1
|
Li H, Chen H, Zhao T, Zhang W, Deng J, Xie W, Fan J, Lou H, Dong P, Han Z, Xing D, Mao S, Shen X, Xue X, Lu M. CD2AP shapes a stromal reduced tumor microenvironment and contributes to immunotherapy in gastric cancer. BMC Cancer 2025; 25:910. [PMID: 40399857 PMCID: PMC12096758 DOI: 10.1186/s12885-025-14248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/29/2025] [Indexed: 05/23/2025] Open
Abstract
Gastric cancer (GC) ranks as the fifth most prevalent malignant tumor and stands as the fourth leading contributor to cancer-related fatalities on a global scale. The specific link between CD2 Associated Protein (CD2AP) expression and the tumor microenvironment (TME) remains unclear, and further exploration is needed to understand its potential role in immune response and as a target for immunotherapy in GC. Utilizing RNA sequencing data acquired from The Cancer Genome Atlas (TCGA) for a pan-cancer analysis, a comprehensive evaluation was carried out to determine the expression pattern and immunological involvement of CD2AP. Systematic association of CD2AP with immunological features within the stomach adenocarcinoma (STAD) TME was subsequently performed, encompassing factors like cancer immunity cycles, immune checkpoints, immunomodulators, tumor-infiltrating immune cells (TIICs). We found that CD2AP was enhanced expression in the TME of a variety of malignancies. CD2AP contributes to forming a stromal reduced TME in GC and improve the efficacy of immunotherapy. It was observed that patients with elevated levels of CD2AP, along with high scores on their CD4, CD20, and CD57 immune markers, tended to experience the most favorable prognosis. Furthermore, an IRS was constructed to accurately assess the prognosis of STAD patients. Since CD2AP was associated with the formation of stromal reduced TME in STAD, the expression of CD2AP can improve the effect of immunotherapy of STAD. CD2AP could emerge as a novel prognostic biomarker for STAD, offering a fresh avenue for molecular targeted therapy.
Collapse
Affiliation(s)
- Haoliang Li
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hua Chen
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ting Zhao
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenqi Zhang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jing Deng
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wangkai Xie
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianing Fan
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Han Lou
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pingping Dong
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zheng Han
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dong Xing
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sunzhong Mao
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Mingdong Lu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Tao Y, Wang S, Li X, Jin L, Liu C, Jiao K, Li X, Cheng Y, Xu K, Zhou X, Wei X. Identification of disulfidptosis-related genes and subgroups in spinal cord injury. Spinal Cord 2025:10.1038/s41393-025-01081-1. [PMID: 40319145 DOI: 10.1038/s41393-025-01081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/03/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
STUDY DESIGN Bioinformatics analysis and experimental validation study. OBJECTIVES To investigate the role and expression patterns of disulfidptosis-related genes in spinal cord injury (SCI), identify potential pivotal genes, and explore possible therapeutic targets. SETTING Shanghai, China. METHODS Data acquisition and pre-processing: Screened 27 disulfidptosis-related genes based on literature and downloaded RNA-sequencing data of ASCI patients from GEO database (GSE151371); Identification of differentially expressed genes (DEGs): Used R package "limma" for differential gene expression analysis between ASCI samples and normal controls; Evaluating immune cell infiltration: Employed ssGSEA algorithm and CIBERSORT to determine immune cell abundance; Identification and functional verification of key genes: Intersected disulfidptosis-related genes with DEGs, and used machine learning techniques (Random Forest, Lasso, Support Vector Machine) to identify hub genes. Validated hub genes expression by real-time PCR; Construction of a diagnostic model: Developed a backpropagation neural network clinical prediction model based on hub genes and clinical features, and evaluated its performance using ROC curve. 6. Subcluster analysis: Performed consensus cluster analysis of ASCI samples and hub genes, and used GSVA to elucidate functional differences between subgroups. RESULTS Identified 7764 DEGs in ASCI, with GO and KEGG enrichment in inflammation and autophagy-related pathways; Found differences in immune cell infiltration between ASCI and control groups, and correlation between immune cells and DRGs; Determined seven hub genes (MYL6, NUBPL, CYFIP1, IQGAP1, FLNB, SLC7A11, CD2AP) through machine learning; Validated the expression of hub genes by qRT-PCR; Constructed a clinical diagnostic model with good predictive accuracy (overall dataset accuracy of 83.3%); Identified two subtypes of ASCI based on hub genes, with different immune infiltration and pathway activity. CONCLUSION Disulfidptosis is closely related to spinal cord injury. The identified hub genes and subtypes provide new insights for biomarker and therapeutic target research. The diagnostic model has potential for clinical application, but further studies are needed due to limitations such as small sample size. SPONSORSHIP This study was supported in part by the project of Youth Scientific and Technological Talents of PLA (2020QN06125), Changhong Talent Project in First affiliated hospital of Navy Medical University (Wei Xianzhao) and Basic Medical Research Project in First affiliated hospital of Navy Medical University (2023PY17). I want to reiterate that there is no prior publication of figures or tables and no conflict of interest in the submission of this manuscript. The graphical abstract is divided into two parts. The upper section sequentially illustrates the occurrence of disulfidptosis and changes in the immune microenvironment in the human body after SCI. The lower section displays the construction of a diagnostic model for SCI through the detection of changes in disulfidptosis-related genes, combined with patient clinical information.
Collapse
Affiliation(s)
- Ye Tao
- Naval Medical University, Shanghai, China
| | | | - Xiongfei Li
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China
| | - Letian Jin
- Hangzhou Medical College, Hangzhou, China
| | - Chen Liu
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China
| | - Kun Jiao
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China
| | - Xiaoyu Li
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China
| | - Yajun Cheng
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China
| | - Kehan Xu
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China.
| | - Xiaoyi Zhou
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China.
| | - Xianzhao Wei
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China.
| |
Collapse
|
3
|
Grabowska ME, Vaidya AU, Zhong X, Guardo C, Dickson AL, Babanejad M, Yan C, Xin Y, Mundo S, Peterson JF, Feng Q, Eaton J, Wen Z, Li B, Wei WQ. Multi-omics analysis reveals aspirin is associated with reduced risk of Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.07.25325038. [PMID: 40297415 PMCID: PMC12036415 DOI: 10.1101/2025.04.07.25325038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The urgent need for safe and effective therapies for Alzheimer's disease (AD) has spurred a growing interest in repurposing existing drugs to treat or prevent AD. In this study, we combined multi-omics and clinical data to investigate possible repurposing opportunities for AD. We performed transcriptome-wide association studies (TWAS) to construct gene expression signatures of AD from publicly available GWAS summary statistics, using both transcriptome prediction models for 49 tissues from the Genotype-Tissue Expression (GTEx) project and microglia-specific models trained on eQTL data from the Microglia Genomic Atlas (MiGA). We then identified compounds capable of reversing the AD-associated changes in gene expression observed in these signatures by querying the Connectivity Map (CMap) drug perturbation database. Out of >2,000 small-molecule compounds in CMap, aspirin emerged as the most promising AD repurposing candidate. To investigate the longitudinal effects of aspirin use on AD, we collected drug exposure and AD coded diagnoses from three independent sources of real-world data: electronic health records (EHRs) from Vanderbilt University Medical Center (VUMC) and the National Institutes of Health All of Us Research Program, along with national healthcare claims from the MarketScan Research Databases. In meta-analysis of EHR data from VUMC and All of Us , we found that aspirin use before age 65 was associated with decreased risk of incident AD (hazard ratio=0.76, 95% confidence interval [CI]: 0.64-0.89, P =0.001). Consistent with the findings utilizing EHR data, analysis of claims data from MarketScan revealed significantly lower odds of aspirin exposure among AD cases compared to matched controls (odds ratio=0.32, 95% CI: 0.28-0.38, P <0.001). Our results demonstrate the value of integrating genetic and clinical data for drug repurposing studies and highlight aspirin as a promising repurposing candidate for AD, warranting further investigation in clinical trials.
Collapse
|
4
|
Zhan H, Cammann D, Cummings JL, Dong X, Chen J. Biomarker identification for Alzheimer's disease through integration of comprehensive Mendelian randomization and proteomics data. J Transl Med 2025; 23:278. [PMID: 40050982 PMCID: PMC11884171 DOI: 10.1186/s12967-025-06317-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/23/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the main cause of dementia with few effective therapies. We aimed to identify potential plasma biomarkers or drug targets for AD by investigating the causal association between plasma proteins and AD by integrating comprehensive Mendelian randomization (MR) and multi-omics data. METHODS Using two-sample MR, cis protein quantitative trait loci (cis-pQTLs) for 1,916 plasma proteins were used as an exposure to infer their causal effect on AD liability in individuals of European ancestry, with two large-scale AD genome-wide association study (GWAS) datasets as the outcome for discovery and replication. Significant causal relationships were validated by sensitivity analyses, reverse MR analysis, and Bayesian colocalization analysis. Additionally, we investigated the causal associations at the transcriptional level with cis gene expression quantitative trait loci (cis-eQTLs) data across brain tissues and blood in European ancestry populations, as well as causal plasma proteins in African ancestry populations. RESULTS In those of European ancestry, the genetically predicted levels of five plasma proteins (BLNK, CD2AP, GRN, PILRA, and PILRB) were causally associated with AD. Among these five proteins, GRN was protective against AD, while the rest were risk factors. Consistent causal effects were found in the brain for cis-eQTLs of GRN, BLNK, and CD2AP, while the same was true for PILRA in the blood. None of the plasma proteins were significantly associated with AD in persons of African ancestry. CONCLUSIONS Comprehensive MR analyses with multi-omics data identified five plasma proteins that had causal effects on AD, highlighting potential biomarkers or drug targets for better diagnosis and treatment for AD.
Collapse
Affiliation(s)
- Hui Zhan
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, USA
| | - Davis Cammann
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, USA
- School of Life Science, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, USA
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, USA
| | - Xianjun Dong
- Stephen and Denise Adams Center for Parkinson's Disease Research, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurology and Section of Biomedical Informatics and Data Science (BIDS), Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Jingchun Chen
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, USA.
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, USA.
