1
|
Dumitrescu L, Seto M, Clifton M, Gomez ML, Coughlan G, Gifford K, Jefferson A, Jager PD, Bennett D, Wang Y, Barnes L, Schneider J, Hohman T, Buckley R. Sex-specific Associations of Gene Expression with Alzheimer's Disease Neuropathology and Ante-mortem Cognitive Performance. RESEARCH SQUARE 2025:rs.3.rs-5938205. [PMID: 40166028 PMCID: PMC11957198 DOI: 10.21203/rs.3.rs-5938205/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The biological mechanisms underlying the increased prevalence of Alzheimer's disease (AD) in women remain undefined. While previous case/control studies have identified sex-biased molecular pathways, the sex-specific relationships between gene expression and AD endophenotypes, particularly involving sex chromosomes, are underexplored. With bulk transcriptomic data across 3 brain regions from 767 decedents, we investigated sex-specific associations between gene expression and post-mortem β-amyloid and tau, as well as antemortem longitudinal cognition. Among 23,118 significant gene associations, 10% were sex-specific, with 73% of these identified in females and primarily associated with tau tangles and longitudinal cognition (90%). Notably, four X-linked genes, MCF2, HDAC8, FTX, and SLC10A3, demonstrated significant sex differences in their associations with AD endophenotypes (i.e., significant sex × gene interaction). Our results also uncovered sex-specific biological pathways, including a female-specific role of neuroinflammation and neuronal development, underscoring the importance of sex-aware analyses to advance precision medicine approaches in AD.
Collapse
Affiliation(s)
| | - Mabel Seto
- Massachusetts General Hospital/Harvard Medical School
| | - Michelle Clifton
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center
| | - Melisa Lara Gomez
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center
| | | | - Katherine Gifford
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Seto M, Clifton M, Gomez ML, Coughlan G, Gifford KA, Jefferson AL, De Jager PL, Bennett DA, Wang Y, Barnes LL, Schneider JA, Hohman TJ, Buckley RF, Dumitrescu L. Sex-specific Associations of Gene Expression with Alzheimer's Disease Neuropathology and Ante-mortem Cognitive Performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.02.631098. [PMID: 39803447 PMCID: PMC11722314 DOI: 10.1101/2025.01.02.631098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
The biological mechanisms underlying women's increased Alzheimer's disease (AD) prevalence remain undefined. Previous case/control studies have identified sex-biased molecular pathways, but sex-specific relationships between gene expression and AD endophenotypes, particularly sex chromosomes, are underexplored. With bulk transcriptomic data across 3 brain regions from 767 decedents, we investigated sex-specific associations between gene expression and post-mortem β-amyloid and tau as well as antemortem longitudinal cognition. Of 23,118 significant gene associations, 10% were significant in one sex and not the other (sex-specific). Most sex-specific gene associations were identified in females (73%) and associated with tau tangles and longitudinal cognition (90%). Four X-linked genes, MCF2, HDAC8, FTX, and SLC10A3, demonstrated significant sex differences in their associations with AD endophenotypes (i.e., significant sex x gene interaction). Our results also uncovered sex-specific biological pathways, including a female-specific role of neuroinflammation and neuronal development, reinforcing the potential for sex-aware analyses to enhance precision medicine approaches in AD.
Collapse
Affiliation(s)
- Mabel Seto
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Center for Alzheimer's Research and Treatment, Department of Neurology, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
| | - Michelle Clifton
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melisa Lara Gomez
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gillian Coughlan
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Center for Alzheimer's Research and Treatment, Department of Neurology, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
| | - Katherine A. Gifford
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Angela L. Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Cell Circuits Program, Broad Institute, Cambridge, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Lisa L. Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel F. Buckley
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Center for Alzheimer's Research and Treatment, Department of Neurology, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Yue Q, Leng X, Xie N, Zhang Z, Yang D, Hoi MPM. Endothelial Dysfunctions in Blood-Brain Barrier Breakdown in Alzheimer's Disease: From Mechanisms to Potential Therapies. CNS Neurosci Ther 2024; 30:e70079. [PMID: 39548663 PMCID: PMC11567945 DOI: 10.1111/cns.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 11/18/2024] Open
Abstract
Recent research has shown the presence of blood-brain barrier (BBB) breakdown in Alzheimer's disease (AD). BBB is a dynamic interface consisting of a continuous monolayer of brain endothelial cells (BECs) enveloped by pericytes and astrocytes. The restricted permeability of BBB strictly controls the exchange of substances between blood and brain parenchyma, which is crucial for brain homeostasis by excluding blood-derived detrimental factors and pumping out brain-derived toxic molecules. BBB breakdown in AD is featured as a series of BEC pathologies such as increased paracellular permeability, abnormal levels and functions of transporters, and inflammatory or oxidative profile, which may disturb the substance transportation across BBB, thereafter induce CNS disorders such as hypometabolism, Aβ accumulation, and neuroinflammation, eventually aggravate cognitive decline. Therefore, it seems important to protect BEC properties for BBB maintenance and neuroprotection. In this review, we thoroughly summarized the pathological alterations of BEC properties reported in AD patients and numerous AD models, including paracellular permeability, influx and efflux transporters, and inflammatory and oxidative profiles, and probably associated underlying mechanisms. Then we reviewed current therapeutic agents that are effective in ameliorating a series of BEC pathologies, and ultimately protecting BBB integrity and cognitive functions. Regarding the current drug development for AD proceeds extremely hard, this review aims to discuss the therapeutic potentials of targeting BEC pathologies and BBB maintenance for AD treatment, therefore expecting to shed a light on the future AD drug development by targeting BEC pathologies and BBB protection.
Collapse
Affiliation(s)
- Qian Yue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital)HeyuanGuangdongChina
| | - Xinyue Leng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
| | - Ningqing Xie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐Cerebrovascular Diseases, and Institute of New Drug ResearchJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan University College of PharmacyGuangzhouChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐Cerebrovascular Diseases, and Institute of New Drug ResearchJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan University College of PharmacyGuangzhouChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Deguang Yang
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital)HeyuanGuangdongChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
| |
Collapse
|
4
|
Mishra S, Stany B, Das A, Kanagavel D, Vijayan M. A Comprehensive Review of Membrane Transporters and MicroRNA Regulation in Alzheimer's Disease. Mol Neurobiol 2024; 61:8739-8758. [PMID: 38558361 DOI: 10.1007/s12035-024-04135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) is a distressing neurodegenerative condition characterized by the accumulation of amyloid-beta (Aβ) plaques and tau tangles within the brain. The interconnectedness between membrane transporters (SLCs) and microRNAs (miRNAs) in AD pathogenesis has gained increasing attention. This review explores the localization, substrates, and functions of SLC transporters in the brain, emphasizing the roles of transporters for glutamate, glucose, nucleosides, and other essential compounds. The examination delves into the significance of SLCs in AD, their potential for drug development, and the intricate realm of miRNAs, encompassing their transcription, processing, functions, and regulation. MiRNAs have emerged as significant players in AD, including those associated with mitochondria and synapses. Furthermore, this review discusses the intriguing nexus of miRNAs targeting SLC transporters and their potential as therapeutic targets in AD. Finally, the review underscores the interaction between SLC transporters and miRNA regulation within the context of Alzheimer's disease, underscoring the need for further research in this area. This comprehensive review aims to shed light on the complex mechanisms underlying the causation of AD and provides insights into potential therapeutic approaches.
