1
|
Behera BP, Mishra SR, Patra S, Mahapatra KK, Bhol CS, Panigrahi DP, Praharaj PP, Klionsky DJ, Bhutia SK. Molecular regulation of mitophagy signaling in tumor microenvironment and its targeting for cancer therapy. Cytokine Growth Factor Rev 2025:S1359-6101(25)00004-8. [PMID: 39880721 DOI: 10.1016/j.cytogfr.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Aberrations emerging in mitochondrial homeostasis are restrained by mitophagy to control mitochondrial integrity, bioenergetics signaling, metabolism, oxidative stress, and apoptosis. The mitophagy-accompanied mitochondrial processes that occur in a dysregulated condition act as drivers for cancer occurrence. In addition, the enigmatic nature of mitophagy in cancer cells modulates the cellular proteome, creating challenges for therapeutic interventions. Several reports found the role of cellular signaling pathways in cancer to modulate mitophagy to mitigate stress, immune checkpoints, energy demand, and cell death. Thus, targeting mitophagy to hinder oncogenic intracellular signaling by promoting apoptosis, in hindsight, might have an edge against cancer. This review highlights the receptors and adaptors, and the involvement of many proteins in mitophagy and their role in oncogenesis. It also provides insight into using mitophagy as a potential target for therapeutic intervention in various cancer types.
Collapse
Affiliation(s)
- Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India.
| |
Collapse
|
2
|
Luo X, Zhang S, Wang L, Li J. Pathological roles of mitochondrial dysfunction in endothelial cells during the cerebral no-reflow phenomenon: A review. Medicine (Baltimore) 2024; 103:e40951. [PMID: 39705421 PMCID: PMC11666140 DOI: 10.1097/md.0000000000040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/22/2024] Open
Abstract
Emergency intravascular interventional therapy is the most effective approach to rapidly restore blood flow and manage occlusion of major blood vessels during the initial phase of acute ischemic stroke. Nevertheless, several patients continue to experience ineffective reperfusion or cerebral no-reflow phenomenon, that is, hypoperfusion of cerebral blood supply after treatment. This is primarily attributed to downstream microcirculation disturbance. As integral components of the cerebral microvascular structure, endothelial cells (ECs) attach importance to regulating microcirculatory blood flow. Unlike neurons and microglia, ECs harbor a relatively low abundance of mitochondria, acting as key sensors of environmental and cellular stress in regulating the viability, structural integrity, and function of ECs rather than generating energy. Mitochondria dysfunction including increased mitochondrial reactive oxygen species levels and disturbed mitochondrial dynamics causes endothelial injury, further causing microcirculation disturbance involved in the cerebral no-reflow phenomenon. Therefore, this review aims to discuss the role of mitochondrial changes in regulating the role of ECs and cerebral microcirculation blood flow during I/R injury. The outcomes of the review will provide promising potential therapeutic targets for future prevention and effective improvement of the cerebral no-reflow phenomenon.
Collapse
Affiliation(s)
- Xia Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shaotao Zhang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Longbing Wang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinglun Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Han Q, Yu Y, Liu X, Guo Y, Shi J, Xue Y, Li Y. The Role of Endothelial Cell Mitophagy in Age-Related Cardiovascular Diseases. Aging Dis 2024:AD.2024.0788. [PMID: 39122456 DOI: 10.14336/ad.2024.0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Aging is a major risk factor for cardiovascular diseases (CVD), and mitochondrial autophagy impairment is considered a significant physiological change associated with aging. Endothelial cells play a crucial role in maintaining vascular homeostasis and function, participating in various physiological processes such as regulating vascular tone, coagulation, angiogenesis, and inflammatory responses. As aging progresses, mitochondrial autophagy impairment in endothelial cells worsens, leading to the development of numerous cardiovascular diseases. Therefore, regulating mitochondrial autophagy in endothelial cells is vital for preventing and treating age-related cardiovascular diseases. However, there is currently a lack of systematic reviews in this area. To address this gap, we have written this review to provide new research and therapeutic strategies for managing aging and age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Quancheng Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiujuan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonghong Guo
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingle Shi
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Zhao BH, Ruze A, Zhao L, Li QL, Tang J, Xiefukaiti N, Gai MT, Deng AX, Shan XF, Gao XM. The role and mechanisms of microvascular damage in the ischemic myocardium. Cell Mol Life Sci 2023; 80:341. [PMID: 37898977 PMCID: PMC11073328 DOI: 10.1007/s00018-023-04998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
Following myocardial ischemic injury, the most effective clinical intervention is timely restoration of blood perfusion to ischemic but viable myocardium to reduce irreversible myocardial necrosis, limit infarct size, and prevent cardiac insufficiency. However, reperfusion itself may exacerbate cell death and myocardial injury, a process commonly referred to as ischemia/reperfusion (I/R) injury, which primarily involves cardiomyocytes and cardiac microvascular endothelial cells (CMECs) and is characterized by myocardial stunning, microvascular damage (MVD), reperfusion arrhythmia, and lethal reperfusion injury. MVD caused by I/R has been a neglected problem compared to myocardial injury. Clinically, the incidence of microvascular angina and/or no-reflow due to ineffective coronary perfusion accounts for 5-50% in patients after acute revascularization. MVD limiting drug diffusion into injured myocardium, is strongly associated with the development of heart failure. CMECs account for > 60% of the cardiac cellular components, and their role in myocardial I/R injury cannot be ignored. There are many studies on microvascular obstruction, but few studies on microvascular leakage, which may be mainly due to the lack of corresponding detection methods. In this review, we summarize the clinical manifestations, related mechanisms of MVD during myocardial I/R, laboratory and clinical examination means, as well as the research progress on potential therapies for MVD in recent years. Better understanding the characteristics and risk factors of MVD in patients after hemodynamic reconstruction is of great significance for managing MVD, preventing heart failure and improving patient prognosis.