- School of Life Science, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, USA.
| |
Collapse
|
5
|
Tian Q, Li J, Wu B, Pang Y, He W, Xiao Q, Wang J, Yi L, Tian N, Shi X, Xia L, Tian X, Chen M, Fan Y, Xu B, Tao Y, Song W, Du Y, Dong Z. APP lysine 612 lactylation ameliorates amyloid pathology and memory decline in Alzheimer's disease. J Clin Invest 2025; 135:e184656. [PMID: 39744941 PMCID: PMC11684803 DOI: 10.1172/jci184656] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/24/2024] [Indexed: 05/13/2025] Open
Abstract
Posttranslational modification (PTM) of the amyloid precursor protein (APP) plays a critical role in Alzheimer's disease (AD). Recent evidence reveals that lactylation modification, as a novel PTM, is implicated in the occurrence and development of AD. However, whether and how APP lactylation contributes to both the pathogenesis and cognitive function in AD remains unknown. Here, we observed a reduction in APP lactylation in AD patients and AD model mice and cells. Proteomic mass spectrometry analysis further identified lysine 612 (APP-K612la) as a crucial site for APP lactylation, influencing APP amyloidogenic processing. A lactyl-mimicking mutant (APPK612T) reduced amyloid-β peptide (Aβ) generation and slowed down cognitive deficits in vivo. Mechanistically, APPK612T appeared to facilitate APP trafficking and metabolism. However, lactylated APP entering the endosome inhibited its binding to BACE1, suppressing subsequent cleavage. Instead, it promoted protein interaction between APP and CD2-associated protein (CD2AP), thereby accelerating the endosomal-lysosomal degradation pathway of APP. In the APP23/PS45 double-transgenic mouse model of AD, APP-Kla was susceptible to L-lactate regulation, which reduced Aβ pathology and repaired spatial learning and memory deficits. Thus, these findings suggest that targeting APP lactylation may be a promising therapeutic strategy for AD in humans.
Collapse
Affiliation(s)
- Qiuyun Tian
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Li
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Wu
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yayan Pang
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Wenting He
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaojiao Wang
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lilin Yi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Na Tian
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiuyu Shi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Xia
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Mulan Chen
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yepeng Fan
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Boqing Xu
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yuhan Tao
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, British Columbia, Canada
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yehong Du
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Weymouth L, Smith AR, Lunnon K. DNA Methylation in Alzheimer's Disease. Curr Top Behav Neurosci 2025; 69:149-178. [PMID: 39455499 DOI: 10.1007/7854_2024_530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
To date, DNA methylation is the best characterized epigenetic modification in Alzheimer's disease. Involving the addition of a methyl group to the fifth carbon of the cytosine pyrimidine base, DNA methylation is generally thought to be associated with the silencing of gene expression. It has been hypothesized that epigenetics may mediate the interaction between genes and the environment in the manifestation of Alzheimer's disease, and therefore studies investigating DNA methylation could elucidate novel disease mechanisms. This chapter comprehensively reviews epigenomic studies, undertaken in human brain tissue and purified brain cell types, focusing on global methylation levels, candidate genes, epigenome wide approaches, and recent meta-analyses. We discuss key differentially methylated genes and pathways that have been highlighted to date, with a discussion on how new technologies and the integration of multiomic data may further advance the field.
Collapse
Affiliation(s)
- Luke Weymouth
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Adam R Smith
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
7
|
Gascón E, Calvo AC, Molina N, Zaragoza P, Osta R. Identifying Hub Genes and miRNAs Associated with Alzheimer's Disease: A Bioinformatics Pathway to Novel Therapeutic Strategies. Biomolecules 2024; 14:1641. [PMID: 39766348 PMCID: PMC11726968 DOI: 10.3390/biom14121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/15/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that mainly affects the elderly population. It is characterized by cognitive impairment and dementia due to abnormal levels of amyloid beta peptide (Aβ) and axonal Tau protein in the brain. However, the complex underlying mechanisms affecting this disease are not yet known, and there is a lack of standardized biomarkers and therapeutic targets. Therefore, in this study, by means of bioinformatics analysis, AD-affected brain tissue was analyzed using the GSE138260 dataset, identifying 612 differentially expressed genes (DEGs). Functional analysis revealed 388 upregulated DEGs associated with sensory perception and 224 downregulated DEGs linked to the regulation and modulation of synaptic processes. Protein-protein interaction network analysis identified 20 hub genes. Furthermore, miRNA target gene networks revealed 1767 miRNAs linked to hub genes, among which hsa-mir-106a-5p, hsa-mir-17-5p, hsa-mir-26a-5p, hsa-mir-27a-3p and hsa-mir-34a-5p were the most relevant. This study presents novel biomarkers and therapeutic targets for AD by analyzing the information obtained with a comprehensive literature review, providing new potential targets to study their role in AD.
Collapse
Affiliation(s)
- Elisa Gascón
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, 50013 Zaragoza, Spain; (E.G.); (A.C.C.); (P.Z.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Agroalimentary Institute of Aragon (IA2), University of Zaragoza, 50013 Zaragoza, Spain
- Institute of Health Research of Aragon (IIS), Av. San Juan Bosco 13, 50009 Zaragoza, Spain
| | - Ana Cristina Calvo
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, 50013 Zaragoza, Spain; (E.G.); (A.C.C.); (P.Z.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Agroalimentary Institute of Aragon (IA2), University of Zaragoza, 50013 Zaragoza, Spain
- Institute of Health Research of Aragon (IIS), Av. San Juan Bosco 13, 50009 Zaragoza, Spain
| | - Nora Molina
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, 50013 Zaragoza, Spain; (E.G.); (A.C.C.); (P.Z.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Agroalimentary Institute of Aragon (IA2), University of Zaragoza, 50013 Zaragoza, Spain
- Institute of Health Research of Aragon (IIS), Av. San Juan Bosco 13, 50009 Zaragoza, Spain
| | - Pilar Zaragoza
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, 50013 Zaragoza, Spain; (E.G.); (A.C.C.); (P.Z.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Agroalimentary Institute of Aragon (IA2), University of Zaragoza, 50013 Zaragoza, Spain
- Institute of Health Research of Aragon (IIS), Av. San Juan Bosco 13, 50009 Zaragoza, Spain
| | - Rosario Osta
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, 50013 Zaragoza, Spain; (E.G.); (A.C.C.); (P.Z.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Agroalimentary Institute of Aragon (IA2), University of Zaragoza, 50013 Zaragoza, Spain
- Institute of Health Research of Aragon (IIS), Av. San Juan Bosco 13, 50009 Zaragoza, Spain
| |
Collapse
|
8
|
Xue YY, Zhang ZS, Lin RR, Huang HF, Zhu KQ, Chen DF, Wu ZY, Tao QQ. CD2AP deficiency aggravates Alzheimer's disease phenotypes and pathology through p38 MAPK activation. Transl Neurodegener 2024; 13:64. [PMID: 39696695 PMCID: PMC11657702 DOI: 10.1186/s40035-024-00454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of neurodegenerative disorder, which is characterized by a decline in cognitive abilities. Genome-wide association and clinicopathological studies have demonstrated that the CD2-associated protein (CD2AP) gene is one of the most important genetic risk factors for AD. However, the precise mechanisms by which CD2AP is linked to AD pathogenesis remain unclear. METHODS The spatiotemporal expression pattern of CD2AP was determined. Then, we generated and characterized an APP/PS1 mouse model with neuron-specific Cd2ap deletion, using immunoblotting, immunofluorescence, enzyme-linked immunosorbent assay, electrophysiology and behavioral tests. Additionally, we established a stable CD2AP-knockdown SH-SY5Y cell line to further elucidate the specific molecular mechanisms by which CD2AP contributes to AD pathogenesis. Finally, the APP/PS1 mice with neuron-specific Cd2ap deletion were treated with an inhibitor targeting the pathway identified above to further validate our findings. RESULTS CD2AP is widely expressed in various regions of the mouse brain, with predominant expression in neurons and vascular endothelial cells. In APP/PS1 mice, neuronal knockout of Cd2ap significantly aggravated tau pathology, synaptic impairments and cognitive deficits. Mechanistically, the knockout of Cd2ap activated p38 mitogen-activated protein kinase (MAPK) signaling, which contributed to increased tau phosphorylation, synaptic injury, neuronal apoptosis and cognitive impairment. Furthermore, the phenotypes of neuronal Cd2ap knockout were ameliorated by a p38 MAPK inhibitor. CONCLUSION Our study presents the first in vivo evidence that CD2AP deficiency exacerbates the phenotypes and pathology of AD through the p38 MAPK pathway, identifying CD2AP/p38 MAPK as promising therapeutic targets for AD.
Collapse
Affiliation(s)
- Yan-Yan Xue
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, 88 Jiefang Road, Hangzhou, 310009, China
| | - Zhe-Sheng Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, 88 Jiefang Road, Hangzhou, 310009, China
| | - Rong-Rong Lin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, 88 Jiefang Road, Hangzhou, 310009, China
| | - Hui-Fen Huang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, 88 Jiefang Road, Hangzhou, 310009, China
| | - Ke-Qing Zhu
- National Health and Disease Human Brain Tissue Resource Center and Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Dian-Fu Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, 88 Jiefang Road, Hangzhou, 310009, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Ying Wu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, 88 Jiefang Road, Hangzhou, 310009, China.
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
| | - Qing-Qing Tao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
9
|
Werthmann GC, Herz J. Apoer2/Lrp8: the undercover cop of synaptic homeostasis. Neural Regen Res 2024; 19:2563-2564. [PMID: 38808982 PMCID: PMC11168519 DOI: 10.4103/nrr.nrr-d-23-02002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 05/30/2024] Open
Affiliation(s)
- Gordon C. Werthmann
- Department of Molecular Genetics and Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics and Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
- Department of Neuroscience; Department of Neurology; University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| |
Collapse
|
10
|
Yu L, Li Y, Zhang Y, Weng L, Shuai D, Zhu J, Niu C, Chu M, Jia C. Human cytomegalovirus pUL135 protein affects endothelial cell function via CD2AP in Kawasaki disease. Int J Cardiol 2024; 413:132364. [PMID: 39025135 DOI: 10.1016/j.ijcard.2024.132364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Kawasaki disease (KD) is a kind of pediatric vasculitis, whose pathogenesis has not been elucidated until now. Many scholars believe that KD is one type of infectious diseases in the susceptible groups. However, no recognized pathogens are confirmed. Human cytomegalovirus (HCMV) is a ubiquitous human herpes virus, which can infect varieties of cells including endothelial cells. Studies reported that the viral protein pUL135 is very important for virus replication, reactivation and immune escape. Therefore, we hypothesize that HCMV pUL135 may have a pathogenic effect on KD. METHODS We first determined pUL135 levels in the serum from KD patients. Next, we examined the effects and mechanisms of pUL135 on endothelial cell proliferation and migration. Finally, we assessed the effect of pUL135 on cardiac inflammation in a KD murine model. RESULTS Data showed that pUL135 level was significantly increased in the serum from KD patients compared with the healthy and fever controls. And pUL135 expression in endothelial cells remarkably inhibited cell proliferation, migration and tube formation. Moreover, expression of pUL135 obviously affected actin cytoskeleton. Mechanism investigation substantiated that pUL135 mediated endothelial cell dysfunction via regulating CD2AP. Ultimately, we found that HCMV pUL135 aggravated coronary arteritis in the Candida albicans cell wall extracts (CAWS)-induced KD mouse model. CONCLUSION Our findings imply that HCMV pUL135-mediated endothelial dysfunction plays an important role in exacerbating coronary artery injury in KD conditions.
