1
|
Maleszewska M, Roura AJ, Dabrowski MJ, Draminski M, Wojtas B. Decoding glioblastoma's diversity: Are neurons part of the game? Cancer Lett 2025; 620:217666. [PMID: 40147584 DOI: 10.1016/j.canlet.2025.217666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Glioblastoma multiforme (GBM, WHO Grade 4) is a highly aggressive primary brain tumor with limited treatment options and a poor prognosis. A key challenge in GBM therapy lies in its pronounced heterogeneity, both within individual tumors (intratumoral) and between patients (intertumoral). Historically, neurons have been underexplored in GBM research; however, recent studies reveal that GBM development is closely linked to neural and glial progenitors, often mimicking neurodevelopmental processes in a dysregulated manner. Beyond damaging neuronal tissue, GBM actively engages with neurons to promote pro-tumorigenic signaling, including neuronal hyperexcitability and seizures. Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of the tumor microenvironment (TME), uncovering the critical roles of immune cells, endothelial cells, and astrocytes in tumor progression. However, technical limitations of scRNA-seq hinder its ability to capture the transcriptomes of neurons, necessitating the use of single-nucleus RNA sequencing (snRNA-seq) to study these interactions at single-cell resolution. This work collects the emerging insights of glioblastoma-neuron interactions, focusing on how GBM exploits neurodevelopmental pathways and reshapes neuronal networks. Moreover, we perform bioinformatic analysis of publicly available snRNA-seq datasets to propose putative cell-cell interactions driving glioma-neuronal dynamics. This study delineates key signaling pathways and underscores the need for further investigation to evaluate their potential as therapeutic targets.
Collapse
Affiliation(s)
- Marta Maleszewska
- Department of Animal Physiology, Institute of Experimental Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str, 02-096, Warsaw, Poland.
| | - Adrià-Jaume Roura
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Michal J Dabrowski
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Michal Draminski
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Li J, Wu Y, Ye P, Zuo D, Deng S, Pang R, Li H. Computational insights into the inhibitory effects of PFAS 14 on colorectal cancer targeting GSTA1 through competitive binding. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117925. [PMID: 40037076 DOI: 10.1016/j.ecoenv.2025.117925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 03/06/2025]
Abstract
This study employed computational biology approaches to investigate the interactions between per- and polyfluoroalkyl substances (PFAS) and key colorectal cancer (CRC) proteins. The results indicate that PFAS may influence CRC progression by modulating multiple proteins, particularly glutathione S-transferase A1 (GSTA1). Computational analysis revealed that PFAS 14 exhibits high binding affinity for GSTA1, occupying its glutathione-binding site. Further simulations confirmed the stable binding of PFAS 14 across different environments, forming persistent hydrogen bonds and water bridges, suggesting a potential inhibitory effect on GSTA1.GSTA1, a key member of the glutathione S-transferase family, plays a critical role in detoxification by catalyzing the conjugation of glutathione to electrophilic compounds. Dysregulation of GSTA1 has been implicated in cancer progression and chemoresistance. In CRC, altered GSTA1 expression may affect tumor metabolism and drug response, making it a potential therapeutic target.This study identifies GSTA1 as a key target of PFAS interactions, suggesting that environmental PFAS exposure may influence CRC by interfering with detoxification mechanisms. The competitive inhibition of GSTA1 by PFAS 14 may impact cancer cell survival and progression. Future research should integrate experimental validation to assess its phenotypic effects and evaluate PFAS 14 as a potential GSTA1 inhibitor.
Collapse
Affiliation(s)
- Jinxiao Li
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan Hubei, 430022, China
| | - Yanran Wu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Pian Ye
- Department of infectious diseases,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Dongmei Zuo
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Shuangjiao Deng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Ran Pang
- Department of infectious diseases,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Huarong Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan, Hubei 430022, China.
| |
Collapse
|
3
|
Bourke L, O’Brien C. Fibrosis and Src Signalling in Glaucoma: From Molecular Pathways to Therapeutic Prospects. Int J Mol Sci 2025; 26:1009. [PMID: 39940776 PMCID: PMC11817269 DOI: 10.3390/ijms26031009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Glaucoma, a leading cause of irreversible blindness, is characterised by progressive optic nerve damage, with elevated intraocular pressure (IOP) and extracellular matrix (ECM) remodelling in the lamina cribrosa (LC) contributing to its pathophysiology. While current treatments focus on IOP reduction, they fail to address the underlying fibrotic changes that perpetuate neurodegeneration. The Src proto-oncogene, a non-receptor tyrosine kinase, has emerged as a key regulator of cellular processes, including fibroblast activation, ECM deposition, and metabolism, making it a promising target for glaucoma therapy. Beyond its well-established roles in cancer and fibrosis, Src influences pathways critical to trabecular meshwork function, aqueous humour outflow, and neurodegeneration. However, the complexity of Src signalling networks remains a challenge, necessitating further investigation into the role of Src in glaucoma pathogenesis. This paper explores the therapeutic potential of Src inhibition to mitigate fibrotic remodelling and elevated IOP in glaucoma, offering a novel approach to halting disease progression.
Collapse
Affiliation(s)
- Liam Bourke
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | | |
Collapse
|
4
|
Gao X, Zhang R, He Y, Wang X, Bao W, Feng X, Chai J, Wang J. EphB3 protein is a potential ancillary diagnostic biomarker for thyroid cancers. Ann Diagn Pathol 2024; 69:152262. [PMID: 38150866 DOI: 10.1016/j.anndiagpath.2023.152262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVE To investigate the expression of ephrin type B receptor 3 (EphB3) in thyroid tumors and its usage as an ancillary diagnostic biomarker for thyroid tumors. METHODS Formalin-fixed and paraffin-embedded (FFPE) tissue samples (78 cases) and FNAC samples (57 cases) were assessed with the EphB3 antibody using immunohistochemistry. PTC and other thyroid follicular tumors were compared regarding their EphB3 expression. Sanger sequencing was used to assess for the presence of a BRAF V600E mutation. RESULTS EphB3 was positive in 81.8 % (27/33) of papillary thyroid carcinoma (PTC), 83.3 % (5/6) of medullary thyroid carcinoma (MTC), 25 % (1/4) of hyperplastic/adenomatoid nodule (HN), 14.3 % (1/7) of follicular adenoma (FA), and negative in follicular tumors of uncertain malignant potential (FT-UMP) (0/13), noninvasive follicular neoplasm with papillary-like nuclear features (NIFTP) (0/7), thyroid follicular carcinoma (TFC) (0/4), Hashimoto's thyroiditis (0/4), and normal thyroid follicular tissues (0/33). In cellular blocks, EphB3 was positive in 87.1 % (20/23) of PTC, 75 % (3/4) of MTC, 20 % (2/10) of HN, and negative in atypia of undetermined significance/follicular lesion of undetermined significance (AUS/FLUS) (0/20) and normal thyroid follicular cells (0/10). CONCLUSION EphB3 is expressed in the majority of PTC, but less so in benign follicular nodules. EphB3 expression in fine needle aspiration cytology (FNAC) specimens can be used as a diagnostic tool to differentiate thyroid cancer from other follicular lesions in its differential diagnosis, especially AUS/FLUS and PTC.
Collapse
Affiliation(s)
- Xinyue Gao
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Rusong Zhang
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Yan He
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Xuan Wang
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Wei Bao
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Xiao Feng
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Jiaxin Chai
- Department of Pathology Eastern Theater Air Force Hospital, No. 1 Nanjing Ma Lu Jie, Nanjing 120002, China
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
| |
Collapse
|
5
|
Yoshioka S, Arakawa Y, Hasegawa M, Kato S, Hashimoto H, Mori S, Ueda H, Watanabe M. Twin study: genotype-dependent epigenetic factors affecting free thyroxine levels in the normal range. Epigenomics 2024; 16:147-158. [PMID: 38264851 DOI: 10.2217/epi-2023-0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Aim: To explore the clinical application of DNA methylation affecting thyroid function, we evaluated the association of DNA methylation with free thyroxine (FT4) and TSH measurements in monozygotic twins. Materials & methods: Discordant pairs for FT4 or TSH levels were examined for the relationship between the within-pair difference of each measurement and the DNA methylation levels using epigenome-wide association studies. The contribution of polymorphisms to the methylation sensitivity was also examined. Results: We found two CpG sites significantly associated with FT4 levels, and also some CpG sites showing significant differences in their methylation levels within FT4-discordant pairs depending on the polymorphism in EPHB2. Conclusion: The FT4 level may be associated with a combination of methylation and polymorphisms in the EPHB2 gene.