Collapse
Affiliation(s)
- Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Jing Tang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Nilupaer Xiefukaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Min-Tao Gai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xue-Feng Shan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China.
| |
Collapse
|
5
|
Bernardi P, Gerle C, Halestrap AP, Jonas EA, Karch J, Mnatsakanyan N, Pavlov E, Sheu SS, Soukas AA. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ 2023; 30:1869-1885. [PMID: 37460667 PMCID: PMC10406888 DOI: 10.1038/s41418-023-01187-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
The mitochondrial permeability transition (mPT) describes a Ca2+-dependent and cyclophilin D (CypD)-facilitated increase of inner mitochondrial membrane permeability that allows diffusion of molecules up to 1.5 kDa in size. It is mediated by a non-selective channel, the mitochondrial permeability transition pore (mPTP). Sustained mPTP opening causes mitochondrial swelling, which ruptures the outer mitochondrial membrane leading to subsequent apoptotic and necrotic cell death, and is implicated in a range of pathologies. However, transient mPTP opening at various sub-conductance states may contribute several physiological roles such as alterations in mitochondrial bioenergetics and rapid Ca2+ efflux. Since its discovery decades ago, intensive efforts have been made to identify the exact pore-forming structure of the mPT. Both the adenine nucleotide translocase (ANT) and, more recently, the mitochondrial F1FO (F)-ATP synthase dimers, monomers or c-subunit ring alone have been implicated. Here we share the insights of several key investigators with different perspectives who have pioneered mPT research. We critically assess proposed models for the molecular identity of the mPTP and the mechanisms underlying its opposing roles in the life and death of cells. We provide in-depth insights into current controversies, seeking to achieve a degree of consensus that will stimulate future innovative research into the nature and role of the mPTP.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Christoph Gerle
- Laboratory of Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Japan
| | - Andrew P Halestrap
- School of Biochemistry and Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Jason Karch
- Department of Integrative Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, State College, PA, USA
| | - Evgeny Pavlov
- Department of Molecular Pathobiology, New York University, New York, NY, USA
| | - Shey-Shing Sheu
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Alexander A Soukas
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Zhang Y, Weng J, Huan L, Sheng S, Xu F. Mitophagy in atherosclerosis: from mechanism to therapy. Front Immunol 2023; 14:1165507. [PMID: 37261351 PMCID: PMC10228545 DOI: 10.3389/fimmu.2023.1165507] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 06/02/2023] Open
Abstract
Mitophagy is a type of autophagy that can selectively eliminate damaged and depolarized mitochondria to maintain mitochondrial activity and cellular homeostasis. Several pathways have been found to participate in different steps of mitophagy. Mitophagy plays a significant role in the homeostasis and physiological function of vascular endothelial cells, vascular smooth muscle cells, and macrophages, and is involved in the development of atherosclerosis (AS). At present, many medications and natural chemicals have been shown to alter mitophagy and slow the progression of AS. This review serves as an introduction to the field of mitophagy for researchers interested in targeting this pathway as part of a potential AS management strategy.
Collapse
Affiliation(s)
- Yanhong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiajun Weng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Luyao Huan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Song Sheng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
7
|
RCAN1 deficiency aggravates sepsis-induced cardiac remodeling and dysfunction by accelerating mitochondrial pathological fission. Inflamm Res 2022; 71:1589-1602. [DOI: 10.1007/s00011-022-01628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/05/2022] Open
|
8
|
Zhang J, Cui Y. Integrative analysis identifies potential ferroptosis-related genes of hypoxia adaptation in yak. Front Vet Sci 2022; 9:1022972. [PMID: 36304416 PMCID: PMC9592977 DOI: 10.3389/fvets.2022.1022972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/13/2022] [Indexed: 11/04/2022] Open
Abstract
There are studies on the hypoxia adaptation in yak, but there are few studies on the regulation of ferroptosis by hypoxia. This study was the first time to explore ferroptosis-related genes about hypoxia in yak. In this study, the oviduct epithelial cells between yak and bovine are performed by integrative analysis for functions, regulating network and hub genes. The results showed 29 up-regulated ferroptosis genes and 67 down-regulated ferroptosis genes, and GO-KEGG analysis showed that up-regulated differentially expressed genes (DEGs) were significantly enriched in ribosome pathway and oxidative phosphorylation pathway. Down-regulated DEGs were significantly enriched in longevity regulating pathway-mammal pathway. Mitophagy-Animal Pathway was a significant enrichment pathway for the up-regulated differentially expressed ferroptosis genes (DE-FRGs). HIF-1 signaling pathway is a significant pathway for the down-regulated DE-FRGs. By constructing DE-FRGs protein-protein interaction (PPI) network, 10 hub DE-FRGs (Jun, STAT3, SP1, HIF1A, Mapk1, Mapk3, Rela, Ulk1, CDKN1A, EPAS1) were obtained. The bta-mir-21-5p, bta-mir-10a and bta-mir-17-5p related to STAT3 were predicted. The results of this study indicated the important genes and pathways of the hypoxia in yak, and it was the first time to study ferroptosis genes and pathways related to the hypoxia adaptation by bulk-seq in yak. This study provided sufficient transcriptome datas for hypoxia adaptation.
Collapse
Affiliation(s)
- Jian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China,Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China,Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, China,*Correspondence: Yan Cui
| |
Collapse
|
9
|
Zhao F, Satyanarayana G, Zhang Z, Zhao J, Ma XL, Wang Y. Endothelial Autophagy in Coronary Microvascular Dysfunction and Cardiovascular Disease. Cells 2022; 11:2081. [PMID: 35805165 PMCID: PMC9265562 DOI: 10.3390/cells11132081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Coronary microvascular dysfunction (CMD) refers to a subset of structural and/or functional disorders of coronary microcirculation that lead to impaired coronary blood flow and eventually myocardial ischemia. Amid the growing knowledge of the pathophysiological mechanisms and the development of advanced tools for assessment, CMD has emerged as a prevalent cause of a broad spectrum of cardiovascular diseases (CVDs), including obstructive and nonobstructive coronary artery disease, diabetic cardiomyopathy, and heart failure with preserved ejection fraction. Of note, the endothelium exerts vital functions in regulating coronary microvascular and cardiac function. Importantly, insufficient or uncontrolled activation of endothelial autophagy facilitates the pathogenesis of CMD in diverse CVDs. Here, we review the progress in understanding the pathophysiological mechanisms of autophagy in coronary endothelial cells and discuss their potential role in CMD and CVDs.
Collapse
Affiliation(s)
- Fujie Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | | | - Zheng Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Jianli Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| |
Collapse
|
10
|
Lao M, Zhang X, Yang H, Bai X, Liang T. RCAN1-mediated calcineurin inhibition as a target for cancer therapy. Mol Med 2022; 28:69. [PMID: 35717152 PMCID: PMC9206313 DOI: 10.1186/s10020-022-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Regulator of calcineurin 1 (RCAN1), as a patent endogenous inhibitor of calcineurin, plays crucial roles in the pathogenesis of cancers. Except for hypopharyngeal and laryngopharynx cancer, high expression of RCAN1 inhibits tumor progression. Molecular antitumor functions of RCAN1 are largely dependent on calcineurin. In this review, we highlight current research on RCAN1 characteristics, and the interaction between RCAN1 and calcineurin. Moreover, the dysregulation of RCAN1 in various cancers is reviewed, and the potential of targeting RCAN1 as a new therapeutic approach is discussed.