Collapse
Affiliation(s)
- Lili Yu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, Zhejiang, China; Department of Pediatrics, and Key Laboratory of Children Genitourinary Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yucui Li
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, Zhejiang, China; Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Yingying Zhang
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, Zhejiang, China; Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Luyi Weng
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, Zhejiang, China; Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Dujuan Shuai
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, Zhejiang, China; Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Jinshun Zhu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, Zhejiang, China; Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, Zhejiang, China; Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Maoping Chu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, Zhejiang, China; Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China.
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, Zhejiang, China; Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China.
| |
Collapse
|
11
|
Cao C, Fu G, Xu R, Li N. Coupling of Alzheimer's Disease Genetic Risk Factors with Viral Susceptibility and Inflammation. Aging Dis 2024; 15:2028-2050. [PMID: 37962454 PMCID: PMC11346407 DOI: 10.14336/ad.2023.1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by persistent cognitive decline. Amyloid plaque deposition and neurofibrillary tangles are the main pathological features of AD brain, though mechanisms leading to the formation of lesions remain to be understood. Genetic efforts through genome-wide association studies (GWAS) have identified dozens of risk genes influencing the pathogenesis and progression of AD, some of which have been revealed in close association with increased viral susceptibilities and abnormal inflammatory responses in AD patients. In the present study, we try to present a list of AD candidate genes that have been shown to affect viral infection and inflammatory responses. Understanding of how AD susceptibility genes interact with the viral life cycle and potential inflammatory pathways would provide possible therapeutic targets for both AD and infectious diseases.
Collapse
Affiliation(s)
| | | | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
12
|
Piedade de Souza T, Santana de Araújo G, Magalhães L, Cavalcante GC, Ribeiro-Dos-Santos A, Sena-Dos-Santos C, Silva CS, Eufraseo GL, de Freitas Escudeiro A, Soares-Souza GB, Santos-Lobato BL, Ribeiro-Dos-Santos Â. Unveiling differential gene co-expression networks and its effects on levodopa-induced dyskinesia. iScience 2024; 27:110835. [PMID: 39297167 PMCID: PMC11409023 DOI: 10.1016/j.isci.2024.110835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Levodopa-induced dyskinesia (LID) refers to involuntary motor movements of chronic use of levodopa in Parkinson's disease (PD) that negatively impact the overall well-being of people with this disease. The molecular mechanisms involved in LID were investigated through whole-blood transcriptomic analysis for differential gene expression and identification of new co-expression and differential co-expression networks. We found six differentially expressed genes in patients with LID, and 13 in patients without LID. We also identified 12 co-expressed genes exclusive to LID, and six exclusive hub genes involved in 23 gene-gene interactions in patients with LID. Convergently, we identified novel genes associated with PD and LID that play roles in mitochondrial dysfunction, dysregulation of lipid metabolism, and neuroinflammation. We observed significant changes in disease progression, consistent with previous findings of maladaptive plastic changes in the basal ganglia leading to the development of LID, including a chronic pro-inflammatory state in the brain.
Collapse
Affiliation(s)
- Tatiane Piedade de Souza
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
| | | | | | - Giovanna C Cavalcante
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
| | - Arthur Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
| | - Camille Sena-Dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
| | - Caio Santos Silva
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
| | - Gracivane Lopes Eufraseo
- Laboratório de Neurologia Experimental, Universidade Federal do Pará, Belém 66073-000, Pará, Brazil
| | | | - Giordano Bruno Soares-Souza
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Instituto Tecnológico Vale, Belém 66055-090, Pará, Brazil
| | | | - Ândrea Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará (UFPA), Belém 66073-005, Pará, Brazil
| |
Collapse
|
13
|
Kaštelan S, Nikuševa-Martić T, Pašalić D, Antunica AG, Zimak DM. Genetic and Epigenetic Biomarkers Linking Alzheimer's Disease and Age-Related Macular Degeneration. Int J Mol Sci 2024; 25:7271. [PMID: 39000382 PMCID: PMC11242094 DOI: 10.3390/ijms25137271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) represents a prominent neurodegenerative disorder (NDD), accounting for the majority of dementia cases worldwide. In addition to memory deficits, individuals with AD also experience alterations in the visual system. As the retina is an extension of the central nervous system (CNS), the loss in retinal ganglion cells manifests clinically as decreased visual acuity, narrowed visual field, and reduced contrast sensitivity. Among the extensively studied retinal disorders, age-related macular degeneration (AMD) shares numerous aging processes and risk factors with NDDs such as cognitive impairment that occurs in AD. Histopathological investigations have revealed similarities in pathological deposits found in the retina and brain of patients with AD and AMD. Cellular aging processes demonstrate similar associations with organelles and signaling pathways in retinal and brain tissues. Despite these similarities, there are distinct genetic backgrounds underlying these diseases. This review comprehensively explores the genetic similarities and differences between AMD and AD. The purpose of this review is to discuss the parallels and differences between AMD and AD in terms of pathophysiology, genetics, and epigenetics.
Collapse
Affiliation(s)
- Snježana Kaštelan
- Department of Ophthalmology, Clinical Hospital Dubrava, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tamara Nikuševa-Martić
- Department of Biology and Genetics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Daria Pašalić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
14
|
Maninger JK, Nowak K, Goberdhan S, O'Donoghue R, Connor-Robson N. Cell type-specific functions of Alzheimer's disease endocytic risk genes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220378. [PMID: 38368934 PMCID: PMC10874703 DOI: 10.1098/rstb.2022.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/12/2023] [Indexed: 02/20/2024] Open
Abstract
Endocytosis is a key cellular pathway required for the internalization of cellular nutrients, lipids and receptor-bound cargoes. It is also critical for the recycling of cellular components, cellular trafficking and membrane dynamics. The endocytic pathway has been consistently implicated in Alzheimer's disease (AD) through repeated genome-wide association studies and the existence of rare coding mutations in endocytic genes. BIN1 and PICALM are two of the most significant late-onset AD risk genes after APOE and are both key to clathrin-mediated endocytic biology. Pathological studies also demonstrate that endocytic dysfunction is an early characteristic of late-onset AD, being seen in the prodromal phase of the disease. Different cell types of the brain have specific requirements of the endocytic pathway. Neurons require efficient recycling of synaptic vesicles and microglia use the specialized form of endocytosis-phagocytosis-for their normal function. Therefore, disease-associated changes in endocytic genes will have varied impacts across different cell types, which remains to be fully explored. Given the genetic and pathological evidence for endocytic dysfunction in AD, understanding how such changes and the related cell type-specific vulnerabilities impact normal cellular function and contribute to disease is vital and could present novel therapeutic opportunities. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
| | - Karolina Nowak
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| | - Srilakshmi Goberdhan
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| | - Rachel O'Donoghue
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| | - Natalie Connor-Robson
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| |
Collapse
|
15
|
Firdaus Z, Li X. Unraveling the Genetic Landscape of Neurological Disorders: Insights into Pathogenesis, Techniques for Variant Identification, and Therapeutic Approaches. Int J Mol Sci 2024; 25:2320. [PMID: 38396996 PMCID: PMC10889342 DOI: 10.3390/ijms25042320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Genetic abnormalities play a crucial role in the development of neurodegenerative disorders (NDDs). Genetic exploration has indeed contributed to unraveling the molecular complexities responsible for the etiology and progression of various NDDs. The intricate nature of rare and common variants in NDDs contributes to a limited understanding of the genetic risk factors associated with them. Advancements in next-generation sequencing have made whole-genome sequencing and whole-exome sequencing possible, allowing the identification of rare variants with substantial effects, and improving the understanding of both Mendelian and complex neurological conditions. The resurgence of gene therapy holds the promise of targeting the etiology of diseases and ensuring a sustained correction. This approach is particularly enticing for neurodegenerative diseases, where traditional pharmacological methods have fallen short. In the context of our exploration of the genetic epidemiology of the three most prevalent NDDs-amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease, our primary goal is to underscore the progress made in the development of next-generation sequencing. This progress aims to enhance our understanding of the disease mechanisms and explore gene-based therapies for NDDs. Throughout this review, we focus on genetic variations, methodologies for their identification, the associated pathophysiology, and the promising potential of gene therapy. Ultimately, our objective is to provide a comprehensive and forward-looking perspective on the emerging research arena of NDDs.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
16
|
Chen C, Xu J, Zhang J, Chen L, Wei Y, Zhang W, Shao P, Xu H. CD2AP is a potential prognostic biomarker of renal clear cell carcinoma. Cancer Med 2024; 13:e7055. [PMID: 38457255 PMCID: PMC10923042 DOI: 10.1002/cam4.7055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND CD2-associated protein (CD2AP) is a podocyte-associated gene and its reduced expression is associated with the development of proteinuria and glomerulosclerosis. However, few studies have focused on the correlation between the expression and prognosis of CD2AP in renal clear cell carcinoma (ccRCC). Therefore, we aimed to assess the regulation of CD2AP expression and prognostic value in ccRCC. METHODS Multiple databases were employed to examine the expression of CD2AP in ccRCC. RT-qPCR, Western Blot and immunohistochemistry were used to validate CD2AP expression in different cell lines and tissue samples. Kaplan-Meier analysis and ROC curve analysis were performed on the predictive prognostic performance of CD2AP. COX regression was used to construct CD2AP-related prognostic models. The TIMER and TISIDB databases were used to analyze the correlation of tumor-infiltrating immune cells with gene expression, mutations, somatic copy number variation, and immune molecules. Mass spectrometry was used to detect methylation status of the promoter CpG site of CD2AP in multiple cells. RESULTS We found that CD2AP expression was downregulated in ccRCC and its lower expression level was correlation with worse patient prognosis, higher tumor stage and grade and distant metastasis through analysis of databases, ccRCC cell lines and clinical tissue samples. Moreover, database and mass spectrometry techniques identified and validated cg12968598 hypermethylation as one of the key reasons for the downregulation of CD2AP expression. CD2AP expression was also associated with macrophage and neutrophil infiltration. CONCLUSIONS Taken together, our results suggest that CD2AP can be used as a diagnostic and prognostic biomarker in ccRCC patients and that DNA hypermethylation plays an important role in reducing CD2AP expression.