Collapse
Affiliation(s)
- Shatakshi Mishra
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - B Stany
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Anushka Das
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Deepankumar Kanagavel
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.
| |
Collapse
|
5
|
Villa M, Wu J, Hansen S, Pahnke J. Emerging Role of ABC Transporters in Glia Cells in Health and Diseases of the Central Nervous System. Cells 2024; 13:740. [PMID: 38727275 PMCID: PMC11083179 DOI: 10.3390/cells13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.
Collapse
Affiliation(s)
- Maria Villa
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Stefanie Hansen
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv IL-6997801, Israel
| |
Collapse
|
6
|
Puris E, Saveleva L, Auriola S, Gynther M, Kanninen KM, Fricker G. Sex-specific changes in protein expression of membrane transporters in the brain cortex of 5xFAD mouse model of Alzheimer's disease. Front Pharmacol 2024; 15:1365051. [PMID: 38572427 PMCID: PMC10989684 DOI: 10.3389/fphar.2024.1365051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Membrane transporters playing an important role in the passage of drugs, metabolites and nutrients across the membranes of the brain cells have been shown to be involved in pathogenesis of Alzheimer's disease (AD). However, little is known about sex-specific changes in transporter protein expression at the brain in AD. Here, we investigated sex-specific alterations in protein expression of three ATP-binding cassette (ABC) and five solute carriers (SLC) transporters in the prefrontal cortex of a commonly used model of familial AD (FAD), 5xFAD mice. Sensitive liquid chromatography tandem mass spectrometry-based quantitative targeted absolute proteomic analysis was applied for absolute quantification of transporter protein expression. We compared the changes in transporter protein expressions in 7-month-old male and female 5xFAD mice versus sex-matched wild-type mice. The study revealed a significant sex-specific increase in protein expression of ABCC1 (p = 0.007) only in male 5xFAD mice as compared to sex-matched wild-type animals. In addition, the increased protein expression of glucose transporter 1 (p = 0.01), 4F2 cell-surface antigen heavy chain (p = 0.01) and long-chain fatty acid transport protein 1 (p = 0.02) were found only in female 5xFAD mice as compared to sex-matched wild-type animals. Finally, protein expression of alanine/serine/cysteine/threonine transporter 1 was upregulated in both male (p = 0.02) and female (p = 0.002) 5xFAD mice. The study provides important information about sex-specific changes in brain cortical transporter expression in 5xFAD mice, which will facilitate drug development of therapeutic strategies for AD targeting these transporters and drug delivery research.
Collapse
Affiliation(s)
- Elena Puris
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Liudmila Saveleva
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Mikko Gynther
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Heidelberg, Germany
| |
Collapse
|
7
|
Tu G, Fu T, Zheng G, Xu B, Gou R, Luo D, Wang P, Xue W. Computational Chemistry in Structure-Based Solute Carrier Transporter Drug Design: Recent Advances and Future Perspectives. J Chem Inf Model 2024; 64:1433-1455. [PMID: 38294194 DOI: 10.1021/acs.jcim.3c01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Solute carrier transporters (SLCs) are a class of important transmembrane proteins that are involved in the transportation of diverse solute ions and small molecules into cells. There are approximately 450 SLCs within the human body, and more than a quarter of them are emerging as attractive therapeutic targets for multiple complex diseases, e.g., depression, cancer, and diabetes. However, only 44 unique transporters (∼9.8% of the SLC superfamily) with 3D structures and specific binding sites have been reported. To design innovative and effective drugs targeting diverse SLCs, there are a number of obstacles that need to be overcome. However, computational chemistry, including physics-based molecular modeling and machine learning- and deep learning-based artificial intelligence (AI), provides an alternative and complementary way to the classical drug discovery approach. Here, we present a comprehensive overview on recent advances and existing challenges of the computational techniques in structure-based drug design of SLCs from three main aspects: (i) characterizing multiple conformations of the proteins during the functional process of transportation, (ii) identifying druggability sites especially the cryptic allosteric ones on the transporters for substrates and drugs binding, and (iii) discovering diverse small molecules or synthetic protein binders targeting the binding sites. This work is expected to provide guidelines for a deep understanding of the structure and function of the SLC superfamily to facilitate rational design of novel modulators of the transporters with the aid of state-of-the-art computational chemistry technologies including artificial intelligence.
Collapse
Affiliation(s)
- Gao Tu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Tingting Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | - Binbin Xu
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610200, China
| | - Rongpei Gou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ding Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Panpan Wang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
8
|
Chaves JCS, Dando SJ, White AR, Oikari LE. Blood-brain barrier transporters: An overview of function, dysfunction in Alzheimer's disease and strategies for treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166967. [PMID: 38008230 DOI: 10.1016/j.bbadis.2023.166967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
The blood-brain-barrier (BBB) has a major function in maintaining brain homeostasis by regulating the entry of molecules from the blood to the brain. Key players in BBB function are BBB transporters which are highly expressed in brain endothelial cells (BECs) and critical in mediating the exchange of nutrients and waste products. BBB transporters can also influence drug delivery into the brain by inhibiting or facilitating the entry of brain targeting therapeutics for the treatment of brain disorders, such as Alzheimer's disease (AD). Recent studies have shown that AD is associated with a disrupted BBB and transporter dysfunction, although their roles in the development in AD are not fully understand. Modulation of BBB transporter activity may pose a novel approach to enhance the delivery of drugs to the brain for enhanced treatment of AD. In this review, we will give an overview of key functions of BBB transporters and known changes in AD. In addition, we will discuss current strategies for transporter modulation for enhanced drug delivery into the brain.