Collapse
Affiliation(s)
- Saki Yoshioka
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Yuya Arakawa
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
- Center for Twin Research, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Mika Hasegawa
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Shiho Kato
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Hinako Hashimoto
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Saho Mori
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Hiromichi Ueda
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Mikio Watanabe
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
- Center for Twin Research, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Qiao Z, Liao M, Xiao M, Luo S, Wang K, Niu M, Jiang H, Sun S, Xu G, Xu N, Xu Q, Liu Y. Ephrin B3 exacerbates colitis and colitis-associated colorectal cancer. Biochem Pharmacol 2024; 220:116004. [PMID: 38142837 DOI: 10.1016/j.bcp.2023.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Ephrin B3, a member of Eph/ephrin family, contributes to embryogenesis and carcinogenesis, but few studies have suggested whether this ligand has regulatory effect on colitis. This study was to determine whether ephrin B3 played a role in colitis and colonic carcinogenesis. Dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced colitis-associated carcinogenesis model was established in Efnb3-deficient (Efnb3-/-) mice. Label-free quantitative proteomics were performed to identify the Efnb3-regulated proteins. Our results showed that Efnb3 knock out reduced the symptoms of DSS-induced colitis, such as disease activity index (DAI), inflammatory factors release, and dysfunction of the intestinal barrier. Quantitative proteomics revealed that Efnb3 regulated 95 proteins which clustered in the platelet degranulation, response to elevated platelet cytosolic Ca2+, MAPK signaling for integrins such as ITGB4. Furthermore, ephrin B3 inactived ITGB4/AKT signal pathway and then promoted epithelial barrier dysfunction. Simultaneously, ephrin B3 promoted Gremlin-1/NF-κB signal pathway and thereby increased inflammatory factors release. In addition, the higher level of Efnb3 in colon cancer patients is correlated with worse survival. Efnb3-/- mice exhibited susceptibility to AOM/DSS-induced colorectal cancer. Our finding discovered that Efnb3 played an important role in the development of colitis and colitis-associated colorectal cancer. Efnb3 deficiency improved the intestinal barrier by ITGB4 and suppressed inflammation via Gremlin-1/NF-κB signal pathway, which may provide a novel therapeutic strategy for the treatment of colitis and colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Zhen Qiao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Min Liao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingyue Xiao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Saiyan Luo
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kexin Wang
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mengxin Niu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Honglv Jiang
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Suya Sun
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Anatomy, Histology and Embryology, Neuroscience Division, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoqiang Xu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - NanJie Xu
- Department of Anatomy, Histology and Embryology, Neuroscience Division, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiongming Xu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanli Liu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
7
|
Halvorson CS, Sánchez-Lafuente CL, Johnston JN, Kalynchuk LE, Caruncho HJ. Molecular Mechanisms of Reelin in the Enteric Nervous System and the Microbiota-Gut-Brain Axis: Implications for Depression and Antidepressant Therapy. Int J Mol Sci 2024; 25:814. [PMID: 38255890 PMCID: PMC10815176 DOI: 10.3390/ijms25020814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Current pharmacological treatments for depression fail to produce adequate remission in a significant proportion of patients. Increasingly, other systems, such as the microbiome-gut-brain axis, are being looked at as putative novel avenues for depression treatment. Dysbiosis and dysregulation along this axis are highly comorbid with the severity of depression symptoms. The endogenous extracellular matrix protein reelin is present in all intestinal layers as well as in myenteric and submucosal ganglia, and its receptors are also present in the gut. Reelin secretion from subepithelial myofibroblasts regulates cellular migration along the crypt-villus axis in the small intestine and colon. Reelin brain expression is downregulated in mood and psychotic disorders, and reelin injections have fast antidepressant-like effects in animal models of depression. This review seeks to discuss the roles of reelin in the gastrointestinal system and propose a putative role for reelin actions in the microbiota-gut-brain axis in the pathogenesis and treatment of depression, primarily reflecting on alterations in gut epithelial cell renewal and in the clustering of serotonin transporters.
Collapse
Affiliation(s)
- Ciara S. Halvorson
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| | - Carla Liria Sánchez-Lafuente
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| | - Jenessa N. Johnston
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Lisa E. Kalynchuk
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| | - Hector J. Caruncho
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| |
Collapse
|
8
|
Yu D, Xiang Y, Gou T, Tong R, Xu C, Chen L, Zhong L, Shi J. New therapeutic approaches against pulmonary fibrosis. Bioorg Chem 2023; 138:106592. [PMID: 37178650 DOI: 10.1016/j.bioorg.2023.106592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Pulmonary fibrosis is the end-stage change of a large class of lung diseases characterized by the proliferation of fibroblasts and the accumulation of a large amount of extracellular matrix, accompanied by inflammatory damage and tissue structure destruction, which also shows the normal alveolar tissue is damaged and then abnormally repaired resulting in structural abnormalities (scarring). Pulmonary fibrosis has a serious impact on the respiratory function of the human body, and the clinical manifestation is progressive dyspnea. The incidence of pulmonary fibrosis-related diseases is increasing year by year, and no curative drugs have appeared so far. Nevertheless, research on pulmonary fibrosis have also increased in recent years, but there are no breakthrough results. Pathological changes of pulmonary fibrosis appear in the lungs of patients with coronavirus disease 2019 (COVID-19) that have not yet ended, and whether to improve the condition of patients with COVID-19 by means of the anti-fibrosis therapy, which are the questions we need to address now. This review systematically sheds light on the current state of research on fibrosis from multiple perspectives, hoping to provide some references for design and optimization of subsequent drugs and the selection of anti-fibrosis treatment plans and strategies.
Collapse
Affiliation(s)
- Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Xiang
- College of Medicine, University of Electronic Science and Technology, Chengdu 610072, China
| | - Tingting Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lu Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
9
|
Tan F, Xuan Y, Long L, Yu Y, Zhang C, Liang P, Wang Y, Chen M, Wen J, Chen G. Single-cell analysis of human prepuce reveals dynamic changes in gene regulation and cellular communications. BMC Genomics 2023; 24:514. [PMID: 37658288 PMCID: PMC10474653 DOI: 10.1186/s12864-023-09615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND The cellular and molecular dynamics of human prepuce are crucial for understanding its biological and physiological functions, as well as the prevention of related genital diseases. However, the cellular compositions and heterogeneity of human prepuce at single-cell resolution are still largely unknown. Here we systematically dissected the prepuce of children and adults based on the single-cell RNA-seq data of 90,770 qualified cells. RESULTS We identified 15 prepuce cell subtypes, including fibroblast, smooth muscle cells, T/natural killer cells, macrophages, vascular endothelial cells, and dendritic cells. The proportions of these cell types varied among different individuals as well as between children and adults. Moreover, we detected cell-type-specific gene regulatory networks (GRNs), which could contribute to the unique functions of related cell types. The GRNs were also highly dynamic between the prepuce cells of children and adults. Our cell-cell communication network analysis among different cell types revealed a set of child-specific (e.g., CD96, EPO, IFN-1, and WNT signaling pathways) and adult-specific (e.g., BMP10, NEGR, ncWNT, and NPR1 signaling pathways) signaling pathways. The variations of GRNs and cellular communications could be closely associated with prepuce development in children and prepuce maintenance in adults. CONCLUSIONS Collectively, we systematically analyzed the cellular variations and molecular changes of the human prepuce at single-cell resolution. Our results gained insights into the heterogeneity of prepuce cells and shed light on the underlying molecular mechanisms of prepuce development and maintenance.
Collapse
Affiliation(s)
- Fei Tan
- School of Medicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China.
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China.
| | - Yuan Xuan
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Lan Long
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, 518172, China
| | - Yang Yu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chunhua Zhang
- Department of Dermatology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 201999, China
| | - Pengchen Liang
- School of Microelectronics, Shanghai University, Shanghai, 201800, China
| | - Yaoqun Wang
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Meiyu Chen
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Jiling Wen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Geng Chen
- School of Medicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China.
- Center for Bioinformatics and Computational Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
10
|
Tamura R, Miyoshi H, Imaizumi K, Yo M, Kase Y, Sato T, Sato M, Morimoto Y, Sampetrean O, Kohyama J, Shinozaki M, Miyawaki A, Yoshida K, Saya H, Okano H, Toda M. Gene therapy using genome-edited iPS cells for targeting malignant glioma. Bioeng Transl Med 2023; 8:e10406. [PMID: 37693056 PMCID: PMC10487333 DOI: 10.1002/btm2.10406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/08/2022] Open
Abstract
Glioblastoma is characterized by diffuse infiltration into the normal brain. Invasive glioma stem cells (GSCs) are an underlying cause of treatment failure. Despite the use of multimodal therapies, the prognosis remains dismal. New therapeutic approach targeting invasive GSCs is required. Here, we show that neural stem cells (NSCs) derived from CRISRP/Cas9-edited human-induced pluripotent stem cell (hiPSC) expressing a suicide gene had higher tumor-trophic migratory capacity compared with mesenchymal stem cells (MSCs), leading to marked in vivo antitumor effects. High migratory capacity in iPSC-NSCs was related to self-repulsive action and pathotropism involved in EphB-ephrinB and CXCL12-CXCR4 signaling. The gene insertion to ACTB provided higher and stable transgene expression than other common insertion sites, such as GAPDH or AAVS1. Ferroptosis was associated with enhanced antitumor immune responses. The thymidylate synthase and dihydroprimidine dehydrogenase expressions predicted the treatment efficacy of therapeutic hiPSC-NSCs. Our results indicate the potential benefit of genome-edited iPS cells based gene therapy for invasive GSCs. Furthermore, the present research concept may become a platform to promote clinical studies using hiPSC.
Collapse
Affiliation(s)
- Ryota Tamura
- Department of NeurosurgeryKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | | | - Kent Imaizumi
- Department of PhysiologyKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Masahiro Yo
- Laboratory for Cell Function and Dynamics, RIKEN Center for Brain ScienceWako, SaitamaJapan
| | - Yoshitaka Kase
- Department of PhysiologyKeio University School of MedicineShinjuku‐ku, TokyoJapan
- Department of Geriatric MedicineGraduate School of Medicine, The University of TokyoBunkyo‐ku, TokyoJapan
| | - Tsukika Sato
- Department of PhysiologyKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Mizuto Sato
- Department of NeurosurgeryKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Yukina Morimoto
- Department of NeurosurgeryKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Oltea Sampetrean
- Division of Gene RegulationKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Jun Kohyama
- Department of PhysiologyKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Munehisa Shinozaki
- Department of PhysiologyKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, RIKEN Center for Brain ScienceWako, SaitamaJapan
| | - Kazunari Yoshida
- Department of NeurosurgeryKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Hideyuki Saya
- Division of Gene RegulationKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Hideyuki Okano
- Department of PhysiologyKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Masahiro Toda
- Department of NeurosurgeryKeio University School of MedicineShinjuku‐ku, TokyoJapan
| |
Collapse
|
11
|
Morroniside Regulates Endothelial Cell Function via the EphrinB Signaling Pathway after Oxygen-Glucose Deprivation In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6875053. [PMID: 36573084 PMCID: PMC9789905 DOI: 10.1155/2022/6875053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Proangiogenic treatment is a potential treatment for acute myocardial infarction (AMI). Morroniside was previously discovered to increase post-AMI angiogenesis in rats as well as the proliferation of rat coronary artery endothelial cells (RCAECs). However, the effects of morroniside on other endothelial cell (EC) functions and underlying mechanisms are unknown. To further clarify the vascular biological activity of morroniside, this work focused on investigating how morroniside influenced endothelial cell functions, such as cell viability, tube formation capacity, migration, and adhesion, and to explore the signaling pathway. Oxygen-glucose deprivation causes ischemic damage in RCAECs (OGD). In vitro investigations were carried out to explore the involvement of morroniside in EC function and pathways mediated by ephrinB. The results revealed that the number of BrdU+ cells and cell viability in the high-dose group were considerably greater than in the OGD group (P < 0.05). The ability of tube formation evaluated by total tube length, tube-like structural junction, and tube area was significantly higher in the morroniside group than in the OGD group (P < 0.001). Morroniside considerably improved migration and adhesion abilities compared to OGD group (P < 0.05, P < 0.01, P < 0.001). The protein expression levels of the ephrinB reverse signaling pathway were substantially greater in the morroniside group than in the OGD group (P < 0.05, P < 0.01). In conclusion, the current study demonstrated that morroniside modulates endothelial cell function via ephrinB reverse signaling pathways and provided a novel insight and therapeutic strategy into vascular biology.