Collapse
Affiliation(s)
- Can Chen
- Department of Laboratory Medicinethe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Branch of National Clinical Research Center for Laboratory MedicineNanjingChina
| | - Jia Xu
- Department of Laboratory Medicinethe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Branch of National Clinical Research Center for Laboratory MedicineNanjingChina
| | - Jie‐Xin Zhang
- Department of Laboratory Medicinethe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Branch of National Clinical Research Center for Laboratory MedicineNanjingChina
| | - Lin‐Yuan Chen
- Department of Laboratory Medicinethe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Branch of National Clinical Research Center for Laboratory MedicineNanjingChina
| | - Yu‐Ang Wei
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Wei‐Ming Zhang
- Department of Pathologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Peng‐Fei Shao
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hua‐Guo Xu
- Department of Laboratory Medicinethe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Branch of National Clinical Research Center for Laboratory MedicineNanjingChina
| |
Collapse
|
17
|
Nystuen KL, McNamee SM, Akula M, Holton KM, DeAngelis MM, Haider NB. Alzheimer's Disease: Models and Molecular Mechanisms Informing Disease and Treatments. Bioengineering (Basel) 2024; 11:45. [PMID: 38247923 PMCID: PMC10813760 DOI: 10.3390/bioengineering11010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's Disease (AD) is a complex neurodegenerative disease resulting in progressive loss of memory, language and motor abilities caused by cortical and hippocampal degeneration. This review captures the landscape of understanding of AD pathology, diagnostics, and current therapies. Two major mechanisms direct AD pathology: (1) accumulation of amyloid β (Aβ) plaque and (2) tau-derived neurofibrillary tangles (NFT). The most common variants in the Aβ pathway in APP, PSEN1, and PSEN2 are largely responsible for early-onset AD (EOAD), while MAPT, APOE, TREM2 and ABCA7 have a modifying effect on late-onset AD (LOAD). More recent studies implicate chaperone proteins and Aβ degrading proteins in AD. Several tests, such as cognitive function, brain imaging, and cerebral spinal fluid (CSF) and blood tests, are used for AD diagnosis. Additionally, several biomarkers seem to have a unique AD specific combination of expression and could potentially be used in improved, less invasive diagnostics. In addition to genetic perturbations, environmental influences, such as altered gut microbiome signatures, affect AD. Effective AD treatments have been challenging to develop. Currently, there are several FDA approved drugs (cholinesterase inhibitors, Aß-targeting antibodies and an NMDA antagonist) that could mitigate AD rate of decline and symptoms of distress.
Collapse
Affiliation(s)
- Kaden L. Nystuen
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shannon M. McNamee
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Monica Akula
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Kristina M. Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Margaret M. DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Neena B. Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Sagar R, Azoidis I, Zivko C, Xydia A, Oh ES, Rosenberg PB, Lyketsos CG, Mahairaki V, Avramopoulos D. Excitatory Neurons Derived from Human-Induced Pluripotent Stem Cells Show Transcriptomic Differences in Alzheimer's Patients from Controls. Cells 2023; 12:1990. [PMID: 37566069 PMCID: PMC10417412 DOI: 10.3390/cells12151990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
The recent advances in creating pluripotent stem cells from somatic cells and differentiating them into a variety of cell types is allowing us to study them without the caveats associated with disease-related changes. We generated induced Pluripotent Stem Cells (iPSCs) from eight Alzheimer's disease (AD) patients and six controls and used lentiviral delivery to differentiate them into excitatory glutamatergic neurons. We then performed RNA sequencing on these neurons and compared the Alzheimer's and control transcriptomes. We found that 621 genes show differences in expression levels at adjusted p < 0.05 between the case and control derived neurons. These genes show significant overlap and directional concordance with genes reported from a single-cell transcriptome study of AD patients; they include five genes implicated in AD from genome-wide association studies and they appear to be part of a larger functional network as indicated by an excess of interactions between them observed in the protein-protein interaction database STRING. Exploratory analysis with Uniform Manifold Approximation and Projection (UMAP) suggests distinct clusters of patients, based on gene expression, who may be clinically different. Our research outcomes will enable the precise identification of distinct biological subtypes among individuals with Alzheimer's disease, facilitating the implementation of tailored precision medicine strategies.
Collapse
Affiliation(s)
- Ram Sagar
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ioannis Azoidis
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Cristina Zivko
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ariadni Xydia
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Esther S. Oh
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Paul B. Rosenberg
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Constantine G. Lyketsos
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vasiliki Mahairaki
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dimitrios Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
19
|
Charisis S, Lin H, Ray R, Joehanes R, Beiser AS, Levy D, Seshadri S, Sargurupremraj M, Satizabal CL. Obesity impacts the expression of Alzheimer's disease-related genes: The Framingham Heart Study. Alzheimers Dement 2023; 19:3496-3505. [PMID: 36811231 PMCID: PMC10435662 DOI: 10.1002/alz.12954] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 02/24/2023]
Abstract
INTRODUCTION We investigated associations of obesity with the expression of Alzheimer's disease (AD)-related genes in a large community-based cohort. METHODS The sample consisted of 5619 participants from the Framingham Heart Study. Obesity metrics included body mass index (BMI) and waist-to-hip ratio (WHR). Gene expression was measured for a set of 74 AD-related genes, derived by integrating genome-wide association study results with functional genomics data. RESULTS Obesity metrics were associated with the expression of 21 AD-related genes. The strongest associations were observed with CLU, CD2AP, KLC3, and FCER1G. Unique associations were noted with TSPAN14, SLC24A4 for BMI, and ZSCAN21, BCKDK for WHR. After adjustment for cardiovascular risk factors, 13 associations remained significant for BMI and 8 for WHR. Dichotomous obesity metrics exhibited unique associations with EPHX2 for BMI, and with TSPAN14 for WHR. DISCUSSION Obesity was associated with AD-related gene expression; these findings shed light on the molecular pathways linking obesity to AD.
Collapse
Affiliation(s)
- Sokratis Charisis
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Honghuang Lin
- Boston University School of Medicine, Department of Neurology, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Roshni Ray
- Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Roby Joehanes
- The Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung and Blood Institutes of Health, Bethesda, MD, USA
| | - Alexa S Beiser
- Boston University School of Medicine, Department of Neurology, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, USA
| | - Daniel Levy
- The Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung and Blood Institutes of Health, Bethesda, MD, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Boston University School of Medicine, Department of Neurology, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Muralidharan Sargurupremraj
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Boston University School of Medicine, Department of Neurology, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| |
Collapse
|
20
|
Miao J, Ma H, Yang Y, Liao Y, Lin C, Zheng J, Yu M, Lan J. Microglia in Alzheimer's disease: pathogenesis, mechanisms, and therapeutic potentials. Front Aging Neurosci 2023; 15:1201982. [PMID: 37396657 PMCID: PMC10309009 DOI: 10.3389/fnagi.2023.1201982] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by protein aggregation in the brain. Recent studies have revealed the critical role of microglia in AD pathogenesis. This review provides a comprehensive summary of the current understanding of microglial involvement in AD, focusing on genetic determinants, phenotypic state, phagocytic capacity, neuroinflammatory response, and impact on synaptic plasticity and neuronal regulation. Furthermore, recent developments in drug discovery targeting microglia in AD are reviewed, highlighting potential avenues for therapeutic intervention. This review emphasizes the essential role of microglia in AD and provides insights into potential treatments.
Collapse
Affiliation(s)
- Jifei Miao
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Haixia Ma
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yang Yang
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuanpin Liao
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Cui Lin
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Juanxia Zheng
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Muli Yu
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jiao Lan
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
21
|
Atre R, Sharma R, Vadim G, Solanki K, Wadhonkar K, Singh N, Patidar P, Khabiya R, Samaur H, Banerjee S, Baig MS. The indispensability of macrophage adaptor proteins in chronic inflammatory diseases. Int Immunopharmacol 2023; 119:110176. [PMID: 37104916 DOI: 10.1016/j.intimp.2023.110176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
Adaptor proteins represent key signalling molecules involved in regulating immune responses. The host's innate immune system recognizes pathogens via various surface and intracellular receptors. Adaptor molecules are centrally involved in different receptor-mediated signalling pathways, acting as bridges between the receptors and other molecules. The presence of adaptors in major signalling pathways involved in the pathogenesis of various chronic inflammatory diseases has drawn attention toward the role of these proteins in such diseases. In this review, we summarize the importance and roles of different adaptor molecules in macrophage-mediated signalling in various chronic disease states. We highlight the mechanistic roles of adaptors and how they are involved in protein-protein interactions (PPI) via different domains to carry out signalling. Hence, we also provide insights into how targeting these adaptor proteins can be a good therapeutic strategy against various chronic inflammatory diseases.
Collapse
Affiliation(s)
- Rajat Atre
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Gaponenko Vadim
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Khandu Wadhonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Neha Singh
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Pramod Patidar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India; School of Pharmacy, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Harshita Samaur
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Sreeparna Banerjee
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India.
| |
Collapse
|
22
|
Fu X, Chu C, Pang Y, Cai H, Ren Z, Jia L. A blood mRNA panel that differentiates Alzheimer's disease from other dementia types. J Neurol 2023; 270:2117-2127. [PMID: 36611114 DOI: 10.1007/s00415-023-11558-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
BACKGROUND Messenger RNAs (mRNAs) have been reported to be associated with Alzheimer's disease (AD). In this study, we investigated whether plasma-based mRNAs could distinguish AD from cognitively normal controls and other types of dementia, including vascular dementia (VaD), Parkinson's disease dementia (PDD), behavioral variant frontotemporal dementia (bvFTD), and dementia with Lewy body (DLB). METHODS Plasma mRNA expression was measured in three independent datasets. Dataset 1 (n = 40; controls, 20; AD, 20) was used to identify the differentially expressed mRNAs. Dataset 2 (n = 122; controls: 60; AD: 62) was used to develop a diagnostic AD model using an mRNA panel. Furthermore, we applied the model to Dataset 3 (n = 334; control, 57; AD, 58; VaD, 55; PDD, 54; bvFTD, 55; DLB, 55) to verify its ability to identify AD and other types of dementia. RESULTS Dataset 1 showed 22 upregulated and 21 downregulated mRNAs. A panel of six mRNAs distinguished AD from the control group in Dataset 2. The panel was used to successfully differentiate AD from other types of dementia in Dataset 3. CONCLUSIONS An AD-specific panel of six mRNAs was created that can be used for AD diagnosis.
