1
|
Hsu SN, Stephen LA, Phadwal K, Dillon S, Carter R, Morton NM, Luijten I, Emelianova K, Amin AK, Macrae VE, Freeman TC, Hsu YJ, Staines KA, Farquharson C. Mitochondrial dysfunction and mitophagy blockade contribute to renal osteodystrophy in chronic kidney disease-mineral bone disorder. Kidney Int 2025; 107:1017-1036. [PMID: 39922377 DOI: 10.1016/j.kint.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/10/2025]
Abstract
Chronic kidney disease-mineral and bone disorder (CKD-MBD) presents with extra-skeletal calcification and renal osteodystrophy (ROD). However, the pathophysiology of ROD remains unclear. Here we examine the hypothesis that stalled mitophagy within osteocytes of CKD-MBD mouse models contributes to bone loss. RNA-seq analysis revealed an altered expression of genes associated with mitophagy and mitochondrial function in tibia of CKD-MBD mice. The expression of mitophagy regulators, p62/SQSTM1, ATG7 and LC3, was inconsistent with functional mitophagy, and in mito-QC reporter mice with ROD, there was a two- to three-fold increase in osteocyte mitolysosomes. To determine if uremic toxins were potentially responsible for these observations, treatment of cultured osteoblasts with uremic toxins revealed increased mitolysosome number and mitochondria with distorted morphology. Membrane potential and oxidative phosphorylation were also decreased, and oxygen-free radical production increased. The altered p62/SQSTM1 and LC3-II expression was consistent with impaired mitophagy machinery, and the effects of uremic toxins were reversible by rapamycin. A causal link between uremic toxins and the development of mitochondrial abnormalities and ROD was established by showing that a mitochondria-targeted antioxidant (MitoQ) and the charcoal adsorbent AST-120 were able to mitigate the uremic toxin-induced mitochondrial changes and improve bone health. Overall, our study shows that impaired clearance of damaged mitochondria may contribute to the ROD phenotype. Targeting uremic toxins, oxygen-free radical production and the mitophagy process may offer novel routes for intervention to preserve bone health in patients with CKD-MBD. This would be timely as our current armamentarium of anti-fracture medications for patients with severe CKD-MBD is limited.
Collapse
Affiliation(s)
- Shun-Neng Hsu
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK; Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Louise A Stephen
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Kanchan Phadwal
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Scott Dillon
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Roderick Carter
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Nicholas M Morton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ineke Luijten
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Katie Emelianova
- UK Dementia Research Institute, University of Edinburgh, Edinburgh Medical School, Edinburgh, UK; Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Anish K Amin
- Edinburgh Orthopaedics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Vicky E Macrae
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK; School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, UK
| | - Tom C Freeman
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Katherine A Staines
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, UK
| | - Colin Farquharson
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
2
|
Scudese E, Marshall AG, Vue Z, Exil V, Rodriguez BI, Demirci M, Vang L, López EG, Neikirk K, Shao B, Le H, Stephens D, Hall DD, Rostami R, Rodman T, Kabugi K, Shao JQ, Mungai M, AshShareef ST, Hicsasmaz I, Manus S, Wanjalla CN, Whiteside A, Dasari R, Williams CR, Damo SM, Gaddy JA, Glancy B, Dantas EHM, Kinder A, Kadam A, Tomar D, Scartoni F, Baffi M, McReynolds MR, Phillips MA, Cooper A, Murray SA, Quintana AM, Wandira N, Ochayi OM, Ameka M, Kirabo A, Masenga SK, Harris C, Oliver A, Martin P, Gaye A, Korolkova O, Sharma V, Mobley BC, Katti P, Hinton A. 3D Mitochondrial Structure in Aging Human Skeletal Muscle: Insights Into MFN-2-Mediated Changes. Aging Cell 2025:e70054. [PMID: 40285369 DOI: 10.1111/acel.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 04/29/2025] Open
Abstract
Age-related skeletal muscle atrophy, known as sarcopenia, is characterized by loss of muscle mass, strength, endurance, and oxidative capacity. Although exercise has been shown to mitigate sarcopenia, the underlying governing mechanisms are poorly understood. Mitochondrial dysfunction is implicated in aging and sarcopenia; however, few studies explore how mitochondrial structure contributes to this dysfunction. In this study, we sought to understand how aging impacts mitochondrial three-dimensional (3D) structure and its regulators in skeletal muscle. We hypothesized that aging leads to remodeling of mitochondrial 3D architecture permissive to dysfunction and is ameliorated by exercise. Using serial block-face scanning electron microscopy (SBF-SEM) and Amira software, mitochondrial 3D reconstructions from patient biopsies were generated and analyzed. Across five human cohorts, we correlate differences in magnetic resonance imaging, mitochondria 3D structure, exercise parameters, and plasma immune markers between young (under 50 years) and old (over 50 years) individuals. We found that mitochondria are less spherical and more complex, indicating age-related declines in contact site capacity. Additionally, aged samples showed a larger volume phenotype in both female and male humans, indicating potential mitochondrial swelling. Concomitantly, muscle area, exercise capacity, and mitochondrial dynamic proteins showed age-related losses. Exercise stimulation restored mitofusin 2 (MFN2), one such of these mitochondrial dynamic proteins, which we show is required for the integrity of mitochondrial structure. Furthermore, we show that this pathway is evolutionarily conserved, as Marf, the MFN2 ortholog in Drosophila, knockdown alters mitochondrial morphology and leads to the downregulation of genes regulating mitochondrial processes. Our results define age-related structural changes in mitochondria and further suggest that exercise may mitigate age-related structural decline through modulation of mitofusin 2.
Collapse
Affiliation(s)
- Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Brazil
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Vernat Exil
- Department of Pediatrics, Div. of Cardiology, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Benjamin I Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Mert Demirci
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Edgar Garza López
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Duane D Hall
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Rahmati Rostami
- Department of Genetic Medicine, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Taylor Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | | | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | | | - Innes Hicsasmaz
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Sasha Manus
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Celestine N Wanjalla
- Division of Infection Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Revathi Dasari
- Department of Biology, Indian Institute of Science Education and Research (IISER), Tirupati, AP, India
| | - Clintoria R Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, USA
| | - Jennifer A Gaddy
- Division of Infection Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare Systems, U.S. Department of Veterans Affairs, Nashville, TN, USA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- NIAMS, NIH, Bethesda, MD, USA
| | - Estélio Henrique Martin Dantas
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Doctor's Degree Program in Nursing and Biosciences - PpgEnfBio, Federal University of the State of Rio de Janeiro - UNIRIO, Rio de Janeiro, RJ, Brazil
- Laboratory of Human Motricity Biosciences - LABIMH, Federal University of the State of Rio de Janeiro - UNIRIO, RJ, Brazil
- Brazilian Paralympic Academy - APB, Brazil
- Doctor's Degree Program in Health and Environment - PSA, Tiradentes University - UNIT, Aracaju, SE, Brazil
| | - André Kinder
- Artur Sá Earp Neto University Center - UNIFASE-FMP, Petrópolis Medical School, Brazil
| | - Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Fabiana Scartoni
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Matheus Baffi
- Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Brazil
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Mark A Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Anthonya Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anita M Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Nelson Wandira
- Institute of Health Sciences Busoga University, Iganga, Uganda
| | - Okwute M Ochayi
- Department of Human Physiology, Baze University, Abuja, Nigeria
| | - Magdalene Ameka
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Sepiso K Masenga
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Chanel Harris
- Department of Biomedical Sciences, Meharry Medical College, Nashville, US
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Sciences, Meharry Medical College, Nashville, US
| | - Pamela Martin
- Department of Biomedical Sciences, Meharry Medical College, Nashville, US
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, Meharry Medical College, Nashville, TN, USA
| | - Olga Korolkova
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Vineeta Sharma
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Bret C Mobley
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Prasanna Katti
- Department of Biology, Indian Institute of Science Education and Research (IISER), Tirupati, AP, India
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
3
|
Zicarelli M, Duni A, Leivaditis K, Lin YL, Baciga F, Pugliese S, Fiorentino M, Hsu BG, Roumeliotis S, Battaglia Y, Dounousi E, Bolignano D. Comprehensive Insights into Sarcopenia in Dialysis Patients: Mechanisms, Assessment, and Therapeutic Approaches. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:449. [PMID: 40142260 PMCID: PMC11944051 DOI: 10.3390/medicina61030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025]
Abstract
Sarcopenia, defined as the progressive loss of muscle mass, strength, and function, is largely prevalent but still clinically underrecognized among patients undergoing chronic dialysis therapy. The pathogenesis involves a complex interplay of chronic inflammation, oxidative stress, metabolic acidosis, hormonal imbalances, protein waste, malnutrition, and reduced physical activity. This multifactorial condition profoundly impairs quality of life and may lead to significant clinical consequences, including frailty, an increased risk of falls and hospitalization, and elevated mortality. Despite its clinical relevance, sarcopenia often remains underdiagnosed due to inconsistent diagnostic criteria and challenges in assessing body composition in dialysis populations. Therapeutic strategies, including tailored exercise programs, nutritional interventions, and pharmacological treatments, are essential to mitigate muscle loss and improve patient outcomes. Early identification and routine sarcopenia assessment in clinical practice could play a pivotal role in enhancing the management of dialysis patients. A multidisciplinary, personalized approach is necessary to address the diverse factors contributing to sarcopenia and to improve the overall prognosis and quality of life for this vulnerable population.