Collapse
Affiliation(s)
- Juliana C S Chaves
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Samantha J Dando
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Lotta E Oikari
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia.
| |
Collapse
|
9
|
Wang K, Zhang B, Du H, Duan H, Jiang Z, Fang S. Research landscape and trends of cerebral amyloid angiopathy: a 25-year scientometric analysis. Front Neurol 2024; 14:1334360. [PMID: 38259658 PMCID: PMC10800472 DOI: 10.3389/fneur.2023.1334360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Background Cerebral amyloid angiopathy (CAA), a cerebral small vessel disease affecting leptomeningeal and cortical small blood vessels, is a common cause of spontaneous lobar intracerebral hemorrhage and cognitive impairment, particularly in elderly patients. This study aims to investigate the field of CAA research from a scientometric perspective. Methods Publications related to CAA from January 1st, 1999 to September 29th, 2023 were retrieved from the Web of Science Core Collection database. The scientometric software VOSviewer and CiteSpace were used to analyze and visualize the publication trends, countries/regions, institutions, authors, journals, cited references, and keywords of CAA. Results A total of 2,798 publications related to CAA from 73 countries/regions, led by the United States, were included. The number of publications showed an increasing trend over time. Massachusetts General Hospital was the most productive institution, and authors Greenberg and Charidimou published the most papers and were most frequently co-cited. Journal of Alzheimer's Disease was the most prolific journal in this field, and Neurology was the most co-cited journal. Apart from "cerebral amyloid angiopathy", the most frequently used keywords were "Alzheimer's disease", "amyloid beta", "intracerebral hemorrhage", and "dementia". The burst keywords in recent years included "cortical superficial siderosis" and "dysfunction". Conclusions This scientometric analysis provides a comprehensive overview of CAA research over the past 25 years, and offers important insights for future research directions and scientific decision-making in this field.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaokuan Fang
- Department of Neurology, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Chaves JCS, Wasielewska JM, Cuní-López C, Rantanen LM, Lee S, Koistinaho J, White AR, Oikari LE. Alzheimer's disease brain endothelial-like cells reveal differential drug transporter expression and modulation by potentially therapeutic focused ultrasound. Neurotherapeutics 2024; 21:e00299. [PMID: 38241156 PMCID: PMC10903103 DOI: 10.1016/j.neurot.2023.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 01/21/2024] Open
Abstract
The blood-brain barrier (BBB) has a key function in maintaining homeostasis in the brain, partly modulated by transporters, which are highly expressed in brain endothelial cells (BECs). Transporters mediate the uptake or efflux of compounds to and from the brain and they can also challenge the delivery of drugs for the treatment of Alzheimer's disease (AD). Currently there is a limited understanding of changes in BBB transporters in AD. To investigate this, we generated brain endothelial-like cells (iBECs) from induced pluripotent stem cells (iPSCs) with familial AD (FAD) Presenilin 1 (PSEN1) mutation and identified AD-specific differences in transporter expression compared to control (ctrl) iBECs. We first characterized the expression levels of 12 BBB transporters in AD-, Ctrl-, and isogenic (PSEN1 corrected) iBECs to identify any AD specific differences. We then exposed the cells to focused ultrasound (FUS) in the absence (FUSonly) or presence of microbubbles (MB) (FUS+MB), which is a novel therapeutic method that can be used to transiently open the BBB to increase drug delivery into the brain, however its effects on BBB transporter expression are largely unknown. Following FUSonly and FUS+MB, we investigated whether the expression or activity of key transporters could be modulated. Our findings demonstrate that PSEN1 mutant FAD (PSEN1AD) possess phenotypical differences compared to control iBECs in BBB transporter expression and function. Additionally, we show that FUSonly and FUS+MB can modulate BBB transporter expression and functional activity in iBECs, having potential implications on drug penetration and amyloid clearance. These findings highlight the differential responses of patient cells to FUS treatment, with patient-derived models likely providing an important tool for modelling therapeutic effects of FUS.
Collapse
Affiliation(s)
- Juliana C S Chaves
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Joanna M Wasielewska
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Carla Cuní-López
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Laura M Rantanen
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Serine Lee
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neuroscience Center, Kuopio, Finland; Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Anthony R White
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Lotta E Oikari
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
11
|
Jiang J, Shi H, Jiang S, Wang A, Zou X, Wang Y, Li W, Zhang Y, Sun M, Ren Q, Xu J. Nutrition in Alzheimer's disease: a review of an underappreciated pathophysiological mechanism. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2257-2279. [PMID: 37058185 DOI: 10.1007/s11427-022-2276-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 04/15/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older individuals and is an escalating challenge to global public health. Pharmacy therapy of AD is one of the well-funded areas; however, little progress has been made due to the complex pathogenesis. Recent evidence has demonstrated that modifying risk factors and lifestyle may prevent or delay the incidence of AD by 40%, which suggests that the management should pivot from single pharmacotherapy toward a multipronged approach because AD is a complex and multifaceted disease. Recently, the gut-microbiota-brain axis has gained tremendous traction in the pathogenesis of AD through bidirectional communication with multiple neural, immune, and metabolic pathways, providing new insights into novel therapeutic strategies. Dietary nutrition is an important and profound environmental factor that influences the composition and function of the microbiota. The Nutrition for Dementia Prevention Working Group recently found that dietary nutrition can affect cognition in AD-related dementia directly or indirectly through complex interactions of behavioral, genetic, systemic, and brain factors. Thus, considering the multiple etiologies of AD, nutrition represents a multidimensional factor that has a profound effect on AD onset and development. However, mechanistically, the effect of nutrition on AD is uncertain; therefore, optimal strategies or the timing of nutritional intervention to prevent or treat AD has not been established.Thus, this review summarizes the current state of knowledge concerning nutritional disorders, AD patient and caregiver burden, and the roles of nutrition in the pathophysiology of AD. We aim to emphasize knowledge gaps to provide direction for future research and to establish optimal nutrition-based intervention strategies for AD.
Collapse
Affiliation(s)
- Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Shirui Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Anxin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yuan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Mengfan Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Qiwei Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
12
|
Knutson KA, Pan W. MATS: a novel multi-ancestry transcriptome-wide association study to account for heterogeneity in the effects of cis-regulated gene expression on complex traits. Hum Mol Genet 2023; 32:1237-1251. [PMID: 36179104 PMCID: PMC10077507 DOI: 10.1093/hmg/ddac247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 01/16/2023] Open
Abstract
The Transcriptome-Wide Association Study (TWAS) is a widely used approach which integrates gene expression and Genome Wide Association Study (GWAS) data to study the role of cis-regulated gene expression (GEx) in complex traits. However, the genetic architecture of GEx varies across populations, and recent findings point to possible ancestral heterogeneity in the effects of GEx on complex traits, which may be amplified in TWAS by modeling GEx as a function of cis-eQTLs. Here, we present a novel extension to TWAS to account for heterogeneity in the effects of cis-regulated GEx which are correlated with ancestry. Our proposed Multi-Ancestry TwaS (MATS) framework jointly analyzes samples from multiple populations and distinguishes between shared, ancestry-specific and/or subject-specific expression-trait associations. As such, MATS amplifies power to detect shared GEx associations over ancestry-stratified TWAS through increased sample sizes, and facilitates the detection of genes with subgroup-specific associations which may be masked by standard TWAS. Our simulations highlight the improved Type-I error conservation and power of MATS compared with competing approaches. Our real data applications to Alzheimer's disease (AD) case-control genotypes from the Alzheimer's Disease Sequencing Project (ADSP) and continuous phenotypes from the UK Biobank (UKBB) identify a number of unique gene-trait associations which were not discovered through standard and/or ancestry-stratified TWAS. Ultimately, these findings promote MATS as a powerful method for detecting and estimating significant gene expression effects on complex traits within multi-ancestry cohorts and corroborates the mounting evidence for inter-population heterogeneity in gene-trait associations.