Collapse
Affiliation(s)
- Xiaofeng Fu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St., Beijing, China
| | - Changbiao Chu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St., Beijing, China
| | - Yana Pang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St., Beijing, China
| | - Huimin Cai
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St., Beijing, China
| | - Ziye Ren
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St., Beijing, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St., Beijing, China.
| |
Collapse
|
23
|
Moon SW, Zhao L, Matloff W, Hobel S, Berger R, Kwon D, Kim J, Toga AW, Dinov ID, for the Alzheimer's Disease Neuroimaging Initiative. Brain structure and allelic associations in Alzheimer's disease. CNS Neurosci Ther 2023; 29:1034-1048. [PMID: 36575854 PMCID: PMC10018103 DOI: 10.1111/cns.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the most prevalent form of dementia, affects 6.5 million Americans and over 50 million people globally. Clinical, genetic, and phenotypic studies of dementia provide some insights of the observed progressive neurodegenerative processes, however, the mechanisms underlying AD onset remain enigmatic. AIMS This paper examines late-onset dementia-related cognitive impairment utilizing neuroimaging-genetics biomarker associations. MATERIALS AND METHODS The participants, ages 65-85, included 266 healthy controls (HC), 572 volunteers with mild cognitive impairment (MCI), and 188 Alzheimer's disease (AD) patients. Genotype dosage data for AD-associated single nucleotide polymorphisms (SNPs) were extracted from the imputed ADNI genetics archive using sample-major additive coding. Such 29 SNPs were selected, representing a subset of independent SNPs reported to be highly associated with AD in a recent AD meta-GWAS study by Jansen and colleagues. RESULTS We identified the significant correlations between the 29 genomic markers (GMs) and the 200 neuroimaging markers (NIMs). The odds ratios and relative risks for AD and MCI (relative to HC) were predicted using multinomial linear models. DISCUSSION In the HC and MCI cohorts, mainly cortical thickness measures were associated with GMs, whereas the AD cohort exhibited different GM-NIM relations. Network patterns within the HC and AD groups were distinct in cortical thickness, volume, and proportion of White to Gray Matter (pct), but not in the MCI cohort. Multinomial linear models of clinical diagnosis showed precisely the specific NIMs and GMs that were most impactful in discriminating between AD and HC, and between MCI and HC. CONCLUSION This study suggests that advanced analytics provide mechanisms for exploring the interrelations between morphometric indicators and GMs. The findings may facilitate further clinical investigations of phenotypic associations that support deep systematic understanding of AD pathogenesis.
Collapse
Affiliation(s)
- Seok Woo Moon
- Department of Neuropsychiatry, Research Institute of Medical ScienceKonkuk University School of MedicineSeoulKorea
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - Lu Zhao
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - William Matloff
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - Sam Hobel
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - Ryan Berger
- Microbiology & ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Daehong Kwon
- Department of Biomedical Science and EngineeringKonkuk UniversitySeoulKorea
| | - Jaebum Kim
- Department of Biomedical Science and EngineeringKonkuk UniversitySeoulKorea
| | - Arthur W. Toga
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - Ivo D. Dinov
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
- Department of Health Behavior and Biological Sciences, Statistics Online Computational Resource (SOCR), Michigan Institute for Data Science (MIDAS)University of MichiganAnn ArborMichiganUSA
- Department of StatisticsUniversity of CaliforniaLos AngelesCaliforniaUSA
| | | |
Collapse
|
24
|
Fu WY, Ip NY. The role of genetic risk factors of Alzheimer's disease in synaptic dysfunction. Semin Cell Dev Biol 2023; 139:3-12. [PMID: 35918217 DOI: 10.1016/j.semcdb.2022.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive deterioration of cognitive functions. Due to the extended global life expectancy, the prevalence of AD is increasing among aging populations worldwide. While AD is a multifactorial disease, synaptic dysfunction is one of the major neuropathological changes that occur early in AD, before clinical symptoms appear, and is associated with the progression of cognitive deterioration. However, the underlying pathological mechanisms leading to this synaptic dysfunction remains unclear. Recent large-scale genomic analyses have identified more than 40 genetic risk factors that are associated with AD. In this review, we discuss the functional roles of these genes in synaptogenesis and synaptic functions under physiological conditions, and how their functions are dysregulated in AD. This will provide insights into the contributions of these encoded proteins to synaptic dysfunction during AD pathogenesis.
Collapse
Affiliation(s)
- Wing-Yu Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
25
|
Andrade-Guerrero J, Santiago-Balmaseda A, Jeronimo-Aguilar P, Vargas-Rodríguez I, Cadena-Suárez AR, Sánchez-Garibay C, Pozo-Molina G, Méndez-Catalá CF, Cardenas-Aguayo MDC, Diaz-Cintra S, Pacheco-Herrero M, Luna-Muñoz J, Soto-Rojas LO. Alzheimer's Disease: An Updated Overview of Its Genetics. Int J Mol Sci 2023; 24:ijms24043754. [PMID: 36835161 PMCID: PMC9966419 DOI: 10.3390/ijms24043754] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the world. It is classified as familial and sporadic. The dominant familial or autosomal presentation represents 1-5% of the total number of cases. It is categorized as early onset (EOAD; <65 years of age) and presents genetic mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2), or the Amyloid precursor protein (APP). Sporadic AD represents 95% of the cases and is categorized as late-onset (LOAD), occurring in patients older than 65 years of age. Several risk factors have been identified in sporadic AD; aging is the main one. Nonetheless, multiple genes have been associated with the different neuropathological events involved in LOAD, such as the pathological processing of Amyloid beta (Aβ) peptide and Tau protein, as well as synaptic and mitochondrial dysfunctions, neurovascular alterations, oxidative stress, and neuroinflammation, among others. Interestingly, using genome-wide association study (GWAS) technology, many polymorphisms associated with LOAD have been identified. This review aims to analyze the new genetic findings that are closely related to the pathophysiology of AD. Likewise, it analyzes the multiple mutations identified to date through GWAS that are associated with a high or low risk of developing this neurodegeneration. Understanding genetic variability will allow for the identification of early biomarkers and opportune therapeutic targets for AD.
Collapse
Affiliation(s)
- Jesús Andrade-Guerrero
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Querétaro, Mexico
| | - Alberto Santiago-Balmaseda
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
| | - Paola Jeronimo-Aguilar
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Isaac Vargas-Rodríguez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Querétaro, Mexico
| | - Ana Ruth Cadena-Suárez
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad-Nacional Autónoma de México, Cuatitlan 53150, Edomex, Mexico
| | - Carlos Sánchez-Garibay
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México 14269, Mexico
| | - Glustein Pozo-Molina
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
| | - Claudia Fabiola Méndez-Catalá
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Edomex, Mexico
| | - Maria-del-Carmen Cardenas-Aguayo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Querétaro, Mexico
| | - Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros 51000, Dominican Republic
| | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad-Nacional Autónoma de México, Cuatitlan 53150, Edomex, Mexico
- National Brain Bank-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Santo Domingo 1423, Dominican Republic
- Correspondence: (J.L.-M.); (L.O.S.-R.); Tel.: +52-55-45-23-41-20 (J.L.-M.); +52-55-39-37-94-30 (L.O.S.-R.)
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Correspondence: (J.L.-M.); (L.O.S.-R.); Tel.: +52-55-45-23-41-20 (J.L.-M.); +52-55-39-37-94-30 (L.O.S.-R.)
| |
Collapse
|
26
|
Abstract
Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder with multifaceted neuropathological features, including β-amyloid plaques, neurofibrillary tangles, and neuroinflammation. Over the past decade, emerging evidence has implicated both beneficial and pathological roles for innate immune genes and immune cells, including peripheral immune cells such as T cells, which can infiltrate the brain and either ameliorate or exacerbate AD neuropathogenesis. These findings support a neuroimmune axis of AD, in which the interplay of adaptive and innate immune systems inside and outside the brain critically impacts the etiology and pathogenesis of AD. In this review, we discuss the complexities of AD neuropathology at the levels of genetics and cellular physiology, highlighting immune signaling pathways and genes associated with AD risk and interactions among both innate and adaptive immune cells in the AD brain. We emphasize the role of peripheral immune cells in AD and the mechanisms by which immune cells, such as T cells and monocytes, influence AD neuropathology, including microglial clearance of amyloid-β peptide, the key component of β-amyloid plaque cores, pro-inflammatory and cytotoxic activity of microglia, astrogliosis, and their interactions with the brain vasculature. Finally, we review the challenges and outlook for establishing immune-based therapies for treating and preventing AD.
Collapse
|
27
|
Qi L, Sun C, Sun S, Li A, Hu Q, Liu Y, Zhang Y. Phosphatidylinositol (3,5)-bisphosphate machinery regulates neurite thickness through neuron-specific endosomal protein NSG1/NEEP21. J Biol Chem 2022; 299:102775. [PMID: 36493904 PMCID: PMC9823133 DOI: 10.1016/j.jbc.2022.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/31/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylinositol (3,5)-bisphosphate [PtdIns(3,5)P2] is a critical signaling phospholipid involved in endolysosome homeostasis. It is synthesized by a protein complex composed of PIKfyve, Vac14, and Fig4. Defects in PtdIns(3,5)P2 synthesis underlie a number of human neurological disorders, including Charcot-Marie-Tooth disease, child onset progressive dystonia, and others. However, neuron-specific functions of PtdIns(3,5)P2 remain less understood. Here, we show that PtdIns(3,5)P2 pathway is required to maintain neurite thickness. Suppression of PIKfyve activities using either pharmacological inhibitors or RNA silencing resulted in decreased neurite thickness. We further find that the regulation of neurite thickness by PtdIns(3,5)P2 is mediated by NSG1/NEEP21, a neuron-specific endosomal protein. Knockdown of NSG1 expression also led to thinner neurites. mCherry-tagged NSG1 colocalized and interacted with proteins in the PtdIns(3,5)P2 machinery. Perturbation of PtdIns(3,5)P2 dynamics by overexpressing Fig4 or a PtdIns(3,5)P2-binding domain resulted in mislocalization of NSG1 to nonendosomal locations, and suppressing PtdIns(3,5)P2 synthesis resulted in an accumulation of NSG1 in EEA1-positive early endosomes. Importantly, overexpression of NSG1 rescued neurite thinning in PtdIns(3,5)P2-deficient CAD neurons and primary cortical neurons. Our study uncovered the role of PtdIns(3,5)P2 in the morphogenesis of neurons, which revealed a novel aspect of the pathogenesis of PtdIns(3,5)P2-related neuropathies. We also identified NSG1 as an important downstream protein of PtdIns(3,5)P2, which may provide a novel therapeutic target in neurological diseases.
