteins such as TFRC, FTH1, and FPN. This function contributed to reducing the accumulation of lipid peroxidation in nigrostriatal system, thereby mitigating neuroinflammation and neuronal degeneration. CONCLUSION Our findings underscore the innovative potential of WGP as a neuroprotective agent in PD, with a unique mechanism of action targeting iron homeostasis and lipid peroxidation-driven neurodegeneration. This study advances the understanding of TCM's therapeutic contributions to neurodegeneration and positions WGP as a strong candidate for further clinical development in PD treatment.
Collapse
Affiliation(s)
- Xiao-Min Lin
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Meng Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Xin Xiao
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Ya-Li Shi
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Ya-Si Zheng
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Zi-Han Huang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Ya-Ting Cheng
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Rui-Ting Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Feng Huang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Kun Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Jie Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China; School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
9
|
Wei H, Liu K, Zhang J, Guo K, Liu S, Xu C, Qiao H, Tan S. Young Goji Fruit Volatiles Regulate the Oviposition Behavior and Chemosensory Gene Expression of Gravid Female Neoceratitis asiatica. Int J Mol Sci 2024; 25:13249. [PMID: 39769014 PMCID: PMC11675652 DOI: 10.3390/ijms252413249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
The goji fruit fly, Neoceratitis asiatica, is a major pest on the well-known medicinal plant Lycium barbarum. Dissecting the molecular mechanisms of the oviposition selection of N. asiatica regarding the host plant will help to identify new strategies for pest fly control. However, the molecular mechanism of chemical communication between the goji fruit fly and the host goji remains unclear. Hence, our study found that young goji fruit volatiles induced the oviposition response of gravid female N. asiatica. After N. asiatica was exposed to young goji fruit volatiles, the expression of six chemosensory genes (NasiOBP56h3 and OBP99a1 in the antennae; OBP99a2, OBP99a3 and CSP2 in the legs; and OBP56a in the ovipositor) was significantly upregulated in different organs of female N. asiatica compared with the group without odor treatment according to transcriptome data. Further results of qPCR verification show that the expression levels of the six selected upregulated genes after the flies were exposed to host plant volatiles were mostly consistent with the results of transcriptome data. We concluded that six upregulated genes may be involved in the recognition of young goji fruit volatiles by gravid female N. asiatica. Our study preliminarily identifies young goji fruit volatiles as a key factor in the oviposition behavior of N. asiatica, which will facilitate further studies on the mechanisms of host oviposition selection in N. asiatica.
Collapse
Affiliation(s)
- Hongshuang Wei
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Kexin Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Jingyi Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Kun Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Sai Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Changqing Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Haili Qiao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (H.W.); (K.L.); (J.Z.); (K.G.); (S.L.); (C.X.)
| | - Shuqian Tan
- Key Lab of Integrated Pest Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Mercanti N, Macaluso M, Pieracci Y, Bertonelli L, Flamini G, Zinnai A. Influence of Microbial Treatments on Vine Growth and Must Quality: Preliminary Results. PLANTS (BASEL, SWITZERLAND) 2024; 13:3168. [PMID: 39599377 PMCID: PMC11597952 DOI: 10.3390/plants13223168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Microorganisms play a crucial role in addressing the challenges related to the increasing detrimental effects of intensive agriculture in vineyards by contributing to various aspects, from maintaining soil health and vine vitality to influencing fermentation and the overall wine features. Among microorganisms, mycorrhizal fungi are widely distributed in both natural and agricultural ecosystems, and their mutually beneficial relationship with most terrestrial plants provides valuable ecological benefits. Nowadays, the wine industry is increasingly moving toward the production of organic wines, highlighting the need for novel and healthier strategies that prioritize both the consumer well-being and the quality of the final wine product. Following our previous study in collaboration with the Bioma SA Company (Quartino, Switzerland), the investigation was continued by extending the organic practice to the cultivation. The present work, indeed, aimed to evaluate the influence of the treatment with mycorrhizal fungi on the metabolism of "Sangiovese" grapevines. In particular, the chemical parameters, including alcohol content, pH, acidity, phenolic composition, and sulfur dioxide, were assessed on the must, while the analysis of the volatile emission was conducted both on whole and pressed grapes, on must, as well as on the grape skins. To the best of our knowledge, this is the first study investigating the mycorrhizal fungi association effect on the quality of "Sangiovese" grapes and, further, its effect on the VOCs emission.
Collapse
Affiliation(s)
- Nicola Mercanti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (N.M.); (M.M.); (L.B.); (A.Z.)
| | - Monica Macaluso
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (N.M.); (M.M.); (L.B.); (A.Z.)
| | - Ylenia Pieracci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (N.M.); (M.M.); (L.B.); (A.Z.)
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56124 Pisa, Italy;
| | - Leonardo Bertonelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (N.M.); (M.M.); (L.B.); (A.Z.)
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56124 Pisa, Italy;
- Interdepartmental Research Centre “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Angela Zinnai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (N.M.); (M.M.); (L.B.); (A.Z.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
11
|
Shao F, Sun X, Yu Q, Wang K, Sun C, Wang Q, Cao X, Zhang L, Fu P, Yang X, Yu J, Xu X, Deng W. Lycium barbarum oligosaccharide-derived carbon quantum dots inhibit glial scar formation while promoting neuronal differentiation of neural stem cells. Int J Biol Macromol 2024; 282:137474. [PMID: 39528198 DOI: 10.1016/j.ijbiomac.2024.137474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Overexpression of glial fibrillary acidic protein (GFAP) in activated astrocytes following spinal cord injury is closely associated with glial scar formation, which harms axonal regrowth. In this study, we prepared ultrasmall cationic carbon quantum dots (CQDs) via one-step hydrothermal carbonization. Lycium barbarum oligosaccharides were used as the carbon source for the first time, and polyetherimide (PEI) and ethylenediamine (ED) were used as cationic reagents. Interestingly, the resultant CQDs show the bioactivity of specifically inhibiting GFAP protein expression, while promoting neuronal marker expression in neural stem cells (NSCs). Furthermore, CQDs together with NSCs can remarkably improve the motor activity of animals after implantation into the transection lesion of the rat spinal cord. Histological analysis confirmed that CQDs can enhance neuronal differentiation of NSCs while inhibiting glial scar formation in vivo. Altogether, this study represents the first report of producing CQDs from oligosaccharides and investigating their impact on NSCs differentiation, thus providing a paradigm for exploring the bioactivity of quantum dots.
Collapse
Affiliation(s)
- Fengxia Shao
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China
| | - Xuan Sun
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Kaili Wang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China
| | - Congyong Sun
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Linzhi Zhang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Peng Fu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Xiufen Yang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China.
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212001, PR China; Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China.
| |
Collapse
|
12
|
Yang H, Ding L, Xu B, Zhang Z, Dai W, He T, Liu L, Du X, Fu X. Lycium barbarum polysaccharide alleviates ferroptosis in Sertoli cells through NRF2/SLC7A11/GPX4 pathway and ameliorates DEHP-induced male reproductive damage in mice. Int J Biol Macromol 2024; 282:137241. [PMID: 39515713 DOI: 10.1016/j.ijbiomac.2024.137241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/24/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Di-(2-ethylhexyl)phthalate (DEHP) is a common plasticizer that has been shown to significantly negatively affect male reproductive health. On the other hand, Lycium barbarum polysaccharide (LBP) has been shown to improve reproductive function. Therefore, we hypothesized that LBP may ameliorate DEHP-induced male reproductive damage. Herein, we found that LBP could alleviate DEHP-induced testicular damage and sperm abnormalities. Furthermore, histomorphological analysis of mice testis revealed that LBP primarily ameliorated the DEHP-induced male reproductive damage by targeting Sertoli cells. Moreover, the detection of the function-related genes of Sertoli cells confirmed this finding. The serum of mice in the Control, DEHP, and DEHP+LBP groups was analyzed using non-targeted metabolomics to further elucidate the mechanism of action of LBP in improving DEHP-induced male reproductive damage. According to the results, the differential metabolites were mainly enriched in the glutamate metabolism pathway, implying that LBP may alleviate the ferroptosis-related DEHP-induced testicular injury. Related ferroptosis markers were also found in mice testis. These findings collectively suggest that LBP may ameliorate DEHP-induced testicular injury via alleviating ferroptosis in Sertoli cells. To clarify the specific mechanism, we constructed a cell model in vitro by treating TM4 cells (the Sertoli cell line) with LBP and MEHP (the in vivo DEHP metabolite). Our findings revealed that LBP can improve the function of DEHP-affected Sertoli cells. Furthermore, the analysis of lipid peroxidation, Fe2+ content, and ferroptosis-related protein expressions demonstrated that LBP could ameliorate MEHP-induced ferroptosis in TM4 cells. To clarify the specific mechanism, glutamate metabolism-related proteins involved in the ferroptosis pathway were detected. According to the results, there were significant changes in the expression of NRF2, SLC7A11 and GPX4 proteins, which are involved in the ferroptosis glutamate metabolism pathway. Furthermore, supplementation of NRF2, SLC7A11, and GPX4 inhibitors (ML385, Erastin, and RSL3, respectively) blocked the therapeutic effect of LBP in alleviating MEHP-induced ferroptosis in TM4 cells, implying that LBP could also ameliorate MEHP-induced ferroptosis via the NRF2/SLC7A11/GPX4 pathway. In summary, these findings show that LBP can alleviate DEHP/MEHP-induced ferroptosis through the NRF2/SLC7A11/GPX4 pathway, ameliorating Sertoli cell dysfunction and improving the DEHP-induced male reproductive damage. Therefore, the clinical administration of LBP could be an effective strategy for preventing DEHP-induced male reproductive injury.
Collapse
Affiliation(s)
- Hong Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Liyang Ding
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Zhen Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Tiantian He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xing Du
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
13
|
Sun Z, Liu J, Chen Z, So K, Hu Y, Chiu K. Lycium barbarum Extract Enhanced Neuroplasticity and Functional Recovery in 5xFAD Mice via Modulating Microglial Status of the Central Nervous System. CNS Neurosci Ther 2024; 30:e70123. [PMID: 39564756 PMCID: PMC11576918 DOI: 10.1111/cns.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) is the most prevalent neurodegenerative disease with limited treatment options. This study aimed to investigate the effects of Lycium barbarum extract (LBE), a Chinese herb, on the central nervous system (CNS)-including the retina, brain, and spinal cord-in 5xFAD transgenic mice after the onset of AD. METHODS Starting at 6 months of age, 5xFAD mice received daily intragastric gavage of LBE (2 g/kg) for 2 months. At 8 months, behavioral tests were conducted to assess cognition, motor function, and visual function. These included the Morris water maze, novel object recognition, and Y-maze tests for cognition; the beam walking balance and clasping tests for motor function; and electroretinogram (ERG) for visual function. Immunohistochemistry, western blotting, and ELISA were used to evaluate Aβ deposition, microglial morphology, neuroinflammation, and neuroprotective signaling pathways. Primary microglia and the IMG cell line were used to study LBE's effects on Aβ uptake and degradation in vitro. RESULTS After 2 months of LBE treatment, the decline in cognition, motor, and visual functions in 5xFAD mice was significantly slowed. Microglia in the brain, spinal cord, and retina exhibited a neuroprotective state, with reduced Aβ deposition, decreased inflammatory cytokine levels (e.g., TNF-α, IL-1β, IL-6), increased Arg-1/iNOS ratio, and enhanced phagocytic capacity. LBE also promoted Aβ uptake and degradation in primary microglia and the IMG cell line. Neuroprotective signals such as p-Akt, p-Erk1/2, and p-CREB were elevated. Additionally, LBE treatment restored synaptic protein expression and enhanced neuroplasticity. CONCLUSION The findings suggest that LBE treatment can enhance neuroplasticity, reduce systemic inflammation, and improve phagocyte clearance of Aβ deposition via inducing a neuroprotective microglial phenotype throughout CNS. As an upper-class Chinese medicine, appropriate intake of LBE may serve as a beneficial antiaging strategy for AD.