Collapse
Affiliation(s)
- Mariateresa Zicarelli
- Department of Health Sciences, University “Magna-Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Anila Duni
- 2nd Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Leivaditis
- 2nd Department of Nephrology, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Yu-Li Lin
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970473, Taiwan
| | - Federica Baciga
- Department of Medicine, University of Verona, 37129 Verona, Italy
- Nephrology and Dialysis Unit, Pederzoli Hospital, Peschiera del Garda, 37129 Verona, Italy
| | - Sara Pugliese
- School of Medicine, University “Magna-Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Bang-Gee Hsu
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970473, Taiwan
| | - Stefanos Roumeliotis
- 2nd Department of Nephrology, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Yuri Battaglia
- Department of Medicine, University of Verona, 37129 Verona, Italy
- Nephrology and Dialysis Unit, Pederzoli Hospital, Peschiera del Garda, 37129 Verona, Italy
| | - Evangelia Dounousi
- 2nd Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Davide Bolignano
- Department of Medical and Surgical Sciences, University “Magna-Graecia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Demirci M, Afolabi JM, Kirabo A. Aging and sex differences in salt sensitivity of blood pressure. Clin Sci (Lond) 2025; 139:CS20240788. [PMID: 39873323 DOI: 10.1042/cs20240788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Salt sensitivity of blood pressure (SSBP) is a complex physiological trait characterized by changes in blood pressure in response to dietary salt intake. Aging introduces an additional layer of complexity to the pathophysiology of SSBP, with mitochondrial dysfunction, epigenetic modifications, and alterations in gut microbiota emerging as critical factors. Despite advancements in understanding these mechanisms, the processes driving increased salt sensitivity with age and their differential impacts across sexes remain unclear. This review explores the current understanding of salt sensitivity, delving into its underlying mechanisms, the role of inflammation, and the influence of aging and sex differences on these processes. We also aim to provide insights into the multifaceted nature of salt sensitivity and its implications for personalized treatment strategies in hypertension management.
Collapse
Affiliation(s)
- Mert Demirci
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, U.S.A
| | - Jeremiah M Afolabi
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, U.S.A
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, U.S.A
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, U.S.A
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Nair D, Liu CK, Raslan R, McAdams-DeMarco M, Hall RK. Frailty in Kidney Disease: A Comprehensive Review to Advance Its Clinical and Research Applications. Am J Kidney Dis 2025; 85:89-103. [PMID: 38906506 PMCID: PMC11655709 DOI: 10.1053/j.ajkd.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/05/2024] [Accepted: 04/20/2024] [Indexed: 06/23/2024]
Abstract
Frailty is a multisystem syndrome of decreased physiologic reserve that has been shown to strongly and independently predict morbidity and mortality. Frailty is prevalent in patients living with kidney disease and occurs earlier in individuals with kidney disease as compared to the general population. In this comprehensive review, we examine clinical and research applications of frailty in kidney disease populations. Specifically, we clarify the definition of frailty and address common misconceptions, review the mechanisms and epidemiology of frailty in kidney disease, discuss challenges and limitations in frailty measurement, and provide updated evidence related to risk factors for frailty, its associated adverse outcomes, and interventions. We further add to the literature in this topic by highlighting the potential applications of frailty measurement in the care of patients with kidney disease and conclude with our recommendations for future research related to this important syndrome.
Collapse
Affiliation(s)
- Devika Nair
- Vanderbilt University Medical Center, Division of Nephrology and Hypertension, Nashville, Tennessee; Vanderbilt Center for Health Services Research, Nashville, Tennessee; Tennessee Valley Veterans Affairs Healthcare System, Nashville, Tennessee
| | - Christine K Liu
- Geriatric Research and Education Clinical Center, Veteran Affairs Palo Alto Health Care System, Palo Alto, California; Section of Geriatric Medicine, Division of Primary Care and Population Health, School of Medicine, Stanford University, Stanford, California
| | - Rasha Raslan
- Department of Medicine, School of Medicine, Duke University, Durham, North Carolina
| | - Mara McAdams-DeMarco
- Department of Surgery, Langone Health and Grossman School of Medicine, New York University, New York, New York; Department of Population Health, Langone Health and Grossman School of Medicine, New York University, New York, New York
| | - Rasheeda K Hall
- Department of Medicine, School of Medicine, Duke University, Durham, North Carolina; Durham Veterans Affairs Medical Center, Durham, North Carolina.
| |
Collapse
|
6
|
Wallin H, Jansson E, Said R, Lundberg S, Zolfaghardidani P, Eriksson MJ, Rickenlund A, Sundblad P. Exercise limitation in chronic kidney disease: An experimental pilot study with leg and arm exercise. Physiol Rep 2025; 13:e70200. [PMID: 39810261 PMCID: PMC11732701 DOI: 10.14814/phy2.70200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/02/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Maximal oxygen uptake (VO2max) in healthy subjects is primarily limited by systemic oxygen delivery. In chronic kidney disease (CKD), VO2max is potentially reduced by both central and peripheral factors. We aimed to investigate the effect on VO2peak of adding arm exercise to leg exercise. Ten individuals with CKD stages 3-5 and 10 healthy controls, matched for age, sex, body size, and physical activity level, were included. Subjects performed two maximal exercise tests, one with legs only (L exercise) and one test where arm exercise was added to leg exercise (LA exercise). The increase in VO2peak, when comparing LA exercise with L exercise, was significantly higher in CKD (0.20 ± 0.18 L/min or 2.31 ± 1.78 mL/(kg·min)) than in controls (0.019 ± 0.12 L/min or 0.26 ± 1.62 mL/(kg·min); p = 0.02 and 0.01, respectively). The decrease in peak leg workload, when comparing L exercise with LA exercise, was larger in controls than in CKD, in absolute terms (p = 0.002) and relative to body weight (p = 0.01). VO2max in individuals with CKD is dependent on the active muscle mass, supporting a peripheral limitation to VO2max in CKD. By contrast, the control group appeared to have a more central limitation to VO2max.