Collapse
Affiliation(s)
- Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
11
|
Wu D, Ji H, Du W, Ren L, Qian G. Mitophagy alleviates ischemia/reperfusion-induced microvascular damage through improving mitochondrial quality control. Bioengineered 2022; 13:3596-3607. [PMID: 35112987 PMCID: PMC8973896 DOI: 10.1080/21655979.2022.2027065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The coronary arteries mainly function to perfuse the myocardium. When coronary artery resistance increases, myocardial perfusion decreases and myocardial remodeling occurs. Mitochondrial damage has been regarded as the primary cause of microvascular dysfunction. In the present study, we explored the effects of mitophagy activation on microvascular damage. Hypoxia/reoxygenation injury induced mitochondrial oxidative stress, thereby promoting mitochondrial dysfunction in endothelial cells. Mitochondrial impairment induced apoptosis, reducing the viability and proliferation of endothelial cells. However, supplementation with the mitophagy inducer urolithin A (UA) preserved mitochondrial function by reducing mitochondrial oxidative stress and stabilizing the mitochondrial membrane potential in endothelial cells. UA also sustained the viability and improved the proliferative capacity of endothelial cells by suppressing apoptotic factors and upregulating cyclins D and E. In addition, UA inhibited mitochondrial fission and restored mitochondrial fusion, which reduced the proportion of fragmented mitochondria within endothelial cells. UA enhanced mitochondrial biogenesis in endothelial cells by upregulating sirtuin 3 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha. These results suggested that activation of mitophagy may reduce hypoxia/reoxygenation-induced cardiac microvascular damage by improving mitochondrial quality control and increasing cell viability and proliferation.
Collapse
Affiliation(s)
- Dan Wu
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China
| | - Haizhe Ji
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Beijing, China
| | - Wenjuan Du
- Laboratory of Radiation Injury Treatment, Medical Innovation Research Division, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lina Ren
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Geng Qian
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
12
|
Fontana F, Limonta P. The multifaceted roles of mitochondria at the crossroads of cell life and death in cancer. Free Radic Biol Med 2021; 176:203-221. [PMID: 34597798 DOI: 10.1016/j.freeradbiomed.2021.09.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022]
Abstract
Mitochondria are the cytoplasmic organelles mostly known as the "electric engine" of the cells; however, they also play pivotal roles in different biological processes, such as cell growth/apoptosis, Ca2+ and redox homeostasis, and cell stemness. In cancer cells, mitochondria undergo peculiar functional and structural dynamics involved in the survival/death fate of the cell. Cancer cells use glycolysis to support macromolecular biosynthesis and energy production ("Warburg effect"); however, mitochondrial OXPHOS has been shown to be still active during carcinogenesis and even exacerbated in drug-resistant and stem cancer cells. This metabolic rewiring is associated with mutations in genes encoding mitochondrial metabolic enzymes ("oncometabolites"), alterations of ROS production and redox biology, and a fine-tuned balance between anti-/proapoptotic proteins. In cancer cells, mitochondria also experience dynamic alterations from the structural point of view undergoing coordinated cycles of biogenesis, fusion/fission and mitophagy, and physically communicating with the endoplasmic reticulum (ER), through the Ca2+ flux, at the MAM (mitochondria-associated membranes) levels. This review addresses the peculiar mitochondrial metabolic and structural dynamics occurring in cancer cells and their role in coordinating the balance between cell survival and death. The role of mitochondrial dynamics as effective biomarkers of tumor progression and promising targets for anticancer strategies is also discussed.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| |
Collapse
|
13
|
Zheng H, Zhu H, Liu X, Huang X, Huang A, Huang Y. Mitophagy in Diabetic Cardiomyopathy: Roles and Mechanisms. Front Cell Dev Biol 2021; 9:750382. [PMID: 34646830 PMCID: PMC8503602 DOI: 10.3389/fcell.2021.750382] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease is the leading complication of diabetes mellitus (DM), and diabetic cardiomyopathy (DCM) is a major cause of mortality in diabetic patients. Multiple pathophysiologic mechanisms, including myocardial insulin resistance, oxidative stress and inflammation, are involved in the development of DCM. Recent studies have shown that mitochondrial dysfunction makes a substantial contribution to the development of DCM. Mitophagy is a type of autophagy that takes place in dysfunctional mitochondria, and it plays a key role in mitochondrial quality control. Although the precise molecular mechanisms of mitophagy in DCM have yet to be fully clarified, recent findings imply that mitophagy improves cardiac function in the diabetic heart. However, excessive mitophagy may exacerbate myocardial damage in patients with DCM. In this review, we aim to provide a comprehensive overview of mitochondrial quality control and the dual roles of mitophagy in DCM. We also propose that a balance between mitochondrial biogenesis and mitophagy is essential for the maintenance of cellular metabolism in the diabetic heart.
Collapse
Affiliation(s)
- Haoxiao Zheng
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Hailan Zhu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Xinyue Liu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Xiaohui Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Anqing Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Guangzhou, China
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
14
|
Chang X, Lochner A, Wang HH, Wang S, Zhu H, Ren J, Zhou H. Coronary microvascular injury in myocardial infarction: perception and knowledge for mitochondrial quality control. Am J Cancer Res 2021; 11:6766-6785. [PMID: 34093852 PMCID: PMC8171103 DOI: 10.7150/thno.60143] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells (ECs) constitute the innermost layer in all blood vessels to maintain the structural integrity and microcirculation function for coronary microvasculature. Impaired endothelial function is demonstrated in various cardiovascular diseases including myocardial infarction (MI), which is featured by reduced myocardial blood flow as a result of epicardial coronary obstruction, thrombogenesis, and inflammation. In this context, understanding the cellular and molecular mechanisms governing the function of coronary ECs is essential for the early diagnosis and optimal treatment of MI. Although ECs contain relatively fewer mitochondria compared with cardiomyocytes, they function as key sensors of environmental and cellular stress, in the regulation of EC viability, structural integrity and function. Mitochondrial quality control (MQC) machineries respond to a broad array of stress stimuli to regulate fission, fusion, mitophagy and biogenesis in mitochondria. Impaired MQC is a cardinal feature of EC injury and dysfunction. Hence, medications modulating MQC mechanisms are considered as promising novel therapeutic options in MI. Here in this review, we provide updated insights into the key role of MQC mechanisms in coronary ECs and microvascular dysfunction in MI. We also discussed the option of MQC as a novel therapeutic target to delay, reverse or repair coronary microvascular damage in MI. Contemporary available MQC-targeted therapies with potential clinical benefits to alleviate coronary microvascular injury during MI are also summarized.