Collapse
Affiliation(s)
- Zhongqing Sun
- Department of Neurology, Xijing HospitalFourth Military Medical UniversityXi'anChina
- Innovation Research Institute, Xijing HospitalFourth Military Medical UniversityXi'anChina
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Kai Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
| | - Jinfeng Liu
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
| | - Zihang Chen
- Department of PsychologyThe University of Hong KongHong KongSARChina
- Department of Sports Medicine, the First Affiliated HospitalJinan UniversityChina
| | - Kwok‐Fai So
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
- State Key Lab of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
- Key Laboratory of CNS Regeneration, Guangdong‐Hongkong‐Macau CNS Regeneration Institute, Ministry of EducationJinan UniversityGuangzhouChina
| | - Yong Hu
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Kai Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
- Orthopedics CenterThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Kin Chiu
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
- Department of PsychologyThe University of Hong KongHong KongSARChina
- State Key Lab of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
| |
Collapse
|
14
|
Wang J, Li S, Zhang H, Zhang X. A review of Lycium barbarum polysaccharides: Extraction, purification, structural-property relationships, and bioactive molecular mechanisms. Carbohydr Res 2024; 544:109230. [PMID: 39137472 DOI: 10.1016/j.carres.2024.109230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Lycium barbarum L. is of great significance medicinal and edible plant, which is native to N. & Central China. The extensive health benefits of L. barbarum have earned it great respect in traditional medicine for centuries. Lycium barbarum polysaccharides (LBPs) being recognized as one of the most crucial bioactive compounds found within this plant, with it exhibit a diverse range of pharmacological activities and nutritional functions, thereby generating substantial market demand and broad application prospects. To gain a more comprehensive understanding of LBPs, the review discussed the extraction, purification and structural-property relationships of these compounds. In addition, this review provides a comprehensive summary of the potential mechanisms underlying various biological activities attributed to LBPs, including immune modulation, antioxidant effects, neuroprotection, hepatoprotection, and antitumor properties. The application status and the future research directions of LBPs were subsequently presented. This review will establish a robust foundation and serve as an invaluable resource for future research and advancements in the field of LBPs.
Collapse
Affiliation(s)
- Jiao Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Shifeng Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Hua Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Xin Zhang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| |
Collapse
|
15
|
Li N, Chen W, Wang B, Zhang C, Wang Y, Li R, Yan Y, He J. Arbuscular mycorrhizal fungi improve the disease resistance of Lycium barbarum to root rot by activating phenylpropane metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1459651. [PMID: 39354935 PMCID: PMC11443343 DOI: 10.3389/fpls.2024.1459651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
Root rot is one of the common diseases of Lycium barbarum. Pathogens can cause devastating disasters to plants after infecting host plants. This study investigated the effect of arbuscular mycorrhizal fungi (AMF) Rhizophagus intraradices inoculation on phenylpropane metabolism in L. barbarum and evaluated its resistance to root rot. The experiment was set up with AMF inoculation treatments (inoculated or not) and root rot pathogen-Fusarium solani inoculation treatments (inoculated or not). The results showed that AMF was able to form a symbiosis with the root system of L. barbarum, thereby promoting plant growth significantly and increasing plants' resistance to disease stress. The plant height of AMF-colonized L. barbarum increased by 24.83% compared to non-inoculated diseased plants. After inoculation with AMF, the plant defense response induced by pathogen infection was stronger. When the enzyme activity of the leaves reached the maximum after the onset of mycorrhizal L. barbarum, phenylalanine ammonia-lyase, cinnamic acid-4-hydroxylase, and 4-coumaric acid-CoA ligase increased by 3.67%, 31.47%, and 13.61%, respectively, compared with the non-inoculated diseased plants. The products related to the lignin pathway and flavonoid pathway downstream of phenylpropane metabolism such as lignin and flavonoids were also significantly increased by 141.65% and 44.61% compared to nonmycorrhizal diseased plants. The activities of chitinase and β-1,3-glucanase increased by 36.00% and 57.96%, respectively. The contents of salicylic acid and jasmonic acid were also 17.7% and 31.63% higher than those of nonmycorrhizal plants in the early stage of plant growth, respectively. The results indicated that AMF significantly promoted plant growth and enhanced disease resistance by increasing enzyme activities and the production of lignin and flavonoids.
Collapse
Affiliation(s)
- Nan Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Wei Chen
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Bin Wang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Chongqing Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Yupeng Wang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Ruiyun Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Yuke Yan
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Jing He
- College of Forestry, Gansu Agricultural University, Lanzhou, China
- Wolfberry Harmless Cultivation Engineering Research Center of Gansu Province, Lanzhou, China
| |
Collapse
|
16
|
Zhao Z, Bai Y, Chen H, Wang W, Ding S, Zhang Y, Sa Y, Chen G, Ma X. Development of a pre-column derivatization ultra-high-performance liquid chromatography method for polysaccharide and monosaccharide quantification in Lycium barbarum. J Sep Sci 2024; 47:e2400507. [PMID: 39233475 DOI: 10.1002/jssc.202400507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Given the limited specificity and accuracy observed in the current official colorimetric quantification of polysaccharide in Lycium barbarum, our study aims to establish a novel, specific, accurate, and economic pre-column derivatization ultra-high-performance liquid chromatography (UHPLC) method for determining the monosaccharide and polysaccharide content in L. barbarum. The optimization of extraction, hydrolysis, and derivatization (using 1-phenyl-3-methyl-5-pyrazolone) processes for polysaccharide from L. barbarum was conducted initially, followed by separation of nine monosaccharides within 20 min using UHPLC with a C18 column. Subsequently, a novel method known as quantitative analysis of multiple components by single marker was developed, utilizing either additive 2-deoxy-D-ribose or any monosaccharide present in the sample as a single reference standard to simultaneously detect the contents of polysaccharide and nine monosaccharides in L. barbarum. To validate the accuracy of the established method, the quantitative results of our approach were compared to both external and internal standard method methods. The minimal relative errors in the quantitative determination of monosaccharides among the three methods confirmed the dependability of the method. By analyzing 20 batches of L. barbarum samples, D-galacturonic acid exhibited the highest content and the polysaccharide levels ranged from 3.02 to 13.04 mg/g. All data implied the specificity and accuracy of the method.
Collapse
Affiliation(s)
- Zhilong Zhao
- Traditional Chinese Medicine Hospital of Yinchuan, Yinchuan, China
| | - Yunfeng Bai
- Traditional Chinese Medicine Hospital of Yinchuan, Yinchuan, China
| | - Huan Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Department of Chemical Drugs Analysis, Ningxia Hui Autonomous Region Institute of Drug Control, Intersection of Ning'an Street and Feng Yue Alley, Yinchuan, China
- Ningxia Key Laboratory of Drug Creation and Generic Drugs Research, Yinchuan, China
| | - Weibiao Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shuqin Ding
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yue Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yuping Sa
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Guoning Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xueqin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
17
|
Zhao J, Xu Y, Li H, An W, Yin Y, Wang B, Wang L, Wang B, Duan L, Ren X, Liang X, Wang Y, Wan R, Huang T, Zhang B, Li Y, Luo J, Cao Y. Metabolite-based genome-wide association studies enable the dissection of the genetic bases of flavonoids, betaine and spermidine in wolfberry (Lycium). PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1435-1452. [PMID: 38194521 PMCID: PMC11123438 DOI: 10.1111/pbi.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Wolfberry is a plant with medicinal and food values. However, its bioactive ingredients and the corresponding genetic bases have not been determined. Here, we de novo generated a chromosome-level genome assembly for wolfberry, yielding a genome sequence of ~1.77 Gb with contig N50 of 50.55 Mb and 39 224 predicted gene models. A variation map, using 307 re-sequenced accessions, was called based on this genome assembly. Furthermore, the fruit metabolome of these accessions was profiled using 563 annotated metabolites, which separated Lycium barbarum L. and non-L. barbarum L. The flavonoids, coumarins, alkaloids and nicotinic acid contents were higher in the former than in the latter. A metabolite-based genome-wide association study mapped 156 164 significant single nucleotide polymorphisms corresponding to 340 metabolites. This included 19 219 unique lead single nucleotide polymorphisms in 1517 significant association loci, of which three metabolites, flavonoids, betaine and spermidine, were highlighted. Two candidate genes, LbUGT (evm.TU.chr07.2692) and LbCHS (evm.TU.chr07.2738), with non-synonymous mutations, were associated with the flavonoids content. LbCHS is a structural gene that interacts with a nearby MYB transcription factor (evm.TU.chr07.2726) both in L. barbarum and L. ruthenicum. Thus, these three genes might be involved in the biosynthesis/metabolism of flavonoids. LbSSADH (evm.TU.chr09.627) was identified as possibly participating in betaine biosynthesis/metabolism. Four lycibarbarspermidines (E-G and O) were identified, and only the lycibarbarspermidines O content was higher in L. barbarum varieties than in non-L. barbarum varieties. The evm.TU.chr07.2680 gene associated with lycibarbarspermidines O was annotated as an acetyl-CoA-benzylalcohol acetyltransferase, suggesting that it is a candidate gene for spermidine biosynthesis. These results provide novel insights into the specific metabolite profile of non-L. barbarum L. and the genetic bases of flavonoids, betaine and spermidine biosynthesis/metabolism.
Collapse
Affiliation(s)
- Jianhua Zhao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd.UrumchiChina
| | - Haoxia Li
- Desertification Control Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Wei An
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yue Yin
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Bin Wang
- Wuhan Matware Biotechnology Co., Ltd.WuhanChina
| | - Liping Wang
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Bi Wang
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Linyuan Duan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Xiaoyue Ren
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Xiaojie Liang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yajun Wang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Ru Wan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Ting Huang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Bo Zhang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yanlong Li
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Jie Luo
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Youlong Cao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| |
Collapse
|
18
|
Li R, Yang P, Liu B, Ye Z, Zhang P, Li M, Gong Y, Huang Y, Yang L, Li M. Lycium barbarum polysaccharide remodels colon inflammatory microenvironment and improves gut health. Heliyon 2024; 10:e30594. [PMID: 38774318 PMCID: PMC11107222 DOI: 10.1016/j.heliyon.2024.e30594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
Aim Disturbed intestinal microbiota has been implicated in the inflammatory microenvironment of the colon, which usually results in ulcerative colitis (UC). Given the limitations of these drugs, it is important to explore alternative means of protecting the gut health from UC. This study aimed to investigate the potential of polysaccharides as beneficial nutrients in the regulation of the gut microbiota, which determines the inflammatory microenvironment of the colon. Materials and methods Mice were treated with dextran sulfate sodium (DSS) to evaluate the effects and mechanisms of Lycium barbarum polysaccharide (LBP) in remodeling the inflammatory microenvironment and improving gut health. Body weight and disease activity indices were monitored daily. Hematoxylin and eosin staining was used to analyze colon dynamics. The levels of inflammatory indicators and expression of MUC-2, claudin-1, ZO-1, and G-protein-coupled receptor 5 (TGR5) were determined using assay kits and immunohistochemistry, respectively. 16S rRNA high-throughput sequencing of the intestinal microbiota and liquid chromatography-tandem mass spectrometry for related bile acids were used. Results LBP significantly improved the colonic tissue structure by upregulating MUC-2, claudin-1, and ZO-1 protein expression. The bacterial genus Dubosiella was dominant in healthy mice, but significantly decreased in mice treated with DSS. LBP rehabilitated Dubosiella in the sick guts of DSS mice to a level close to that of healthy mice. The levels of other beneficial bacterial genera Akkermansia and Bifidobacterium were also increased, whereas those of the harmful bacterial genera Turicibacter, Clostridium_sensu_stricto_1, Escherichia-Shigella, and Faecalibaculum decreased. The activity of beneficial bacteria promoted the bile acids lithocholic and deoxycholic acids in mice with UC, which improved the gut barrier function through the upregulation of TGR5. Conclusion The inflammatory microenvironment in the gut is determined by the balance of the gut microbiota. LBP showed great potential as a beneficial nutrient for rehabilitating Dubosiella which is dominant in the gut of healthy mice. Nutrient-related LBP may play an important role in gut health management.