Collapse
Affiliation(s)
- Helena Wallin
- Division of Clinical PhysiologyDepartment of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Clinical PhysiologyKarolinska University HospitalStockholmSweden
| | - Eva Jansson
- Division of Clinical PhysiologyDepartment of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Clinical PhysiologyKarolinska University HospitalStockholmSweden
| | - Ragad Said
- Department of Clinical PhysiologyKarolinska University HospitalStockholmSweden
| | - Sigrid Lundberg
- Nephrology ClinicDanderyds HospitalStockholmSweden
- Department of Clinical ScienceDanderyds Hospital, Karolinska InstitutetStockholmSweden
| | - Pourya Zolfaghardidani
- Department of Clinical Science and EducationSödersjukhuset, Karolinska InstitutetStockholmSweden
| | - Maria J. Eriksson
- Department of Clinical PhysiologyKarolinska University HospitalStockholmSweden
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Anette Rickenlund
- Department of Clinical PhysiologyKarolinska University HospitalStockholmSweden
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Patrik Sundblad
- Division of Clinical PhysiologyDepartment of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Clinical PhysiologyKarolinska University HospitalStockholmSweden
| |
Collapse
|
7
|
Yang M, Wu S, Dai Q, Qin W, Zhang Y, Lei Y, Song H, Zheng T, Guan M, Huang G, Liu X. Andrographolide prevents renal fibrosis via decelerating lipotoxicity-mediated premature senescence of tubular epithelial cells. Biochem Pharmacol 2024; 230:116615. [PMID: 39528075 DOI: 10.1016/j.bcp.2024.116615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/18/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Excessive lipid accumulation often occurs in the early stage of chronic kidney disease (CKD) which is prone to induce oxidative stress and mitochondrial damage, promoting the progression of kidney fibrosis. Andrographolide (AP), a multifunctional natural terpenoids derived from Andrographis paniculate, has been suggested to play beneficial roles in metabolic disorders-associated disease. Here, we reported that AP effectively counteracts tubule injury and interstitial fibrosis in mice fed with a long-term high-fat diet (HFD). AP treatment decreased HFD-induced lipid accumulation in kidney parenchyma and attenuated lipotoxicity-mediated oxidative stress and mitochondrial dysfunction, resulting in a marked decrease in tubular cell senescence. Importantly, AP inhibited senescence-associated secretory phenotype (SASP) secretion by senescent tubular cells, and in turn suppressed proliferation and activation of fibroblasts in a paracrine effect. Furthermore, we revealed that AP functions as an AMP-activated protein kinase (AMPK) activator to ameliorate renal lipid accumulation through coordinately modulating AMP-activated protein kinase AMPK target genes. By stimulation of AMPK activity, AP protects injured kidney against tubular cell senescence and fibroblast activation. These results suggest the potential therapeutic application of AP in the prevention and treatment of CKD, highlighting the promising drug strategy of targeting the lipotoxicity-mediated premature senescence in tubular cells.
Collapse
Affiliation(s)
- Meng Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Shengquan Wu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Qihui Dai
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Weihong Qin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yujie Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yiting Lei
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haochang Song
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Tingting Zheng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Gonghua Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
8
|
Campbell MD, Sanchez-Contreras M, Sibley BD, Keiser P, Ruiz Sanchez C, Mann CN, Marcinek DJ, Najafian B, Sweetwyne MT. Mitochondrial respiratory capacity in kidney podocytes is high, age-dependent, and sexually dimorphic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.24.625104. [PMID: 39651288 PMCID: PMC11623494 DOI: 10.1101/2024.11.24.625104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Whether and how podocytes depend on mitochondria across their long post-mitotic lifespan is yet unclear. With limited cell numbers and broad kidney distribution, isolation of podocyte mitochondria typically requires first isolating podocytes themselves. Disassociation of podocytes from their basement membrane, however, recapitulates an injured state that may stress mitochondria. To address this, we crossed floxed hemagglutinin (HA) -mitochondria tagged (MITO-Tag) mice with those expressing Cre in either podocytes (NPHS2) or distal tubule and collecting duct (CDH16), thus allowing for rapid, kidney cell-specific, isolation of mitochondria via immunoprecipitation. Mitochondrial respiration in fresh isolates from young (4-7 mo) and aged (22-26 mo) mice of both sexes demonstrated several previously unreported significant differences between podocyte and tubule mitochondria. First, although podocytes contain fewer mitochondria than do tubule cells, mitochondria isolated from podocytes averaged twice the respiratory capacity of tubule mitochondria when normalized to mitochondrial content by citrate synthase (CS) levels. Second, age-related decline in respiration was detected only in podocyte mitochondria and only in aged male mice. Finally, disassociating podocytes for cell culture initiates functional decline in mitochondria as those from cultured primary podocytes have half the respiratory capacity, but twice the hydrogen peroxide production of podocyte mitochondria isolated directly from fresh kidneys. Thus, podocytes maintain sexually dimorphic mitochondria with greater oxidative phosphorylation capacity than mitochondria-dependent tubules per organelle. Previous studies may not have detected these differences due to reliance on podocyte cell culture conditions, which results in artifactual suppression of mitochondrial function.
Collapse
|
9
|
Ahmed HA, Shaaban AA, Ibrahim TM, Makled MN. G protein-coupled estrogen receptor activation attenuates cisplatin-induced CKD in C57BL/6 mice: An insight into sex-related differences. Food Chem Toxicol 2024; 194:115079. [PMID: 39491767 DOI: 10.1016/j.fct.2024.115079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Gender contributes to differences in incidence and progression of chronic kidney disease (CKD) post-cisplatin therapy. This study aims at investigating the potential effect of G1 compound, a GPER agonist, on attenuating cisplatin-induced CKD. To induce CKD in male, intact female, and ovariectomized (OVX) mice, CKD was induced by injecting two cycles of 2.5 mg/kg cisplatin with a 16-day recovery period between cycles). G1 (50 or 100 μg/kg was administered daily for 6 weeks. Severity of renal damage was more pronounced in males than females. Interestingly, OVX resulted in renal damage that is non-significant compared to males and significantly higher than females. G1 improved renal function and blood flow as evidenced by reduction of serum creatinine and elevation of creatinine clearance, NO production, and reduction of ET1. This renoprotective effect could be attributed to its immunomodulatory effect regulated by TGF-β that shifted the balance to favor anti-inflammatory cytokine production (increased IL-10) rather than pro-inflammatory cytokines (decreased Th17 expression). Reduction of TGF-β activation also inhibited epithelial-to-mesenchymal transition that eventually ameliorated CKD development. Antioxidant potential of G1 has been demonstrated by upregulation of Nrf2 and subsequent antioxidant enzymes. These data suggest that G1 could be a promising therapeutic tool to attenuate CP-induced CKD.