Collapse
Affiliation(s)
| | - Wei Pan
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
13
|
Tran NNB, Bui ATA, Jaramillo-Martinez V, Weber J, Zhang Q, Urbatsch IL. Lipid environment determines the drug-stimulated ATPase activity of P-glycoprotein. Front Mol Biosci 2023; 10:1141081. [PMID: 36911528 PMCID: PMC9995911 DOI: 10.3389/fmolb.2023.1141081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
P-glycoprotein (Pgp) is a multidrug transporter that uses the energy from ATP binding and hydrolysis to export from cells a wide variety of hydrophobic compounds including anticancer drugs, and mediates the bioavailability and pharmacokinetics of many drugs. Lipids and cholesterol have been shown to modulate the substrate-stimulated ATPase activity of purified Pgp in detergent solution and the substrate transport activity after reconstitution into proteoliposomes. While lipid extracts from E. coli, liver or brain tissues generally support well Pgp's functionality, their ill-defined composition and high UV absorbance make them less suitable for optical biophysical assays. On the other hand, studies with defined synthetic lipids, usually the bilayer-forming phosphatidylcholine with or without cholesterol, are often plagued by low ATPase activity and low binding affinity of Pgp for drugs. Drawing from the lipid composition of mammalian plasma membranes, we here investigate how different head groups modulate the verapamil-stimulated ATPase activity of purified Pgp in detergent-lipid micelles and compare them with components of E. coli lipids. Our general approach was to assay modulation of verapamil-stimulation of ATPase activity by artificial lipid mixtures starting with the bilayer-forming palmitoyloyl-phosphatidylcholine (POPC) and -phosphatidylethanolamine (POPE). We show that POPC/POPE supplemented with sphingomyelin (SM), cardiolipin, or phosphatidic acid enhanced the verapamil-stimulated activity (Vmax) and decreased the concentration required for half-maximal activity (EC50). Cholesterol (Chol) and more so its soluble hemisuccinate derivative cholesteryl hemisuccinate substantially decreased EC50, perhaps by supporting the functional integrity of the drug binding sites. High concentrations of CHS (>15%) resulted in a significantly increased basal activity which could be due to binding of CHS to the drug binding site as transport substrate or as activator, maybe acting cooperatively with verapamil. Lastly, Pgp reconstituted into liposomes or nanodiscs displayed higher basal activity and sustained high levels of verapamil stimulated activity. The findings establish a stable source of artificial lipid mixtures containing either SM and cholesterol or CHS that restore Pgp functionality with activities and affinities similar to those in the natural plasma membrane environment and will pave the way for future functional and biophysical studies.
Collapse
Affiliation(s)
- Nghi N. B. Tran
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - A. T. A. Bui
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Valeria Jaramillo-Martinez
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Joachim Weber
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Ina L. Urbatsch
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
14
|
Puris E, Saveleva L, de Sousa Maciel I, Kanninen KM, Auriola S, Fricker G. Protein Expression of Amino Acid Transporters Is Altered in Isolated Cerebral Microvessels of 5xFAD Mouse Model of Alzheimer's Disease. Mol Neurobiol 2023; 60:732-748. [PMID: 36367657 PMCID: PMC9849299 DOI: 10.1007/s12035-022-03111-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
Membrane transporters such as ATP-binding cassette (ABC) and solute carrier (SLC) transporters expressed at the neurovascular unit (NVU) play an important role in drug delivery to the brain and have been demonstrated to be involved in Alzheimer's disease (AD) pathogenesis. However, our knowledge of quantitative changes in transporter absolute protein expression and functionality in vivo in NVU in AD patients and animal models is limited. The study aim was to investigate alterations in protein expression of ABC and SLC transporters in the isolated brain microvessels and brain prefrontal cortices of a widely used model of familial AD, 5xFAD mice (8 months old), using a sensitive liquid chromatography tandem mass spectrometry-based quantitative targeted absolute proteomic approach. Moreover, we examined alterations in brain prefrontal cortical and plasmatic levels of transporter substrates in 5xFAD mice compared to age-matched wild-type (WT) controls. ASCT1 (encoded by Slc1a4) protein expression in the isolated brain microvessels and brain prefrontal cortices of 5xFAD mice was twice higher compared to WT controls (p = 0.01). Brain cortical levels of ASCT1 substrate, serine, were increased in 5xFAD mice compared to WT animals. LAT1 (encoded by Slc7a5) and 4F2hc (encoded by Slc3a2) protein expressions were significantly altered in the isolated brain microvessels of 5xFAD mice compared to WT controls (p = 0.008 and p = 0.05, respectively). Overall, the study provides important information, which is crucial for the optimal use of the 5xFAD mouse model in AD drug development and for investigating novel drug delivery approaches. In addition, the findings of the study shed light on the novel potential mechanisms underlying AD pathogenesis.