Collapse
Affiliation(s)
- Rong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ping Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Bowen Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ziru Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Puyue Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Mingjian Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yanju Gong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yong Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Lan Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Min Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| |
Collapse
|
19
|
Duan P, Rehemujiang H, Zhang L, Lu M, Li C, Hu L, Wang Y, Diao Q, Xu G. Lycium barbarum (Wolfberry) Branches and Leaves Enhance the Growth Performance and Improve the Rumen Microbiota in Hu Sheep. Animals (Basel) 2024; 14:1610. [PMID: 38891656 PMCID: PMC11171408 DOI: 10.3390/ani14111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The Lycium barbarum branches and leaves (LBL) are known to contain a range of active substances that have positive effects on animal immunity and antioxidation. This study aimed to examine how LBL impacts the growth and slaughter performance as well as rumen fermentation and microbiota in Hu sheep. A total of 50 male Hu sheep of indigenous origin, aged 3 months, were randomly divided into 5 groups of 10 sheep each. The groups were given different levels of LBL supplementation (0%, 3%, 6%, 9%, and 12%) to evaluate growth performance and nutrient apparent digestibility. Rumen fluid samples were collected for analysis of the fermentation parameters and rumen chyme was examined to study the rumen microbiota. The slaughter performance, meat quality, and organ index were evaluated at the conclusion of the experiment. The results showed that the final body weight and average daily gain of the LBL1 group were significantly higher than those of the CON group, LBL3 group, and LBL4 group (p < 0.05). The average dry matter intake of the LBL4 group was significantly lower than that of other experimental groups (p < 0.05). The apparent digestibility of CP in the LBL1 and LBL2 groups was higher than that in other experimental groups (p < 0.05). At the same time, the eye muscle area and grade-rule (GR) value of Hu sheep in the LBL1 group significantly increased and the quality of Hu sheep meat improved (p < 0.05). There was no significant difference in organ weight and organ index between the experimental groups (p > 0.05). The pH of the rumen fluid in the LBL1 group was significantly lower than that in the CON group (p < 0.05). There was no significant difference in the NH3-N content between the experimental groups (p > 0.05). The propionate and valerate in the rumen fluid of Hu sheep in the LBL2 group were significantly higher than those in other experimental groups (p < 0.05). In addition, this had no significant effect on the structure and abundance of the rumen microbiota (p > 0.05). LBL is a promising functional feed. Adding an appropriate amount of LBL to the diet can improve the feed efficiency, growth performance, and meat quality of Hu sheep but has no adverse effects on the rumen. In this experiment, the appropriate supplemental level of LBL in the diet was 3%.
Collapse
Affiliation(s)
- Pingping Duan
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
| | - Halidai Rehemujiang
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
| | - Lidong Zhang
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
| | - Mulong Lu
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
| | - Changchang Li
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
| | - Lihong Hu
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
| | - Youli Wang
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China;
| | - Qiyu Diao
- Institute of Feed Research, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100080, China;
| | - Guishan Xu
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Tarim University, Alar 843300, China
| |
Collapse
|
20
|
Wang Z, Zhang X, Lv DM, Cao S, Yang G, Zhang Z, Yu Q. Fructus lycii oligosaccharide alleviates acute liver injury via PI3K/Akt/mTOR pathway. Immunol Res 2024; 72:271-283. [PMID: 38032450 DOI: 10.1007/s12026-023-09431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Regulating the immune-environment is essential for treating acute liver injury (ALI). However, the deficiency of an effective immune balancer restricted progress. Herein, we reported an oligosaccharide from Fructus lycii oligosaccharide (FLO). To investigate the effects of FLO, we adopted primary macrophages and LO2 for experiments in vitro. In vivo, we assessed the influence of FLO in ALI with histochemical staining and enzyme indicators detection. Following that, we clarified the underlying mechanisms using western blotting and immunofluorescence. Our results indicated that FLO (100 μg/mL) showed apparent inflammatory reversal effects by shifting the phenotype of macrophages from M1 to M2 without causing any cytotoxicity. Furthermore, CCl4-induced mice were significantly improved by FLO intragastric administration. Meanwhile, PI3K/AKT/mTOR pathway was confirmed for the up-regulation of IL-10 via M2 polarization of macrophages. Collectively, our findings highlight the beneficial effects of FLO on ALI therapy via M1 to M2 macrophage conversion.
Collapse
Affiliation(s)
- Zhe Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Xingxing Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - De Ming Lv
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Sucheng Cao
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Guang Yang
- Nanjing Tech University, Nanjing, 210003, China
| | - Zhijian Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Qingtong Yu
- Laboratory of Drug Delivery and Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
21
|
Sharifi‐Rad J, Quetglas‐Llabrés MM, Sureda A, Mardones L, Villagran M, Sönmez Gürer E, Živković J, Ezzat SM, Zayed A, Gümüşok S, Sibel Kılıç C, Fasipe B, Laher I, Martorell M. Supercharging metabolic health with Lycium barbarum L.: A review of the therapeutic potential of this functional food for managing metabolic syndrome. FOOD FRONTIERS 2024; 5:420-434. [DOI: 10.1002/fft2.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractMetabolic syndrome (MetS) is a common disorder involving a cluster of metabolic abnormalities, such as abdominal obesity, hypertension, dyslipidemia, insulin resistance, and atherogenic profile. MetS is characterized by an increase in oxidative stress and a chronic proinflammatory state, which are directly related to the development and progression of this pathology. It has been seen how a healthy lifestyle and good dietary practices are key to improving the different metabolic parameters and, therefore, play a fundamental role in reducing the risk of developing diabetes. The present review focuses on the research evidence related to the therapeutic properties of Lycium barbarum L. in MetS gathered in the last years. Several preclinical studies suggest that L. barbarum extracts are a good dietary supplement for the prevention of cardiovascular diseases in people with MetS. This compound has been used for years in traditional Chinese medicine for the treatment of atrophic gastritis, problems related to the lungs, kidneys, and liver, and as a supplement for eye health. In addition, different in vitro and in vivo studies have been carried out that support the properties attributed to metabolites derived from L. barbarum, such as polysaccharides that have been shown diverse biological activities. In conclusion, L. barbarum extracts have multiple benefits to increase general well‐being and immune function. However, there are a limited number of studies related to effect of L. barbarum in MetS, but they demonstrated effectiveness in the treatment of obesity, diabetes mellitus type 2, and prevention of diabetes mellitus type 2 complication.
Collapse
Affiliation(s)
| | - Maria Magdalena Quetglas‐Llabrés
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of Balearic Islands (IdISBa) University of the Balearic Islands‐IUNICS Palma de Mallorca, Mallorca Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of Balearic Islands (IdISBa) University of the Balearic Islands‐IUNICS Palma de Mallorca, Mallorca Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition) Instituto de Salud Carlos III Madrid Spain
| | - Lorena Mardones
- Department of Basic Science, Faculty of Medicine Universidad Católica de la Santísima Concepcion Concepción Chile
| | - Marcelo Villagran
- Department of Basic Science, Faculty of Medicine Universidad Católica de la Santísima Concepcion Concepción Chile
- Scientific‐Technological Center for the Sustainable Development of the Coastline Universidad Católica de la Santísima Concepción Concepción Chile
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy Sivas Cumhuriyet University Sivas Turkey
| | - Jelena Živković
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1 Belgrade Serbia
| | - Shahira M. Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy Cairo University Cairo Egypt
- Department of Pharmacognosy, Faculty of Pharmacy October University for Modern Science and Arts (MSA) 6th of October Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy Tanta University, College of Pharmacy Tanta Egypt
| | - Safa Gümüşok
- Department of Pharmaceutical Botany Ankara University Faculty of Pharmacy Ankara Turkey
| | - Ceyda Sibel Kılıç
- Department of Pharmaceutical Botany Ankara University Faculty of Pharmacy Ankara Turkey
| | - Babatunde Fasipe
- Faculty of Basic Medical Sciences, Department of Pharmacology and Therapeutics Bowen University Iwo Nigeria
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics The University of British Columbia Vancouver British Columbia Canada
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy and Centre for Healthy Living University of Concepción Concepción Chile
| |
Collapse
|
22
|
Liu X, Gao H, Radani Y, Yue S, Zhang Z, Tang J, Zhu J, Zheng R. Integrative transcriptome and metabolome analysis reveals the discrepancy in the accumulation of active ingredients between Lycium barbarum cultivars. PLANTA 2024; 259:74. [PMID: 38407665 DOI: 10.1007/s00425-024-04350-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
MAIN CONCLUSION The combined analysis of transcriptome and metabolome provided molecular insight into the dynamics of multiple active ingredients biosynthesis and accumulation across different cultivars of Lycium barbarum. Lycium barbarum L. has a high concentration of active ingredients and is well known in traditional Chinese herbal medicine for its therapeutic properties. However, there are many Lycium barbarum cultivars, and the content of active components varies, resulting in inconsistent quality between Lycium barbarum cultivars. At present, few research has been conducted to reveal the difference in active ingredient content among different cultivars of Lycium barbarum at the molecular level. Therefore, the transcriptome of 'Ningqi No.1' and 'Qixin No.1' during the three development stages (G, T, and M) was constructed in this study. A total of 797,570,278 clean reads were obtained. Between the two types of wolfberries, a total of 469, 2394, and 1531 differentially expressed genes (DEGs) were obtained in the 'G1 vs. G10,' 'T1 vs. T10,' and 'M1 vs. M10,' respectively, and were annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology identifiers. Using these transcriptome data, most DEGs related to the metabolism of the active ingredients in 'Ningqi No.1' and 'Qixin No.1' were identified. Moreover, a widely targeted metabolome analysis of the metabolites of 'Ningqi 1' and 'Qixin 1' fruits at the maturity stage revealed 1,135 differentially expressed metabolites (DEMs) in 'M1 vs. M10,' and many DEMs were associated with active ingredients such as flavonoids, alkaloids, terpenoids, and so on. We further quantified the flavonoid, lignin, and carotenoid contents of the two Lycium barbarum cultivars during the three developmental stages. The present outcome provided molecular insight into the dynamics of multiple active ingredients biosynthesis and accumulation across different cultivars of Lycium barbarum, which would provide the basic data for the formation of Lycium barbarum fruit quality and the breeding of outstanding strains.