Collapse
Affiliation(s)
- Hala A Ahmed
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Ahmed A Shaaban
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Tarek M Ibrahim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Mirhan N Makled
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt.
| |
Collapse
|
10
|
Arauna D, Navarrete S, Albala C, Wehinger S, Pizarro-Mena R, Palomo I, Fuentes E. Understanding the Role of Oxidative Stress in Platelet Alterations and Thrombosis Risk among Frail Older Adults. Biomedicines 2024; 12:2004. [PMID: 39335518 PMCID: PMC11429027 DOI: 10.3390/biomedicines12092004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Frailty and cardiovascular diseases are increasingly prevalent in aging populations, sharing common pathological mechanisms, such as oxidative stress. The evidence shows that these factors predispose frail individuals to cardiovascular diseases but also increase the risk of thrombosis. Considering this background, this review aims to explore advances regarding the relationship between oxidative stress, platelet alterations, and cardiovascular diseases in frailty, examining the role of reactive oxygen species overproduction in platelet activation and thrombosis. The current evidence shows a bidirectional relationship between frailty and cardiovascular diseases, emphasizing how frailty not only predisposes individuals to cardiovascular diseases but also accelerates disease progression through oxidative damage and increased platelet function. Thus, oxidative stress is the central axis in the increase in platelet activation and secretion and the inadequate response to acetylsalicylic acid observed in frail people by mitochondrial mechanisms. Also, key biomarkers of oxidative stress, such as isoprostanes and derivate reactive oxygen metabolites, can be optimal predictors of cardiovascular risk and potential targets for therapeutic intervention. The potential of antioxidant therapies in mitigating oxidative stress and improving cardiovascular clinical outcomes such as platelet function is promising in frailty, although further research is necessary to establish the efficacy of these therapies. Understanding these mechanisms could prove essential in improving the health and quality of life of an aging population faced with the dual burden of frailty and cardiovascular diseases.
Collapse
Affiliation(s)
- Diego Arauna
- Thrombosis Research and Healthy Aging Center, Department of Clinical Biochemistry and Immunohematology, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile
| | - Simón Navarrete
- Thrombosis Research and Healthy Aging Center, Department of Clinical Biochemistry and Immunohematology, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile
| | - Cecilia Albala
- Unidad de Nutrición Pública, Instituto de Nutrición y Tecnología de los Alimentos, Interuniversity Center for Healthy Aging, Universidad de Chile, Santiago 7810000, Chile
| | - Sergio Wehinger
- Thrombosis Research and Healthy Aging Center, Department of Clinical Biochemistry and Immunohematology, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile
| | - Rafael Pizarro-Mena
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Sede Los Leones, Santiago 7500000, Chile
- Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Santiago 7810000, Chile
| | - Iván Palomo
- Thrombosis Research and Healthy Aging Center, Department of Clinical Biochemistry and Immunohematology, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile
| | - Eduardo Fuentes
- Thrombosis Research and Healthy Aging Center, Department of Clinical Biochemistry and Immunohematology, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
11
|
Ahmed HA, Shaaban AA, Makled MN, Ibrahim TM. G protein-coupled estrogen receptor selective agonist, G1, improves the molecular and biochemical markers in a cisplatin mouse model of CKD. Chem Biol Interact 2024; 398:111065. [PMID: 38795875 DOI: 10.1016/j.cbi.2024.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Multiple cycles of cisplatin result in a permanent loss of kidney function with severe and life-limited chronic kidney disease (CKD) after successful cisplatin therapy. Recently, studies have showed that the activation of G-protein coupled estrogen receptor (GPER) could protect against kidney disease. This study aimed to test the potential of the G1 compound, a GPER selective agonist, to prevent CKD development after cisplatin therapy. Male C57BL/6 mice were exposed to 2 cycles of 2.5 mg/kg cisplatin in a regimen miming clinical exposure (1 injection daily for 5 days, followed by a 16-day recovery period between cycles). G1 (50 or 100 μg/kg) was administered daily for 6 weeks. G1 dose-dependently improved kidney function biomarkers (serum creatinine, creatinine clearance, and protein excretion) and histopathological changes compared to the cisplatin-treated group. Collagen 3 expression was dose-dependently decreased in G1-treated groups that was parallel to the reduction of fibrosis in Masson's trichrome-stained sections. G1 administration also increased total antioxidant capacity (TAC) and nuclear factor erythroid 2-related factor 2 (Nrf2) and reduced the level of malondialdehyde and the proinflammatory cytokine, tumor necrosis factor-α. In addition, G1 downregulated the expression of inflammasome NLRP3 and nuclear factor kappa B p65 (NF-κB p65) in a dose-dependent manner. In conclusion, these data suggest that G1 could be a new therapeutic tool for CKD prevention post cisplatin therapy. These effects might be mediated through the activation of Nrf2 and the inhibition of NF-κB/NLRP3 signaling.
Collapse
MESH Headings
- Animals
- Cisplatin/pharmacology
- Male
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/metabolism
- Mice, Inbred C57BL
- Mice
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/chemically induced
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Disease Models, Animal
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Biomarkers/metabolism
- Receptors, Estrogen/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/agonists
- NF-kappa B/metabolism
- Oxidative Stress/drug effects
Collapse
Affiliation(s)
- Hala A Ahmed
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Ahmed A Shaaban
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt; Faculty of Pharmacy, Jerash University, Jerash, 26150, Jordan
| | - Mirhan N Makled
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt.
| | - Tarek M Ibrahim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
12
|
Machfer A, Tagougui S, Zghal F, Hassen HBH, Fekih N, Amor HIH, Chtourou H, Bouzid MA. Hemodynamic and neuromuscular basis of reduced exercise capacity in patients with end-stage renal disease. Eur J Appl Physiol 2024; 124:1991-2004. [PMID: 38374473 DOI: 10.1007/s00421-024-05427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 01/27/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE The present study aimed to characterize the exercise-induced neuromuscular fatigue and its possible links with cerebral and muscular oxygen supply and utilization to provide mechanistic insights into the reduced exercise capacity characterizing patients with end-stage renal disease (ESRD). METHODS Thirteen patients with ESRD and thirteen healthy males (CTR group) performed a constant-force sustained isometric contraction at 50% of their maximal voluntary isometric contraction (MVC) until exhaustion. Quadriceps muscle activation during exercise was estimated from vastus lateralis, vastus medialis, and rectus femoris EMG. Central and peripheral fatigue were quantified via changes in pre- to postexercise quadriceps voluntary activation (ΔVA) and quadriceps twitch force (ΔQtw,pot) evoked by supramaximal electrical stimulation, respectively. To assess cerebral and muscular oxygenation, throughout exercise, near-infrared spectroscopy allowed investigation of changes in oxyhemoglobin (∆O2Hb), deoxyhemoglobin (∆HHb), and total hemoglobin (∆THb) in the prefrontal cortex and in the vastus lateralis muscle. RESULTS ESRD patients demonstrated lower exercise time to exhaustion than that of CTR (88.8 ± 15.3 s and 119.9 ± 14.6 s, respectively, P < 0.01). Following the exercise, MVC, Qtw,pot, and VA reduction were similar between the groups (P > 0.05). There was no significant difference in muscle oxygenation (∆O2Hb) between the two groups (P > 0.05). Cerebral and muscular blood volume (∆THb) and oxygen extraction (∆HHb) were significantly blunted in the ESRD group (P < 0.05). A significant positive correlation was observed between time to exhaustion and cerebral blood volume (∆THb) in both groups (r2 = 0.64, P < 0.01). CONCLUSIONS These findings support cerebral hypoperfusion as a factor contributing to the reduction in exercise capacity characterizing ESRD patients.