Collapse
Affiliation(s)
- Elena Puris
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Liudmila Saveleva
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Izaque de Sousa Maciel
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Lang AL, Eulalio T, Fox E, Yakabi K, Bukhari SA, Kawas CH, Corrada MM, Montgomery SB, Heppner FL, Capper D, Nachun D, Montine TJ. Methylation differences in Alzheimer's disease neuropathologic change in the aged human brain. Acta Neuropathol Commun 2022; 10:174. [PMID: 36447297 PMCID: PMC9710143 DOI: 10.1186/s40478-022-01470-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia with advancing age as its strongest risk factor. AD neuropathologic change (ADNC) is known to be associated with numerous DNA methylation changes in the human brain, but the oldest old (> 90 years) have so far been underrepresented in epigenetic studies of ADNC. Our study participants were individuals aged over 90 years (n = 47) from The 90+ Study. We analyzed DNA methylation from bulk samples in eight precisely dissected regions of the human brain: middle frontal gyrus, cingulate gyrus, entorhinal cortex, dentate gyrus, CA1, substantia nigra, locus coeruleus and cerebellar cortex. We deconvolved our bulk data into cell-type-specific (CTS) signals using computational methods. CTS methylation differences were analyzed across different levels of ADNC. The highest amount of ADNC related methylation differences was found in the dentate gyrus, a region that has so far been underrepresented in large scale multi-omic studies. In neurons of the dentate gyrus, DNA methylation significantly differed with increased burden of amyloid beta (Aβ) plaques at 5897 promoter regions of protein-coding genes. Amongst these, higher Aβ plaque burden was associated with promoter hypomethylation of the Presenilin enhancer 2 (PEN-2) gene, one of the rate limiting genes in the formation of gamma-secretase, a multicomponent complex that is responsible in part for the endoproteolytic cleavage of amyloid precursor protein into Aβ peptides. In addition to novel ADNC related DNA methylation changes, we present the most detailed array-based methylation survey of the old aged human brain to date. Our open-sourced dataset can serve as a brain region reference panel for future studies and help advance research in aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna-Lena Lang
- Department of Neuropathology, Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Tiffany Eulalio
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
| | - Eddie Fox
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305 USA
| | - Koya Yakabi
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305 USA
| | - Syed A. Bukhari
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305 USA
| | - Claudia H. Kawas
- Department of Neurology, University of California Irvine, Orange, CA 92868-4280 USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697 USA
| | - Maria M. Corrada
- Department of Neurology, University of California Irvine, Orange, CA 92868-4280 USA
- Department of Epidemiology, University of California, Irvine, CA 92617 USA
| | - Stephen B. Montgomery
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305 USA
- Department of Genetics, Stanford University, Stanford, CA 94305 USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
| | - Frank L. Heppner
- Department of Neuropathology, Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Cluster of Excellence, NeuroCure, 10117 Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Daniel Nachun
- Department of Genetics, Stanford University, Stanford, CA 94305 USA
| | - Thomas J. Montine
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305 USA
| |
Collapse
|
16
|
Zhao N, Jiang R, Cheng J, Xiao Q. Effects of gastrodin on the expression of brain aging-related genes in SAM/P-8 mice based on network pharmacology. IBRAIN 2022; 9:157-170. [PMID: 37786545 PMCID: PMC10529193 DOI: 10.1002/ibra.12076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 10/04/2023]
Abstract
Background Gastrodin can reduce neuronal damage through multiple targets and pathways, and can be useful in preventing and treating degenerative lesions of the central nervous system, but the specific mechanism has not been elucidated. Methods The aging-related genes in the hippocampus and the frontal cortex were detected in adult and aged mice treated with gastrodin or not. In addition, we collected the target genes of gastrodin and aging from a network database, and a Venn diagram was created to obtain the intersection target genes of gastrodin and aging. Then, the String database was used to analyze the protein-protein interactions (PPIs) between aging-related genes and the target genes of gastrodin and aging. The "drug-disease-target-pathway" network was constructed using Cytoscape 3.7.2 software, and the main mechanism and pathway of key genes were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). Finally, the reliability of these key genes was further verified by molecular docking technology. Results The results showed that 6 out of 10 genes related to brain aging were differentially expressed after gastrodin intervention. Moreover, there were 11 key genes between gastrodin and differentially expressed genes related to brain aging. GO and KEGG results suggested that material metabolism and carbohydrate digestion and absorption were associated with the pathological mechanism of gastrodin antiaging. Molecular docking results also confirmed the good binding activity of gastrodin to the key genes. Conclusion Gastrodin plays a potential role in antiaging by regulating substance metabolism and carbohydrate digestion and absorption.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Anesthesia, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Rui Jiang
- Department of AnesthesiaAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Jun‐Jie Cheng
- Department of AnesthesiaAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Qiu‐Xia Xiao
- Department of AnesthesiologyNanchong Central HospitalSichuanChina
- Department of AnesthesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
17
|
Puris E, Saveleva L, Górová V, Vartiainen P, Kortelainen M, Lamberg H, Sippula O, Malm T, Jalava PI, Auriola S, Fricker G, Kanninen KM. Air pollution exposure increases ABCB1 and ASCT1 transporter levels in mouse cortex. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104003. [PMID: 36283621 DOI: 10.1016/j.etap.2022.104003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Membrane transporters are important for maintaining brain homeostasis by regulating the passage of solutes into, out of, and within the brain. Growing evidence suggests neurotoxic effects of air pollution exposure and its contribution to neurodegenerative disorders, including Alzheimer's disease (AD), yet limited knowledge is available on the exact cellular impacts of exposure. This study investigates how exposure to ubiquitous solid components of air pollution, ultrafine particles (UFPs), influence brain homeostasis by affecting protein levels of membrane transporters. Membrane transporters were quantified and compared in brain cortical samples of wild-type and the 5xFAD mouse model of AD in response to subacute exposure to inhaled UFPs. The cortical ASCT1 and ABCB1 transporter levels were elevated in wild-type and 5xFAD mice subjected to a 2-week UFP exposure paradigm, suggesting impairment of brain homeostatic mechanisms. This study provides new insight on the molecular mechanisms underlying adverse effects of air pollution on the brain.
Collapse
Affiliation(s)
- Elena Puris
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Liudmila Saveleva
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Veronika Górová
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Petra Vartiainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Miika Kortelainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Heikki Lamberg
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Olli Sippula
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Pasi I Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland.
| |
Collapse
|
18
|
Taggi V, Riera Romo M, Piquette-Miller M, Meyer zu Schwabedissen HE, Neuhoff S. Transporter Regulation in Critical Protective Barriers: Focus on Brain and Placenta. Pharmaceutics 2022; 14:pharmaceutics14071376. [PMID: 35890272 PMCID: PMC9319476 DOI: 10.3390/pharmaceutics14071376] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 01/06/2023] Open
Abstract
Drug transporters play an important role in the maintenance of chemical balance and homeostasis in different tissues. In addition to their physiological functions, they are crucial for the absorption, distribution, and elimination of many clinically important drugs, thereby impacting therapeutic efficacy and toxicity. Increasing evidence has demonstrated that infectious, metabolic, inflammatory, and neurodegenerative diseases alter the expression and function of drug transporters. However, the current knowledge on transporter regulation in critical protective barriers, such as the brain and placenta, is still limited and requires more research. For instance, while many studies have examined P-glycoprotein, it is evident that research on the regulation of highly expressed transporters in the blood–brain barrier and blood–placental barrier are lacking. The aim of this review is to summarize the currently available literature in order to better understand transporter regulation in these critical barriers.
Collapse
Affiliation(s)
- Valerio Taggi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (V.T.); (H.E.M.z.S.)
| | - Mario Riera Romo
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (M.R.R.); (M.P.-M.)
| | - Micheline Piquette-Miller
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (M.R.R.); (M.P.-M.)