Collapse
Affiliation(s)
- Xuexia Liu
- College of Life Science, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, China
| | - Han Gao
- College of Life Science, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, China
| | - Yasmina Radani
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Sijun Yue
- College of Life Science, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, China.
| | - Ziping Zhang
- College of Life Science, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, China
| | - Jianning Tang
- Wolfberry Industry Development Center, Yinchuan, 750021, China
| | - Jinzhong Zhu
- Qixin Wolfberry Seedling Professional Cooperatives of Zhongning County, Zhongning, 755100, China
| | - Rui Zheng
- College of Life Science, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, China.
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, 100091, China.
| |
Collapse
|
23
|
Zhang L, Li Y, Yan Q, Ning Y, Wang Y, Liu K, Qiang Y, Ma X, Sun X. Establishment of high performance liquid chromatographic fingerprint and determination of 4 kinds of phenolic acid bioactive substances of fruitless Lycium barbarum leaves from Ningxia at different harvesting periods. Heliyon 2024; 10:e24614. [PMID: 38317895 PMCID: PMC10838736 DOI: 10.1016/j.heliyon.2024.e24614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
"Fruitless Lycium barbarum leaf (FLBL) are the leaves of a new variety of Lycium barbarum in Ningxia, which exhibit higher content of various nutrients, trace elements, and bioactive substances compared to Lycium barbarum fruits and leaves. However, the health and medicinal value as well as the by-products derived from FLBL have not received sufficient attention, and the contents of main components vary at different harvesting periods. Therefore, for the first time this study aimed to establish high-performance liquid chromatography (HPLC) fingerprints and determine the contents of four phenolic acid bioactive substances during different harvesting periods in order to provide an experimental basis for cultivation, collection, and research on FLBL. The results revealed 17 common peaks among 10 batches samples with a similarity ranging from 0.71 to 0.976. The linear relationships R2 for catechin, epicatechin-catechin, chlorogenic acid, and rutin were determined as 0.9999 each; meanwhile, the average recovery rate ranged from 93.92 % to 120.11 %, with an RSD between 0.91 % and 2.82 %. The precision, repeatability stability (24 h), and recovery rate met the requirements outlined in "Chinese Pharmacopoeia". Catechin, epicatechin, and rutin exhibited higher levels from June to August, while chlorogenic acid showed increased levels from July to September. The findings serve as a foundation for quality control measures such as identifying optimal harvest periods or facilitating development and production processes related to Ningxia FLBL."
Collapse
Affiliation(s)
- Lianxiang Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Deparment of human anatomy and histoembryology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Yanting Li
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Qin Yan
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Deparment of human anatomy and histoembryology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Yu Ning
- Department of drug manufacturing room, Ningxia Traditional Chinese Medicine Hospital, 114 West Beijing Road, Yinchuan, Ningxia 750021, China
| | - Yanping Wang
- Department of drug manufacturing room, Ningxia Traditional Chinese Medicine Hospital, 114 West Beijing Road, Yinchuan, Ningxia 750021, China
| | - Kunmei Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Yuanyuan Qiang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Xueqing Ma
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Xiangping Sun
- Department of Surgery, Ningxia Traditional Chinese Medicine Hospital, 114 West Beijing Road, Yinchuan, Ningxia 750021, China
| |
Collapse
|
24
|
Liu D, Yuan M, Wang Y, Zhang L, Yao W, Feng M. Integrated metabolome and transcriptome analysis of differences in quality of ripe Lycium barbarum L. fruits harvested at different periods. BMC PLANT BIOLOGY 2024; 24:82. [PMID: 38302892 PMCID: PMC10835843 DOI: 10.1186/s12870-024-04751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Wolfberry is well-known for its high nutritional value and medicinal benefits. Due to the continuous ripening nature of Goji berries and the fact that they can be commercially harvested within a few weeks, their phytochemical composition may change during the harvesting process at different periods. RESULT The involved molecular mechanisms of difference in fruit quality of ripe Lycium barbarum L. harvested at four different periods were investigated by transcriptomic and metabolomics analyses for the first time. According to the results we obtained, it was found that the appearance quality of L. barbarum fruits picked at the beginning of the harvesting season was superior, while the accumulation of sugar substances in L. barbarum fruits picked at the end of the harvesting season was better. At the same time the vitamin C and carotenoids content of wolfberry fruits picked during the summer harvesting season were richer. Ascorbic acid, succinic acid, glutamic acid, and phenolic acids have significant changes in transcription and metabolism levels. Through the network metabolic map, we found that ascorbic acid, glutamic acid, glutamine and related enzyme genes were differentially accumulated and expressed in wolfberry fruits at different harvesting periods. Nevertheless, these metabolites played important roles in the ascorbate-glutathione recycling system. Ascorbic acid, phenolic substances and the ascorbate-glutathione recycling system have antioxidant effects, which makes the L. barbarum fruits harvested in the summer more in line with market demand and health care concepts. CONCLUSION This study laid the foundation for understanding the molecular regulatory mechanisms of quality differences of ripe wolfberry fruits harvested at different periods, and provides a theoretical basis for enhancing the quality of L. barbarum fruits.
Collapse
Affiliation(s)
- Deshuai Liu
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China
- Ningxia Key Laboratory of Modern Molecular Breeding of Dominant and Characteristic Crops, Yinchuan, 750021, Ningxia, China
| | - Miao Yuan
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Ye Wang
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China
- Ningxia Key Laboratory of Modern Molecular Breeding of Dominant and Characteristic Crops, Yinchuan, 750021, Ningxia, China
| | - Li Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Wenkong Yao
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China.
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, 750021, Ningxia, China.
- Ningxia Key Laboratory of Modern Molecular Breeding of Dominant and Characteristic Crops, Yinchuan, 750021, Ningxia, China.
| | - Mei Feng
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China.
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, 750021, Ningxia, China.
- Ningxia Key Laboratory of Modern Molecular Breeding of Dominant and Characteristic Crops, Yinchuan, 750021, Ningxia, China.
| |
Collapse
|
25
|
Li K, Xia T, Jiang Y, Wang N, Lai L, Xu S, Yue X, Xin H. A review on ethnopharmacology, phytochemistry, pharmacology and potential uses of Portulaca oleracea L. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117211. [PMID: 37739100 DOI: 10.1016/j.jep.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Portulaca oleracea L. (PO), popularly known as purslane, has been documented in ethnopharmacology in various countries and regions. Traditional application records indicated that PO might be used extensively to treat the common cold, dysentery, urinary tract infections, coughing, eye infections, skin problems, gynecological diseases, and pediatric illnesses. AIM OF THE REVIEW This paper includes a systematic review of the traditional usage, phytochemicals, pharmacological activity, and potential uses of PO to provide an overview of the research for further exploitation of PO resources. MATERIALS AND METHODS This article uses "Portulaca oleracea L." and "purslane" as the keywords and collects relevant information on PO from different databases, including PubMed, Web of Science, Springer, Science Direct, ACS, Wiley, CNKI, Baidu Scholar, Google Scholar, and ancient meteria medica. RESULTS PO is a member of the Portulacaceae family and is grown worldwide. Traditional Chinese medicine believes that purslane has the effect of improving eyesight, eliminating evil qi, quenching thirst, purgation, diuresis, hemostasis, regulating qi, promoting hair growth, detoxifying, and avoiding epidemic qi. Recent phytochemical investigations have shown that PO is a rich source of flavonoids, homoisoflavonoids, alkaloids, organic acids, esters, lignans, terpenoids, catecholamines, sterols, and cerebrosides. The purslane extracts or compounds have exhibited numerous biological activities such as anti-inflammatory, immunomodulatory, antimicrobial, antiviral, antioxidant, anticancer, renoprotective, hepatoprotective, gastroprotective, metabolic, muscle relaxant, anti-asthmatic and anti-osteoporosis properties. The significant omega-3 fatty acids, vital amino acids, minerals, and vitamins found in purslane also provide nutritional benefits. Purslane as a food/feed additive in the food industry and animal husbandry has caused concern. Its global wide distribution and tolerance to abiotic stress characteristics make it in the future sustainable development of agriculture a certain position. CONCLUSIONS Based on traditional usage, phytochemicals, and pharmacological activity, PO is a potential medicinal and edible plant with diverse pharmacological effects. Due to purslane's various advantages, it may have vast application potential in the food and pharmaceutical industries and animal husbandry.
Collapse
Affiliation(s)
- Kun Li
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China; Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tianshuang Xia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yiping Jiang
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Liyong Lai
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Shengyan Xu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China.
| |
Collapse
|
26
|
Xing C, Zeng Z, Shan Y, Guo W, Shah R, Wang L, Wang Y, Du H. A Network Pharmacology-based Study on the Anti-aging Properties of Traditional Chinese Medicine Sisheng Bulao Elixir. Comb Chem High Throughput Screen 2024; 27:1840-1849. [PMID: 38178682 DOI: 10.2174/0113862073276253231114063813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Traditional Chinese Medicine (TCM) has a rich history of use in preventing senescence for millennia in China. Nonetheless, a systematic method to study the antiaging properties and the underlying molecular mechanism of TCM remains absent. OBJECTIVE The objective of this study is to decipher the anti-aging targets and mechanisms of Sisheng Bulao Elixir (SBE) using a systematic approach based on a novel aging database and network pharmacology. METHODS Bioactive compounds and target proteins in SBE were identified via the Traditional Chinese Medicine System Pharmacology (TCMSP) database. Aging-related proteins were uncovered through alignment with the Ageing Alta database. A compound-target (CT) protein network analysis highlighted key flavonoids targeting aging. Core aging-related proteins were extracted through protein-protein interaction (PPI) network analysis. Molecular docking validated binding activities between core compounds and aging-related proteins. The antioxidant activity of SBE was confirmed using an in vitro senescent cells model. RESULTS A total of 39 active compounds were extracted from a pool of 639 compounds in SBE. Through a matching process with the Aging Alta, 88 target proteins associated with the aging process were identified. Impressively, 80 out of these 88 proteins were found to be targeted by flavonoids. Subsequently, an analysis using CT methodology highlighted 11 top bioactive flavonoids. Notably, core aging-related proteins, including AKT1, MAPK3, TP53, VEGFA, IL6, and HSP90AA1, emerged through the PPI network analysis. Moreover, three flavonoids, namely quercetin, kaempferol, and luteolin, exhibited interactions with over 100 aging-related proteins. Molecular docking studies were conducted on these flavonoids with their shared three target proteins, namely AKT1, HSP90AA1, and IL6, to assess their binding activities. Finally, the antioxidant properties of SBE were validated using an in vitro model of senescent cells. CONCLUSION This study offers novel insights into SBE's anti-aging attributes, providing evidence of its molecular mechanisms. It enhances our understanding of traditional remedies in anti-aging research.