Collapse
|
15
|
Bayona-Bafaluy MP, Garrido-Pérez N, Meade P, Iglesias E, Jiménez-Salvador I, Montoya J, Martínez-Cué C, Ruiz-Pesini E. Down syndrome is an oxidative phosphorylation disorder. Redox Biol 2021; 41:101871. [PMID: 33540295 PMCID: PMC7859316 DOI: 10.1016/j.redox.2021.101871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Down syndrome is the most common genomic disorder of intellectual disability and is caused by trisomy of chromosome 21. Several genes in this chromosome repress mitochondrial biogenesis. The goal of this study was to evaluate whether early overexpression of these genes may cause a prenatal impairment of oxidative phosphorylation negatively affecting neurogenesis. Reduction in the mitochondrial energy production and a lower mitochondrial function have been reported in diverse tissues or cell types, and also at any age, including early fetuses, suggesting that a defect in oxidative phosphorylation is an early and general event in Down syndrome individuals. Moreover, many of the medical conditions associated with Down syndrome are also frequently found in patients with oxidative phosphorylation disease. Several drugs that enhance mitochondrial biogenesis are nowadays available and some of them have been already tested in mouse models of Down syndrome restoring neurogenesis and cognitive defects. Because neurogenesis relies on a correct mitochondrial function and critical periods of brain development occur mainly in the prenatal and early neonatal stages, therapeutic approaches intended to improve oxidative phosphorylation should be provided in these periods.
Collapse
Affiliation(s)
- M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza. C/ Mariano Esquillor (Edificio I+D), 50018, Zaragoza, Spain.
| | - Nuria Garrido-Pérez
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza. C/ Mariano Esquillor (Edificio I+D), 50018, Zaragoza, Spain.
| | - Patricia Meade
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza. C/ Mariano Esquillor (Edificio I+D), 50018, Zaragoza, Spain.
| | - Eldris Iglesias
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain.
| | - Irene Jiménez-Salvador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain.
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - Carmen Martínez-Cué
- Departamento de Fisiología y Farmacología. Facultad de Medicina, Universidad de Cantabria. Av. Herrera Oría, 39011, Santander, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| |
Collapse
|
16
|
Tan YQ, Zhang X, Zhang S, Zhu T, Garg M, Lobie PE, Pandey V. Mitochondria: The metabolic switch of cellular oncogenic transformation. Biochim Biophys Acta Rev Cancer 2021; 1876:188534. [PMID: 33794332 DOI: 10.1016/j.bbcan.2021.188534] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria, well recognized as the "powerhouse" of cells, are maternally inherited organelles with bacterial ancestry that play essential roles in a myriad of cellular functions. It has become profoundly evident that mitochondria regulate a wide array of cellular and metabolic functions, including biosynthetic metabolism, cell signaling, redox homeostasis, and cell survival. Correspondingly, defects in normal mitochondrial functioning have been implicated in various human malignancies. Cancer development involves the activation of oncogenes, inactivation of tumor suppressor genes, and impairment of apoptotic programs in cells. Mitochondria have been recognized as the site of key metabolic switches for normal cells to acquire a malignant phenotype. This review outlines the role of mitochondria in human malignancies and highlights potential aspects of mitochondrial metabolism that could be targeted for therapeutic development.
Collapse
Affiliation(s)
- Yan Qin Tan
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, PR China
| | - Shuwei Zhang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230000, Anhui, PR China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230000, Anhui, PR China
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Peter E Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, PR China.
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
17
|
Cho KO, Jeong KH, Cha JH, Kim SY. Spatiotemporal expression of RCAN1 and its isoform RCAN1-4 in the mouse hippocampus after pilocarpine-induced status epilepticus. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:81-88. [PMID: 31908577 PMCID: PMC6940495 DOI: 10.4196/kjpp.2020.24.1.81] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/17/2019] [Accepted: 11/22/2019] [Indexed: 11/15/2022]
Abstract
Regulator of calcineurin 1 (RCAN1) can be induced by an intracellular calcium increase and oxidative stress, which are characteristic features of temporal lobe epilepsy. Thus, we investigated the spatiotemporal expression and cellular localization of RCAN1 protein and mRNA in the mouse hippocampus after pilocarpine-induced status epilepticus (SE). Male C57BL/6 mice were given pilocarpine hydrochloride (280 mg/kg, i.p.) and allowed to develop 2 h of SE. Then the animals were given diazepam (10 mg/kg, i.p.) to stop the seizures and sacrificed at 1, 3, 7, 14, or 28 day after SE. Cresyl violet staining showed that pilocarpine-induced SE resulted in cell death in the CA1 and CA3 subfields of the hippocampus from 3 day after SE. RCAN1 immunoreactivity showed that RCAN1 was mainly expressed in neurons in the shammanipulated hippocampi. At 1 day after SE, RCAN1 expression became detected in hippocampal neuropils. However, RCAN1 signals were markedly enhanced in cells with stellate morphology at 3 and 7 day after SE, which were confirmed to be reactive astrocytes, but not microglia by double immunofluorescence. In addition, real-time reverse transcriptase–polymerase chain reaction showed a significant upregulation of RCAN1 isoform 4 (RCAN1-4) mRNA in the SE-induced hippocampi. Finally, in situ hybridization with immunohistochemistry revealed astrocytic expression of RCAN1-4 after SE. These results demonstrate astrocytic upregulation of RCAN1 and RCAN1-4 in the mouse hippocampus in the acute and subacute phases of epileptogenesis, providing foundational information for the potential role of RCAN1 in reactive astrocytes during epileptogenesis.
Collapse
Affiliation(s)
- Kyung-Ok Cho
- Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Kyoung Hoon Jeong
- Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jung-Ho Cha
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seong Yun Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
18
|
Wang S, Wang Y, Qiu K, Zhu J, Wu Y. RCAN1 in cardiovascular diseases: molecular mechanisms and a potential therapeutic target. Mol Med 2020; 26:118. [PMID: 33267791 PMCID: PMC7709393 DOI: 10.1186/s10020-020-00249-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Considerable efforts are needed to elucidate the underlying mechanisms for the prevention and treatment of CVDs. Regulator of calcineurin 1 (RCAN1) is involved in both development/maintenance of the cardiovascular system and the pathogenesis of CVDs. RCAN1 reduction protects against atherosclerosis by reducing the uptake of oxidized low-density lipoproteins, whereas RCAN1 has a protective effect on myocardial ischemia/reperfusion injury, myocardial hypertrophy and intramural hematoma/aortic rupture mainly mediated by maintaining mitochondrial function and inhibiting calcineurin and Rho kinase activity, respectively. In this review, the regulation and the function of RCAN1 are summarized. Moreover, the dysregulation of RCAN1 in CVDs is reviewed. In addition, the beneficial role of RCAN1 reduction in atherosclerosis and the protective role of RCAN1 in myocardial ischemia/reperfusion injury, myocardial hypertrophy and intramural hematoma /aortic rupture are discussed, as well as underlying mechanisms. Furthermore, the therapeutic potential and challenges of targeting RCAN1 for CVDs treatment are also discussed.