Collapse
Affiliation(s)
- Amal Machfer
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Sémah Tagougui
- Université de Lille, Université d'Artois, Université du Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS), Lille, France
- Montreal Clinical Research Institute (IRCM), Montreal, Canada
| | - Firas Zghal
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
- Université de La Réunion, IRISSE, Le Tampon, La Réunion, France
| | - Hayfa Ben Haj Hassen
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Nadia Fekih
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | | | - Hamdi Chtourou
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, 1003, Tunis, Tunisia
| | - Mohamed Amine Bouzid
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia.
| |
Collapse
|
13
|
Hung TW, Hsieh YH, Lee HL, Ting YH, Lin CL, Chao WW. Renoprotective effect of rosmarinic acid by inhibition of indoxyl sulfate-induced renal interstitial fibrosis via the NLRP3 inflammasome signaling. Int Immunopharmacol 2024; 135:112314. [PMID: 38788450 DOI: 10.1016/j.intimp.2024.112314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
We previously reported that rosmarinic acid (RA) ameliorated renal fibrosis in a unilateral ureteral obstruction (UUO) murine model of chronic kidney disease. This study aimed to determine whether RA attenuates indoxyl sulfate (IS)-induced renal fibrosis by regulating the activation of the NLRP3 inflammasome/IL-1β/Smad circuit. We discovered the NLRP3 inflammasome was activated in the IS treatment group and downregulated in the RA-treated group in a dose-dependent manner. Additionally, the downstream effectors of the NLRP3 inflammasome, cleaved-caspase-1 and cleaved-IL-1β showed similar trends in different groups. Moreover, RA administration significantly decreased the ROS levels of reactive oxygen species in IS-treated cells. Our data showed that RA treatment significantly inhibited Smad-2/3 phosphorylation. Notably, the effects of RA on NLRP3 inflammasome/IL-1β/Smad and fibrosis signaling were reversed by the siRNA-mediated knockdown of NLRP3 or caspase-1 in NRK-52E cells. In vivo, we demonstrated that expression levels of NLRP3, c-caspase-1, c-IL-1β, collagen I, fibronectin and α-SMA, and TGF- β 1 were downregulated after treatment of UUO mice with RA or RA + MCC950. Our findings suggested RA and MCC950 synergistically inhibited UUO-induced NLRP3 signaling activation, revealing their renoprotective properties and the potential for combinatory treatment of renal fibrosis and chronic kidney inflammation.
Collapse
Affiliation(s)
- Tung-Wei Hung
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Hsiang-Lin Lee
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Deptartment of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yi-Hsuan Ting
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chu-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Wen-Wan Chao
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan 33857, Taiwan.
| |
Collapse
|
14
|
Frąk W, Dąbek B, Balcerczyk-Lis M, Motor J, Radzioch E, Młynarska E, Rysz J, Franczyk B. Role of Uremic Toxins, Oxidative Stress, and Renal Fibrosis in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:687. [PMID: 38929126 PMCID: PMC11200916 DOI: 10.3390/antiox13060687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Affecting millions of people worldwide, chronic kidney disease is a serious medical problem. It results in a decrease in glomerular filtration rate below 60 mL/min/1.73 m, albuminuria, abnormalities in urine sediment and pathologies detected by imaging studies lasting a minimum of 3 months. Patients with CKD develop uremia, and as a result of the accumulation of uremic toxins in the body, patients can be expected to suffer from a number of medical consequences such as progression of CKD with renal fibrosis, development of atherosclerosis or increased incidence of cardiovascular events. Another key element in the pathogenesis of CKD is oxidative stress, resulting from an imbalance between the production of antioxidants and the production of reactive oxygen species. Oxidative stress contributes to damage to cellular proteins, lipids and DNA and increases inflammation, perpetuating kidney dysfunction. Additionally, renal fibrogenesis involving the accumulation of fibrous tissue in the kidneys occurs. In our review, we also included examples of forms of therapy for CKD. To improve the condition of CKD patients, pharmacotherapy can be used, as described in our review. Among the drugs that improve the prognosis of patients with CKD, we can include: GLP-1 analogues, SGLT2 inhibitors, Finerenone monoclonal antibody-Canakinumab and Sacubitril/Valsartan.
Collapse
Affiliation(s)
- Weronika Frąk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Marta Balcerczyk-Lis
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jakub Motor
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewa Radzioch
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
15
|
Gunasekara TDKSC, De Silva PMCS, Chandana EPS, Jayasinghe S, Herath C, Siribaddana S, Jayasundara N. Environmental fluoride exposure and implications on potential pediatric kidney health risks: an approach with urinary biomarkers. Pediatr Nephrol 2024; 39:1469-1480. [PMID: 38085354 DOI: 10.1007/s00467-023-06218-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 03/16/2024]
Abstract
BACKGROUND Environmental fluoride exposure at elevated levels is potentially linked to kidney injury, and may contribute to chronic kidney disease of uncertain etiology (CKDu) as a risk factor. However, this link remains unclear, and examining the risk of kidney damage from early life fluoride exposure may provide important insights. Hence, this study aimed to investigate associations of fluoride exposure with pediatric kidney health in CKDu impacted and unimpacted communities in Sri Lanka. METHODS Considering the geographical variations in environmental fluoride, climate, and prevalence of CKDu, four study groups were established within selected education zones in CKDu-endemic dry zone regions (D-En), and CKDu-nonendemic regions within the dry (D-NE), wet (W-NE), and intermediate (I-NE) climatic zones. The study population included 922 school students (11-18 years of age). Participants in each group were divided into four subgroups based on quartiles of respective urinary fluoride (UF) distribution for comparison of urinary kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and albumin-creatinine ratio (ACR). RESULTS UF levels in participants particularly in CKDu endemic dry zone regions were significantly high compared to the other regions. Significantly high median urinary NGAL (in D-NE) and ACR (in D-EN, and W-NE) levels were observed in subgroups of higher UF quartiles. Albuminuria was not particularly identified in subjects with high UF excretion. Urinary KIM-1 showed no significant variation across the UF quartile subgroups. Linear regression identified weak associations of UF with kidney injury biomarkers. CONCLUSIONS Fluoride exposure is particularly high in CKDu-endemic dry zone communities. As implied by kidney injury biomarkers, a strong link between fluoride exposure and pediatric kidney health was not evident at the observed exposure levels in the study regions.
Collapse
Affiliation(s)
- T D K S C Gunasekara
- Department of Zoology, Faculty of Science, University of Ruhuna, Matara, 81000, Sri Lanka
| | - P Mangala C S De Silva
- Department of Zoology, Faculty of Science, University of Ruhuna, Matara, 81000, Sri Lanka.