Collapse
Affiliation(s)
- Cencan Xing
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zehua Zeng
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yubang Shan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenhuan Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Roshan Shah
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Luna Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
27
|
Hvarchanova N, Stoeva S, Radeva-Ilieva M, Zhelev I, Georgieva M, Dzhenkov D, Georgiev KD. Cardio- and nephroprotective effects of fractions isolated from Lycium barbarum (goji berry) in models of cardio- and nephrotoxicity in rats. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2022.2155571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Nadezhda Hvarchanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna “Prof. Dr. Paraskev Stoyanov”, Varna, Bulgaria
| | - Stanila Stoeva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna “Prof. Dr. Paraskev Stoyanov”, Varna, Bulgaria
| | - Maya Radeva-Ilieva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna “Prof. Dr. Paraskev Stoyanov”, Varna, Bulgaria
| | - Iliya Zhelev
- Department of Biology, Faculty of Pharmacy, Medical University of Varna “Prof. Dr. Paraskev Stoyanov”, Varna, Bulgaria
| | - Marieta Georgieva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna “Prof. Dr. Paraskev Stoyanov”, Varna, Bulgaria
| | - Deyan Dzhenkov
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Division of General and Clinical Pathology, Faculty of Medicine, Medical University of Varna “Prof. Dr. Paraskev Stoyanov”, Varna, Bulgaria
| | - Kaloyan D. Georgiev
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna “Prof. Dr. Paraskev Stoyanov”, Varna, Bulgaria
| |
Collapse
|
28
|
Yang W, Jiang T, Wang Y, Wang X, Wang R. Combined Transcriptomics and Metabolomics Analysis Reveals the Effect of Selenium Fertilization on Lycium barbarum Fruit. Molecules 2023; 28:8088. [PMID: 38138577 PMCID: PMC10745541 DOI: 10.3390/molecules28248088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
As a beneficial nutrient and essential trace element, selenium plays a significant role in plant growth functions and human protein biosynthesis. Plant selenium enrichment is mainly obtained from both natural soil and exogenous selenium supplementation, while human beings consume selenium-enriched foods for the purposes of selenium supplementation. In this study, different types of selenium fertilizers were sprayed onto Lycium barbarum in Ningxia, and transcriptomics and metabolomics techniques were used to explore the effects of selenium on the fruit differentials and differential genes in Lycium barbarum. Taking the "Ning Qiyi No.1" wolfberry as the research object, sodium selenite, nano-selenium, and organic selenium were sprayed at a concentration of 100 mg·L-1 three times from the first fruiting period to the harvesting period, with a control treatment comprising the spraying of clear water. We determined the major metabolites and differential genes of the amino acids and derivatives, flavonoids, and alkaloids in ripe wolfberries. We found that spraying selenium significantly enhanced the Lycium barbarum metabolic differentiators; the most effective spray was the organic selenium, with 129 major metabolic differentiators and 10 common metabolic pathways screened after spraying. Nano-selenium was the next best fertilizer we screened, with 111 major metabolic differentiators, the same number as organic selenium in terms of differential genes and common metabolite pathways. Sodium selenite was the least effective of the three, with only 59 of its major metabolic differentials screened, but its differential genes and metabolites were enriched for five common pathways.
Collapse
Affiliation(s)
- Wenqin Yang
- College of Agronomy, Ningxia University, Yinchuan 750021, China; (W.Y.); (T.J.); (Y.W.)
| | - Tingting Jiang
- College of Agronomy, Ningxia University, Yinchuan 750021, China; (W.Y.); (T.J.); (Y.W.)
| | - Yaqi Wang
- College of Agronomy, Ningxia University, Yinchuan 750021, China; (W.Y.); (T.J.); (Y.W.)
| | - Xiaojing Wang
- Ningxia Research Institute of Quality Standards and Testing Technology of Agricultural Products, Yinchuan 750001, China
| | - Rui Wang
- College of Agronomy, Ningxia University, Yinchuan 750021, China; (W.Y.); (T.J.); (Y.W.)
| |
Collapse
|
29
|
Liu L, Xu W, Cui C, Wei L, Tian Y, Liu H, Zhang Y, Li Y, Yang Z, Zhao F, Tian Y. Endophytic fungi of Lycium barbarum: isolation, determination, bioactivity and separation of compounds. World J Microbiol Biotechnol 2023; 40:26. [PMID: 38057589 DOI: 10.1007/s11274-023-03830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Lycium barbarum is widely distributed in China and used as a traditional Chinese medicine herb to treat dizziness, abdominal pain, dry cough, headache and fatigue. Several studies have examined the endophytes of L. barbarum from northwest China; however, few have focused on that from eastern China. The objective of this study was to isolate and determine the endophytic fungi of L. barbarum from Shandong province, as well as to obtain and identify active secondary metabolites from the endophytes. In this study, 17 endophytic fungi were isolated from L. barbarum and denoted as GQ-1 to GQ-17, respectively. These fungi were further classified into ten genera based on the morphological and ITS identification. The crude extracts of these fungi were obtained by using liquid fermentation and EtOAc extraction, and their antibacterial, cytotoxic, and antioxidant activities were evaluated. The results showed that GQ-6 and GQ-16 exhibited high inhibitory activity; GQ-6 and GQ-9 showed high cytotoxic activity and GQ-5 exhibited high scavenging capability for DPPH free radicals. Additionally, Cladosporium sp. GQ-6 was used to investigate the secondary metabolites. The crude extracts were purified by using column chromatography, reverse column, and liquid chromatography, and four monomeric compounds were identified, including two known compounds (α-acetylorcinol (1) and cladosporester B (2)) and two new compounds (cladosporacid F (3) and cladosporester D (4)). The anti-fungal and antibacterial activities of these compounds were confirmed, but no cytotoxic activity was observed. In conclusion, endophytic fungi of L. barbarum from eastern China can serve as a potential source of active natural products with antibacterial and antioxidant properties.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory for Agriculture Microbiology, Department of Microbiology, College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Wenjie Xu
- College of Life Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Changde Cui
- College of Life Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Lixuan Wei
- College of Life Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Yutong Tian
- College of Life Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Hanlin Liu
- College of Life Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Yihao Zhang
- College of Life Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Yanling Li
- College of Life Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Zhengyou Yang
- Key Laboratory for Agriculture Microbiology, Department of Microbiology, College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Fengchun Zhao
- Key Laboratory for Agriculture Microbiology, Department of Microbiology, College of Life Science, Shandong Agricultural University, Taian, 271018, China.
| | - Yuan Tian
- College of Life Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China.
| |
Collapse
|
30
|
Ahn JS, Mahbub NU, Kim S, Kim HB, Choi JS, Chung HJ, Hong ST. Nectandrin B significantly increases the lifespan of Drosophila - Nectandrin B for longevity. Aging (Albany NY) 2023; 15:12749-12762. [PMID: 37983180 DOI: 10.18632/aging.205234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Phytochemicals are increasingly recognized in the field of healthy aging as potential therapeutics against various aging-related diseases. Nutmeg, derived from the Myristica fragrans tree, is an example. Nutmeg has been extensively studied and proven to possess antioxidant properties that protect against aging and alleviate serious diseases such as cancer, heart disease, and liver disease. However, the specific active ingredient in nutmeg responsible for these health benefits has not been identified thus far. In this study, we present evidence that Nectandrin B (NecB), a bioactive lignan compound isolated from nutmeg, significantly extended the lifespan of the fruit fly Drosophila melanogaster by as much as 42.6% compared to the control group. NecB also improved age-related symptoms including locomotive deterioration, body weight gain, eye degeneration, and neurodegeneration in aging D. melanogaster. This result represents the most substantial improvement in lifespan observed in animal experiments to date, suggesting that NecB may hold promise as a potential therapeutic agent for promoting longevity and addressing age-related degeneration.
Collapse
Affiliation(s)
- Ji-Seon Ahn
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Sura Kim
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Han-Byeol Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Jong-Soon Choi
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
- College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| |
Collapse
|
31
|
Liu X, Zheng R, Radani Y, Gao H, Yue S, Fan W, Tang J, Shi J, Zhu J. Transcriptional deciphering of the metabolic pathways associated with the bioactive ingredients of wolfberry species with different quality characteristics. BMC Genomics 2023; 24:658. [PMID: 37919673 PMCID: PMC10621208 DOI: 10.1186/s12864-023-09755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Wolfberry is rich in carotenoids, flavonoids, vitamins, alkaloids, betaines and other bioactive ingredients. For over 2,000 years, wolfberry has been used in China as a medicinal and edible plant resource. Nevertheless, the content of bioactive ingredients varies by cultivars, resulting in uneven quality across wolfberry cultivars and species. To date, research has revealed little about the underlying molecular mechanism of the metabolism of flavonoids, carotenoids, and other bioactive ingredients in wolfberry. RESULTS In this context, the transcriptomes of the Lycium barbarum L. cultivar 'Ningqi No. 1' and Lycium chinense Miller were compared during the fruit maturity stage using the Illumina NovaSeq 6000 sequencing platform, and subsequently, the changes of the gene expression profiles in two types of wolfberries were analysed. In total, 256,228,924 clean reads were obtained, and 8817 differentially expressed genes (DEGs) were identified, then assembled by Basic Local Alignment Search Tool (BLAST) similarity searches and annotated using Gene Ontology (GO), Clusters of Orthologous Groups of proteins (KOG), and the Kyoto Encyclopedia of Genes and Genomes (KEGG). By combining these transcriptome data with data from the PubMed database, 36 DEGs related to the metabolism of bioactive ingredients and implicated in the metabolic pathway of carotenoids, flavonoids, terpenoids, alkaloids, vitamins, etc., were identified. In addition, among the 9 differentially expressed transcription factors, LbAPL, LbPHL11 and LbKAN4 have raised concerns. The protein physicochemical properties, structure prediction and phylogenetic analysis indicated that LbAPL and LbPHL11 may be good candidate genes involved in regulating the flavonoid metabolism pathway in wolfberry. CONCLUSIONS This study provides preliminary evidence for the differences in bioactive ingredient content at the transcription level among different wolfberry species, as well as a research and theoretical basis for the screening, cloning and functional analysis of key genes involved in the metabolism of bioactive ingredients in wolfberry.
Collapse
Affiliation(s)
- Xuexia Liu
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Rui Zheng
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, College of Life Science, Ningxia University, Yinchuan, 750021, China.
| | - Yasmina Radani
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Han Gao
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Sijun Yue
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, College of Life Science, Ningxia University, Yinchuan, 750021, China.
| | - Wenqiang Fan
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Jianning Tang
- Ningxia Wolfberry Industry Development Center, Yinchuan, 750021, China.
| | - Jing Shi
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Jinzhong Zhu
- Qixin Wolfberry Seedling Professional Cooperatives, Zhongning, 755100, China
| |
Collapse
|
32
|
Brecchia G, Muça G, Munga A, Menchetti L, Galosi L, Rossi G, Barbato O, Pastorelli G, Agradi S, Serra V, Sulçe M, Ozuni E, Turmalaj L, Castrica M, Ceccarini MR, Riva F, Fioretti B, Quattrone A, Marongiu ML, Curone G. Goji Berry in the Diet of the Rabbit Buck: Effects on Semen Quality, Oxidative Status and Histological Features of the Reproductive Tract. Antioxidants (Basel) 2023; 12:1959. [PMID: 38001812 PMCID: PMC10669443 DOI: 10.3390/antiox12111959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Goji berry (GB) shows beneficial effects on human health, although its effects on the male rabbit have been little investigated. This study examines the impact of GB dietary supplementation on the semen traits, antioxidant capacity of seminal plasma, and histological features of the reproductive tract of rabbit buck. Eighteen rabbits were distributed into two dietary groups: one receiving a commercial feed (Control), and the other a feed supplemented with 1% of GB (Goji). After a nutritional adaptation period of 60 days, the animals were subjected to semen collection every 15 days. The semen traits, libido, antioxidant, and inflammatory parameters were collected and analyzed. The rabbits were sacrificed after 60 days, and tissues of the genital tract were analyzed. Compared to the Control group, the Goji group showed higher spermatozoa concentration, motility, and vitality (p < 0.05), as well as fewer abnormal spermatozoa and a higher libido (p < 0.1). Histological features such as functional activity and hyperplasia were improved by GB and correlated with some semen traits (p < 0.05). Conversely, antioxidant and anti-inflammatory parameters were unaffected by the diet. These findings suggest that GB acts on the tissues of the reproductive tract positively influencing semen quality, although further studies are needed to understand the effect on oxidative stress.