Collapse
Affiliation(s)
- Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China
| | - Yuqing Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Cheeloo College of Medicine, Shandong University, Wenhua West Road No. 44, Lixia District, JinanShandong, 250012, China
| | - Kaixin Qiu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Cheeloo College of Medicine, Shandong University, Wenhua West Road No. 44, Lixia District, JinanShandong, 250012, China
| | - Jin Zhu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China
| | - Yili Wu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China. .,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.
| |
Collapse
|
19
|
Lee SK, Ahnn J. Regulator of Calcineurin (RCAN): Beyond Down Syndrome Critical Region. Mol Cells 2020; 43:671-685. [PMID: 32576715 PMCID: PMC7468584 DOI: 10.14348/molcells.2020.0060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
The regulator of calcineurin (RCAN) was first reported as a novel gene called DSCR1, encoded in a region termed the Down syndrome critical region (DSCR) of human chromosome 21. Genome sequence comparisons across species using bioinformatics revealed three members of the RCAN gene family, RCAN1, RCAN2, and RCAN3, present in most jawed vertebrates, with one member observed in most invertebrates and fungi. RCAN is most highly expressed in brain and striated muscles, but expression has been reported in many other tissues, as well, including the heart and kidneys. Expression levels of RCAN homologs are responsive to external stressors such as reactive oxygen species, Ca2+, amyloid β, and hormonal changes and upregulated in pathological conditions, including Alzheimer's disease, cardiac hypertrophy, diabetes, and degenerative neuropathy. RCAN binding to calcineurin, a Ca2+/calmodulin-dependent phosphatase, inhibits calcineurin activity, thereby regulating different physiological events via dephosphorylation of important substrates. Novel functions of RCANs have recently emerged, indicating involvement in mitochondria homeostasis, RNA binding, circadian rhythms, obesity, and thermogenesis, some of which are calcineurin-independent. These developments suggest that besides significant contributions to DS pathologies and calcineurin regulation, RCAN is an important participant across physiological systems, suggesting it as a favorable therapeutic target.
Collapse
Affiliation(s)
- Sun-Kyung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Joohong Ahnn
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
20
|
Fan H, He Z, Huang H, Zhuang H, Liu H, Liu X, Yang S, He P, Yang H, Feng D. Mitochondrial Quality Control in Cardiomyocytes: A Critical Role in the Progression of Cardiovascular Diseases. Front Physiol 2020; 11:252. [PMID: 32292354 PMCID: PMC7119225 DOI: 10.3389/fphys.2020.00252] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria serve as an energy plant and participate in a variety of signaling pathways to regulate cellular metabolism, survival and immunity. Mitochondrial dysfunction, in particular in cardiomyocytes, is associated with the development and progression of cardiovascular disease, resulting in heart failure, cardiomyopathy, and cardiac ischemia/reperfusion injury. Therefore, mitochondrial quality control processes, including post-translational modifications of mitochondrial proteins, mitochondrial dynamics, mitophagy, and formation of mitochondrial-driven vesicles, play a critical role in maintenance of mitochondrial and even cellular homeostasis in physiological or pathological conditions. Accumulating evidence suggests that mitochondrial quality control in cardiomyocytes is able to improve cardiac function, rescue dying cardiomyocytes, and prevent the deterioration of cardiovascular disease upon external environmental stress. In this review, we discuss recent progress in understanding mitochondrial quality control in cardiomyocytes. We also evaluate potential targets to prevent or treat cardiovascular diseases, and highlight future research directions which will help uncover additional mechanisms underlying mitochondrial homeostasis in cardiomyocytes.
Collapse
Affiliation(s)
- Hualin Fan
- Guangdong Provincial People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhengjie He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Haofeng Huang
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haixia Zhuang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Sijun Yang
- ABSL-Laboratory at the Center for Animal Experiment and Institute of Animal Model for Human Disease, Wuhan University School of Medicine, Wuhan, China
| | - Pengcheng He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huan Yang
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Du Feng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Wang S, Zhao Z, Fan Y, Zhang M, Feng X, Lin J, Hu J, Cheng Z, Sun C, Liu T, Xiong Z, Yang Z, Wang H, Sun D. Mst1 inhibits Sirt3 expression and contributes to diabetic cardiomyopathy through inhibiting Parkin-dependent mitophagy. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1905-1914. [DOI: 10.1016/j.bbadis.2018.04.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/27/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
|
22
|
Pan XY, You HM, Wang L, Bi YH, Yang Y, Meng HW, Meng XM, Ma TT, Huang C, Li J. Methylation of RCAN1.4 mediated by DNMT1 and DNMT3b enhances hepatic stellate cell activation and liver fibrogenesis through Calcineurin/NFAT3 signaling. Theranostics 2019; 9:4308-4323. [PMID: 31285763 PMCID: PMC6599664 DOI: 10.7150/thno.32710] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 05/20/2019] [Indexed: 01/20/2023] Open
Abstract
Background: Liver fibrosis is characterized by extensive deposition of extracellular matrix (ECM) components in the liver. RCAN1 (regulator of calcineurin 1), an endogenous inhibitor of calcineurin (CaN), is required for ECM synthesis during hypertrophy of various organs. However, the functional role of RCAN1 in liver fibrogenesis has not yet been addressed. Methods: We induced experimental liver fibrosis in mice by intraperitoneal injection of 10 % CCl4 twice a week. To investigate the functional role of RCAN1.4 in the progression of liver fibrosis, we specifically over-expressed RCAN1.4 in mice liver using rAAV8-packaged RCAN1.4 over-expression plasmid. Following the establishment of the fibrotic mouse model, primary hepatic stellate cells were isolated. Subsequently, we evaluated the effect of RCAN1.4 on hepatic fibrogenesis, hepatic stellate cell activation, and cell survival. The biological role and signaling events for RCAN1 were analyzed by protein-protein interaction (PPI) network. Bisulfite sequencing PCR (BSP) was used to predict the methylated CpG islands in the RCAN1.4 gene promoter. We used the chromatin immunoprecipitation (ChIP assay) to investigate DNA methyltransferases which induced decreased expression of RCAN1.4 in liver fibrosis. Results: Two isoforms of RCAN1 protein were expressed in CCl4-induced liver fibrosis mouse model and HSC-T6 cells cultured with transforming growth factor-beta 1 (TGF-β1). RCAN1 isoform 4 (RCAN1.4) was selectively down-regulated in vivo and in vitro. The BSP analysis indicated the presence of two methylated sites in RCAN1.4 promoter and the downregulated RCAN1.4 expression levels could be restored by 5-aza-2'-deoxycytidine (5-azadC) and DNMTs-RNAi transfection in vitro. ChIP assay was used to demonstrate that the decreased RCAN1.4 expression was associated with DNMT1 and DNMT3b. Furthermore, we established a CCl4-induced liver fibrosis mouse model by injecting the recombinant adeno-associated virus-packaged RCAN1.4 (rAAV8-RCAN1.4) over-expression plasmid through the tail vein. Liver- specific-over-expression of RAN1.4 led to liver function recovery and alleviated ECM deposition. The key protein (a member of the NFAT family of proteins) identified on PPI network data was analyzed in vivo and in vitro. Our results demonstrated that RCAN1.4 over-expression alleviates, whereas its knockdown exacerbates, TGF-β1-induced liver fibrosis in vitro in a CaN/NFAT3 signaling-dependent manner. Conclusions: RCAN1.4 could alleviate liver fibrosis through inhibition of CaN/NFAT3 signaling, and the anti-fibrosis function of RCAN1.4 could be blocked by DNA methylation mediated by DNMT1 and DNMT3b. Thus, RCAN1.4 may serve as a potential therapeutic target in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xue-yin Pan