Collapse
Affiliation(s)
- Lijuan Qi
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China,National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chen Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Shenqing Sun
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Aiqing Li
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Qiuming Hu
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Yanling Zhang
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China,For correspondence: Yanling Zhang
| |
Collapse
|
28
|
Li Y, Ren Q, Wang X, Luoreng Z, Wei D. Bta-miR-199a-3p Inhibits LPS-Induced Inflammation in Bovine Mammary Epithelial Cells via the PI3K/AKT/NF-κB Signaling Pathway. Cells 2022; 11:cells11213518. [PMID: 36359915 PMCID: PMC9656885 DOI: 10.3390/cells11213518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Mastitis is characterized by inflammatory damage to mammary gland tissue, which could decline milk production and quality and significantly affect the economic benefits of ranching. MicroRNAs (miRNAs), such as miR-199a-3p, are novel therapeutic targets in inflammation, and their regulation is an effective strategy for inflammation control. Despite its importance in humans and animals, the molecular mechanism of bovine miR-199a-3p (bta-miR-199a-3p) in dairy cow mastitis and bovine mammary epithelial cell (bMEC) inflammation is unclear. In our study, a bovine mammary epithelial cell line (MAC-T) induced by lipopolysaccharide (LPS) was used as an inflammatory cell model to investigate the molecular mechanism of bta-miR-199a-3p in the MAC-T inflammatory response. bta-miR-199a-3p was up-regulated in the LPS-induced MAC-T cells, while CD2-associated protein (CD2AP) was revealed as its target gene in a double luciferase reporter gene experiment. In addition, the overexpression of bta-miR-199a-3p negatively regulated the expression of CD2AP and the activation of the phosphatidylinositol 3-kinase (PI3K)/AKT/nuclear factor kappa-B (NF-κB) signaling pathway. These subsequently inhibited the secretion of related inflammatory factors (TNF-α, IL-1β, and IL-6) and the expression of apoptotic genes (CASP3 and CASP9), thereby alleviating the LPS-challenged inflammatory response in the MAC-T cells. Silencing of bta-miR-199a-3p, however, reversed the above effects. Thus, bta-miR-199a-3p inhibits LPS-induced inflammation in bMECs by directly targeting CD2AP and regulating the PI3K/AKT/NF-κB signaling pathway. This study reveals the potential regulatory mechanism of bta-miR-199a-3p in bMEC inflammatory immune response and may serve as a useful target for the treatment of mastitis.
Collapse
Affiliation(s)
- Yuhang Li
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Qianqian Ren
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xingping Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (X.W.); (Z.L.)
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (X.W.); (Z.L.)
| | - Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| |
Collapse
|
29
|
Gao S, Hao JW, Zhao YN, Li X, Wang T, Han ZF, Sun BL, Sun JY, Liu GY. An updated analysis of the association between CD2-associated protein gene rs9349407 polymorphism and Alzheimer’s disease in Chinese population. Front Neuroinform 2022; 16:1006164. [DOI: 10.3389/fninf.2022.1006164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSince 2011, three large-scale genome-wide association studies (GWAS) have confirmed that the CD2AP rs9349407 polymorphism is significantly connected with Alzheimer’s disease (AD) in individuals of European descent. Subsequently, this association has been replicated in European populations, but is unclear whether it can be replicated in Chinese. Recently, the correlation between rs9349407 and AD in the Chinese population has become a research hotspot.ObjectiveTo explore the association between rs9349407 polymorphism and AD in the Chinese population.Materials and methodsFirstly, based on the exclusion and inclusion criteria, we selected 11 independent studies from 8 articles exploring the correlation between rs9349407 variation and AD in Chinese. Secondly, we conducted a meta-analysis based on fixed and random effect models and conducted a heterogeneity test. Thirdly, we used the additive model, dominant model, and recessive model for subgroup analysis.ResultsWe demonstrated that the CD2AP rs9349407 polymorphism increases AD susceptibility in Chinese populations (OR = 1.33, 95% CI = 1.08–1.64, P = 7.45E-03), which is consistent with the effect observed in Caucasian populations. Additionally, subgroup analysis showed that rs9349407 under the additive model (GG + CC vs. GC, OR = 0.76, 95% CI = 0.61–0.97, P = 2.04E-02) and dominant model (GG + GC vs. CC, OR = 0.49, 95% CI = 0.32–0.74, P = 8.51E-04) were also significantly correlated with AD susceptibility, but not under the recessive model (GG vs. GC + CC, OR = 0.77, 95% CI = 0.58–1.03, P = 7.44E-02).ConclusionThese existing data suggest that rs9349307 is significantly correlated with the susceptibility to AD in the Chinese population, but future studies with large samples are needed to confirm our findings.
Collapse
|
30
|
Sirin S, Nigdelioglu Dolanbay S, Aslim B. The relationship of early- and late-onset Alzheimer’s disease genes with COVID-19. J Neural Transm (Vienna) 2022; 129:847-859. [PMID: 35429259 PMCID: PMC9012910 DOI: 10.1007/s00702-022-02499-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/02/2022] [Indexed: 12/13/2022]
Abstract
Individuals with Alzheimer’s disease and other neurodegenerative diseases have been exposed to excess risk by the COVID-19 pandemic. COVID-19’s main manifestations include high body temperature, dry cough, and exhaustion. Nevertheless, some affected individuals may have an atypical presentation at diagnosis but suffer neurological signs and symptoms as the first disease manifestation. These findings collectively show the neurotropic nature of SARS-CoV-2 virus and its ability to involve the central nervous system. In addition, Alzheimer’s disease and COVID-19 has a number of common risk factors and comorbid conditions including age, sex, hypertension, diabetes, and the expression of APOE ε4. Until now, a plethora of studies have examined the COVID-19 disease but only a few studies has yet examined the relationship of COVID-19 and Alzheimer’s disease as risk factors of each other. This review emphasizes the recently published evidence on the role of the genes of early- or late-onset Alzheimer’s disease in the susceptibility of individuals currently suffering or recovered from COVID-19 to Alzheimer’s disease or in the susceptibility of individuals at risk of or with Alzheimer’s disease to COVID-19 or increased COVID-19 severity and mortality. Furthermore, the present review also draws attention to other uninvestigated early- and late-onset Alzheimer’s disease genes to elucidate the relationship between this multifactorial disease and COVID-19.
Collapse
|
31
|
Chlamydia pneumoniae can infect the central nervous system via the olfactory and trigeminal nerves and contributes to Alzheimer's disease risk. Sci Rep 2022; 12:2759. [PMID: 35177758 PMCID: PMC8854390 DOI: 10.1038/s41598-022-06749-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Chlamydia pneumoniae is a respiratory tract pathogen but can also infect the central nervous system (CNS). Recently, the link between C. pneumoniae CNS infection and late-onset dementia has become increasingly evident. In mice, CNS infection has been shown to occur weeks to months after intranasal inoculation. By isolating live C. pneumoniae from tissues and using immunohistochemistry, we show that C. pneumoniae can infect the olfactory and trigeminal nerves, olfactory bulb and brain within 72 h in mice. C. pneumoniae infection also resulted in dysregulation of key pathways involved in Alzheimer’s disease pathogenesis at 7 and 28 days after inoculation. Interestingly, amyloid beta accumulations were also detected adjacent to the C. pneumoniae inclusions in the olfactory system. Furthermore, injury to the nasal epithelium resulted in increased peripheral nerve and olfactory bulb infection, but did not alter general CNS infection. In vitro, C. pneumoniae was able to infect peripheral nerve and CNS glia. In summary, the nerves extending between the nasal cavity and the brain constitute invasion paths by which C. pneumoniae can rapidly invade the CNS likely by surviving in glia and leading to Aβ deposition.
Collapse
|
32
|
Szabo MP, Mishra S, Knupp A, Young JE. The role of Alzheimer's disease risk genes in endolysosomal pathways. Neurobiol Dis 2022; 162:105576. [PMID: 34871734 PMCID: PMC9071255 DOI: 10.1016/j.nbd.2021.105576] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
There is ample pathological and biological evidence for endo-lysosomal dysfunction in Alzheimer's disease (AD) and emerging genetic studies repeatedly implicate endo-lysosomal genes as associated with increased AD risk. The endo-lysosomal network (ELN) is essential for all cell types of the central nervous system (CNS), yet each unique cell type utilizes cellular trafficking differently (see Fig. 1). Challenges ahead involve defining the role of AD associated genes in the functionality of the endo-lysosomal network (ELN) and understanding how this impacts the cellular dysfunction that occurs in AD. This is critical to the development of new therapeutics that will impact, and potentially reverse, early disease phenotypes. Here we review some early evidence of ELN dysfunction in AD pathogenesis and discuss the role of selected AD-associated risk genes in this pathway. In particular, we review genes that have been replicated in multiple genome-wide association studies(Andrews et al., 2020; Jansen et al., 2019; Kunkle et al., 2019; Lambert et al., 2013; Marioni et al., 2018) and reviewed in(Andrews et al., 2020) that have defined roles in the endo-lysosomal network. These genes include SORL1, an AD risk gene harboring both rare and common variants associated with AD risk and a role in trafficking cargo, including APP, through the ELN; BIN1, a regulator of clathrin-mediated endocytosis whose expression correlates with Tau pathology; CD2AP, an AD risk gene with roles in endosome morphology and recycling; PICALM, a clathrin-binding protein that mediates trafficking between the trans-Golgi network and endosomes; and Ephrin Receptors, a family of receptor tyrosine kinases with AD associations and interactions with other AD risk genes. Finally, we will discuss how human cellular models can elucidate cell-type specific differences in ELN dysfunction in AD and aid in therapeutic development.