Collapse
Affiliation(s)
- Gabriele Brecchia
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (G.B.); (G.P.); (S.A.); (V.S.); (F.R.); (A.Q.); (G.C.)
| | - Gerald Muça
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Kodër Kamëz, 1029 Tirana, Albania; (G.M.); (A.M.); (M.S.); (E.O.); (L.T.)
| | - Albana Munga
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Kodër Kamëz, 1029 Tirana, Albania; (G.M.); (A.M.); (M.S.); (E.O.); (L.T.)
| | - Laura Menchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy;
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy;
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy;
| | - Olimpia Barbato
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Grazia Pastorelli
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (G.B.); (G.P.); (S.A.); (V.S.); (F.R.); (A.Q.); (G.C.)
| | - Stella Agradi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (G.B.); (G.P.); (S.A.); (V.S.); (F.R.); (A.Q.); (G.C.)
| | - Valentina Serra
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (G.B.); (G.P.); (S.A.); (V.S.); (F.R.); (A.Q.); (G.C.)
| | - Majlind Sulçe
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Kodër Kamëz, 1029 Tirana, Albania; (G.M.); (A.M.); (M.S.); (E.O.); (L.T.)
| | - Enkeleda Ozuni
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Kodër Kamëz, 1029 Tirana, Albania; (G.M.); (A.M.); (M.S.); (E.O.); (L.T.)
| | - Luigj Turmalaj
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Kodër Kamëz, 1029 Tirana, Albania; (G.M.); (A.M.); (M.S.); (E.O.); (L.T.)
| | - Marta Castrica
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Viale dell’Università 16, 35020 Legnaro, Italy;
| | | | - Federica Riva
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (G.B.); (G.P.); (S.A.); (V.S.); (F.R.); (A.Q.); (G.C.)
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06123 Perugia, Italy;
| | - Alda Quattrone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (G.B.); (G.P.); (S.A.); (V.S.); (F.R.); (A.Q.); (G.C.)
| | - Maria Laura Marongiu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Giulio Curone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (G.B.); (G.P.); (S.A.); (V.S.); (F.R.); (A.Q.); (G.C.)
| |
Collapse
|
33
|
He J, Zhang X, Wang Q, Li N, Ding D, Wang B. Optimization of the Fermentation Conditions of Metarhizium robertsii and Its Biological Control of Wolfberry Root Rot Disease. Microorganisms 2023; 11:2380. [PMID: 37894038 PMCID: PMC10609576 DOI: 10.3390/microorganisms11102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Fusarium solani is the main pathogenic fungus causing the root rot of wolfberry (Lycium barbarum). The endophytic fungus Metarhizium robertsii has been widely used for the biocontrol of plant pathogenic fungi, but the biocontrol effects of this fungus on wolfberry root rot and its antifungal mechanism against F. solani have not been reported. In this study, the antagonism of endophytic fungus M. robertsii against F. solani was verified. Further, we optimized the fermentation conditions of M. robertsii fermentation broth based on the inhibition rate of F. solani. In addition, the effects of M. robertsii fermentation broth on the root rot of wolfberry and its partial inhibition mechanism were investigated. The results showed that M. robertsii exhibited good antagonism against F. solani. Glucose and beef extracts were the optimal carbon and nitrogen sources for the fermentation of M. robertsii. Under the conditions of 29 °C, 190 rpm, and pH 7.0, the fermentation broth of M. robertsii had the best inhibition effect on F. solani. Furthermore, the fermentation broth treatment decreased the activities of superoxide dismutase, catalase, and peroxidase of F. solani; promoted the accumulation of malondialdehyde; and accelerated the leakage of soluble protein and the decrease in soluble sugar. In addition, inoculation with M. robertsii significantly reduced the decay incidence and disease index of wolfberry root rot caused by F. solani. These results indicate that M. robertsii could be used as a biological control agent in wolfberry root rot disease management.
Collapse
Affiliation(s)
- Jing He
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Q.W.); (N.L.); (D.D.); (B.W.)
| | | | | | | | | | | |
Collapse
|
34
|
Xiang M, Liu J, Ma K, Sha Y, Zhan Y, Zhang W, Kong X. The mechanism of Qijing Mingmu decoction on cellular senescence of conjunctivochalasis. BMC Complement Med Ther 2023; 23:302. [PMID: 37644481 PMCID: PMC10466834 DOI: 10.1186/s12906-023-04138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Qijing Mingmu decoction (QJMM), a compound Chinese medicine preparation, which consists of Lycium barbarum, Polygonatum, Ophiopogon japonicus, Poria cocos, Glycyrrhiza, Eclipta prostrata and Ligusticum striatum, has been confirmed to be effective for the treatment of conjunctivochalasis (CCH) in clinic and reduce cellular senescence. However, the underlying mechanism is still unknown. Our previous study revealed that p38-mediated cellular senescence contributed to the pathogenesis of CCH. METHODS To explore whether p38 might be the potential therapeutic target of QJMM for CCH, CCH fibroblasts were treated with QJMM granule and then the effect of QJMM granule on the expression and promoter activity of p38α was determined by western blot and dual luciferase reporter gene assay, respectively. Meanwhile, the influence of QJMM granule on cell proliferation, oxidative stress, cellular senescence and the expression of the cellular senescence-associated genes were measured by corresponding methods. RESULTS QJMM granule significantly decreased the protein expression of p38α and p-p38α in CCH fibroblasts in a dose-dependent manner and inhibited p38α promoter activity. QJMM granule as well as the p38 inhibitor SB203580 reduced the level of reactive oxygen species and increased the activity of superoxide dismutase in CCH fibroblasts. QJMM granule and SB203580 promoted cell proliferation and reduced the percentage of SA-β-Gal-positive cells. The mRNA and protein expression of p53 and p21 was remarkably down-regulated by QJMM granule as well as SB203580 and that of SMP30 was up-regulated in CCH fibroblasts. CONCLUSIONS Our findings demonstrated that QJMM granule was effective for alleviating cellular senescence of CCH fibroblasts by p38 MAPK signaling and the followed p53/p21 signaling.
Collapse
Affiliation(s)
- Minhong Xiang
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, P.R. China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Jiang Liu
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, P.R. China
| | - Kai Ma
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, P.R. China
| | - Yongyi Sha
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, P.R. China
| | - Yueping Zhan
- Department of Central Lab, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Wei Zhang
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, P.R. China
| | - Xueqing Kong
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, P.R. China
| |
Collapse
|
35
|
Chen H, Zhang WJ, Kong JB, Liu Y, Zhi YL, Cao YG, Du K, Xue GM, Li M, Zhao ZZ, Sun YJ, Feng WS, Xie ZS. Structurally Diverse Phenolic Amides from the Fruits of Lycium barbarum with Potent α-Glucosidase, Dipeptidyl Peptidase-4 Inhibitory, and PPAR-γ Agonistic Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11080-11093. [PMID: 37462007 DOI: 10.1021/acs.jafc.3c01669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
A total of nine new phenolic amides (1-9), including four pairs of enantiomeric mixtures (3-5 and 8), along with ten known analogues (10-19) were identified from the fruits of Lycium barbarum using bioassay-guided chromatographic fractionation. Their structures were elucidated by comprehensive spectroscopic and spectrometric analyses, chiral HPLC analyses, and quantum NMR, and electronic circular dichroism calculations. Compounds 5-7 are the first example of feruloyl tyramine dimers fused through a cyclobutane ring. The activity results indicated that compounds 1, 11, and 13-17 exhibited remarkable inhibition against α-glucosidase with IC50 of 1.11-33.53 μM, 5-150 times stronger than acarbose (IC50 = 169.78 μM). Meanwhile, compounds 4a, 4b, 5a, 5b, 13, and 14 exerted moderate agonistic activities for peroxisome proliferator-activated receptor (PPAR-γ), with EC50 values of 10.09-44.26 μM. Especially,compound 14 also presented inhibitory activity on dipeptidyl peptidase-4 (DPPIV), with an IC50 value of 47.13 μM. Furthermore, the banding manner of compounds 14 and 17 with the active site of α-glucosidase, DPPIV, and PPAR-γ was explored by employing molecular docking analysis.
Collapse
Affiliation(s)
- Hui Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P. R. China, Zhengzhou 450046, P. R. China
| | - Wen-Jing Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Jiang-Bo Kong
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Yun Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Yan-Le Zhi
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Yan-Gang Cao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Kun Du
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Gui-Min Xue
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Meng Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Zhen-Zhu Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Yan-Jun Sun
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P. R. China, Zhengzhou 450046, P. R. China
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P. R. China, Zhengzhou 450046, P. R. China
| | - Zhi-Shen Xie
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| |
Collapse
|
36
|
Ghosh AK, Harper M, Robinson WL. Total Synthesis of Neuroprotective Agents, (+)-Lycibarbarine A and (-)-Lycibarbarine B. J Org Chem 2023; 88:9530-9536. [PMID: 37267592 PMCID: PMC10942745 DOI: 10.1021/acs.joc.3c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe the convergent total syntheses of lycibarbarines A and B which are potent neuroprotective agents recently isolated from the fruits of Lycium barbarum. The synthesis highlights the construction of a unique spiro oxazine heterocyclic motif imbedded in these natural products. The synthesis is accomplished from the commercially available 8-hydroxyquinaline and 2-deoxy-d-ribose as key starting materials. The synthesis features a Reimer-Tiemann reaction, selective amine alkylation with a keto tosylate derivative, and spiroketalization to form an oxazine core.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Marc Harper
- Department of Chemistry, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | | |
Collapse
|
37
|
Ri MH, Xing Y, Zuo HX, Li MY, Jin HL, Ma J, Jin X. Regulatory mechanisms of natural compounds from traditional Chinese herbal medicines on the microglial response in ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154889. [PMID: 37262999 DOI: 10.1016/j.phymed.2023.154889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/12/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Development of clinically effective neuroprotective agents for stroke therapy is still a challenging task. Microglia play a critical role in brain injury and recovery after ischemic stroke. Traditional Chinese herbal medicines (TCHMs) are based on a unique therapeutic principle, have various formulas, and have long been widely used to treat stroke. Therefore, the active compounds in TCHMs and their underlying mechanisms of action are attracting increasing attention in the field of stroke drug development. PURPOSE To summarize the regulatory mechanisms of TCHM-derived natural compounds on the microglial response in animal models of ischemic stroke. METHODS We searched studies published until 10 April 2023 in the Web of Science, PubMed, and ScienceDirect using the following keywords: natural compounds, natural products or phytochemicals, traditional Chinese Medicine or Chinese herbal medicine, microglia, and ischemic stroke. This review was prepared according to PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analysis) guidelines. RESULTS Natural compounds derived from TCHMs can attenuate the M1 phenotype of microglia, which is involved in the detrimental inflammatory response, via inhibition of NF-κB, MAPKs, JAK/STAT, Notch, TLR4, P2X7R, CX3CR1, IL-17RA, the NLRP3 inflammasome, and pro-oxidant enzymes. Additionally, the neuroprotective response of microglia with the M2 phenotype can be enhanced by activating Nrf2/HO-1, PI3K/AKT, AMPK, PPARγ, SIRT1, CB2R, TREM2, nAChR, and IL-33/ST2. Several clinical trials showed that TCHM-derived natural compounds that regulate microglial responses have significant and safe therapeutic effects, but further well-designed clinical studies are needed. CONCLUSIONS Further research regarding the direct targets and potential pleiotropic or synergistic effects of natural compounds would provide a more reasonable approach for regulation of the microglial response with the possibility of successful stroke drug development.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
38
|
Rajkowska K, Otlewska A, Broncel N, Kunicka-Styczyńska A. Microbial Diversity and Bioactive Compounds in Dried Lycium barbarum Fruits (Goji): A Comparative Study. Molecules 2023; 28:molecules28104058. [PMID: 37241797 DOI: 10.3390/molecules28104058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
This study compares the microbial diversity and content of bioactive compounds in dried goji berries available on the Polish market to those of the most highly valued goji berries from the Ningxia region in China. The content of phenols, flavonoids, and carotenoids were determined, as well as the antioxidant capacities of the fruits. The quantitative and qualitative composition of the microbiota inhabiting the fruits was assessed using metagenomics by high-throughput sequencing on the Illumina platform. The highest quality was demonstrated by naturally dried fruits from the Ningxia region. These berries were characterized by a high content of polyphenols and high antioxidant activity, as well as high microbial quality. The lowest antioxidant capacity was shown by goji berries cultivated in Poland. However, they contained a high amount of carotenoids. The highest microbial contamination was found in the goji berries available in Poland (>106 CFU/g), which is important in terms of consumer safety. Despite the widely accepted benefits of consuming goji berries, both the country of cultivation and the preservation method may influence their composition, bioactivity, and microbial quality.