Collapse
|
12
|
Zheng S, Sun F, Tian X, Zhu Z, Wang Y, Zheng W, Liu T, Wang W. Roles of Eph/ephrin signaling pathway in repair and regeneration for ischemic cerebrovascular and cardiovascular diseases. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
13
|
Ganguly D, Thomas JA, Ali A, Kumar R. Mechanistic and therapeutic implications of EphA-4 receptor tyrosine kinase in the pathogenesis of Alzheimer's disease. Eur J Neurosci 2022; 56:5532-5546. [PMID: 34989046 DOI: 10.1111/ejn.15591] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/14/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022]
Abstract
Erythropoietin-producing hepatoma (Eph) receptors belong to a family of tyrosine kinase receptors that plays a pivotal role in the development of the brain. Eph can be divided broadly into two groups, namely, EphA and EphB, comprising nine and five members, respectively. In recent years, the role of EphA-4 has become increasingly apparent in the onset of Alzheimer's disease (AD). Emerging evidence suggests that EphA-4 results in synaptic dysfunction, which in turn promotes the progression of AD. Moreover, pharmacological or genetic ablation of EphA-4 in the murine model of AD can alleviate the symptoms. The current review summarizes different pathways by which EphA-4 can influence pathogenesis. Since, majority of the studies had reported the protective effect of EphA-4 inhibition during AD, designing therapeutics based on decreasing its enzymatic activity might be necessary for introducing the novel interventions. Therefore, the review described peptide and nanobodies inhibitors of EphA-4 that exhibit the potential to modulate EphA-4 and could be used as lead molecules for the targeted therapy of AD.
Collapse
Affiliation(s)
- Devargya Ganguly
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Joshua Abby Thomas
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Abid Ali
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rahul Kumar
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| |
Collapse
|
14
|
Huang Z, Liu S, Tang A, Al-Rabadi L, Henkemeyer M, Mimche P, Huang Y. Key role for EphB2 receptor in kidney fibrosis. Clin Sci (Lond) 2021; 135:2127-2142. [PMID: 34462781 PMCID: PMC8433383 DOI: 10.1042/cs20210644] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/27/2022]
Abstract
Erythropoietin producing hepatocellular (Eph)-Eph receptor interacting (Ephrin) receptor-ligand signaling has been implicated in the development of tissue fibrosis, though it has not been well defined in the kidney. We detected substantial up-regulation of expression and phosphorylation of the EphB2 receptor tyrosine kinase in fibrotic kidney tissue obtained both from mice subjected to the unilateral renal ischemia-reperfusion (IR) model at 14 days and in patients suffering from chronic kidney disease (CKD). Knockout (KO) mice lacking EphB2 expression exhibited a normal renal structure and function, indicating no major role for this receptor in kidney development or action. Although IR injury is well-known to cause tissue damage, fibrosis, and renal dysfunction, we found that kidneys from EphB2KO mice showed much less renal tubular injury and retained a more preserved renal function. IR-injured kidneys from EphB2 KOs exhibited greatly reduced fibrosis and inflammation compared with injured wildtype (WT) littermates, and this correlated with a significant reduction in renal expression of profibrotic molecules, inflammatory cytokines, NADPH oxidases, and markers for cell proliferation, tubular epithelial-to-mesenchymal transition (EMT), myofibroblast activation, and apoptosis. A panel of 760 fibrosis-associated genes were further assessed, revealing that 506 genes in WT mouse kidney following IR injury changed their expression. However, 70.9% of those genes were back to or close to normal in expression when EphB2 was deleted. These data indicate that endogenous EphB2 expression and signaling are abnormally activated after kidney injury and subsequently contribute to the development of renal fibrosis via regulation of multiple profibrotic pathways.
Collapse
Affiliation(s)
- Zhimin Huang
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health Science, Salt Lake City, UT, U.S.A
- Department of Internal Medicine, Division of Nephrology, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Simeng Liu
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health Science, Salt Lake City, UT, U.S.A
| | - Anna Tang
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health Science, Salt Lake City, UT, U.S.A
| | - Laith Al-Rabadi
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health Science, Salt Lake City, UT, U.S.A
| | - Mark Henkemeyer
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, U.S.A
| | - Patrice N. Mimche
- Department of Pathology, Division of Microbiology and Immunology, Molecular Medicine Program, University of Utah Health Science, Salt Lake City, UT, U.S.A
| | - Yufeng Huang
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health Science, Salt Lake City, UT, U.S.A
| |
Collapse
|
15
|
Tan CX, Eroglu C. Cell adhesion molecules regulating astrocyte-neuron interactions. Curr Opin Neurobiol 2021; 69:170-177. [PMID: 33957433 PMCID: PMC8387342 DOI: 10.1016/j.conb.2021.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
A tripartite synapse comprises a neuronal presynaptic axon and a postsynaptic dendrite, which are closely ensheathed by a perisynaptic astrocyte process. Through their structural and functional association with thousands of neuronal synapses, astrocytes regulate synapse formation and function. Recent work revealed a diverse range of cell adhesion-based mechanisms that mediate astrocyte-synapse interactions at tripartite synapses. Here, we will review some of these findings unveiling a highly dynamic bidirectional signaling between astrocytes and synapses, which orchestrates astrocyte morphological maturation and synapse development. Moreover, we will discuss the roles of these newly discovered molecular pathways in brain physiology and function both in health and disease.
Collapse
Affiliation(s)
- Christabel X Tan
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA; Duke Institute for Brain Sciences, Durham, NC, 27710, USA; Regeneration Next Initiative, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
16
|
Yu T, Chu S, Liu X, Li J, Chen Q, Xu M, Wu H, Li M, Dong Y, Zhu F, Zhou H, Hu D, Fan H. Extracellular vesicles derived from EphB2-overexpressing bone marrow mesenchymal stem cells ameliorate DSS-induced colitis by modulating immune balance. Stem Cell Res Ther 2021; 12:181. [PMID: 33722292 PMCID: PMC7962309 DOI: 10.1186/s13287-021-02232-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Background The bone marrow mesenchymal stem cell (BMSCs)-derived extracellular vesicles (EVs) open up a new avenue for ulcerative colitis (UC) treatment recently, but they are not selectively enriched in targeted tissues. EphB2, a cell-to-cell signaling receptor, is identified as a regulator for inflammatory response, immune homeostasis and cell migration. In this study, we investigated the therapeutic potential and underlying mechanism for EphB2 over-expressing BMSCs derived EVs (EphB2-EVs) in the treatment of UC. Methods BMSCs and EVs were obtained and characterized by a series of experiments. Lentivirus vector encoding EphB2 was transfected into BMSCs and verified by qRT-PCR. We analyzed the EphB2-EVs ability of colonic targeting in a DSS-induced colitis model by using confocal microscope and WB. The protective effect of EphB2-EVs in vivo was systematically evaluated by using a series of function experiments. Results We successfully constructed EphB2-overexpressing BMSCs derived EVs (EphB2-EVs). Overexpression of EphB2 significantly enhanced the homing of EVs to the damaged colon. In addition, EphB2-EVs were effective to attenuate inflammation in intestinal mucosa and restore the damaged colon tissue by inhibiting the release of proinflammatory cytokines and upregulating the anti-inflammatory mediators. EphB2-EVs effectively reduced the oxidative stress and repaired the intestinal mucosal barrier in the UC rats. Moreover, EphB2-EVs demonstrated a robust immunomodulatory effect to restore immune homeostasis via modulating Th17/Treg balance and restraining STAT3 activation. Conclusions Our results suggest that EphB2-EVs have high colonic targeting ability and could mitigate DSS-induced colitis via maintaining colonic immune homeostasis. These findings provide an effective therapeutic strategy for UC treatment in clinic.
Collapse
Affiliation(s)
- Ting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Si Chu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meng Xu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mingyue Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
17
|
Young KA, Biggins L, Sharpe HJ. Protein tyrosine phosphatases in cell adhesion. Biochem J 2021; 478:1061-1083. [PMID: 33710332 PMCID: PMC7959691 DOI: 10.1042/bcj20200511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Adhesive structures between cells and with the surrounding matrix are essential for the development of multicellular organisms. In addition to providing mechanical integrity, they are key signalling centres providing feedback on the extracellular environment to the cell interior, and vice versa. During development, mitosis and repair, cell adhesions must undergo extensive remodelling. Post-translational modifications of proteins within these complexes serve as switches for activity. Tyrosine phosphorylation is an important modification in cell adhesion that is dynamically regulated by the protein tyrosine phosphatases (PTPs) and protein tyrosine kinases. Several PTPs are implicated in the assembly and maintenance of cell adhesions, however, their signalling functions remain poorly defined. The PTPs can act by directly dephosphorylating adhesive complex components or function as scaffolds. In this review, we will focus on human PTPs and discuss their individual roles in major adhesion complexes, as well as Hippo signalling. We have collated PTP interactome and cell adhesome datasets, which reveal extensive connections between PTPs and cell adhesions that are relatively unexplored. Finally, we reflect on the dysregulation of PTPs and cell adhesions in disease.