Collapse
Affiliation(s)
- Marcell P Szabo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Allison Knupp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America.
| |
Collapse
|
33
|
Xue YY, Chen YH, Lin RR, Huang HF, Wu ZY, Tao QQ. Alzheimer’s disease susceptibility locus in CD2AP is associated with increased cerebrospinal fluid tau levels in mild cognitive impairment. Neurosci Lett 2021; 771:136419. [DOI: 10.1016/j.neulet.2021.136419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022]
|
34
|
Fu Z, Zhao M, He Y, Wang X, Lu J, Li S, Li X, Kang G, Han Y, Li S. Divergent Connectivity Changes in Gray Matter Structural Covariance Networks in Subjective Cognitive Decline, Amnestic Mild Cognitive Impairment, and Alzheimer's Disease. Front Aging Neurosci 2021; 13:686598. [PMID: 34483878 PMCID: PMC8415752 DOI: 10.3389/fnagi.2021.686598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/19/2021] [Indexed: 01/18/2023] Open
Abstract
Alzheimer’s disease (AD) has a long preclinical stage that can last for decades prior to progressing toward amnestic mild cognitive impairment (aMCI) and/or dementia. Subjective cognitive decline (SCD) is characterized by self-experienced memory decline without any evidence of objective cognitive decline and is regarded as the later stage of preclinical AD. It has been reported that the changes in structural covariance patterns are affected by AD pathology in the patients with AD and aMCI within the specific large-scale brain networks. However, the changes in structural covariance patterns including normal control (NC), SCD, aMCI, and AD are still poorly understood. In this study, we recruited 42 NCs, 35 individuals with SCD, 43 patients with aMCI, and 41 patients with AD. Gray matter (GM) volumes were extracted from 10 readily identifiable regions of interest involved in high-order cognitive function and AD-related dysfunctional structures. The volume values were used to predict the regional densities in the whole brain by using voxel-based statistical and multiple linear regression models. Decreased structural covariance and weakened connectivity strength were observed in individuals with SCD compared with NCs. Structural covariance networks (SCNs) seeding from the default mode network (DMN), salience network, subfields of the hippocampus, and cholinergic basal forebrain showed increased structural covariance at the early stage of AD (referring to aMCI) and decreased structural covariance at the dementia stage (referring to AD). Moreover, the SCN seeding from the executive control network (ECN) showed a linearly increased extent of the structural covariance during the early and dementia stages. The results suggest that changes in structural covariance patterns as the order of NC-SCD-aMCI-AD are divergent and dynamic, and support the structural disconnection hypothesis in individuals with SCD.
Collapse
Affiliation(s)
- Zhenrong Fu
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Mingyan Zhao
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yirong He
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xuetong Wang
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Jiadong Lu
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Shaoxian Li
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xin Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao, China.,Measurement Technology and Instrumentation Key Laboratory of Hebei Province, Qinhuangdao, China
| | - Guixia Kang
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Biomedical Engineering Institute, Hainan University, Haikou, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Shuyu Li
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
35
|
Huang M, Lai H, Yu Y, Chen X, Wang T, Feng Q. Deep-gated recurrent unit and diet network-based genome-wide association analysis for detecting the biomarkers of Alzheimer's disease. Med Image Anal 2021; 73:102189. [PMID: 34343841 DOI: 10.1016/j.media.2021.102189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/30/2021] [Accepted: 07/16/2021] [Indexed: 01/01/2023]
Abstract
Genome-wide association analysis (GWAS) is a commonly used method to detect the potential biomarkers of Alzheimer's disease (AD). Most existing GWAS methods entail a high computational cost, disregard correlations among imaging data and correlations among genetic data, and ignore various associations between longitudinal imaging and genetic data. A novel GWAS method was proposed to identify potential AD biomarkers and address these problems. A network based on a gated recurrent unit was applied without imputing incomplete longitudinal imaging data to integrate the longitudinal data of variable lengths and extract an image representation. In this study, a modified diet network that can considerably reduce the number of parameters in the genetic network was proposed to perform GWAS between image representation and genetic data. Genetic representation can be extracted in this way. A link between genetic representation and AD was established to detect potential AD biomarkers. The proposed method was tested on a set of simulated data and a real AD dataset. Results of the simulated data showed that the proposed method can accurately detect relevant biomarkers. Moreover, the results of real AD dataset showed that the proposed method can detect some new risk-related genes of AD. Based on previous reports, no research has incorporated a deep-learning model into a GWAS framework to investigate the potential information on super-high-dimensional genetic data and longitudinal imaging data and create a link between imaging genetics and AD for detecting potential AD biomarkers. Therefore, the proposed method may provide new insights into the underlying pathological mechanism of AD.
Collapse
Affiliation(s)
- Meiyan Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| | - Haoran Lai
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| | - Yuwei Yu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| | - Xiumei Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| | - Tao Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| | | |
Collapse
|
36
|
Nanjundaiah S, Chidambaram H, Chandrashekar M, Chinnathambi S. Role of Microglia in Regulating Cholesterol and Tau Pathology in Alzheimer's Disease. Cell Mol Neurobiol 2021; 41:651-668. [PMID: 32468440 PMCID: PMC11448617 DOI: 10.1007/s10571-020-00883-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 05/19/2020] [Indexed: 01/21/2023]
Abstract
Cholesterol, a principal constituent of the cell membrane, plays a crucial role in the brain by regulating the synaptic transmission, neuronal signaling, as well as neurodegenerative diseases. Defects in the cholesterol trafficking are associated with enhanced generation of hyperphosphorylated Tau and Amyloid-β protein. Tau, a major microtubule-associated protein in the brain, is the key regulator of the mature neuron. Abnormally hyperphosphorylated Tau hampers the major functions related to microtubule assembly by promoting neurofibrillary tangles of paired helical filaments, twisted ribbons, and straight filaments. The observed pathological changes due to impaired cholesterol and Tau protein accumulation cause Alzheimer's disease. Thus, in order to regulate the pathogenesis of Alzheimer's disease, regulation of cholesterol metabolism, as well as Tau phosphorylation, is essential. The current review provides an overview of (1) cholesterol synthesis in the brain, neurons, astrocytes, and microglia; (2) the mechanism involved in modulating cholesterol concentration between the astrocytes and brain; (3) major mechanisms involved in the hyperphosphorylation of Tau and amyloid-β protein; and (4) microglial involvement in its regulation. Thus, the answering key questions will provide an in-depth information on microglia involvement in managing the pathogenesis of cholesterol-modulated hyperphosphorylated Tau protein.
Collapse
Affiliation(s)
- Shwetha Nanjundaiah
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Madhura Chandrashekar
- School of Biomedical Engineering and Sciences, MIT University, Loni Kalbhor, Pune, 412201, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India.
| |
Collapse
|
37
|
Vidal C, Zhang L. An Analysis of the Neurological and Molecular Alterations Underlying the Pathogenesis of Alzheimer's Disease. Cells 2021; 10:cells10030546. [PMID: 33806317 PMCID: PMC7998384 DOI: 10.3390/cells10030546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by amyloid beta (Aβ) plaques, neurofibrillary tangles, and neuronal loss. Unfortunately, despite decades of studies being performed on these histological alterations, there is no effective treatment or cure for AD. Identifying the molecular characteristics of the disease is imperative to understanding the pathogenesis of AD. Furthermore, uncovering the key causative alterations of AD can be valuable in developing models for AD treatment. Several alterations have been implicated in driving this disease, including blood–brain barrier dysfunction, hypoxia, mitochondrial dysfunction, oxidative stress, glucose hypometabolism, and altered heme homeostasis. Although these alterations have all been associated with the progression of AD, the root cause of AD has not been identified. Intriguingly, recent studies have pinpointed dysfunctional heme metabolism as a culprit of the development of AD. Heme has been shown to be central in neuronal function, mitochondrial respiration, and oxidative stress. Therefore, dysregulation of heme homeostasis may play a pivotal role in the manifestation of AD and its various alterations. This review will discuss the most common neurological and molecular alterations associated with AD and point out the critical role heme plays in the development of this disease.
Collapse
Affiliation(s)
| | - Li Zhang
- Correspondence: ; Tel.: +1-972-883-5757
| |
Collapse
|
38
|
Alzheimer Gene BIN1 may Simultaneously Influence Dementia Risk and Androgen Deprivation Therapy Dosage in Prostate Cancer. Am J Clin Oncol 2021; 43:685-689. [PMID: 32568785 DOI: 10.1097/coc.0000000000000727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) is extensively used in prostate cancer. Yet the risk of impaired cognition or Alzheimer disease (AD) in men with prostate cancer receiving ADT is uncertain. Some studies of prostate cancer and ADT suggest that the risk of AD is not increased. But other studies have found an increased risk of AD and cognitive impairment. OBJECTIVES As the uncertainty about ADT and dementia might relate to the genetics of prostate cancer and AD, the authors used the Cancer Genome Atlas (TCGA) to examine the relationship in men with prostate cancer between genes implicated in AD and genes implicated in prostate cancer. METHODS The authors examined the genomics of 492 prostate cancer cases in the Genomic Data Commons (GDC) TCGA Prostate Cancer (PRAD) data set. To access and analyze the data, 2 web-based interfaces were used: (1) the UCSC Xena browser, a web-based visual integration and exploration tool for TCGA data, including clinical and phenotypic annotations; and (2) cBioportal, a web-based interface that enables integrative analysis of complex cancer genomics and clinical profiles. RESULTS Co-occurrence analysis indicates that alterations in the prostate cancer gene Speckle-type POZ protein (SPOP) significantly co-occur with alterations in the AD gene BIN1 (P<0.001). The presence of somatic mutations (deleterious and missense/in frame) in SPOP deranges BIN1 gene expression. SPOP/BIN1 RNA gene expression in 492 prostate cancer specimens is significantly correlated (P<0.001). Increased expression of SPOP in 492 prostate cancers is associated with reduced survival (P=0.00275). Men receiving pharmacologic therapy had a tumor with a significantly higher Gleason score (P=0.023). Gleason score and BIN1 RNA gene expression, unit log2 (fragments per kilobase of transcript per million mapped reads upper quartile [FPKM-UQ]+1), in 499 prostate cancer specimens were significantly inversely correlated (P<0.001). CONCLUSIONS BIN1 forms part of a network that interacts with the MYC oncogene, activated at the earliest phases of prostate cancer and in its position on chr8q24 linked to disease aggressiveness. Dynamic regulation of the BIN1-Tau interaction is involved in AD. BIN1 loss in AD allows phosphorylated tau to be mis-sorted to synapses, which likely alters the integrity of the postsynapse, alongside reducing the functionally important release of physiological forms of tau. Alzheimer symptoms are usually preceded by a preclinical phase that may be 16 years long. The authors suggest that the ADT dosage reflects the severity of a process that is already underway. The severity is determined by the genetics of the tumor itself, at least in part by BIN1. ADT is not causing new cases of AD. The oncologist treats higher-grade prostate cancer with more ADT, which serves as a surrogate marker for disease severity. Our analysis of TCGA data does not support the idea that ADT causes AD or dementia.