Collapse
Affiliation(s)
- Katarzyna Rajkowska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland
| | - Natalia Broncel
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland
- Bionanopark Ltd., Dubois 114/116, 93-465 Łódź, Poland
| | - Alina Kunicka-Styczyńska
- Department of Sugar Industry and Food Safety Management, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland
| |
Collapse
|
39
|
Ma R, Kannan M, Zhuang K, Xia Q, Sun D, Tu P, Fan T, Liu K, Zhang Y. Pharmacological importance of Kunxian Capsule in clinical applications and its adverse effects: A review. CHINESE HERBAL MEDICINES 2023; 15:222-230. [PMID: 37265775 PMCID: PMC10230640 DOI: 10.1016/j.chmed.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/26/2022] [Accepted: 08/15/2022] [Indexed: 03/10/2023] Open
Abstract
Kunxian Capsule (KX) is a popular Chinese patent medicine for the treatment of rheumatoid arthritis, nephrotic syndrome, systemic lupus erythematosus, Henoch-Schönlein purpura, ankylosing spondylitis, psoriatic arthritis and eczema. However, there is scarcity of comprehensive information on the significance of KX in the clinical application and its side effects. Hence, it is aimed to provide a review of the significance of KX, with a focus on the pharmacological effects, clinical applications, and its adverse reactions. This review was based on the published literatures in PubMed, China National Knowledge Infrastructure and WanFang database. The articles were collected by two independent authors with no time limits applied until November 30, 2022. The search term includes Kunxian Capsule and/or clinical effect, pharmacology, disease, therapy, adverse effects and quality control. KX has been shown to be effective in the treatment of autoimmune arthritis by inhibiting inflammatory responses and inducing apoptosis. Many studies suggest that KX has anti-inflammatory and analgesic properties that aid in the improvement of joint functions. KX dispels wind, removes dampness, invigorates the kidneys, and promotes blood circulation, thereby curing various diseases. However, studies also suggest KX-related adverse reactions in multiple systems. Overall, this review highlights the scientific basis of KX in curing or preventing various diseases and provides novel insights for further research and clinical applications.
Collapse
Affiliation(s)
- Ruijiao Ma
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Maharajan Kannan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Kaiyan Zhuang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Dong Sun
- Guangzhou Baiyunshan Chenliji Pharmaceutical Factory Co., Ltd., Guangzhou 510288, China
| | - Pengfei Tu
- State Key Laboratory of Natural Medicines and Biomimetic Medicines, School of Pharmacy, Peking University, Beijing 100191, China
| | - Taiping Fan
- Angiogenesis and Chinese Medicine Laboratory, Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| |
Collapse
|
40
|
Sun Y, Meng X, Hu X, Liu R, Zhao Z, Wang S, Zhang R, Guo K, Luo L. Dietary supplementation with Lycium barbarum polysaccharides conducive to maintaining the health of Luciobarbus capito via the enhancement of enzyme activities and the modulation of gut microbiota. Int J Biol Macromol 2023; 232:123500. [PMID: 36736520 DOI: 10.1016/j.ijbiomac.2023.123500] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/08/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Lycium barbarum polysaccharide (LBP) is the main active component of Lycium barbarum (L. barbarum), which has important medicinal and nutritional value. However, the effect of LBP treatment on Luciobarbus capito (L. capito) still remains unknown. Given this, the current work aims to probe the underlying effect of different levels of LBP treatment (i.e. 0.10, 0.50 and 1.00 g/L) on L. capito in the context of enzymatic activity analysis, histological observations and gut microbiota analysis. Compared with control group, the activities of hepatic antioxidant enzymes, intestinal digestive enzymes and hepatic immune enzyme were found to be significantly increased after 0.10 g/L LBP and 0.50 g/L LBP treatment (P < 0.05). This result indicated that moderate levels of LBP treatment could dramatically enhance the immunity and antioxidant capacity of L. capito. Furthermore, the compositional structures of the gut microbiota in L. capito were found to be greatly shaped after LBP treatment, whereas the diversity and abundance of the gut microbiota were only found to be slightly changed (P > 0.05). No significant changes were screened in the morphologic structures of gut constructions. This work would provide theoretical and experimental basis for future application of LBP as supplement in the culture process of the farmed fish.
Collapse
Affiliation(s)
- Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China.
| | - Xianwei Meng
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China; Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Xiaowei Hu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China; Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Zhigang Zhao
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Shihui Wang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Rui Zhang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Kun Guo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Liang Luo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| |
Collapse
|
41
|
Cho SY, Lee HG, Kwon S, Park SU, Jung WS, Moon SK, Park JM, Ko CN. A Systematic Review of In Vivo Studies of the Efficacy of Herbal Medicines for Anti-Aging in the Last Five Years. Pharmaceuticals (Basel) 2023; 16:448. [PMID: 36986547 PMCID: PMC10054545 DOI: 10.3390/ph16030448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND The world's population is rapidly aging, and attention to and research on the increase in life expectancy and age-related diseases are needed. This study aimed to review the in vivo studies on the anti-aging effects of herbal medicines. METHODS In vivo studies of single or complex herbal medicines for anti-aging that were published in the last five years were included in this review. The following databases were used: PubMed, Scopus, ScienceDirect, Web of Science and EMBASE. RESULTS A total of 41 studies were considered eligible for the review. The articles were classified into body organs and functions, experimental country, herbal medicine, extraction method, administration route, dosage, duration, animal model, aging-induced method, sex, number of animals per group, and outcomes and mechanisms A single herbal extract was used in a total of 21 studies including Alpinia oxyphylla Miq., Acanthopanax senticosus and Lyceum barbarum, and a multi-compound herbal prescription was used in a total of 20 studies, including Modified Qiongyu paste, Wuzi Yanzong recipe, etc. Each herbal medicine had anti-aging effects on learning and memory, cognition, emotion, internal organs, gastrointestinal tracts, sexual functions, musculoskeletal function and so on. The common mechanisms of action were antioxidant and anti-inflammatory, and various effects and mechanisms for each organ and function were identified. CONCLUSIONS Herbal medicine exhibited beneficial effects on anti-aging in various parts of the body and its function. Further investigation of the appropriate herbal medicine prescriptions and their components is recommended.
Collapse
Affiliation(s)
- Seung-Yeon Cho
- Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Han-Gyul Lee
- Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Seungwon Kwon
- Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Seong-Uk Park
- Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Woo-Sang Jung
- Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Sang-Kwan Moon
- Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Jung-Mi Park
- Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Chang-Nam Ko
- Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| |
Collapse
|
42
|
Zhai Y, Tang H, Zhang Q, Peng Y, Zhao L, Zhang B, Yang Y, Ma J, Zhu J, Zhang D. The Protective Effect of Lycium barbarum Betaine and Effervescent Tablet Against Carbon Tetrachloride-Induced Acute Liver Injury in Rats. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231161419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
The liver is essential for animals and humans. Because of their low side effects and high safety, natural products have recently become a research hotspot for human health-related issues that can damage the liver. In this study, we investigated the protective effects in rats of Lycium barbarum betaine (LBB) and Lycium barbarum betaine Effervescent Tablet (LBBET) against liver injury caused by carbon tetrachloride (CCl4). The results showed that LBB and LBBET pretreatment significantly reduced the serum levels of alanine aminotransferase, aspartate transaminase (AST), and alkaline phosphatase, as well as the liver tissue levels of malondialdehyde. Meanwhile, glutathione peroxidase, and superoxide dismutase levels were significantly increased in liver tissues. In addition, LBB and LBBET may effectively alleviate CCl4-induced liver injury by a mechanism related to the activation of the Nrf2 signaling pathway. In conclusion, LBB and LBBET may serve as potential mitigators of CCl4-induced liver injury. Effervescent Tablet can be used as either a new formulation or practical product for patients who have difficulty swallowing regular tablets or capsules. This study provides a basis and new ideas for the development of functional foods or drugs related to the field of liver protection.
Collapse
Affiliation(s)
- Yuqing Zhai
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Huaqiang Tang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Qunhui Zhang
- College of Medical, Qinghai University, Xining, China
| | - Yanfeng Peng
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Linlin Zhao
- College of Medical, Qinghai University, Xining, China
| | - Benyin Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Yongjing Yang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Jing Ma
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Ji Zhu
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Dejun Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| |
Collapse
|
43
|
Potential role of plant polysaccharides as immunostimulants in aquaculture: a review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Abstract
Aquaculture is one of the primary food-producing sectors in the world that ensures human nourishment. However, aqua farmers are facing serious problems due to disease out breaks and development of antimicrobial resistance. Until now, chemical or antibiotic based strategies has been applied to control disease related concern in aquaculture. Frequent usage of antibiotics in feed or usage of disinfectant to overcome the disease may end up with negative impacts to the environment and human. Utilization of plant derived polysaccharides has been drastically increased due to their effective roles and could serve as a best replacement for chemical agents and antibiotics. In addition, plant derived compounds and plant extracts was utilized to improve the immunity, intestinal health and growth performance of aquaculturable organisms. In addition, large number of plant-based polysaccharides was utilized as immunostimulants in aquaculture. Hence, this review aims to highlight the multifunctional properties of plant-based polysaccharides in aquaculture. Moreover, advantages and different concentration of plant polysaccharides as a feed additives in aquaculture sector has been discussed herein.
Collapse
|
44
|
Raghu SV, Rao S, Kini V, Kudva AK, George T, Baliga MS. Fruits and their phytochemicals in mitigating the ill effects of ionizing radiation: review on the existing scientific evidence and way forward. Food Funct 2023; 14:1290-1319. [PMID: 36688345 DOI: 10.1039/d2fo01911f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although helpful in treating cancer, exposure to ionizing radiation can sometimes cause severe side effects, negating its benefit. In addition to its use in clinics, a nontoxic radioprotective agent can also be beneficial in occupational settings where humans are occupationally exposed for prolonged periods to low doses of radiation. Scientific studies using laboratory animals have shown that the fruits Aegle marmelos, Capsicum annuum, Citrus aurantium, Citrullus lanatus, Crataegus microphylla, Eugenia jambolana, Emblica officinalis, Garcinia kola, Grewia asiatica, Hippophae rhamnoides, Malus baccata, Malpighia glabra or Malpighia emarginata, Mangifera indica, Prunus domestica, Prunus avium, Prunus armeniaca, Psoralea corylifolia, Punica granatum, Solanum lycopersicum, Terminalia chebula, Vaccinium macrocarpon, Vitis vinifera and Xylopia aethiopica, and the phytochemicals gallic acid, ellagic acid, quercetin, geraniin, corilagin, ascorbic acid, hesperetin, ursolic acid, lycopene, naringin, hesperidin, rutin, resveratrol, β-sitosterol, apigenin, luteolin, chlorogenic acid, caffeic acid, mangiferin, diosmin, ferulic acid, and kaempferol are effective in preventing radiation-induced ill effects. Clinical studies with Emblica officinalis and Punica granatum have also shown that fruits help mitigate radiation-induced mucositis, dermatitis, and cystitis. For the first time, the current review summarizes the beneficial effects of fruits and phytochemicals in mitigating radiation-induced damage, the underlying mechanisms and the existing lacunae for future studies to be undertaken for the benefit of humans and the nutraceutical and agri-based industries.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Suresh Rao
- Mangalore Institute of Oncology, Pumpwell, Mangalore-575002, Karnataka, India.
| | - Venkataramana Kini
- Mangalore Institute of Oncology, Pumpwell, Mangalore-575002, Karnataka, India.