Collapse
Affiliation(s)
- Katherine A. Young
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Laura Biggins
- Bioinformatics, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Hayley J. Sharpe
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
18
|
MKL1 deficiency results in a severe neutrophil motility defect due to impaired actin polymerization. Blood 2021; 135:2171-2181. [PMID: 32128589 DOI: 10.1182/blood.2019002633] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/18/2020] [Indexed: 12/26/2022] Open
Abstract
Megakaryoblastic leukemia 1 (MKL1) promotes the regulation of essential cell processes, including actin cytoskeletal dynamics, by coactivating serum response factor. Recently, the first human with MKL1 deficiency, leading to a novel primary immunodeficiency, was identified. We report a second family with 2 siblings with a homozygous frameshift mutation in MKL1. The index case died as an infant from progressive and severe pneumonia caused by Pseudomonas aeruginosa and poor wound healing. The younger sibling was preemptively transplanted shortly after birth. The immunodeficiency was marked by a pronounced actin polymerization defect and a strongly reduced motility and chemotactic response by MKL1-deficient neutrophils. In addition to the lack of MKL1, subsequent proteomic and transcriptomic analyses of patient neutrophils revealed actin and several actin-related proteins to be downregulated, confirming a role for MKL1 as a transcriptional coregulator. Degranulation was enhanced upon suboptimal neutrophil activation, whereas production of reactive oxygen species was normal. Neutrophil adhesion was intact but without proper spreading. The latter could explain the observed failure in firm adherence and transendothelial migration under flow conditions. No apparent defect in phagocytosis or bacterial killing was found. Also, monocyte-derived macrophages showed intact phagocytosis, and lymphocyte counts and proliferative capacity were normal. Nonhematopoietic primary fibroblasts demonstrated defective differentiation into myofibroblasts but normal migration and F-actin content, most likely as a result of compensatory mechanisms of MKL2, which is not expressed in neutrophils. Our findings extend current insight into the severe immune dysfunction in MKL1 deficiency, with cytoskeletal dysfunction and defective extravasation of neutrophils as the most prominent features.
Collapse
|
19
|
Harnessing the Power of Eph/ephrin Biosemiotics for Theranostic Applications. Pharmaceuticals (Basel) 2020; 13:ph13060112. [PMID: 32492868 PMCID: PMC7345574 DOI: 10.3390/ph13060112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Comprehensive basic biological knowledge of the Eph/ephrin system in the physiologic setting is needed to facilitate an understanding of its role and the effects of pathological processes on its activity, thereby paving the way for development of prospective therapeutic targets. To this end, this review briefly addresses what is currently known and being investigated in order to highlight the gaps and possible avenues for further investigation to capitalize on their diverse potential.
Collapse
|
20
|
Lu L, Daigle BJ. Prognostic analysis of histopathological images using pre-trained convolutional neural networks: application to hepatocellular carcinoma. PeerJ 2020; 8:e8668. [PMID: 32201640 PMCID: PMC7073245 DOI: 10.7717/peerj.8668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Histopathological images contain rich phenotypic descriptions of the molecular processes underlying disease progression. Convolutional neural networks, state-of-the-art image analysis techniques in computer vision, automatically learn representative features from such images which can be useful for disease diagnosis, prognosis, and subtyping. Hepatocellular carcinoma (HCC) is the sixth most common type of primary liver malignancy. Despite the high mortality rate of HCC, little previous work has made use of CNN models to explore the use of histopathological images for prognosis and clinical survival prediction of HCC. We applied three pre-trained CNN models-VGG 16, Inception V3 and ResNet 50-to extract features from HCC histopathological images. Sample visualization and classification analyses based on these features showed a very clear separation between cancer and normal samples. In a univariate Cox regression analysis, 21.4% and 16% of image features on average were significantly associated with overall survival (OS) and disease-free survival (DFS), respectively. We also observed significant correlations between these features and integrated biological pathways derived from gene expression and copy number variation. Using an elastic net regularized Cox Proportional Hazards model of OS constructed from Inception image features, we obtained a concordance index (C-index) of 0.789 and a significant log-rank test (p = 7.6E-18). We also performed unsupervised classification to identify HCC subgroups from image features. The optimal two subgroups discovered using Inception model image features showed significant differences in both overall (C-index = 0.628 and p = 7.39E-07) and DFS (C-index = 0.558 and p = 0.012). Our work demonstrates the utility of extracting image features using pre-trained models by using them to build accurate prognostic models of HCC as well as highlight significant correlations between these features, clinical survival, and relevant biological pathways. Image features extracted from HCC histopathological images using the pre-trained CNN models VGG 16, Inception V3 and ResNet 50 can accurately distinguish normal and cancer samples. Furthermore, these image features are significantly correlated with survival and relevant biological pathways.
Collapse
Affiliation(s)
- Liangqun Lu
- Departments of Biological Sciences and Computer Science, The University of Memphis, Memphis, TN, USA
| | - Bernie J. Daigle
- Departments of Biological Sciences and Computer Science, The University of Memphis, Memphis, TN, USA
| |
Collapse
|
21
|
Receptor Tyrosine Kinases in Development: Insights from Drosophila. Int J Mol Sci 2019; 21:ijms21010188. [PMID: 31888080 PMCID: PMC6982143 DOI: 10.3390/ijms21010188] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022] Open
Abstract
Cell-to-cell communication mediates a plethora of cellular decisions and behaviors that are crucial for the correct and robust development of multicellular organisms. Many of these signals are encoded in secreted hormones or growth factors that bind to and activate cell surface receptors, to transmit the cue intracellularly. One of the major superfamilies of cell surface receptors are the receptor tyrosine kinases (RTKs). For nearly half a century RTKs have been the focus of intensive study due to their ability to alter fundamental aspects of cell biology, such as cell proliferation, growth, and shape, and because of their central importance in diseases such as cancer. Studies in model organisms such a Drosophila melanogaster have proved invaluable for identifying new conserved RTK pathway components, delineating their contributions, and for the discovery of conserved mechanisms that control RTK-signaling events. Here we provide a brief overview of the RTK superfamily and the general mechanisms used in their regulation. We further highlight the functions of several RTKs that govern distinct cell-fate decisions in Drosophila and explore how their activities are developmentally controlled.
Collapse
|
22
|
Sato S, Vasaikar S, Eskaros A, Kim Y, Lewis JS, Zhang B, Zijlstra A, Weaver AM. EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling. JCI Insight 2019; 4:132447. [PMID: 31661464 DOI: 10.1172/jci.insight.132447] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is a key process that allows nutrient uptake and cellular trafficking and is coopted in cancer to enable tumor growth and metastasis. Recently, extracellular vesicles (EVs) have been shown to promote angiogenesis; however, it is unclear what unique features EVs contribute to the process. Here, we studied the role of EVs derived from head and neck squamous cell carcinoma (HNSCC) in driving tumor angiogenesis. Small EVs (SEVs), in the size range of exosomes (50-150 nm), induced angiogenesis both in vitro and in vivo. Proteomic analysis of HNSCC SEVs revealed the cell-to-cell signaling receptor ephrin type B receptor 2 (EPHB2) as a promising candidate cargo to promote angiogenesis. Analysis of patient data further identified EPHB2 overexpression in HNSCC tumors to be associated with poor patient prognosis and tumor angiogenesis, especially in the context of overexpression of the exosome secretion regulator cortactin. Functional experiments revealed that EPHB2 expression in SEVs regulated angiogenesis both in vitro and in vivo and that EPHB2 carried by SEVs stimulates ephrin-B reverse signaling, inducing STAT3 phosphorylation. A STAT3 inhibitor greatly reduced SEV-induced angiogenesis. These data suggest a model in which EVs uniquely promote angiogenesis by transporting Eph transmembrane receptors to nonadjacent endothelial cells to induce ephrin reverse signaling.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Suhas Vasaikar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Adel Eskaros
- Department of Pathology, Microbiology and Immunology, and
| | - Young Kim
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James S Lewis
- Department of Pathology, Microbiology and Immunology, and
| | - Bing Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Pathology, Microbiology and Immunology, and
| |
Collapse
|
23
|
A morphogenetic EphB/EphrinB code controls hepatopancreatic duct formation. Nat Commun 2019; 10:5220. [PMID: 31745086 PMCID: PMC6864101 DOI: 10.1038/s41467-019-13149-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
The hepatopancreatic ductal (HPD) system connects the intrahepatic and intrapancreatic ducts to the intestine and ensures the afferent transport of the bile and pancreatic enzymes. Yet the molecular and cellular mechanisms controlling their differentiation and morphogenesis into a functional ductal system are poorly understood. Here, we characterize HPD system morphogenesis by high-resolution microscopy in zebrafish. The HPD system differentiates from a rod of unpolarized cells into mature ducts by de novo lumen formation in a dynamic multi-step process. The remodeling step from multiple nascent lumina into a single lumen requires active cell intercalation and myosin contractility. We identify key functions for EphB/EphrinB signaling in this dynamic remodeling step. Two EphrinB ligands, EphrinB1 and EphrinB2a, and two EphB receptors, EphB3b and EphB4a, control HPD morphogenesis by remodeling individual ductal compartments, and thereby coordinate the morphogenesis of this multi-compartment ductal system.
Collapse
|
24
|
Popović M, Matana A, Torlak V, Boutin T, Brdar D, Gunjača I, Kaličanin D, Kolčić I, Boraska Perica V, Punda A, Polašek O, Barbalić M, Hayward C, Zemunik T. Genome-wide meta-analysis identifies novel loci associated with free triiodothyronine and thyroid-stimulating hormone. J Endocrinol Invest 2019; 42:1171-1180. [PMID: 30843173 DOI: 10.1007/s40618-019-01030-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/27/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Thyroid hormones are essential for the normal function of almost all human tissues, and have critical roles in metabolism, differentiation and growth. Free triiodothyronine (fT3), free thyroxine (fT4) and thyroid-stimulating hormone (TSH) levels are under strong genetic influence; however, most of the heritability is yet unexplained. METHODS In order to identify novel loci associated with fT3, fT4 and TSH serum levels we performed a genome-wide meta-analysis of 7 411 206 polymorphisms in up to 1731 euthyroid individuals from three Croatian cohorts from Dalmatia region: two genetically isolated island populations and one mainland population. Additionally, we also performed a bivariate analysis of fT3 and fT4 levels. RESULTS The EPHB2 gene variant rs67142165 reached genome-wide significance for association with fT3 plasma levels (P = 9.27 × 10-9) and its significance was confirmed in bivariate analysis (P = 9.72 × 10-9). We also found a genome-wide significant association for variant rs13037502 upstream of the PTPN1 gene and TSH plasma levels (P = 1.67 × 10-8). CONCLUSION We identified a first genome-wide significant variant associated with fT3 plasma levels, as well as a novel locus associated with TSH plasma levels. These findings are biologically relevant and enrich our knowledge about the genetic basis of pituitary-thyroid axis function.