| | - E P S Chandana
- Department of Biosystems Technology, Faculty of Technology, University of Ruhuna, Matara, 81000, Sri Lanka
| | - Sudheera Jayasinghe
- Department of Pharmacology, Faculty of Medicine, University of Ruhuna, Galle, 80000, Sri Lanka
| | - Chula Herath
- Department of Nephrology, Sri Jayewardenepura General Hospital, Nugegoda, 10250, Sri Lanka
| | - Sisira Siribaddana
- Department of Medicine, Faculty of Medicine & Allied Sciences, Rajarata University, Saliyapura, 50008, Sri Lanka
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
16
|
Thome T, Vugman NA, Stone LE, Wimberly K, Scali ST, Ryan TE. A tryptophan-derived uremic metabolite/Ahr/Pdk4 axis governs skeletal muscle mitochondrial energetics in chronic kidney disease. JCI Insight 2024; 9:e178372. [PMID: 38652558 PMCID: PMC11141944 DOI: 10.1172/jci.insight.178372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Chronic kidney disease (CKD) causes accumulation of uremic metabolites that negatively affect skeletal muscle. Tryptophan-derived uremic metabolites are agonists of the aryl hydrocarbon receptor (AHR), which has been shown to be activated in CKD. This study investigated the role of the AHR in skeletal muscle pathology of CKD. Compared with controls with normal kidney function, AHR-dependent gene expression (CYP1A1 and CYP1B1) was significantly upregulated in skeletal muscle of patients with CKD, and the magnitude of AHR activation was inversely correlated with mitochondrial respiration. In mice with CKD, muscle mitochondrial oxidative phosphorylation (OXPHOS) was markedly impaired and strongly correlated with the serum level of tryptophan-derived uremic metabolites and AHR activation. Muscle-specific deletion of the AHR substantially improved mitochondrial OXPHOS in male mice with the greatest uremic toxicity (CKD + probenecid) and abolished the relationship between uremic metabolites and OXPHOS. The uremic metabolite/AHR/mitochondrial axis in skeletal muscle was verified using muscle-specific AHR knockdown in C57BL/6J mice harboring a high-affinity AHR allele, as well as ectopic viral expression of constitutively active mutant AHR in mice with normal renal function. Notably, OXPHOS changes in AHRmKO mice were present only when mitochondria were fueled by carbohydrates. Further analyses revealed that AHR activation in mice led to significantly increased pyruvate dehydrogenase kinase 4 (Pdk4) expression and phosphorylation of pyruvate dehydrogenase enzyme. These findings establish a uremic metabolite/AHR/Pdk4 axis in skeletal muscle that governs mitochondrial deficits in carbohydrate oxidation during CKD.
Collapse
Affiliation(s)
- Trace Thome
- Department of Applied Physiology and Kinesiology and
| | | | | | - Keon Wimberly
- Department of Applied Physiology and Kinesiology and
| | - Salvatore T. Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida, USA
- Malcom Randall VA Medical Center, Gainesville, Florida, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology and
- Center for Exercise Science and
- Myology Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
17
|
Kim K, Fazzone B, Cort TA, Kunz EM, Alvarez S, Moerschel J, Palzkill VR, Dong G, Anderson EM, O'Malley KA, Berceli SA, Ryan TE, Scali ST. Mitochondrial targeted catalase improves muscle strength following arteriovenous fistula creation in mice with chronic kidney disease. Sci Rep 2024; 14:8288. [PMID: 38594299 PMCID: PMC11004135 DOI: 10.1038/s41598-024-58805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Hand dysfunction is a common observation after arteriovenous fistula (AVF) creation for hemodialysis access and has a variable clinical phenotype; however, the underlying mechanism responsible is unclear. Grip strength changes are a common metric used to assess AVF-associated hand disability but has previously been found to poorly correlate with the hemodynamic perturbations post-AVF placement implicating other tissue-level factors as drivers of hand outcomes. In this study, we sought to test if expression of a mitochondrial targeted catalase (mCAT) in skeletal muscle could reduce AVF-related limb dysfunction in mice with chronic kidney disease (CKD). Male and female C57BL/6J mice were fed an adenine-supplemented diet to induce CKD prior to placement of an AVF in the iliac vascular bundle. Adeno-associated virus was used to drive expression of either a green fluorescent protein (control) or mCAT using the muscle-specific human skeletal actin (HSA) gene promoter prior to AVF creation. As expected, the muscle-specific AAV-HSA-mCAT treatment did not impact blood urea nitrogen levels (P = 0.72), body weight (P = 0.84), or central hemodynamics including infrarenal aorta and inferior vena cava diameters (P > 0.18) or velocities (P > 0.38). Hindlimb perfusion recovery and muscle capillary densities were also unaffected by AAV-HSA-mCAT treatment. In contrast to muscle mass and myofiber size which were not different between groups, both absolute and specific muscle contractile forces measured via a nerve-mediated in-situ preparation were significantly greater in AAV-HSA-mCAT treated mice (P = 0.0012 and P = 0.0002). Morphological analysis of the post-synaptic neuromuscular junction uncovered greater acetylcholine receptor cluster areas (P = 0.0094) and lower fragmentation (P = 0.0010) in AAV-HSA-mCAT treated mice. Muscle mitochondrial oxidative phosphorylation was not different between groups, but AAV-HSA-mCAT treated mice had lower succinate-fueled mitochondrial hydrogen peroxide emission compared to AAV-HSA-GFP mice (P < 0.001). In summary, muscle-specific scavenging of mitochondrial hydrogen peroxide significantly improves neuromotor function in mice with CKD following AVF creation.
Collapse
Affiliation(s)
- Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Brian Fazzone
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Tomas A Cort
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Eric M Kunz
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Samuel Alvarez
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Jack Moerschel
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Victoria R Palzkill
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Gengfu Dong
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Erik M Anderson
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Kerri A O'Malley
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA.
- Center for Exercise Science, University of Florida, Gainesville, FL, USA.
| | - Salvatore T Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA.
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA.
| |
Collapse
|
18
|
Gollie JM, Ryan AS, Sen S, Patel SS, Kokkinos PF, Harris-Love MO, Scholten JD, Blackman MR. Exercise for patients with chronic kidney disease: from cells to systems to function. Am J Physiol Renal Physiol 2024; 326:F420-F437. [PMID: 38205546 PMCID: PMC11208028 DOI: 10.1152/ajprenal.00302.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic kidney disease (CKD) is among the leading causes of death and disability, affecting an estimated 800 million adults globally. The underlying pathophysiology of CKD is complex creating challenges to its management. Primary risk factors for the development and progression of CKD include diabetes mellitus, hypertension, age, obesity, diet, inflammation, and physical inactivity. The high prevalence of diabetes and hypertension in patients with CKD increases the risk for secondary consequences such as cardiovascular disease and peripheral neuropathy. Moreover, the increased prevalence of obesity and chronic levels of systemic inflammation in CKD have downstream effects on critical cellular functions regulating homeostasis. The combination of these factors results in the deterioration of health and functional capacity in those living with CKD. Exercise offers protective benefits for the maintenance of health and function with age, even in the presence of CKD. Despite accumulating data supporting the implementation of exercise for the promotion of health and function in patients with CKD, a thorough description of the responses and adaptations to exercise at the cellular, system, and whole body levels is currently lacking. Therefore, the purpose of this review is to provide an up-to-date comprehensive review of the effects of exercise training on vascular endothelial progenitor cells at the cellular level; cardiovascular, musculoskeletal, and neural factors at the system level; and physical function, frailty, and fatigability at the whole body level in patients with CKD.