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Hong-mei You
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Ling Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Yi-hui Bi
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Yang Yang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Hong-wu Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Xiao-ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Tao-tao Ma
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| |
Collapse
|
23
|
Doktór B, Damulewicz M, Pyza E. Overexpression of Mitochondrial Ligases Reverses Rotenone-Induced Effects in a Drosophila Model of Parkinson's Disease. Front Neurosci 2019; 13:94. [PMID: 30837828 PMCID: PMC6382686 DOI: 10.3389/fnins.2019.00094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
Mul1 and Park are two major mitochondrial ligases responsible for mitophagy. Damaged mitochondria that cannot be removed are a source of an increased level of free radicals, which in turn can destructively affect other cell organelles as well as entire cells. One of the toxins that damages mitochondria is rotenone, a neurotoxin that after exposure displays symptoms typical of Parkinson’s disease. In the present study, we showed that overexpressing genes encoding mitochondrial ligases protects neurons during treatment with rotenone. Drosophila strains with overexpressed mul1 or park show a significantly reduced degeneration of dopaminergic neurons, as well as normal motor activity during exposure to rotenone. In the nervous system, rotenone affected synaptic proteins, including Synapsin, Synaptotagmin and Disk Large1, as well as the structure of synaptic vesicles, while high levels of Mul1 or Park suppressed degenerative events at synapses. We concluded that increased levels of mitochondrial ligases are neuroprotective and could be considered in developing new therapies for Parkinson’s disease.
Collapse
Affiliation(s)
- Bartosz Doktór
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
24
|
Norberg KJ, Nania S, Li X, Gao H, Szatmary P, Segersvärd R, Haas S, Wagman A, Arnelo U, Sutton R, Heuchel RL, Löhr JM. RCAN1 is a marker of oxidative stress, induced in acute pancreatitis. Pancreatology 2018; 18:734-741. [PMID: 30139658 DOI: 10.1016/j.pan.2018.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND To date, there still is a lack of specific acute pancreatitis markers and specifically an early marker that can reliably predict disease severity. The inflammatory response in acute pancreatitis is mediated in part through oxidative stress and calcineurin-NFAT (Nuclear Factor of Activated T-cells) signaling, which is inducing its own negative regulator, regulator of calcineurin 1 (RCAN1). Caerulein induction is a commonly used in vivo model of experimental acute pancreatitis. Caerulein induces CN-NFAT signaling, reactive oxygen species and inflammation. METHODS To screen for potential markers of acute pancreatitis, we used the caerulein model of experimental acute pancreatitis (AP) in C57Bl/6 J mice. Pancreata from treated and control mice were used for expression profiling. Promising gene candidates were validated in cell culture experiments using primary murine acinar cells and rat AR42J cells. These candidates were then further tested for their usefulness as biomarkers in mouse and human plasma. RESULTS We identified a number of novel genes, including Regulator of calcineurin 1 (Rcan1) and Sestrin 2 (Sesn2) and demonstrated that they are induced by oxidative stress, by stimulation with H2O2 and by inhibiting caerulein stimulated expression with the antioxidant N-acetylcysteine. We found Rcan1 protein to be significantly elevated in AP-induced mouse plasma as well as in plasma from AP patients. CONCLUSION We demonstrated that Rcan1 is regulated by oxidative stress and identified RCAN1 as a potential diagnostic marker of AP.
Collapse
Affiliation(s)
- K Jessica Norberg
- Pancreas Cancer Research Lab, Dept. of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Salvatore Nania
- Pancreas Cancer Research Lab, Dept. of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Xuan Li
- Pancreas Cancer Research Lab, Dept. of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Hui Gao
- Dept. of Biosciences and Nutrition (BioNut), Karolinska Institutet, Stockholm, Sweden
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Institute of Translational Medicine, University of Liverpool, Liverpool, England, UK
| | - Ralf Segersvärd
- Centre for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Stephan Haas
- Centre for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Wagman
- Pancreas Cancer Research Lab, Dept. of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Urban Arnelo
- Centre for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Institute of Translational Medicine, University of Liverpool, Liverpool, England, UK
| | - Rainer L Heuchel
- Pancreas Cancer Research Lab, Dept. of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - J Matthias Löhr
- Pancreas Cancer Research Lab, Dept. of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden; Centre for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
25
|
Wang F, Jia J, Rodrigues B. Autophagy, Metabolic Disease, and Pathogenesis of Heart Dysfunction. Can J Cardiol 2017; 33:850-859. [PMID: 28389131 DOI: 10.1016/j.cjca.2017.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022] Open
Abstract
In normal physiology, autophagy is recognized as a protective housekeeping mechanism that enables elimination of unhealthy organelles, protein aggregates, and invading pathogens, as well as recycling cell components and producing new building blocks and energy for cellular renovation and homeostasis. However, overactive or depressed autophagy is often associated with the pathogenesis of multiple disorders, including cardiac disease. During metabolic disorders, such as diabetes and obesity, dysregulation of autophagy frequently leads to cell death, cardiomyopathy, and cardiac dysfunction. In this article, we summarize the current understanding of autophagy-its classification, progression, and regulation; its roles in both physiological and pathophysiological conditions; and the balance between autophagy and apoptosis. We also explore how dysregulation of autophagy leads to cell death in models of metabolic disease and its contributing factors-including nutrient state, hyperglycemia, dyslipidemia, insulin inefficiency, and oxidative stress-and outline some recent efforts to restore normal autophagy in pathophysiological states. This information could provide potential targets for the prevention of, or intervention in, cardiac failure in metabolic disorders such as diabetes and obesity.