Collapse
Affiliation(s)
- M Popović
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - A Matana
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - V Torlak
- Department of Nuclear Medicine, University Hospital Split, Spinčićeva 1, Split, Croatia
| | - T Boutin
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, United Kingdom
| | - D Brdar
- Department of Nuclear Medicine, University Hospital Split, Spinčićeva 1, Split, Croatia
| | - I Gunjača
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - D Kaličanin
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - I Kolčić
- Department of Public Health, University of Split, School of Medicine Split, Šoltanska 2, Split, Croatia
| | - V Boraska Perica
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - A Punda
- Department of Nuclear Medicine, University Hospital Split, Spinčićeva 1, Split, Croatia
| | - O Polašek
- Department of Public Health, University of Split, School of Medicine Split, Šoltanska 2, Split, Croatia
| | - M Barbalić
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - C Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, United Kingdom
| | - T Zemunik
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia.
| |
Collapse
|
25
|
Alibardi L. Immunodetection of ephrin receptors in the regenerating tail of the lizard Podarcis muralis suggests stimulation of differentiation and muscle segmentation. Zool Res 2019; 40:416-426. [PMID: 31111695 PMCID: PMC6755122 DOI: 10.24272/j.issn.2095-8137.2019.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ephrin receptors are the most common tyrosine kinase effectors operating during development. Ephrin receptor genes are reported to be up-regulated in the regenerating tail of the Podarcis muralis lizard. Thus, in the current study, we investigated immunolocalization of ephrin receptors in the Podarcis muralis tail during regeneration. Weak immunolabelled bands for ephrin receptors were detected at 15-17 kDa, with a stronger band also detected at 60-65 kDa. Labelled cells and nuclei were seen in the basal layer of the apical wound epidermis and ependyma, two key tissues stimulating tail regeneration. Strong nuclear and cytoplasmic labelling were present in the segmental muscles of the regenerating tail, sparse blood vessels, and perichondrium of regenerating cartilage. The immunolocalization of ephrin receptors in muscle that gives rise to large portions of new tail tissue was correlated with their segmentation. This study suggests that the high localization of ephrin receptors in differentiating epidermis, ependyma, muscle, and cartilaginous cells is connected to the regulation of cell proliferation through the activation of programs for cell differentiation in the proximal regions of the regenerating tail. The lower immunolabelling of ephrin receptors in the apical blastema, where signaling proteins stimulating cell proliferation are instead present, helps maintain the continuous growth of this region.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna 40126, Italy; E-mail:
| |
Collapse
|
26
|
Jimenez L, Yu H, McKenzie AJ, Franklin JL, Patton JG, Liu Q, Weaver AM. Quantitative Proteomic Analysis of Small and Large Extracellular Vesicles (EVs) Reveals Enrichment of Adhesion Proteins in Small EVs. J Proteome Res 2019; 18:947-959. [PMID: 30608700 DOI: 10.1021/acs.jproteome.8b00647] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) are important mediators of cell-cell communication due to their cargo content of proteins, lipids, and RNAs. We previously reported that small EVs (SEVs) called exosomes promote directed and random cell motility, invasion, and serum-independent growth. In contrast, larger EVs (LEVs) were not active in those assays, but might have unique functional properties. In order to identify protein cargos that may contribute to different functions of SEVs and LEVs, we used isobaric tags for relative and absolute quantitation (iTRAQ)-liquid chromatography (LC) tandem mass spectrometry (MS) on EVs isolated from a colon cancer cell line. Bioinformatics analyses revealed that SEVs are enriched in proteins associated with cell-cell junctions, cell-matrix adhesion, exosome biogenesis machinery, and various signaling pathways. In contrast, LEVs are enriched in proteins associated with ribosome and RNA biogenesis, processing, and metabolism. Western blot analysis of EVs purified from two different cancer cell types confirmed the enrichment of cell-matrix and cell-cell adhesion proteins in SEVs. Consistent with those data, we found that cells exhibit enhanced adhesion to surfaces coated with SEVs compared to an equal protein concentration of LEVs. These data suggest that a major function of SEVs is to promote cellular adhesion.
Collapse
Affiliation(s)
- Lizandra Jimenez
- Department of Cell and Developmental Biology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - Hui Yu
- Department of Internal Medicine , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Andrew J McKenzie
- Sarah Cannon Research Institute , Nashville , Tennessee 37203 , United States
| | - Jeffrey L Franklin
- Department of Cell and Developmental Biology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States.,Department of Medicine , Vanderbilt University Medical Center , Nashville , Tennessee 37212 , United States
| | - James G Patton
- Department of Biological Sciences , Vanderbilt University School of Medicine , Nashville , Tennessee 37212 , United States
| | - Qi Liu
- Department of Biostatistics , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
| | - Alissa M Weaver
- Department of Cell and Developmental Biology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States.,Department of Pathology, Microbiology and Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37212 , United States
| |
Collapse
|
27
|
EphrinB/EphB forward signaling in Müller cells causes apoptosis of retinal ganglion cells by increasing tumor necrosis factor alpha production in rat experimental glaucomatous model. Acta Neuropathol Commun 2018; 6:111. [PMID: 30355282 PMCID: PMC6201539 DOI: 10.1186/s40478-018-0618-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/12/2018] [Indexed: 01/26/2023] Open
Abstract
It was previously shown that EphB/ephrinB reverse signaling in retinal ganglion cells (RGCs) is activated and involved in RGC apoptosis in a rat chronic ocular hypertension (COH) model. In the present work, we first show that ephrinB/EphB forward signaling was activated in COH retinas, and RGC apoptosis in COH retinas was reduced by PP2, an inhibitor of ephrinB/EphB forward signaling. We further demonstrate that treatment of cultured Müller cells with ephrinB1-Fc, an EphB1 activator, or intravitreal injection of ephrinB1-Fc in normal rats induced an increase in phosphorylated EphB levels in these cells, indicating the activation of ephrinB/EphB forward signaling, similar to those in COH retinas. The ephrinB1-Fc treatment did not induce Müller cell gliosis, as evidenced by unchanged GFAP expression, but significantly up-regulated mRNA and protein levels of tumor necrosis factor-α (TNF-α) in Müller cells, thereby promoting RGC apoptosis. Production of TNF-α induced by the activation of ephrinB/EphB forward signaling was mediated by the NR2B subunit of NMDA receptors, which was followed by a distinct PI3K/Akt/NF-κB signaling pathway, as pharmacological interference of each step of this pathway caused a reduction of TNF-α production, thus attenuating RGC apoptosis. Functional analysis of forward and reverse signaling in such a unique system, in which ephrin and Eph exist respectively in a glial element and a neuronal element, is of theoretical importance. Moreover, our results also raise a possibility that suppression of ephrinB/EphB forward signaling may be a new strategy for ameliorating RGC apoptosis in glaucoma.
Collapse
|
28
|
Lee SY, Na YJ, Jeong YA, Kim JL, Oh SC, Lee DH. Upregulation of EphB3 in gastric cancer with acquired resistance to a FGFR inhibitor. Int J Biochem Cell Biol 2018; 102:128-137. [PMID: 30044964 DOI: 10.1016/j.biocel.2018.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 11/16/2022]
Abstract
Amplification of fibroblast growth factor receptor2 (FGFR2) has been regarded as a druggable target in gastric cancer (GC). Despite known potential of AZD4547, a selective inhibitor of FGFR 1-3, to suppress tumorigenic effects of activated FGFR2, resistance to the targeted agent has been an unresolved issue. This study was performed to elucidate the mechanism of AZD4547 resistance in GC cells. SNU-16 cells were used to establish an AZD4547-resistant GC cell line, SNU-16R. Elevated phosphorylation of EphB3 was confirmed using the Human Phospho-Receptor Tyrosine Kinase Array kit. A tyrosine kinase inhibitor (TKI) of EphB3 was used to investigate the effects of suppressed EphB3 activity in the SNU-16R cell line. SNU-16R cells exhibited upregulated phosphorylation of EphB3. Treatment of SNU-16R cells with the EphB3 TKI resulted in induction of apoptosis, decreased cellular viability, and cell cycle arrest at sub-G1 phase. SNU-16R cells expressed upregulated levels of N-cadherin, vimentin, Snail, matrix metalloproteinase 2 (MMP-2), and MMP-9, and reduced levels of E-cadherin, characteristic of epithelial to mesenchymal transition (EMT). Matrigel invasion assay also demonstrated the increased invasiveness of SNU-16R cells. EphB3 TKI treatment inhibited EMT of SNU-16R cells. Activation of mammalian target of rapamycin (mTOR) through the Ras-ERK1/2 pathway was suggested as the signal transduction mechanism downstream EphB3 by showing enhanced phosphorylation of Raf-1, MEK1/2, ERK1/2, mTOR and its downstream substrates in SNU-16R cells. As expected, EphB3 TKI decreased phosphorylation of these proteins. Our data suggest phosphorylation of mTOR through signaling by EphB3 is a potential mechanism of AZD4547 resistance in GC cells.