Collapse
Affiliation(s)
- Jared M Gollie
- Research and Development Service, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Department of Health, Human Function, and Rehabilitation Sciences, The George Washington University, Washington, District of Columbia, United States
| | - Alice S Ryan
- Department of Medicine, University of Maryland, Baltimore, Maryland, United States
- Division of Geriatrics and Palliative Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States
| | - Sabyasachi Sen
- Department of Medicine, Washington DC Veterans Affairs, Medical Center, Washington, District of Columbia, United States
- Department of Medicine, The George Washington University, Washington, District of Columbia, United States
| | - Samir S Patel
- Research and Development Service, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Department of Medicine, Washington DC Veterans Affairs, Medical Center, Washington, District of Columbia, United States
- Department of Medicine, The George Washington University, Washington, District of Columbia, United States
| | - Peter F Kokkinos
- Division of Cardiology, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Michael O Harris-Love
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Geriatric Research Education and Clinical Center, Eastern Colorado Veterans Affairs Health Care System, Denver, Colorado, United States
| | - Joel D Scholten
- Physical Medicine and Rehabilitation Service, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
| | - Marc R Blackman
- Research and Development Service, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Department of Medicine, Washington DC Veterans Affairs, Medical Center, Washington, District of Columbia, United States
- Department of Medicine, The George Washington University, Washington, District of Columbia, United States
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
- Department of Rehabilitation Medicine, Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
19
|
Lee AM, Xu Y, Hooper SR, Abraham AG, Hu J, Xiao R, Matheson MB, Brunson C, Rhee EP, Coresh J, Vasan RS, Schrauben S, Kimmel PL, Warady BA, Furth SL, Hartung EA, Denburg MR. Circulating Metabolomic Associations with Neurocognitive Outcomes in Pediatric CKD. Clin J Am Soc Nephrol 2024; 19:13-25. [PMID: 37871960 PMCID: PMC10843217 DOI: 10.2215/cjn.0000000000000318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Children with CKD are at risk for impaired neurocognitive functioning. We investigated metabolomic associations with neurocognition in children with CKD. METHODS We leveraged data from the Chronic Kidney Disease in Children (CKiD) study and the Neurocognitive Assessment and Magnetic Resonance Imaging Analysis of Children and Young Adults with Chronic Kidney Disease (NiCK) study. CKiD is a multi-institutional cohort that enrolled children aged 6 months to 16 years with eGFR 30-90 ml/min per 1.73 m 2 ( n =569). NiCK is a single-center cross-sectional study of participants aged 8-25 years with eGFR<90 ml/min per 1.73 m 2 ( n =60) and matched healthy controls ( n =67). Untargeted metabolomic quantification was performed on plasma (CKiD, 622 metabolites) and serum (NiCK, 825 metabolites) samples. Four neurocognitive domains were assessed: intelligence, attention regulation, working memory, and parent ratings of executive function. Repeat assessments were performed in CKiD at 2-year intervals. Linear regression and linear mixed-effects regression analyses adjusting for age, sex, delivery history, hypertension, proteinuria, CKD duration, and glomerular versus nonglomerular diagnosis were used to identify metabolites associated with neurocognitive z-scores. Analyses were performed with and without adjustment for eGFR. RESULTS There were multiple metabolite associations with neurocognition observed in at least two of the analytic samples (CKiD baseline, CKiD follow-up, and NiCK CKD). Most of these metabolites were significantly elevated in children with CKD compared with healthy controls in NiCK. Notable signals included associations with parental ratings of executive function: phenylacetylglutamine, indoleacetylglutamine, and trimethylamine N-oxide-and with intelligence: γ -glutamyl amino acids and aconitate. CONCLUSIONS Several metabolites were associated with neurocognitive dysfunction in pediatric CKD, implicating gut microbiome-derived substances, mitochondrial dysfunction, and altered energy metabolism, circulating toxins, and redox homeostasis. PODCAST This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/CJASN/2023_11_17_CJN0000000000000318.mp3.
Collapse
Affiliation(s)
- Arthur M. Lee
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yunwen Xu
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Stephen R. Hooper
- Department of Health Sciences, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Alison G. Abraham
- Department of Epidemiology, Colorado University School of Public Health, Aurora, Colorado
| | - Jian Hu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Rui Xiao
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew B. Matheson
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Celina Brunson
- Division of Nephrology, Children's National Hospital, Washington, DC
| | - Eugene P. Rhee
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard School of Medicine, Boston, Massachusetts
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ramachandran S. Vasan
- Boston University School of Medicine, Boston, Massachusetts
- Boston University School of Public Health, Boston, Massachusetts
| | - Sarah Schrauben
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine and Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Bradley A. Warady
- Division of Nephrology, Children's Mercy Kansas City, Kansas City, Missouri
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Susan L. Furth
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, Pennsylvania
| | - Erum A. Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michelle R. Denburg
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Kanazashi Y, Maejima K, Johnson TA, Sasagawa S, Jikuya R, Hasumi H, Matsumoto N, Maekawa S, Obara W, Nakagawa H. Mitochondrial DNA Variants at Low-Level Heteroplasmy and Decreased Copy Numbers in Chronic Kidney Disease (CKD) Tissues with Kidney Cancer. Int J Mol Sci 2023; 24:17212. [PMID: 38139039 PMCID: PMC10743237 DOI: 10.3390/ijms242417212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The human mitochondrial genome (mtDNA) is a circular DNA molecule with a length of 16.6 kb, which contains a total of 37 genes. Somatic mtDNA mutations accumulate with age and environmental exposure, and some types of mtDNA variants may play a role in carcinogenesis. Recent studies observed mtDNA variants not only in kidney tumors but also in adjacent kidney tissues, and mtDNA dysfunction results in kidney injury, including chronic kidney disease (CKD). To investigate whether a relationship exists between heteroplasmic mtDNA variants and kidney function, we performed ultra-deep sequencing (30,000×) based on long-range PCR of DNA from 77 non-tumor kidney tissues of kidney cancer patients with CKD (stages G1 to G5). In total, this analysis detected 697 single-nucleotide variants (SNVs) and 504 indels as heteroplasmic (0.5% ≤ variant allele frequency (VAF) < 95%), and the total number of detected SNVs/indels did not differ between CKD stages. However, the number of deleterious low-level heteroplasmic variants (pathogenic missense, nonsense, frameshift and tRNA) significantly increased with CKD progression (p < 0.01). In addition, mtDNA copy numbers (mtDNA-CNs) decreased with CKD progression (p < 0.001). This study demonstrates that mtDNA damage, which affects mitochondrial genes, may be involved in reductions in mitochondrial mass and associated with CKD progression and kidney dysfunction.
Collapse
Affiliation(s)
- Yuki Kanazashi
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
- Department of Human Genetics, Yokohama City University, Yokohama 236-0004, Japan;
| | - Kazuhiro Maejima
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
| | - Todd A. Johnson
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
| | - Shota Sasagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
| | - Ryosuke Jikuya
- Department of Urology, Yokohama City University, Yokohama 236-0004, Japan; (R.J.); (H.H.)
| | - Hisashi Hasumi
- Department of Urology, Yokohama City University, Yokohama 236-0004, Japan; (R.J.); (H.H.)
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University, Yokohama 236-0004, Japan;
| | - Shigekatsu Maekawa
- Department of Urology, Iwate Medical University, Iwate 028-3694, Japan; (S.M.); (W.O.)
| | - Wataru Obara
- Department of Urology, Iwate Medical University, Iwate 028-3694, Japan; (S.M.); (W.O.)
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
| |
Collapse
|
21
|
Johri N, Vengat M, Kumar D, Nagar P, John D, Dutta S, Mittal P. A comprehensive review on the risks assessment and treatment options for Sarcopenia in people with diabetes. J Diabetes Metab Disord 2023; 22:995-1010. [PMID: 37975099 PMCID: PMC10638272 DOI: 10.1007/s40200-023-01262-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/03/2023] [Indexed: 11/19/2023]
Abstract
Objectives This comprehensive review aims to examine the reciprocal interplay between Type 2 diabetes mellitus (T2DM) and sarcopenia, identify prevailing research gaps, and discuss therapeutic approaches and measures to enhance healthcare practices within hospital settings. Methods A thorough literature review was conducted to gather relevant studies and articles on the relationship between T2DM and sarcopenia. Various databases were searched, including Google Scholar, PubMed, Scopus, and Science Direct databases. The search terms included T2DM, sarcopenia, inflammation, insulin resistance, advanced glycation end products, oxidative stress, muscle dimensions, muscle strength, muscle performance, aging, nutrition, hormone levels, and physical activity. The collected articles were critically analysed to extract key findings and identify gaps in current research. Results The prevalence and incidence of metabolic and musculoskeletal disorders, notably T2DM and sarcopenia, have surged in recent years. T2DM is marked by inflammation, insulin resistance, accumulation of advanced glycation end products, and oxidative stress, while sarcopenia involves a progressive decline in skeletal muscle mass and function. The review underscores the age-related correlation between sarcopenia and adverse outcomes like fractures, falls, and mortality. Research gaps regarding optimal nutritional interventions for individuals with T2DM and sarcopenia are identified, emphasizing the necessity for further investigation in this area. Conclusions The reciprocal interplay between T2DM and sarcopenia holds significant importance. Further research is warranted to address knowledge gaps, particularly in utilizing precise measurement tools during clinical trials. Lifestyle modifications appear beneficial for individuals with T2DM and sarcopenia. Additionally, practical nutritional interventions require investigation to optimize healthcare practices in hospital settings. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01262-w.