Collapse
Affiliation(s)
- Fulong Wang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jocelyn Jia
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
26
|
Jiang H, Zhang C, Tang Y, Zhao J, Wang T, Liu H, Sun X. The regulator of calcineurin 1 increases adenine nucleotide translocator 1 and leads to mitochondrial dysfunctions. J Neurochem 2016; 140:307-319. [PMID: 27861892 PMCID: PMC5248620 DOI: 10.1111/jnc.13900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 10/08/2016] [Accepted: 11/07/2016] [Indexed: 11/29/2022]
Abstract
The over‐expression of regulator of calcineurin 1 isoform 1 (RCAN1.1) has been implicated in mitochondrial dysfunctions of Alzheimer's disease; however, the mechanism linking RCAN1.1 over‐expression and the mitochondrial dysfunctions remains unknown. In this study, we use human neuroblastoma SH‐SY5Y cells stably expressing RCAN1.1S and rat primary neurons infected with RCAN1.1S expression lentivirus to study the association of RCAN1 with mitochondrial functions. Our study here showed that the over‐expression of RCAN1.1S remarkably up‐regulates the expression of adenine nucleotide translocator (ANT1) by stabilizing ANT1 mRNA. The increased ANT1 level leads to accelerated ATP–ADP exchange rate, more Ca2+‐induced mitochondrial permeability transition pore opening, increased cytochrome c release, and eventually cell apoptosis. Furthermore, knockdown of ANT1 expression brings these mitochondria perturbations caused by RCAN1.1S back to normal. The effect of RCAN1.1S on ANT1 was independent of its inhibition on calcineurin. This study elucidated a novel function of RCAN1 in mitochondria and provides a molecular basis for the RCAN1.1S over‐expression‐induced mitochondrial dysfunctions and neuronal apoptosis. ![]()
Collapse
Affiliation(s)
- Hui Jiang
- Otolaryngology Key Lab, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Pediatrics, 2nd Hospital of Shandong University, Jinan, Shandong, China
| | - Chen Zhang
- Otolaryngology Key Lab, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu Tang
- Otolaryngology Key Lab, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Juan Zhao
- Otolaryngology Key Lab, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tan Wang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Heng Liu
- Otolaryngology Key Lab, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiulian Sun
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
27
|
Guo L, Wang L, Li H, Yang X, Yang B, Li M, Huang J, Gu D. Down regulation of GALNT3 contributes to endothelial cell injury via activation of p38 MAPK signaling pathway. Atherosclerosis 2016; 245:94-100. [PMID: 26714046 DOI: 10.1016/j.atherosclerosis.2015.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The GALNT3 gene encodes polypeptide N-acetylgalactosaminyl transferase 3 (GalNAc-T3), a member of the GalNAc-Ts family that transfers the N-acetylgalactosamine to the hydroxyl group of serine and threonine residue in the first step of O-linked oligosaccharide biosynthesis. Emerging evidences have linked GalNAc-Ts family to coronary artery disease (CAD). However the effect of GALNT3 in CAD is unknown. The present study investigated the function and mechanisms of GALNT3 gene in endothelial injury. METHODS AND RESULTS The GALNT3 mRNA level was decreased by 48.2% in CAD patients (n = 58), compared with that of controls (n = 120). Expression of GALNT3 was also decreased in human umbilical vein endothelial cells (HUVECs) treated with CAD sera and subjected to hypoxia in vitro. Knockdown of GALNT3 promoted apoptosis and up-regulated the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-14 (MMP-14). Conversely, overexpression of GALNT3 significantly inhibited HUVECs apoptosis and down-regulated the expression of MMP-2 and MMP-14 genes, in addition, overexpression of GALNT3 attenuated hypoxia-induced apoptosis and expression of MMP-2 and MMP-14. Finally, the ratio of cytosolic p-p38 MAPK/p38 MAPK expression was significantly increased with GALNT3 knockdown and lower with GALNT3 overexpression, while the p38 MAPK inhibitor SB203580 blocked the effects of GALNT3 knockdown. CONCLUSIONS Expression of GALNT3 was reduced in CAD patients, and down regulation of GALNT3 contributed to endothelial injury by promoting apoptosis and up-regulating the expression of MMP-2 and MMP-14 genes via p38 MAPK activation. GALNT3 may be a potential target for future therapeutic intervention for CAD.
Collapse
Affiliation(s)
- Liwei Guo
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Laiyuan Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hongfan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueli Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengting Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianfeng Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongfeng Gu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
28
|
Alnasser HA, Guan Q, Zhang F, Gleave ME, Nguan CYC, Du C. Requirement of clusterin expression for prosurvival autophagy in hypoxic kidney tubular epithelial cells. Am J Physiol Renal Physiol 2016; 310:F160-73. [DOI: 10.1152/ajprenal.00304.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/05/2015] [Indexed: 02/08/2023] Open
Abstract
Cellular autophagy is a prosurvival mechanism in the kidney against ischemia-reperfusion injury (IRI), but the molecular pathways that activate the autophagy in ischemic kidneys are not fully understood. Clusterin (CLU) is a chaperone-like protein, and its expression is associated with kidney resistance to IRI. The present study investigated the role of CLU in prosurvival autophagy in the kidney. Renal IRI was induced in mice by clamping renal pedicles at 32°C for 45 min. Hypoxia in renal tubular epithelial cell (TEC) cultures was induced by exposure to a 1% O2 atmosphere. Autophagy was determined by either light chain 3-BII expression with Western blot analysis or light chain 3-green fluorescent protein aggregation with confocal microscopy. Cell apoptosis was determined by flow cytometric analysis. The unfolded protein response was determined by PCR array. Here, we showed that autophagy was significantly activated by IRI in wild-type (WT) but not CLU-deficient kidneys. Similarly, autophagy was activated by hypoxia in human proximal TECs (HKC-8) and WT mouse primary TECs but was impaired in CLU-null TECs. Hypoxia-activated autophagy was CLU dependent and positively correlated with cell survival, and inhibition of autophagy significantly promoted cell death in both HKC-8 and mouse WT/CLU-expressing TECs but not in CLU-null TECs. Further experiments showed that CLU-dependent prosurvival autophagy was associated with activation of the unfolded protein response in hypoxic kidney cells. In conclusion, these data suggest that activation of prosurvival autophagy by hypoxia in kidney cells requires CLU expression and may be a key cytoprotective mechanism of CLU in the protection of the kidney from hypoxia/ischemia-mediated injury.