Collapse
Affiliation(s)
- Suk-Young Lee
- Division of Oncology/Hematology, Department of Internal Medicine, College of Medicine, Korea University, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea.
| | - Yoo Jin Na
- Division of Oncology/Hematology, Department of Internal Medicine, College of Medicine, Korea University, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea.
| | - Yoon A Jeong
- Division of Oncology/Hematology, Department of Internal Medicine, College of Medicine, Korea University, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea.
| | - Jung Lim Kim
- Division of Oncology/Hematology, Department of Internal Medicine, College of Medicine, Korea University, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea.
| | - Sang Cheul Oh
- Division of Oncology/Hematology, Department of Internal Medicine, College of Medicine, Korea University, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea.
| | - Dae-Hee Lee
- Division of Oncology/Hematology, Department of Internal Medicine, College of Medicine, Korea University, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea; Brain Korea 21 Program for Biomedicine Science, College of Medicine, Korea University, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea.
| |
Collapse
|
29
|
Xiong Y, Li KX, Wei H, Jiao L, Yu SY, Zeng L. Eph/ephrin signalling serves a bidirectional role in lipopolysaccharide‑induced intestinal injury. Mol Med Rep 2018; 18:2171-2181. [PMID: 29901151 PMCID: PMC6072232 DOI: 10.3892/mmr.2018.9169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
A growing body of evidence has demonstrated that Eph/ephrin signalling may serve a central role in intestinal diseases. However, whether erythropoietin-producing hepatocellular (Eph)/ephrin signalling is associated with the development of post-infectious irritable bowel syndrome (PI-IBS) is still unknown. In the present study, the role of Eph/Ephrin signalling in lipopolysaccharide (LPS)-induced intestinal injury was evaluated in vivo and in vitro. LPS treatment significantly increased the levels of proinflammatory mediators [monocyte chemoattractant protein-1, tumour necrosis factor α, interleukin (IL)-1β, IL-6, intercellular adhesion molecule 1 and vascular cell adhesion molecule-1], activated the EphA2-Ephrin A1, protein kinase B (Akt)-nuclear factor (NF)-κB, Src-NF-κB and Wnt/β-catenin signalling pathways, and inhibited EphB1-Ephrin B3 signalling in colon tissues, and primary cultured enteric neuronal and glial cells. Notably, EphA2 monoclonal antibody (mAb) treatment or Ephrin B3 overexpression could partially alleviate the LPS-induced upregulation of proinflammatory mediators, and Akt-NF-κB, Src-NF-κB and Wnt/β-catenin signalling pathways. In addition, EphA2 mAb treatment could partially inhibit LPS-induced inactivation of EphB-Ephrin B3 signalling, while Ephrin B3 overexpression could abrogate LPS-induced activation of EphA2-Ephrin A1 signalling. EphB1/Ephrin B3 signalling may antagonise the EphA2/Ephrin A1-dependent pathway following LPS treatment. The results associated with the EphA2 signaling pathway, indicated that Eph/ephrin signalling may serve a bidirectional role in LPS-induced intestinal injury. Eph/ephrin signalling may be a novel therapeutic target for LPS-induced intestinal injury and potentially PI-IBS.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, P.R. China
| | - Kai-Xue Li
- Department of Gastroenterology, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Hong Wei
- Department of Gastroenterology, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Lu Jiao
- Department of Gastroenterology, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Shao-Yong Yu
- Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21205‑2195, USA
| | - Li Zeng
- Department of Gastroenterology, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
30
|
Zeng L, Li K, Wei H, Hu J, Jiao L, Yu S, Xiong Y. A Novel EphA2 Inhibitor Exerts Beneficial Effects in PI-IBS in Vivo and in Vitro Models via Nrf2 and NF-κB Signaling Pathways. Front Pharmacol 2018; 9:272. [PMID: 29662452 PMCID: PMC5890185 DOI: 10.3389/fphar.2018.00272] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Though the detailed pathological mechanism of post-infectious irritable bowel syndrome (PI-IBS) remains unclear, accumulating evidence indicates that oxidative stress and inflammation are implicated in the process of PI-IBS. Oxidative stress and inflammation are regulated by Nrf2 and NF-κB signaling pathways, respectively. EphA2, a member of Eph receptor family, promotes oxidative stress and inflammatory responses via regulation of Nrf2 and NF-κB signaling pathways in various types of human diseases. Understanding the mechanisms by which EphA2 regulate oxidative stress and inflammation in PI-IBS is important for the development of new strategies to treat PI-IBS. However, the effects of ALW-II-41-27, a novel EphA2 inhibitor on PI-IBS and the underlying molecular mechanisms have never been studied. In the present study, we showed that ALW-II-41-27 decreased gastrointestinal motility and abdominal withdrawal reflex (AWR) scores, markedly reduced the levels of oxidative stress markers [4-hydroxy-2-nonenal (4-HNE), protein carbonyl, and 8-hydroxy-2-de-axyguanine (8-OHdG)] and proinflammatory cytokines (TNF-α, IL-6, IL-17, and ICAM-1), and remarkably increased the level of anti-inflammatory cytokine (IL-10) in serum and colon of Trichinella spiralis-infected mice. Moreover, ALW-II-41-27 was effective in suppressing oxidative stress and inflammation in LPS-treated NCM460 colonic cells. Treatment of ALW-II-41-27 reversed the activation of NF-κB and inactivation of Nrf2 in LPS-treated NCM460 cells. Importantly, these protective effects of ALW-II-41-27 were partially inhibited by EphA2 KO and abolished by EphA2 overexpression. In conclusion, EphA2 may represent a promising therapeutic target for patients with PI-IBS and ALW-II-41-27 might function as a novel therapeutic agent for PI-IBS.
Collapse
Affiliation(s)
- Li Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Kaixue Li
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Hong Wei
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Jingjing Hu
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Lu Jiao
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Shaoyong Yu
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ying Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
31
|
Lehalle D, Altunoglu U, Bruel AL, Arnaud E, Blanchet P, Choi JW, Désir J, Kiliç E, Lederer D, Pinson L, Thauvin-Robinet C, Singer A, Thevenon J, Callier P, Kayserili H, Faivre L. Clinical delineation of a subtype of frontonasal dysplasia with creased nasal ridge and upper limb anomalies: Report of six unrelated patients. Am J Med Genet A 2018; 173:3136-3142. [PMID: 29136349 DOI: 10.1002/ajmg.a.38490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/11/2017] [Accepted: 08/21/2017] [Indexed: 11/07/2022]
Abstract
Frontonasal dysplasias are rare congenital malformations of frontonasal process-derived structures, characterized by median cleft, nasal anomalies, widely spaced eyes, and cranium bifidum occultum. Several entities of syndromic frontonasal dysplasia have been described, among which, to date, only a few have identified molecular bases. We clinically ascertained a cohort of 124 individuals referred for frontonasal dysplasia. We identified six individuals with a similar phenotype, including one discordant monozygous twin. Facial features were remarkable by nasal deformity with creased ridge and depressed or absent tip, widely spaced eyes, almond-shaped palpebral fissures, and downturned corners of the mouth. All had apparently normal psychomotor development. In addition, upper limb anomalies, frontonasal encephalocele, corpus callosum agenesis, choanal atresia, and congenital heart defect were observed. We identified five reports in the literature of patients presenting with the same phenotype. Exome sequencing was performed on DNA extracted from blood of two individuals, no candidate gene was identified. In conclusion, we report six novel simplex individuals presenting with a specific frontonasal dysplasia entity associating recognizable facial features, limb and visceral malformations, and apparently normal development. The identification of discordant monozygotic twins supports the hypothesis of a mosaic disorder. Although previous patients have been reported, this is the first series, allowing delineation of a clinical subtype of frontonasal dysplasia, paving the way toward the identification of its molecular etiology.
Collapse
Affiliation(s)
- Daphné Lehalle
- Equipe GAD, INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Umut Altunoglu
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Ange-Line Bruel
- Equipe GAD, INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Eric Arnaud
- Service de Neurochirurgie, Hôpital Necker, Paris, France
| | - Patricia Blanchet
- Genetic Departement for Rare Disease and Personalised Medicine, Clinical Division, CHU Montpellier, Montpellier, France
| | - Jong-Woo Choi
- Department of Plastic & Reconstructive Surgery, College of Medicine, University of Ulsan, Seoul Asan Medical Center, Seoul, South Korea
| | - Julie Désir
- Center for Human Genetics, Institut de Pathologie et Génétique (I.P.G.), Gosselies, Belgium
| | - Esra Kiliç
- Pediatric Genetics, Pediatric Hematology Oncology Research & Training Hospital, Ankara, Turkey
| | - Damien Lederer
- Center for Human Genetics, Institut de Pathologie et Génétique (I.P.G.), Gosselies, Belgium
| | - Lucile Pinson
- Genetic Departement for Rare Disease and Personalised Medicine, Clinical Division, CHU Montpellier, Montpellier, France
| | - Christel Thauvin-Robinet
- Equipe GAD, INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Amihood Singer
- Pediatrics and Medical Genetics, Barzilai Medical Center, Ashkelon, Israel
| | - Julien Thevenon
- Equipe GAD, INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Patrick Callier
- Equipe GAD, INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Hulya Kayserili
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.,Department of Medical Genetics, Koç University School of Medicine (KUSoM), Zeytinburnu, İstanbul, Turkey
| | - Laurence Faivre
- Equipe GAD, INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| |
Collapse
|
32
|
Goichberg P. Current Understanding of the Pathways Involved in Adult Stem and Progenitor Cell Migration for Tissue Homeostasis and Repair. Stem Cell Rev Rep 2017; 12:421-37. [PMID: 27209167 DOI: 10.1007/s12015-016-9663-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the advancements in the field of adult stem and progenitor cells grows the recognition that the motility of primitive cells is a pivotal aspect of their functionality. There is accumulating evidence that the recruitment of tissue-resident and circulating cells is critical for organ homeostasis and effective injury responses, whereas the pathobiology of degenerative diseases, neoplasm and aging, might be rooted in the altered ability of immature cells to migrate. Furthermore, understanding the biological machinery determining the translocation patterns of tissue progenitors is of great relevance for the emerging methodologies for cell-based therapies and regenerative medicine. The present article provides an overview of studies addressing the physiological significance and diverse modes of stem and progenitor cell trafficking in adult mammalian organs, discusses the major microenvironmental cues regulating cell migration, and describes the implementation of live imaging approaches for the exploration of stem cell movement in tissues and the factors dictating the motility of endogenous and transplanted cells with regenerative potential.
Collapse
Affiliation(s)
- Polina Goichberg
- Department Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
33
|
Wang H, Zhu H, Guo Q, Qian T, Zhang P, Li S, Xue C, Gu X. Overlapping Mechanisms of Peripheral Nerve Regeneration and Angiogenesis Following Sciatic Nerve Transection. Front Cell Neurosci 2017; 11:323. [PMID: 29085283 PMCID: PMC5649188 DOI: 10.3389/fncel.2017.00323] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/27/2017] [Indexed: 12/16/2022] Open
Abstract
Peripheral nervous system owns the ability of self-regeneration, mainly in its regenerative microenvironment including vascular network reconstruction. More recently, more attentions have been given to the close relationship between tissue regeneration and angiogenesis. To explore the overlap of molecular mechanisms and key regulation molecules between peripheral nerve regeneration and angiogenesis post peripheral nerve injury, integrative and bioinformatic analysis was carried out for microarray data of proximal stumps after sciatic nerve transection in SD rats. Nerve regeneration and angiogenesis were activated at 1 day immediately after sciatic nerve transection simultaneously. The more obvious changes of transcription regulators and canonical pathways suggested a phase transition between 1 and 4 days of both nerve regeneration and angiogenesis after sciatic nerve transection. Furthermore, 16 differentially expressed genes participated in significant biological processes of both nerve regeneration and angiogenesis, a few of which were validated by qPCR and immunofluorescent staining. It was demonstrated that STAT3, EPHB3, and Cdc42 co-expressed in Schwann cells and vascular endothelial cells to play a key role in regulation of nerve regeneration and angiogenesis simultaneously response to sciatic nerve transection. We provide a framework for understanding biological processes and precise molecular correlations between peripheral nerve regeneration and angiogenesis after peripheral nerve transection. Our work serves as an experimental basis and a valuable resource to further understand molecular mechanisms that define nerve injury-induced micro-environmental variation for achieving desired peripheral nerve regeneration.