| | | | - Sibylle Neuhoff
- Certara UK Ltd., Simcyp Division, Sheffield S1 2BJ, UK
- Correspondence:
| |
Collapse
|
19
|
Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: From discovery to clinical relevance. Pharmacol Ther 2022; 234:108119. [PMID: 35108575 PMCID: PMC9107516 DOI: 10.1016/j.pharmthera.2022.108119] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
20
|
Puris E, Kouřil Š, Najdekr L, Auriola S, Loppi S, Korhonen P, Gómez-Budia M, Fricker G, Kanninen KM, Malm T, Friedecký D, Gynther M. Metabolomic, lipidomic and proteomic characterisation of lipopolysaccharide-induced inflammation mouse model. Neuroscience 2022; 496:165-178. [DOI: 10.1016/j.neuroscience.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
|
21
|
Altered protein expression of membrane transporters in isolated cerebral microvessels and brain cortex of a rat Alzheimer's disease model. Neurobiol Dis 2022; 169:105741. [DOI: 10.1016/j.nbd.2022.105741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 01/28/2023] Open
|
22
|
Targeting Transporters for Drug Delivery to the Brain: Can We Do Better? Pharm Res 2022; 39:1415-1455. [PMID: 35359241 PMCID: PMC9246765 DOI: 10.1007/s11095-022-03241-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Limited drug delivery to the brain is one of the major reasons for high failure rates of central nervous system (CNS) drug candidates. The blood–brain barrier (BBB) with its tight junctions, membrane transporters, receptors and metabolizing enzymes is a main player in drug delivery to the brain, restricting the entrance of the drugs and other xenobiotics. Current knowledge about the uptake transporters expressed at the BBB and brain parenchymal cells has been used for delivery of CNS drugs to the brain via targeting transporters. Although many transporter-utilizing (pro)drugs and nanocarriers have been developed to improve the uptake of drugs to the brain, their success rate of translation from preclinical development to humans is negligible. In the present review, we provide a systematic summary of the current progress in development of transporter-utilizing (pro)drugs and nanocarriers for delivery of drugs to the brain. In addition, we applied CNS pharmacokinetic concepts for evaluation of the limitations and gaps in investigation of the developed transporter-utilizing (pro)drugs and nanocarriers. Finally, we give recommendations for a rational development of transporter-utilizing drug delivery systems targeting the brain based on CNS pharmacokinetic principles.
Collapse
|
23
|
Huang L, Tian W, Chen X, Xu H, Dai W, Zhang Y, Wu X, Yu W, Tian J, Su D. Peripheral Neutrophils-Derived Matrix Metallopeptidase-9 Induces Postoperative Cognitive Dysfunction in Aged Mice. Front Aging Neurosci 2022; 14:683295. [PMID: 35273488 PMCID: PMC8902411 DOI: 10.3389/fnagi.2022.683295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 01/10/2022] [Indexed: 01/15/2023] Open
Abstract
Background Aging is one of the most important risk factors of postoperative cognitive dysfunction (POCD); however, the mechanisms are still not completely understood. In this study, we explore the roles of matrix metalloproteinase-9 (MMP-9) in aged mice with POCD. Methods Appendectomy was performed in 18-month-old C57BL/6 and MMP-9–/– mice under anesthesia to establish the POCD model. Learning and memory were assessed using the Morris water maze (MWM) or Barnes maze. Protein expression of MMP-9 was measured by Western blotting or enzyme-linked immunosorbent assay (ELISA). To explore the role of neutrophils-derived MMP-9 in POCD, we treated mice with anti-Gr-1 monoclonal antibody to deplete peripheral neutrophils. And the percentage of neutrophils and other leukocytes were detected by flow cytometry. We further used sodium fluorescein (NaFlu) to evaluate the blood–brain barrier (BBB) permeability. Results The spatial learning and memory ability was injured, and expression of MMP-9 increased in both plasma and the hippocampus after anesthesia/surgery. However, cognitive dysfunction was alleviated in both MMP-9–/– and peripheral neutrophils-depleted mice. The permeability of BBB was increased after anesthesia/surgery while recused by anti-Gr-1 antibody administration. Conclusion These findings suggest that peripheral neutrophils-derived MMP-9 could lead to POCD of aged mice through increasing the BBB permeability.
Collapse
Affiliation(s)
- Lili Huang
- Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weitian Tian
- Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xuemei Chen
- Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Huan Xu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Wanbing Dai
- Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yizhe Zhang
- Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodan Wu
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Weifeng Yu
- Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Tian
- Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Diansan Su
- Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Diansan Su,
| |
Collapse
|
24
|
Duc Nguyen H, Pal Yu B, Hoang NHM, Jo WH, Young Chung H, Kim MS. Prolactin and Its Altered Action in Alzheimer's Disease and Parkinson's Disease. Neuroendocrinology 2022; 112:427-445. [PMID: 34126620 DOI: 10.1159/000517798] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Prolactin (PRL) is one of the most diverse pituitary hormones and is known to modulate normal neuronal function and neurodegenerative conditions. Many studies have described the influence that PRL has on the central nervous system and addressed its contribution to neurodegeneration, but little is known about the mechanisms responsible for the effects of PRL on neurodegenerative disorders, especially on Alzheimer's disease (AD) and Parkinson's disease (PD). SUMMARY We review and summarize the existing literature and current understanding of the roles of PRL on various PRL aspects of AD and PD. KEY MESSAGES In general, PRL is viewed as a promising molecule for the treatment of AD and PD. Modulation of PRL functions and targeting of immune mechanisms are needed to devise preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ngoc Hong Minh Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
25
|
Xu K, Zhou XX, He RC, Zhou Z, Liu ZH, Xu Q, Sun QY, Yan XX, Wu XY, Guo JF, Tang BS. Constructing Prediction Models for Freezing of Gait by Nomogram and Machine Learning: A Longitudinal Study. Front Neurol 2021; 12:684044. [PMID: 34938251 PMCID: PMC8686836 DOI: 10.3389/fneur.2021.684044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
Objectives: Although risk factors for freezing of gait (FOG) have been reported, there are still few prediction models based on cohorts that predict FOG. This 1-year longitudinal study was aimed to identify the clinical measurements closely linked with FOG in Chinese patients with Parkinson's disease (PD) and construct prediction models based on those clinical measurements using Cox regression and machine learning. Methods: The study enrolled 967 PD patients without FOG in the Hoehn and Yahr (H&Y) stage 1-3 at baseline. The development of FOG during follow-up was the end-point. Neurologists trained in movement disorders collected information from the patients on a PD medication regimen and their clinical characteristics. The cohort was assessed on the same clinical scales, and the baseline characteristics were recorded and compared. After the patients were divided into the training set and test set by the stratified random sampling method, prediction models were constructed using Cox regression and random forests (RF). Results: At the end of the study, 26.4% (255/967) of the patients suffered from FOG. Patients with FOG had significantly longer disease duration, greater age at baseline and H&Y stage, lower proportion in Tremor Dominant (TD) subtype, a higher proportion in wearing-off, levodopa equivalent daily dosage (LEDD), usage of L-Dopa and catechol-O-methyltransferase (COMT) inhibitors, a higher score in scales of Unified Parkinson's Disease Rate Scale (UPDRS), 39-item Parkinson's Disease Questionnaire (PDQ-39), Non-Motor Symptoms Scale (NMSS), Hamilton Depression Rating Scale (HDRS)-17, Parkinson's Fatigue Scale (PFS), rapid eye movement sleep behavior disorder questionnaire-Hong Kong (RBDQ-HK), Epworth Sleepiness Scale (ESS), and a lower score in scales of Parkinson's Disease Sleep Scale (PDSS) (P < 0.05). The risk factors associated with FOG included PD onset not being under the age of 50 years, a lower degree of tremor symptom, impaired activities of daily living (ADL), UPDRS item 30 posture instability, unexplained weight loss, and a higher degree of fatigue. The concordance index (C-index) was 0.68 for the training set (for internal validation) and 0.71 for the test set (for external validation) of the nomogram prediction model, which showed a good predictive ability for patients in different survival times. The RF model also performed well, the C-index was 0.74 for the test set, and the AUC was 0.74. Conclusions: The study found some new risk factors associated with the FOG including a lower degree of tremor symptom, unexplained weight loss, and a higher degree of fatigue through a longitudinal study, and constructed relatively acceptable prediction models.