Collapse
Affiliation(s)
- Hatem A. Alnasser
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; and
| | - Fan Zhang
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Martin E. Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Christopher Y. C. Nguan
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Caigan Du
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; and
| |
Collapse
|
29
|
Bone marrow-derived mesenchymal stem cells ameliorate chronic high glucose-induced β-cell injury through modulation of autophagy. Cell Death Dis 2015; 6:e1885. [PMID: 26379190 PMCID: PMC4650435 DOI: 10.1038/cddis.2015.230] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/07/2015] [Accepted: 06/18/2015] [Indexed: 12/13/2022]
Abstract
Chronic hyperglycemia causes a progressive decrease of β-cell function and mass in type 2 diabetic patients. Growing evidence suggests that augment of autophagy may be an effective approach to protect β cells against various extra-/intracellular stimuli. In this study, we thus investigated whether bone marrow-derived mesenchymal stem cells (BM-MSCs) could ameliorate chronic high glucose (HG)-induced β-cell injury through modulation of autophagy. Prolonged exposure to HG decreased cell viability, increased cell apoptosis and impaired basal insulin secretion and glucose-stimulated insulin secretion of INS-1 cells, but BM-MSC treatment significantly alleviated these glucotoxic alternations. In addition, western blotting displayed upregulated expression of Beclin1 and LC3-II in INS-1 cells co-cultured with BM-MSCs. Results from immunofluorescence staining and transmission electronic microscope analysis also revealed that BM-MSCs promoted autophagosomes and autolysosomes formation in HG-treated INS-1 cells. However, it should be noted that inhibition of autophagy significantly diminished the protective effects of BM-MSCs on HG-treated INS-1 cells, suggesting that the improvement of β-cell function and survival induced by BM-MSCs was mediated through autophagy. Furthermore, our results showed that BM-MSCs improved mitochondrial function and reduced reactive oxygen species production in HG-treated INS-1 cells, largely owing to autophagic clearance of impaired mitochondria. In vivo study was performed in rats with type 2 diabetes (T2D). BM-MSC infusion not only ameliorated hyperglycemia, but also promoted restoration of pancreatic β cells in T2D rats. Meanwhile, BM-MSC infusion upregulated LAMP2 expression and enhanced formation of autophagosomes and autolysosomes, combined with reduced β-cell apoptosis and increased number of insulin granules. These findings together indicated that BM-MSCs could protect β cells against chronic HG-induced injury through modulation of autophagy in vitro and in vivo. This study unveiled novel evidence of BM-MSCs as an ideal strategy to enhance autophagy for treatment of T2D mellitus.
Collapse
|
30
|
Zhang C, Qiang Q, Jiang Y, Hu L, Ding X, Lu Y, Hu G. Effects of hypoxia inducible factor-1α on apoptotic inhibition and glucocorticoid receptor downregulation by dexamethasone in AtT-20 cells. BMC Endocr Disord 2015; 15:24. [PMID: 26002039 PMCID: PMC4464719 DOI: 10.1186/s12902-015-0017-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/20/2015] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Hypoxia inducible factor-1α (HIF-1α) is the central transcriptional regulator of hypoxic responses during the progression of pituitary adenomas. Although previous immunohistochemical studies revealed that HIF-1α is expressed in adreno-cortico-tropic-hormone (ACTH) pituitary adenomas, the role of HIF-1α remains unclear. METHODS AtT-20 cells were incubated under hypoxic conditions (1 % O2) for 12 h. HIF-1α mRNA and protein expression levels were measured by real-time PCR and western blotting, respectively. BrdU was used to determine the effects of hypoxia on cell viability. AtT-20 cells were transfected with siRNA targeting HIF-1α, followed by hypoxia (1 % O2) for 12 h. Apoptosis was determined by annexin V-FITC flow cytometry and Tdt-mediated dUTP nick end-labelling (TUNEL) assay. In addition, we examined interactions between HIF-1α, glucocorticoid receptor (GR), and dexamethasone under both normoxic and hypoxic conditions. RESULTS Hypoxia triggered the time-dependent proliferation of AtT-20 cells in association with increased HIF-1α mRNA and protein levels. However, the viability of AtT-20 cells decreased greatly when they were first transfected with HIF-1α-siRNA and then exposed to hypoxia. According to flow cytometry (annexin V-FITC and PI staining) and TUNEL analyses, a greater percentage of cells were apoptotic when transfected with HIF-1α siRNA and subsequently cultured under hypoxic conditions compared to those in the normoxia and mock groups. After AtT-20 cells were cultured in 1 % O2 and then treated with dexamethasone, HIF-1α levels significantly increased or decreased in normoxic or hypoxic conditions, respectively. Dexamethasone suppressed GR expression to a higher degree in hypoxic than normoxic conditions. Downregulation of GR by dexamethasone was greatly prevented in cells that were transfected with HIF-1α siRNA. CONCLUSIONS These findings strongly suggest that HIF-1α exerts an antiapoptotic role and participates in the downregulation of GR by dexamethasone in hypoxic AtT-20 cells.
Collapse
Affiliation(s)
- Chenran Zhang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, No. 415, Feng-Yang Road, Shanghai, 200003, China.
| | - Qiang Qiang
- Department of Neurology, Huadong Hospital, Fudan University, Shanghai, 200040, China.
| | - Ying Jiang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, No. 415, Feng-Yang Road, Shanghai, 200003, China.
| | - Liuhua Hu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Xuehua Ding
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, No. 415, Feng-Yang Road, Shanghai, 200003, China.
| | - Yicheng Lu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, No. 415, Feng-Yang Road, Shanghai, 200003, China.
| | - Guohan Hu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, No. 415, Feng-Yang Road, Shanghai, 200003, China.
| |
Collapse
|