Collapse
Affiliation(s)
- Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hui Zhu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Qi Guo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tianmei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ping Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shiying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chengbin Xue
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
34
|
Okumura F, Joo-Okumura A, Obara K, Petersen A, Nishikimi A, Fukui Y, Nakatsukasa K, Kamura T. Ubiquitin ligase SPSB4 diminishes cell repulsive responses mediated by EphB2. Mol Biol Cell 2017; 28:3532-3541. [PMID: 28931592 PMCID: PMC5683763 DOI: 10.1091/mbc.e17-07-0450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 11/29/2022] Open
Abstract
Eph receptor tyrosine kinases are important for cancer development and progression as well as in cellular repulsive responses. We determined that SOCS box-containing protein SPSB4 destabilizes EphB2 cytoplasmic fragments. SPSB4 is a novel ubiquitin ligase regulating EphB2-dependent cell repulsive responses. Eph receptor tyrosine kinases and their ephrin ligands are overexpressed in various human cancers, including colorectal malignancies, suggesting important roles in many aspects of cancer development and progression as well as in cellular repulsive responses. The ectodomain of EphB2 receptor is cleaved by metalloproteinases (MMPs) MMP-2/MMP-9 and released into the extracellular space after stimulation by its ligand. The remaining membrane-associated fragment is further cleaved by the presenilin-dependent γ-secretase and releases an intracellular peptide that has tyrosine kinase activity. Although the cytoplasmic fragment is degraded by the proteasome, the responsible ubiquitin ligase has not been identified. Here, we show that SOCS box-containing protein SPSB4 polyubiquitinates EphB2 cytoplasmic fragment and that SPSB4 knockdown stabilizes the cytoplasmic fragment. Importantly, SPSB4 down-regulation enhances cell repulsive responses mediated by EphB2 stimulation. Altogether, we propose that SPSB4 is a previously unidentified ubiquitin ligase regulating EphB2-dependent cell repulsive responses.
Collapse
Affiliation(s)
- Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Akiko Joo-Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Keisuke Obara
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Alexander Petersen
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Akihiko Nishikimi
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kunio Nakatsukasa
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| |
Collapse
|
35
|
In silico analyses and global transcriptional profiling reveal novel putative targets for Pea3 transcription factor related to its function in neurons. PLoS One 2017; 12:e0170585. [PMID: 28158215 PMCID: PMC5291419 DOI: 10.1371/journal.pone.0170585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/08/2017] [Indexed: 01/05/2023] Open
Abstract
Pea3 transcription factor belongs to the PEA3 subfamily within the ETS domain transcription factor superfamily, and has been largely studied in relation to its role in breast cancer metastasis. Nonetheless, Pea3 plays a role not only in breast tumor, but also in other tissues with branching morphogenesis, including kidneys, blood vasculature, bronchi and the developing nervous system. Identification of Pea3 target promoters in these systems are important for a thorough understanding of how Pea3 functions. Present study particularly focuses on the identification of novel neuronal targets of Pea3 in a combinatorial approach, through curation, computational analysis and microarray studies in a neuronal model system, SH-SY5Y neuroblastoma cells. We not only show that quite a number of genes in cancer, immune system and cell cycle pathways, among many others, are either up- or down-regulated by Pea3, but also identify novel targets including ephrins and ephrin receptors, semaphorins, cell adhesion molecules, as well as metalloproteases such as kallikreins, to be among potential target promoters in neuronal systems. Our overall results indicate that rather than early stages of neurite extension and axonal guidance, Pea3 is more involved in target identification and synaptic maturation.
Collapse
|
36
|
Wnt Signaling in Cell Motility and Invasion: Drawing Parallels between Development and Cancer. Cancers (Basel) 2016; 8:cancers8090080. [PMID: 27589803 PMCID: PMC5040982 DOI: 10.3390/cancers8090080] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
The importance of canonical and non-canonical Wnt signal transduction cascades in embryonic development and tissue homeostasis is well recognized. The aberrant activation of these pathways in the adult leads to abnormal cellular behaviors, and tumor progression is frequently a consequence. Here we discuss recent findings and analogies between Wnt signaling in developmental processes and tumor progression, with a particular focus on cell motility and matrix invasion and highlight the roles of the ARF (ADP-Ribosylation Factor) and Rho-family small GTP-binding proteins. Wnt-regulated signal transduction from cell surface receptors, signaling endosomes and/or extracellular vesicles has the potential to profoundly influence cell movement, matrix degradation and paracrine signaling in both development and disease.
Collapse
|
37
|
Kong RSG, Liang G, Chen Y, Stothard P, Guan LL. Transcriptome profiling of the rumen epithelium of beef cattle differing in residual feed intake. BMC Genomics 2016; 17:592. [PMID: 27506548 PMCID: PMC4979190 DOI: 10.1186/s12864-016-2935-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 07/13/2016] [Indexed: 11/18/2022] Open
Abstract
Background Feed efficient cattle consume less feed and produce less environmental waste than inefficient cattle. Many factors are known to contribute to differences in feed efficiency, however the underlying molecular mechanisms are largely unknown. Our study aimed to understand how host gene expression in the rumen epithelium contributes to differences in residual feed intake (RFI), a measure of feed efficiency, using a transcriptome profiling based approach. Results The rumen epithelial transcriptome from highly efficient (low (L-) RFI, n = 9) and inefficient (high (H-) RFI, n = 9) Hereford x Angus steers was obtained using RNA-sequencing. There were 122 genes differentially expressed between the rumen epithelial tissues of L- and H- RFI steers (p < 0.05) with 85 up-regulated and 37 down-regulated in L-RFI steers. Functional analysis of up-regulated genes revealed their involvement in acetylation, remodeling of adherens junctions, cytoskeletal dynamics, cell migration, and cell turnover. Additionally, a weighted gene co-expression network analysis (WGCNA) identified a significant gene module containing 764 genes that was negatively correlated with RFI (r = −0.5, p = 0.03). Functional analysis revealed significant enrichment of genes involved in modulation of intercellular adhesion through adherens junctions, protein and cell turnover, and cytoskeletal organization that suggest possible increased tissue morphogenesis in the L-RFI steers. Additionally, the L-RFI epithelium had increased expression of genes involved with the mitochondrion, acetylation, and energy generating pathways such as glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation. Further qPCR analysis of steers with different RFI (L-RFI, n = 35; M-RFI, n = 34; H-RFI, n = 35) revealed that the relative mitochondrial genome copy number per cell of the epithelium was positively correlated with RFI (r = 0.21, p = 0.03). Conclusions Our results suggest that the rumen epithelium of L-RFI (efficient) steers may have increased tissue morphogenesis that possibly increases paracellular permeability for the absorption of nutrients and increased energy production to support the energetic demands of increased tissue morphogenesis compared to those of H-RFI (inefficient) animals. Greater expression of mitochondrial genes and lower relative mitochondrial genome copy numbers suggest a greater rate of transcription in the rumen epithelial mitochondria of L-RFI steers. Understanding how host gene expression profiles are associated with RFI could potentially lead to identification of mechanisms behind this trait, which are vital to develop strategies for the improvement of cattle feed efficiency. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2935-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca S G Kong
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 416F, Edmonton, AB, T6G 2P5, Canada
| | - Guanxiang Liang
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 416F, Edmonton, AB, T6G 2P5, Canada
| | - Yanhong Chen
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 416F, Edmonton, AB, T6G 2P5, Canada
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 416F, Edmonton, AB, T6G 2P5, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 416F, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
38
|
Wang J, Galvao J, Beach KM, Luo W, Urrutia RA, Goldberg JL, Otteson DC. Novel Roles and Mechanism for Krüppel-like Factor 16 (KLF16) Regulation of Neurite Outgrowth and Ephrin Receptor A5 (EphA5) Expression in Retinal Ganglion Cells. J Biol Chem 2016; 291:18084-95. [PMID: 27402841 DOI: 10.1074/jbc.m116.732339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 11/06/2022] Open
Abstract
Regenerative medicine holds great promise for the treatment of degenerative retinal disorders. Krüppel-like factors (KLFs) are transcription factors that have recently emerged as key tools in regenerative medicine because some of them can function as epigenetic reprogrammers in stem cell biology. Here, we show that KLF16, one of the least understood members of this family, is a POU4F2 independent transcription factor in retinal ganglion cells (RGCs) as early as embryonic day 15. When overexpressed, KLF16 inhibits RGC neurite outgrowth and enhances RGC growth cone collapse in response to exogenous ephrinA5 ligands. Ephrin/EPH signaling regulates RGC connectivity. The EphA5 promoter contains multiple GC- and GT-rich KLF-binding sites, which, as shown by ChIP-assays, bind KLF16 in vivo In electrophoretic mobility shift assays, KLF16 binds specifically to a single KLF site near the EphA5 transcription start site that is required for KLF16 transactivation. Interestingly, methylation of only six of 98 CpG dinucleotides within the EphA5 promoter blocks its transactivation by KLF16 but enables transactivation by KLF2 and KLF15. These data demonstrate a role for KLF16 in regulation of RGC neurite outgrowth and as a methylation-sensitive transcriptional regulator of EphA5 expression. Together, these data identify differential low level methylation as a novel mechanism for regulating KLF16-mediated EphA5 expression across the retina. Because of the critical role of ephrin/EPH signaling in patterning RGC connectivity, understanding the role of KLFs in regulating neurite outgrowth and Eph receptor expression will be vital for successful restoration of functional vision through optic nerve regenerative therapies.