Collapse
Affiliation(s)
- Kun Xu
- Collaborative Innovation Center for Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Xia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Run-Cheng He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhou Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen-Hua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qi-Ying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xin-Xiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin-Yin Wu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Bei-Sha Tang
- Collaborative Innovation Center for Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
26
|
Aykac A, Sehirli AÖ. The Function and Expression of ATP-Binding Cassette Transporters Proteins in the Alzheimer's Disease. Glob Med Genet 2021; 8:149-155. [PMID: 34877572 PMCID: PMC8635834 DOI: 10.1055/s-0041-1735541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
Despite many years of research, radical treatment of Alzheimer's disease (AD) has still not been found. Amyloid-β (Aβ) peptide is known to play an important role in the pathogenesis of this disease. AD is characterized by three main changes occurring in the central nervous system: (1) Aβ plaque accumulation that prevents synaptic communication, (2) the accumulation of hyperphosphorylated tau proteins that inhibit the transport of molecules inside neurons, and (3) neuronal cell loss of the limbic system. Mechanisms leading to Aβ accumulation in AD are excessive Aβ production as a result of mutations in amyloid precursor protein or genes, and impairment of clearance of Aβ due to changes in Aβ aggregation properties and/or Aβ removal processes. Human ATP-binding cassette (ABC) transporters are expressed in astrocyte, microglia, neuron, brain capillary endothelial cell, choroid plexus, choroid plexus epithelial cell, and ventricular ependymal cell. ABC transporters have essential detoxification and neuroprotective roles in the brain. The expression and functional changes in ABC transporters contribute to the accumulation of Aβ peptide. In conclusion, the review was aimed to summarize and highlight accumulated evidence in the literature focusing on the changing functions of human ABC transporter members, in AD pathogenesis and progression.
Collapse
Affiliation(s)
- Asli Aykac
- Department of Biophysics, Near East University, Nicosia, Cyprus
| | - Ahmet Özer Sehirli
- Department of Pharmacology, Faculty of Dentistry, Near East University, Nicosia, Cyprus
| |
Collapse
|
27
|
Gireud-Goss M, Mack AF, McCullough LD, Urayama A. Cerebral Amyloid Angiopathy and Blood-Brain Barrier Dysfunction. Neuroscientist 2021; 27:668-684. [PMID: 33238806 PMCID: PMC9853919 DOI: 10.1177/1073858420954811] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cerebral hemorrhage, a devastating subtype of stroke, is often caused by hypertension and cerebral amyloid angiopathy (CAA). Pathological evidence of CAA is detected in approximately half of all individuals over the age of 70 and is associated with cortical microinfarcts and cognitive impairment. The underlying pathophysiology of CAA is characterized by accumulation of pathogenic amyloid β (Aβ) fragments of amyloid precursor protein in the cerebral vasculature. Vascular deposition of Aβ damages the vessel wall, results in blood-brain barrier (BBB) leakiness, vessel occlusion or rupture, and leads to hemorrhages and decreased cerebral blood flow that negatively affects vessel integrity and cognitive function. Currently, the main hypothesis surrounding the mechanism of CAA pathogenesis is that there is an impaired clearance of Aβ peptides, which includes compromised perivascular drainage as well as dysfunction of BBB transport. Also, the immune response in CAA pathogenesis plays an important role. Therefore, the mechanism by which Aβ vascular deposition occurs is crucial for our understanding of CAA pathogenesis and for the development of potential therapeutic options.
Collapse
Affiliation(s)
- Monica Gireud-Goss
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alexis F. Mack
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
28
|
Systemic inflammation induced changes in protein expression of ABC transporters and ionotropic glutamate receptor subunit 1 in the cerebral cortex of familial Alzheimer`s disease mouse model. J Pharm Sci 2021; 110:3953-3962. [PMID: 34403652 DOI: 10.1016/j.xphs.2021.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease (AD) is an incurable disease, with complex pathophysiology and a myriad of proteins involved in its development. In this study, we applied quantitative targeted absolute proteomic analysis for investigation of changes in potential AD drug targets, biomarkers, and transporters in cerebral cortices of lipopolysaccharide (LPS)-induced neuroinflammation mouse model, familial AD mice (APdE9) with and without LPS treatment as compared to age-matched wild type (WT) mice. The ABCB1, ABCG2 and GluN1 protein expression ratios between LPS treated APdE9 and WT control mice were 0.58 (95% CI 0.44 - 0.72), 0.65 (95% CI 0.53 - 0.77) and 0.61 (95% CI 0.52 - 0.69), respectively. The protein expression levels of other proteins such as MGLL, COX-2, CytC, ABCC1, ABCC4, SLC2A1 and SLC7A5 did not differ between the study groups. Overall, the study revealed that systemic inflammation can alter ABCB1 and ABCG2 protein expression in brain in AD, which can affect intra-brain drug distribution and play a role in AD development. Moreover, the inflammatory insult caused by peripheral infection in AD may be important factor triggering changes in GluN1 protein expression. However, more studies need to be performed in order to confirm these findings. The quantitative information about the expression of selected proteins provides important knowledge, which may help in the optimal use of the mouse models in AD drug development and better translation of preclinical data to humans.
Collapse
|
29
|
Brain Glucose Transporters: Role in Pathogenesis and Potential Targets for the Treatment of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22158142. [PMID: 34360906 PMCID: PMC8348194 DOI: 10.3390/ijms22158142] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
The most common cause of dementia, especially in elderly people, is Alzheimer’s disease (AD), with aging as its main risk factor. AD is a multifactorial neurodegenerative disease. There are several factors increasing the risk of AD development. One of the main features of Alzheimer’s disease is impairment of brain energy. Hypometabolism caused by decreased glucose uptake is observed in specific areas of the AD-affected brain. Therefore, glucose hypometabolism and energy deficit are hallmarks of AD. There are several hypotheses that explain the role of glucose hypometabolism in AD, but data available on this subject are poor. Reduced transport of glucose into neurons may be related to decreased expression of glucose transporters in neurons and glia. On the other hand, glucose transporters may play a role as potential targets for the treatment of AD. Compounds such as antidiabetic drugs, agonists of SGLT1, insulin, siRNA and liposomes are suggested as therapeutics. Nevertheless, the suggested targets of therapy need further investigations.