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Thomas George
- Internal Medicine, Coney Island Hospital, 2601 Ocean Pkwy, Brooklyn, New York, 11235, USA
| | | |
Collapse
|
45
|
The potential of Lycium barbarum miR166a in kidney cancer treatment. Exp Cell Res 2023; 423:113455. [PMID: 36584744 DOI: 10.1016/j.yexcr.2022.113455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Predator species of animal can absorb plant microRNA that can regulate target gene expression and physiological function across species. The herb Lycium barbarum, a traditional Chinese medicine, has a wide range of antitumor effects. However, there are no reports on the effects of microRNA derived from it on the cross-border regulation of renal cell carcinoma (RCC). We performed in vitro and in vivo experiments to explore the role and mechanism of the L. barbarum-derived microRNA miR166a (Lb-miR166a) in cross-border regulation of RCC. Our mRNA sequencing analysis showed that Lb-miR166a regulates the expression of various genes in tumor cells, including 1232 upregulated genes and 581 downregulated genes, which were enriched to 1094 Gene Ontology entries and 43 Kyoto Encyclopedia of Genes and Genomes pathways. In vitro cell experiments confirmed that Lb-miR166a can inhibit the proliferation of RCC cells, promote the apoptosis of tumor cells, and inhibit the invasion and metastasis of tumor cells by regulating the expression of related genes. Furthermore, our in vivo tumor-bearing experiment showed that subcutaneous tumor formation volume decreased in Lb-miR166a mice, along with the number of liver metastases. This study elucidates the role and mechanism of Lb-miR166a in RCC treatment (Fig. 1). Our results further mechanistically confirm the antitumor properties of L. barbarum. Our study may contribute to the clinical development of a targeted drug for RCC treatment.
Collapse
|
46
|
Niu Y, Zhang G, Sun X, He S, Dou G. Distinct Role of Lycium barbarum L. Polysaccharides in Oxidative Stress-Related Ocular Diseases. Pharmaceuticals (Basel) 2023; 16:215. [PMID: 37259363 PMCID: PMC9966716 DOI: 10.3390/ph16020215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress is an imbalance between the increased production of reactive species and reduced antioxidant activity, which can cause a variety of disturbances including ocular diseases. Lycium barbarum polysaccharides (LBPs) are complex polysaccharides isolated from the fruit of L. barbarum, showing distinct roles in antioxidants. Moreover, it is relatively safe and non-toxic. In recent years, the antioxidant activities of LBPs have attracted remarkable attention. In order to illustrate its significance and underlying therapeutic value for vision, we comprehensively review the recent progress on the antioxidant mechanisms of LBP and its potential applications in ocular diseases, including diabetic retinopathy, hypertensive neuroretinopathy, age-related macular degeneration, retinitis pigmentosa, retinal ischemia/reperfusion injury, glaucoma, dry eye syndrome, and diabetic cataract.
Collapse
Affiliation(s)
- Yali Niu
- College of Life Sciences, Northwestern University, Xi’an 710069, China
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Guoheng Zhang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xiaojia Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Shikun He
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Guorui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
47
|
Chen Q, Yang X, Capanoglu E, Amrouche AT, Wu L, Luo J, Zhu Y, Wang Y, Jiang X, Zhang D, Lu B. Eucommia ulmoides male flower as a remarkable edible floral resource exerts lifespan/healthspan-promoting effects on Caenorhabditis elegans. Food Funct 2023; 14:457-470. [PMID: 36519399 DOI: 10.1039/d2fo03006c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural products, especially phytochemicals, can effectively improve the health of various model organisms and ultimately prolong their lifespan. As an emerging resource of plant-based food, edible flowers have potential anti-aging effects. Here, we showed that twelve out of 30 drug-food homologous flowers' extracts significantly extended the lifespan of C. elegans, and the Eucommia ulmoides male flower was screened out by comparing centrally. The lifespan of C. elegans increased by 18.61% under the treatment of 100 μg mL-1 floral extract (EUFE). Interestingly, this effect was attenuated when EUFE was administered late or at higher concentrations. Significantly, EUFE improved health indicators that decline with aging including pharyngeal pumping, mobility, muscle morphology, and lipofuscin accumulation. EUFE also enhanced the resistance of C. elegans to oxidative/heat stress. The longevity-extending effect of EUFE was dependent on transcription factor DAF-16 and mitochondrial function. Moreover, EUFE triggered the nuclear translocation of DAF-16 and promoted downstream LGG-1 and SOD3 protein expression. In body-wall muscles, EUFE stimulated mitochondrial fission and mitophagy to mitigate age-related mitochondrial impairments. The transcriptional checkpoints of daf-16, drp-1, eat-3, lgg-1, and dct-1 further showed that EUFE regulated DAF-16 signaling and mitochondrial homeostasis. Finally, the interpretation of the EUFE components by correlation analysis, UHPLC-QE-MS, and verification experiments showed that aucubin, geniposide, and asperuloside are the main active compounds. We revealed the excellent lifespan/healthspan-promoting efficacy of EUFE and highlighted that edible flowers are worthy of further investigation as anti-aging dietary resources. Meanwhile, related mechanisms enriched the hypothesis that mitochondria might be involved in the healthspan modulation of longevity pathways.
Collapse
Affiliation(s)
- Qi Chen
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Amel Thanina Amrouche
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Lipeng Wu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Jingyang Luo
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Yuhang Zhu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Yixuan Wang
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Xiongtao Jiang
- Florasis Oriental Beauty Research Institute, Hangzhou, 310058, China
| | - Dayong Zhang
- Florasis Oriental Beauty Research Institute, Hangzhou, 310058, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| |
Collapse
|
48
|
Zheng HL, Li MT, Zhou T, Wang YY, Shang EX, Hua YQ, Duan JA, Zhu Y. Protective effects of Lycium barbarum L. berry extracts against oxidative stress-induced damage of the retina of aging mouse and ARPE-19 cells. Food Funct 2023; 14:399-412. [PMID: 36512065 DOI: 10.1039/d2fo02788g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study, we investigated the preventive effect of Lycium barbarum L. berry extract on age-related macular degeneration (AMD) and the main components responsible for its antioxidant activity. An AMD mouse model was developed by feeding 18-month-old mice with a 1% hydroquinone diet. Meanwhile, the model mice were treated with water extract (LBW) and alcohol extract (LBE) of L. barbarum berries respectively for 3 months. It was found that the retinal structural abnormalities were improved and the oxidation stress and inflammatory imbalance were both attenuated in model mice treated with the extracts of L. barbarum berries. According to the metabolomics analysis of the serum of model mice, LBW regulated the metabolism of unsaturated fatty acids and sphingolipids, while LBE extracts tended to regulate taurine metabolism. On sodium iodate induced oxidative injury of ARPE-19 cells, water extracts of L. barbarum berries eluted with 95% ethanol (LBW-95E) on AB-8 macroporous resin significantly improved the cell viability and attenuated oxidative stress by increasing the superoxide dismutase (SOD) activity and glutathione (GSH) content, decreasing the reactive oxygen species (ROS) content, promoting the entry of nuclear factor erythroid-derived 2-like 2 (Nrf2) into the nucleus and up-regulating the heme oxygenase-1 (HO-1) expression. Scopoletin, N-trans-feruloyltyramine and perlolyrine were identified as the main components of LBW-95E. These results demonstrated that L. barbarum berry extracts protected the retina of aging AMD model mice from degeneration and LBW-95E was the vital antioxidant activity fraction of LBW. These findings suggest that L. barbarum berry extracts might be an excellent natural source for the development of retinal protection-related drugs or dietary supplements.
Collapse
Affiliation(s)
- Hui-Li Zheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Meng-Ting Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Tong Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ying-Yi Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yong-Qing Hua
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
49
|
Sun M, Ye H. Natural Foods for the Treatment of Nonalcoholic Fatty Liver Disease. J Med Food 2023; 26:1-13. [PMID: 36579939 DOI: 10.1089/jmf.2022.k.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. The etiology of NAFLD is highly heterogeneous, which occurs and develops under the joint action of metabolism, inflammation, genetics, environment, and gut microbiota. At present, the principal therapeutic modalities targeting NAFLD are lifestyle interventions such as weight loss through diet and exercise. At present, there is no established therapy for the treatment of NAFLD, and many therapies are associated with a variety of side effects. A great number of in vitro and in vivo experiments have indicated that there are many natural foods that have therapeutic potential for NAFLD. This review summarizes the natural foods and their mechanisms that were found in recent years, furthermore, provides further information relevant to the treatment of NAFLD.
Collapse
Affiliation(s)
- Mengxia Sun
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Hua Ye
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
50
|
Wei H, Qiao H, Liu S, Yuan X, Xu C. Transcriptome-Based Selection and Validation of Reference Genes for Gene Expression in Goji Fruit Fly ( Neoceratitis asiatica Becker) under Developmental Stages and Five Abiotic Stresses. Int J Mol Sci 2022; 24:ijms24010451. [PMID: 36613890 PMCID: PMC9820723 DOI: 10.3390/ijms24010451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Goji fruit fly, Neoceratitis asiatica, is a major pest on the well-known medicinal plant Lycium barbarum. Dissecting molecular mechanisms of infestation and host selection of N. asiatica will contribute to the determination of best management practices for pest fly control. Gene expression normalization by Real-time quantitative PCR (qPCR) requires the selection and validation of appropriate reference genes (RGs). Hence, 15 candidate RGs were selected from transcriptome data of N. asiatica. Their expression stability was evaluated with five algorithms (∆Ct, Normfinder, GeNorm, BestKeeper, and RefFinder) for sample types differing in the developmental stage, sex, tissue type, and in response to five different abiotic stresses. Our results indicated that the RGs β-Actin + GST for sex, RPL32 + EF1α for tissue type, RPS13+ EF1α for developmental stages along with odor stimulation, color induction, and starvation-refeeding stresses, EF1α + GAPDH under insecticide stress, RPS13 + RPS18 under temperature stress, respectively, were selected as the most suitable RGs for qPCR normalization. Overall, RPS18 and EF1α were the two most stable RGs in all conditions, while RPS15 and EF1β were the least stable RGs. The corresponding suitable RGs and one unstable RG were used to normalize a target odorant-binding protein OBP56a gene in male and female antennae, different tissues, and under odor stimulation. The results of OBP56a expression were consistent with transcriptome data. Our study is the first research on the most stable RGs selection in N. asiatica, which will facilitate further studies on the mechanisms of host selection and insecticide resistance in N. asiatica.
Collapse
|