Collapse
Affiliation(s)
- Jianbo Wang
- From the Departments of Physiological Optics and Vision Science and
| | - Joana Galvao
- the Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, California 94303, the Shiley Eye Institute, University of California San Diego, La Jolla, California 92093, and
| | - Krista M Beach
- From the Departments of Physiological Optics and Vision Science and
| | - Weijia Luo
- Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Raul A Urrutia
- the Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Epigenomics Translational Program, Center for Individualized Medicine, Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - Jeffrey L Goldberg
- the Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, California 94303, the Shiley Eye Institute, University of California San Diego, La Jolla, California 92093, and
| | - Deborah C Otteson
- From the Departments of Physiological Optics and Vision Science and Biology and Biochemistry, University of Houston, Houston, Texas 77204,
| |
Collapse
|
39
|
Becker B, Shaebani MR, Rammo D, Bubel T, Santen L, Schmitt MJ. Cargo binding promotes KDEL receptor clustering at the mammalian cell surface. Sci Rep 2016; 6:28940. [PMID: 27353000 PMCID: PMC4926219 DOI: 10.1038/srep28940] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023] Open
Abstract
Transmembrane receptor clustering is a ubiquitous phenomenon in pro- and eukaryotic cells to physically sense receptor/ligand interactions and subsequently translate an exogenous signal into a cellular response. Despite that receptor cluster formation has been described for a wide variety of receptors, ranging from chemotactic receptors in bacteria to growth factor and neurotransmitter receptors in mammalian cells, a mechanistic understanding of the underlying molecular processes is still puzzling. In an attempt to fill this gap we followed a combined experimental and theoretical approach by dissecting and modulating cargo binding, internalization and cellular response mediated by KDEL receptors (KDELRs) at the mammalian cell surface after interaction with a model cargo/ligand. Using a fluorescent variant of ricin toxin A chain as KDELR-ligand (eGFP-RTAH/KDEL), we demonstrate that cargo binding induces dose-dependent receptor cluster formation at and subsequent internalization from the membrane which is associated and counteracted by anterograde and microtubule-assisted receptor transport to preferred docking sites at the plasma membrane. By means of analytical arguments and extensive numerical simulations we show that cargo-synchronized receptor transport from and to the membrane is causative for KDELR/cargo cluster formation at the mammalian cell surface.
Collapse
Affiliation(s)
- Björn Becker
- Molecular and Cell Biology, Department of Biosciences and Center of Human and Molecular Biology (ZHMB), Saarland University, D-66041 Saarbrücken, Germany
| | - M Reza Shaebani
- Department of Theoretical Physics, Saarland University, D-66041 Saarbrücken, Germany
| | - Domenik Rammo
- Molecular and Cell Biology, Department of Biosciences and Center of Human and Molecular Biology (ZHMB), Saarland University, D-66041 Saarbrücken, Germany
| | - Tobias Bubel
- Molecular and Cell Biology, Department of Biosciences and Center of Human and Molecular Biology (ZHMB), Saarland University, D-66041 Saarbrücken, Germany
| | - Ludger Santen
- Department of Theoretical Physics, Saarland University, D-66041 Saarbrücken, Germany
| | - Manfred J Schmitt
- Molecular and Cell Biology, Department of Biosciences and Center of Human and Molecular Biology (ZHMB), Saarland University, D-66041 Saarbrücken, Germany
| |
Collapse
|
40
|
EphrinB2/EphB4 pathway in postnatal angiogenesis: a potential therapeutic target for ischemic cardiovascular disease. Angiogenesis 2016; 19:297-309. [PMID: 27216867 DOI: 10.1007/s10456-016-9514-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/13/2016] [Indexed: 01/12/2023]
Abstract
Ischemic cardiovascular disease remains one of the leading causes of morbidity and mortality in the world. Proangiogenic therapy appears to be a promising and feasible strategy for the patients with ischemic cardiovascular disease, but the results of preclinical and clinical trials are limited due to the complicated mechanisms of angiogenesis. Facilitating the formation of functional vessels is important in rescuing the ischemic cardiomyocytes. EphrinB2/EphB4, a novel pathway in angiogenesis, plays a critical role in both microvascular growth and neovascular maturation. Hence, investigating the mechanisms of EphrinB2/EphB4 pathway in angiogenesis may contribute to the development of novel therapeutics for ischemic cardiovascular disease. Previous reviews mainly focused on the role of EphrinB2/EphB4 pathway in embryo vascular development, but their role in postnatal angiogenesis in ischemic heart disease has not been fully illustrated. Here, we summarized the current knowledge of EphrinB2/EphB4 in angiogenesis and their interaction with other angiogenic pathways in ischemic cardiovascular disease.
Collapse
|
41
|
Abdelfattah NS, Amgad M, Zayed AA, Hussein H, Abd El-Baky N. Molecular underpinnings of corneal angiogenesis: advances over the past decade. Int J Ophthalmol 2016; 9:768-79. [PMID: 27275438 PMCID: PMC4886880 DOI: 10.18240/ijo.2016.05.24] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 01/19/2016] [Indexed: 01/29/2023] Open
Abstract
The cornea is maintained in an avascular state by maintaining an environment whereby anti-angiogenic factors take the upper hand over factors promoting angiogenesis. Many of the common pathologies affecting the cornea involve the disruption of such equilibrium and the shift towards new vessel formation, leading to corneal opacity and eventually-vision loss. Therefore it is of paramount importance that the molecular underpinnings of corneal neovascularization (CNV) be clearly understood, in order to develop better targeted treatments. This article is a review of the literature on the recent discoveries regarding pro-angiogenic factors of the cornea (such as vascular endothelial growth factors, fibroblast growth factor and matrix metalloproteinases) and anti-angiogenic factors of the cornea (such as endostatins and neostatins). Further, we review the molecular underpinnings of lymphangiogenesis, a process now known to be almost separate from (yet related to) hemangiogenesis.
Collapse
Affiliation(s)
| | - Mohamed Amgad
- Faculty of Medicine, Cairo University, Cairo 11111, Egypt
| | - Amira A. Zayed
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55904, USA
| | - Heba Hussein
- Faculty of Oral and Dental Medicine, Cairo University, Cairo 11111, Egypt
| | - Nawal Abd El-Baky
- Antibody Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, Alexandria 22033, Egypt
| |
Collapse
|
42
|
Ebrahim HY, El Sayed KA. Discovery of Novel Antiangiogenic Marine Natural Product Scaffolds. Mar Drugs 2016; 14:md14030057. [PMID: 26978377 PMCID: PMC4820311 DOI: 10.3390/md14030057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/27/2016] [Accepted: 03/03/2016] [Indexed: 01/05/2023] Open
Abstract
Marine natural products (MNPs) are recognized for their structural complexity, diversity, and novelty. The vast majority of MNPs are pharmacologically relevant through their ability to modulate macromolecular targets underlying human diseases. Angiogenesis is a fundamental process in cancer progression and metastasis. Targeting angiogenesis through selective modulation of linked protein kinases is a valid strategy to discover novel effective tumor growth and metastasis inhibitors. An in-house marine natural products mini-library, which comprises diverse MNP entities, was submitted to the Lilly’s Open Innovation Drug Discovery platform. Accepted structures were subjected to in vitro screening to discover mechanistically novel angiogenesis inhibitors. Active hits were subjected to additional angiogenesis-targeted kinase profiling. Some natural and semisynthetic MNPs, including multiple members of the macrolide latrunculins, the macrocyclic oxaquinolizidine alkaloid araguspongine C, and the sesquiterpene quinone puupehenone, showed promising results in primary and secondary angiogenesis screening modules. These hits inhibited vascular endothelial growth factor (VEGF)-mediated endothelial tube-like formation, with minimal cytotoxicity at relevant doses. Secondary kinase profiling identified six target protein kinases, all involved in angiogenesis signaling pathways. Molecular modeling and docking experiments aided the understanding of molecular binding interactions, identification of pharmacophoric epitopes, and deriving structure-activity relationships of active hits. Marine natural products are prolific resources for the discovery of chemically and mechanistically unique selective antiangiogenic scaffolds.
Collapse
Affiliation(s)
- Hassan Y Ebrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Khalid A El Sayed
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| |
Collapse
|
43
|
Visser JJ, Cheng Y, Perry SC, Chastain AB, Parsa B, Masri SS, Ray TA, Kay JN, Wojtowicz WM. An extracellular biochemical screen reveals that FLRTs and Unc5s mediate neuronal subtype recognition in the retina. eLife 2015; 4:e08149. [PMID: 26633812 PMCID: PMC4737655 DOI: 10.7554/elife.08149] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 12/01/2015] [Indexed: 12/25/2022] Open
Abstract
In the inner plexiform layer (IPL) of the mouse retina, ~70 neuronal subtypes organize their neurites into an intricate laminar structure that underlies visual processing. To find recognition proteins involved in lamination, we utilized microarray data from 13 subtypes to identify differentially-expressed extracellular proteins and performed a high-throughput biochemical screen. We identified ~50 previously-unknown receptor-ligand pairs, including new interactions among members of the FLRT and Unc5 families. These proteins show laminar-restricted IPL localization and induce attraction and/or repulsion of retinal neurites in culture, placing them in an ideal position to mediate laminar targeting. Consistent with a repulsive role in arbor lamination, we observed complementary expression patterns for one interaction pair, FLRT2-Unc5C, in vivo. Starburst amacrine cells and their synaptic partners, ON-OFF direction-selective ganglion cells, express FLRT2 and are repelled by Unc5C. These data suggest a single molecular mechanism may have been co-opted by synaptic partners to ensure joint laminar restriction.
Collapse
Affiliation(s)
- Jasper J Visser
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Yolanda Cheng
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Steven C Perry
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Andrew Benjamin Chastain
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Bayan Parsa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Shatha S Masri
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Thomas A Ray
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
- Department of Opthalmology, Duke University School of Medicine, Durham, United States
| | - Jeremy N Kay
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
- Department of Opthalmology, Duke University School of Medicine, Durham, United States
| | - Woj M Wojtowicz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
44
|
Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 2015; 25:556-66. [DOI: 10.1016/j.tcb.2015.06.003] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 12/18/2022]
|