Collapse
|
30
|
Salmina AB, Komleva YK, Malinovskaya NA, Morgun AV, Teplyashina EA, Lopatina OL, Gorina YV, Kharitonova EV, Khilazheva ED, Shuvaev AN. Blood-Brain Barrier Breakdown in Stress and Neurodegeneration: Biochemical Mechanisms and New Models for Translational Research. BIOCHEMISTRY (MOSCOW) 2021; 86:746-760. [PMID: 34225598 DOI: 10.1134/s0006297921060122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Blood-brain barrier (BBB) is a structural and functional element of the neurovascular unit (NVU), which includes cells of neuronal, glial, and endothelial nature. The main functions of NVU include maintenance of the control of metabolism and chemical homeostasis in the brain tissue, ensuring adequate blood flow in active regions, regulation of neuroplasticity processes, which is realized through intercellular interactions under normal conditions, under stress, in neurodegeneration, neuroinfection, and neurodevelopmental diseases. Current versions of the BBB and NVU models, static and dynamic, have significantly expanded research capabilities, but a number of issues remain unresolved, in particular, personification of the models for a patient. In addition, application of both static and dynamic models has an important problem associated with the difficulty in reproducing pathophysiological mechanisms responsible for the damage of the structural and functional integrity of the barrier in the diseases of the central nervous system. More knowledge on the cellular and molecular mechanisms of BBB and NVU damage in pathology is required to solve this problem. This review discusses current state of the cellular and molecular mechanisms that control BBB permeability, pathobiochemical mechanisms and manifestations of BBB breakdown in stress and neurodegenerative diseases, as well as the problems and prospects of creating in vitro BBB and NVU models for translational studies in neurology and neuropharmacology. Deciphering BBB (patho)physiology will open up new opportunities for further development in the related areas of medicine such as regenerative medicine, neuropharmacology, and neurorehabilitation.
Collapse
Affiliation(s)
- Alla B Salmina
- Division of Brain Sciences, Research Center of Neurology, Moscow, 125367, Russia. .,Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Yuliya K Komleva
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Nataliya A Malinovskaya
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Andrey V Morgun
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Elena A Teplyashina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Olga L Lopatina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Yana V Gorina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Ekaterina V Kharitonova
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Elena D Khilazheva
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Anton N Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| |
Collapse
|
31
|
Ye C, Liang Y, Chen Y, Xiong Y, She Y, Zhong X, Chen H, Huang M. Berberine Improves Cognitive Impairment by Simultaneously Impacting Cerebral Blood Flow and β-Amyloid Accumulation in an APP/tau/PS1 Mouse Model of Alzheimer's Disease. Cells 2021; 10:cells10051161. [PMID: 34064687 PMCID: PMC8150323 DOI: 10.3390/cells10051161] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is accompanied by β-amyloid (Aβ), neurofibrillary tangles, and neuron cell death, and is one of the most commonly occurring diseases among the elderly. The pathology of AD is complex, involving Aβ overproduction and accumulation, tau hyperphosphorylation, and neuronal loss. In addition, chronic cerebral hypoperfusion (CCH) is ubiquitous in the AD patients and plans a pivotal role in triggering and exacerbating the pathophysiological progress of AD. The goal of this study was to investigate the neuroprotective properties of berberine (BBR) and the underlying mechanism. During the study, BBR was administrated to treat the triple-transgenic mouse model of Alzheimer's disease (3×Tg AD). To thoroughly evaluate the effects of the BBR administration, multiple manners were utilized, for instance, 3D arterial spin labeling technique, Morris water maze assay, immunofluorescence staining, TUNEL assay, laser speckle contrast imaging, western blotting, etc. The results showed that BBR ameliorated cognitive deficits in 3×Tg AD mice, reduced the Aβ accumulation, inhibited the apoptosis of neurons, promoted the formation of microvessels in the mouse brain by enhancing brain CD31, VEGF, N-cadherin, Ang-1. The new vessels promoted by BBR were observed to have a complete structure and perfect function, which in turn promoted the recovery of cerebral blood flow (CBF). In general, berberine is effective to 3×Tg AD mice, has a neuroprotective effect, and is a candidate drug for the multi-target prevention and treatment of AD.
Collapse
Affiliation(s)
- Chenghui Ye
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (C.Y.); (Y.C.); (Y.X.); (Y.S.); (X.Z.)
| | - Yubin Liang
- Department of Neurology, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China;
| | - Ying Chen
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (C.Y.); (Y.C.); (Y.X.); (Y.S.); (X.Z.)
| | - Yu Xiong
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (C.Y.); (Y.C.); (Y.X.); (Y.S.); (X.Z.)
| | - Yingfang She
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (C.Y.); (Y.C.); (Y.X.); (Y.S.); (X.Z.)
| | - Xiaochun Zhong
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (C.Y.); (Y.C.); (Y.X.); (Y.S.); (X.Z.)
| | - Hongda Chen
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Correspondence: (H.C.); (M.H.)
| | - Min Huang
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (C.Y.); (Y.C.); (Y.X.); (Y.S.); (X.Z.)
- Correspondence: (H.C.); (M.H.)
| |
Collapse
|
32
|
The Interplay of ABC Transporters in Aβ Translocation and Cholesterol Metabolism: Implicating Their Roles in Alzheimer's Disease. Mol Neurobiol 2020; 58:1564-1582. [PMID: 33215389 DOI: 10.1007/s12035-020-02211-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The occurrence of Alzheimer's disease (AD) worldwide has been progressively accelerating at an alarming rate, without any successful therapeutic strategy for the disease mitigation. The complexity of AD pathogenesis needs to be targeted with an alternative approach, as provided by the superfamily of ATP-binding cassette (ABC) transporters, which constitutes an extensive range of proteins, capable of transporting molecular entities across biological membranes. These protein moieties have been implicated in AD, based upon their potential in lipid transportation, resulting in maintenance of cholesterol homeostasis. These transporters have been reported to target the primary hallmark of AD pathogenesis, namely, beta-amyloid hypothesis, which is associated with accumulation of beta-amyloid (Aβ) plaques in AD patients. The ABC transporters have been observed to be localized to the capillary endothelial cells of the blood-brain barrier and neural parenchymal cells, where they exhibit different roles, consequently influencing the neuronal expression of Aβ peptides. The review highlights different families of ABC transporters, ABCB1 (P-glycoprotein), ABCA (ABCA1, ABCA2, and ABCA7), ABCG2 (BCRP; breast cancer resistance protein), ABCG1 and ABCG4, as well as ABCC1 (MRP; multidrug resistance protein) in the CNS, and their interplay in regulating cholesterol metabolism and Aβ peptide load in the brain, simultaneously exerting protective effects against neurotoxic substrates and xenobiotics. The authors aim to establish the significance of this alternative approach as a novel therapeutic target in AD, to provide the researchers an opportunity to evaluate the potential aspects of ABC transporters in AD treatment.
Collapse
|