Collapse
|
39
|
Lehrer S, Rheinstein PH. Co-occurrent Alterations of Alzheimer's Genes and Prostate Cancer Genes in Prostate Cancer. Cancer Genomics Proteomics 2020; 17:271-275. [PMID: 32345668 DOI: 10.21873/cgp.20187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Androgen deprivation therapy (ADT) is extensively employed in treatment of prostate cancer. Some studies have found increased risk of Alzheimer's disease and cognitive impairment in patients treated with ADT. AIM Since the uncertainty about ADT and dementia might relate to the genetics of prostate cancer and Alzheimer's disease, we used the Cancer Genome Atlas (TCGA) to examine the relationship between genes implicated in Alzheimer's disease and genes implicated in prostate cancer in men with prostate cancer. MATERIALS AND METHODS The genomics of 492 prostate cancer cases in the Genomic Data Commons TCGA Prostate Cancer data set were examined. RESULTS Alterations (mutation, amplification or deletion) in prostate cancer gene speckle-type POZ protein (SPOP) significantly co-occurred with alterations in Alzheimer's disease gene bridging integrator-1 (BIN1). Alterations in prostate cancer gene spectrin alpha 1 (SPTA1) significantly co-occurred with alterations in Alzheimer's disease gene CD2-associated protein (CD2AP) (p<0.001). The presence of somatic mutations (deleterious and missense/in frame) in SPOP disturbs BIN1 gene expression. SPOP and BIN1 RNA expression in 492 prostate cancer specimens was significantly positively correlated (p<0.001). Increased expression of SPOP in 492 cases of prostate cancer was associated with reduced survival (p=0.00275). BIN1 forms part of a network that interacts with the MYC oncogene, which is activated at the earliest phases of prostate cancer and is linked to disease aggressiveness. Men receiving ADT had tumor with a significantly higher Gleason score (p=0.023). Gleason score and BIN1 RNA expression in 499 prostate cancer specimens were significantly correlated (p<0.001). CONCLUSION The severity of prostate cancer is determined by the genetics of the tumor itself, possibly at least in part by the interactions of SPOP/BIN1, MYC/BIN1 and SPTA1/CD2AP. Oncologists treats higher grade prostate cancer with more ADT, which serves as a surrogate marker for disease severity. A weakness of our study is that we did not examine Alzheimer's disease or dementia at all in patients with cancer, only co-occurrence of genetic alterations. Nevertheless, our analysis of TCGA data does not support the idea that ADT causes Alzheimer's disease or dementia.
Collapse
Affiliation(s)
- Steven Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A.
| | | |
Collapse
|
40
|
Manzali SB, Ravona-Springer R, Alkelai A, Yu E, Gan-Or Z, Ganmore I, Heymann A, Beeri MS, Greenbaum L. Association of the CD2AP locus with cognitive functioning among middle-aged individuals with a family history of Alzheimer's disease. Neurobiol Aging 2020; 101:50-56. [PMID: 33578194 DOI: 10.1016/j.neurobiolaging.2020.10.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 11/19/2022]
Abstract
First-degree family history is an established risk factor for Alzheimer's disease (AD). We investigated the association of late-onset AD risk loci with cognitive functioning among 315 offspring of AD patients. Participants were cognitively normal Jewish individuals, aged 40-65 years, from the Israel Registry for Alzheimer's Prevention (IRAP) study. Twenty-two single-nucleotide polymorphisms (SNPs) within these loci and the APOE E4 allele were included in the final analyses, and a polygenic risk score was also calculated. Using linear regression (assuming an additive genetic model), we found a significant association only for SNP rs9473117, located near the CD2-associated protein (CD2AP) gene, with global cognition. Controlling for demographic variables (age, sex, years of education, and ancestry), the late-onset AD risk allele C was associated with lower global cognitive functioning (p = 0.0005), and withstood correction for multiple testing. After adjusting for additional characteristics (APOE E4 status and then also for cardiovascular factors), the results remained essentially unchanged (p = 0.0003 and p = 0.0005, respectively). In secondary analyses examining specific cognitive domains, rs9473117 was similarly associated with episodic memory (p = 0.005), language (p = 0.009), and working memory/attention (p = 0.018) but not with executive functions (p = 0.27). Again, the results were similar after adjusting for APOE E4 status and cardiovascular factors. The polygenic risk score was not associated with global cognitive functioning or with any of the 4 domains. In conclusion, our findings suggest a contribution of the CD2AP locus to cognitive functioning in middle-aged individuals with a parental history of AD. Further validations, including in longitudinal studies, are required.
Collapse
Affiliation(s)
- Sigalit Batia Manzali
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Ramit Ravona-Springer
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel; Memory Clinic, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA
| | - Eric Yu
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada; Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada; Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Ithamar Ganmore
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel; Memory Clinic, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anthony Heymann
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Maccabi Healthcare Services, Tel Aviv, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lior Greenbaum
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel.
| |
Collapse
|
41
|
Ennerfelt HE, Lukens JR. The role of innate immunity in Alzheimer's disease. Immunol Rev 2020; 297:225-246. [PMID: 32588460 PMCID: PMC7783860 DOI: 10.1111/imr.12896] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
The amyloid hypothesis has dominated Alzheimer's disease (AD) research for almost 30 years. This hypothesis hinges on the predominant clinical role of the amyloid beta (Aβ) peptide in propagating neurofibrillary tangles (NFTs) and eventual cognitive impairment in AD. Recent research in the AD field has identified the brain-resident macrophages, known as microglia, and their receptors as integral regulators of both the initiation and propagation of inflammation, Aβ accumulation, neuronal loss, and memory decline in AD. Emerging studies have also begun to reveal critical roles for distinct innate immune pathways in AD pathogenesis, which has led to great interest in harnessing the innate immune response as a therapeutic strategy to treat AD. In this review, we will highlight recent advancements in our understanding of innate immunity and inflammation in AD onset and progression. Additionally, there has been mounting evidence suggesting pivotal contributions of environmental factors and lifestyle choices in AD pathogenesis. Therefore, we will also discuss recent findings, suggesting that many of these AD risk factors influence AD progression via modulation of microglia and immune responses.
Collapse
Affiliation(s)
- Hannah E. Ennerfelt
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
42
|
Wang D, Chen J, Ding Y, Kong H, You H, Zhao Y, Wei H, Liu Y. miR-188-5p Promotes Tumor Growth by Targeting CD2AP Through PI3K/AKT/mTOR Signaling in Children with Acute Promyelocytic Leukemia. Onco Targets Ther 2020; 13:6681-6697. [PMID: 32764959 PMCID: PMC7369302 DOI: 10.2147/ott.s244813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/02/2020] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Pediatric acute promyelocytic leukemia (APL) accounts for 10% of pediatric acute myelogenous leukemia (AML) case and is accompanied by a tendency to hemorrhage. miR-188-5p plays an important role in adult AML. Therefore, the purpose of this study was to explore the effects of miR-188-5p on cell proliferation and apoptosis and tumor growth, and its mechanism in pediatric APL patients. MATERIALS AND METHODS Survival-associated miRNAs or mRNAs from TCGA database associated with AML were identified via using the "survival R" package in R language. CCK8, clone formation, flow cytometry, RT-PCR, immunohistochemistry and Western blot assays were used to detect the viability, proliferation, apoptosis, cell cycle, and related gene expression in APL cell lines. The prognostic value of miR-188-5p was evaluated using a ROC curve. The tumorigenic ability of APL cell lines was determined using a nude mouse transplantation tumor experiment. Tumor cell apoptosis was determined by TUNEL assay in vivo. The target genes of miR-188-5p were predicted using the miRDB, miRTarBase, and TargetScan databases. A PPI network was constructed using STRING database and the hub gene was identified using the MCODE plug-in of the Cytoscape software. The DAVID database was used to perform GO and KEGG pathway enrichment analyses. A luciferase reporter assay was used to demonstrate the binding of miR-188-5p to CD2AP. RESULTS miR-188-5p overexpression or CD2 associated protein (CD2AP) inhibition was significantly associated with poor survival in pediatric APL patients. Upregulation of miR-188-5p was identified in the blood of pediatric APL patients and cell lines. Increased expression of miR-188-5p also promoted the viability, proliferation, and cell cycle progression, and reduced the apoptosis of APL cells. Additionally, upregulation of miR-188-5p regulated the expressions of cyclinD1, p53, Bax, Bcl-2 and cleaved caspase-3. The area under the ROC curve (AUC) of miR-188-5p was 0.661. miR-188-5p overexpression increased the tumorigenic ability of APL and Ki67 expression, and reduced cell apoptosis in vivo. CD2AP was identified as the only overlapping gene from the list of miR-188-5p target genes and survival-related mRNAs of the TCGA database. It was mainly enriched in the "biological process (BP)" and "cellular component (CC)" terms, and was downregulated in the blood of pediatric APL patients and cell lines. The luciferase reporter, RT-PCR, and Western blot assays demonstrated that the binding of miR-188-5p to CD2AP. CD2AP inhibition promoted the proliferation and inhibited the apoptosis of APL cells. Rescue experiments showed that inhibition of miR-188-5p inhibited cell proliferation, activated the PI3K/AKT/mTOR signaling pathway, induced G0/G1 phase arrest, regulated gene expression, and promoted cell apoptosis, which were reversed by CD2AP inhibition. CONCLUSION miR-188-5p, an oncogene, promoted tumor growth and progression of pediatric APL in vitro and in vivo via targeting CD2AP and activating the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Dao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Jiao Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Yanjie Ding
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Huimin Kong
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Hongliang You
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Yanting Zhao
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Huixia Wei
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| |
Collapse
|
43
|
‘I Respect You but I Am Not Willing to Be You’: Critical Reflections of Western Teaching of Social Work to Students in China—What Can be Learned Both Ways? SOCIAL SCIENCES 2019. [DOI: 10.3390/socsci8100272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Staff from a Western University annually travel to China to teach social work students at a Chinese University, providing a rich opportunity to share ideas and knowledge about values and practices in social work. One common point of tension that arises each year is how to teach critical reflection whilst considering differences between Eastern and Western ways of knowing and doing. This article is based on email conversations between one Australian lecturer and one Chinese student, containing their discussions on not just critical reflection but also of various key social work topics in China such as social worker’s salary, social work as a profession and using empathy. The student questioned social work in an authentic and practical manner; while the lecturer responded with examples and reflections as a role model of critical reflective thinking and practice in the Chinese context. While such letters of exchange only reflect the particular points of view of the lecturer and the student, much can still be learned about current issues and debates in both countries. The insights given raise many questions about the implications and benefits for sensitively teaching social work across East/West contexts whilst trying to develop anti-colonial social work educational approaches.
Collapse
|