Collapse
Affiliation(s)
- Nishant Johri
- Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh India
| | | | - Deepanshu Kumar
- Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh India
| | - Priya Nagar
- Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh India
| | - Davis John
- Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh India
| | - Shubham Dutta
- Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh India
| | - Piyush Mittal
- Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh India
| |
Collapse
|
22
|
Li L, Shen Y, Tang Z, Yang Y, Fu Z, Ni D, Cai X. Engineered nanodrug targeting oxidative stress for treatment of acute kidney injury. EXPLORATION (BEIJING, CHINA) 2023; 3:20220148. [PMID: 38264689 PMCID: PMC10742205 DOI: 10.1002/exp.20220148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 04/23/2023] [Indexed: 01/25/2024]
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid decline in renal function, and is associated with a high risk of death. Many pathological changes happen in the process of AKI, including crucial alterations to oxidative stress levels. Numerous efforts have thus been made to develop effective medicines to scavenge excess reactive oxygen species (ROS). However, researchers have encountered several significant challenges, including unspecific biodistribution, high biotoxicity, and in vivo instability. To address these problems, engineered nanoparticles have been developed to target oxidative stress and treat AKI. This review thoroughly discusses the methods that empower nanodrugs to specifically target the glomerular filtration barrier and presents the latest achievements in engineering novel ROS-scavenging nanodrugs in clustered sections. The analysis of each study's breakthroughs and imperfections visualizes the progress made in developing effective nanodrugs with specific biodistribution and oxidative stress-targeting capabilities. This review fills the blank of a comprehensive outline over current progress in applying nanotechnology to treat AKI, providing potential insights for further research.
Collapse
Affiliation(s)
- Liwen Li
- Department of Ultrasound in MedicineShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiPeople's Republic of China
| | - Yining Shen
- Department of Ultrasound in MedicineShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiPeople's Republic of China
| | - Zhongmin Tang
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonWisconsinUSA
| | - Yuwen Yang
- Department of Ultrasound in MedicineShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiPeople's Republic of China
| | - Zi Fu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Dalong Ni
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Xiaojun Cai
- Department of Ultrasound in MedicineShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiPeople's Republic of China
| |
Collapse
|
23
|
Tewari SR, Kirk GD, Arking DE, Astemborski J, Newcomb C, Piggott DA, Mehta S, Lucas GM, Sun J. Mitochondrial DNA copy number is associated with incident chronic kidney disease and proteinuria in the AIDS linked to the intravenous experience cohort. Sci Rep 2023; 13:18406. [PMID: 37891237 PMCID: PMC10611749 DOI: 10.1038/s41598-023-45404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
We evaluated the prospective association of mitochondrial DNA copy number (mtDNA CN) with markers of kidney function among a cohort of persons who inject drugs (PWID). This is a Prospective cohort study nested in the AIDS linked to the intravenous experience cohort (community-based cohort of PWID in Baltimore, MD). mtDNA CN was measured at two time-points 5 years apart using a real-time polymerase chain reaction. Kidney function (estimated glomerular filtration rate [eGFR], serum creatinine, urine protein) was measured annually. We used linear mixed effects models to evaluate kidney function trajectories (N = 946) and Cox regression models to assess hazard of incident CKD (eGFR < 60 at two consecutive visits, N = 739) and proteinuria (urine protein:creatinine ratio > 200, N = 573) by level of mtDNA CN (Low [lowest quartile], vs high [other three quartiles]. Models were adjusted for demographic and behavioral characteristics, HIV and/or HCV infection, and comorbidity burden. Low mtDNA CN was independently associated with higher hazard of incident CKD (aHR: 2.33, 95% CI 1.42, 3.80) and proteinuria (aHR: 1.42, 95% CI 1.04, 1.96). Participants with low mtDNA CN had greater declines in eGFR and greater increases in serum creatinine over time. Low mtDNA CN is associated with more rapid kidney function decline and risk of incident CKD and proteinuria.
Collapse
Affiliation(s)
- Sakshi R Tewari
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Gregory D Kirk
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dan E Arking
- Department of Genetic Medicine, McKusick-Nathan Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquie Astemborski
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Charles Newcomb
- Department of Genetic Medicine, McKusick-Nathan Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Damani A Piggott
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Shruti Mehta
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Gregory M Lucas
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jing Sun
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA.
| |
Collapse
|
24
|
Kassianides X, Bhandari S. Patient reported outcome measures and cardiovascular outcomes following high dose modern intravenous iron in non-dialysis dependent chronic kidney disease: secondary analysis of ExplorIRON-CKD. Sci Rep 2023; 13:18401. [PMID: 37884522 PMCID: PMC10603042 DOI: 10.1038/s41598-023-44578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Intravenous iron is commonly used to treat iron deficiency anemia in non-dialysis chronic kidney disease (ND-CKD). There is a paucity of information on the potential impact of intravenous iron on patient reported outcome measures, functional status and markers of cardiovascular health. As part of the secondary analysis of this double-blind exploratory randomized controlled trial focusing on patients with iron deficiency (+ /- anemia) and ND-CKD (serum ferritin < 200 µg/L or transferrin saturation ≤ 20% and serum ferritin 200-299 µg/L; CKD stages: 3a-5), 26 patients were randomized in a 1:1 ratio to receive ferric derisomaltose or ferric carboxymaltose. Participants received 1000 mg at baseline and 500-1000 mg at one month to achieve iron repletion. Quality of life and fatigue status were assessed using the Short-Form (36) questionnaire and the fatigue severity scale. Functional status was evaluated using the Duke Activity Status Index and the 1-min-sit-to-stand test. Cardiac markers such as NT-proBNP, Troponin T and pulse wave velocity were monitored. Intravenous iron was associated with similar improvements in most domains of the Short-Form (36) questionnaire, fatigue status, and 1-min-sit-to-stand ability increased significantly by the end of the trial in both groups (p < 0.001). Markers of cardiac function remained stable, with no arterial stiffness impact. Longer term studies are required to further evaluate the impact of intravenous iron on quality of life and cardiac safety in patients with ND-CKD.
Collapse
Affiliation(s)
- Xenophon Kassianides
- Academic Renal Research Department, Hull University Teaching Hospitals NHS Trust and the Hull York Medical School, Kingston upon Hull, UK.
| | - Sunil Bhandari
- Academic Renal Research Department, Hull University Teaching Hospitals NHS Trust and the Hull York Medical School, Kingston upon Hull, UK
| |
Collapse
|
25
|
Kim K, Cort TA, Kunz EM, Moerschel J, Palzkill VR, Dong G, Moparthy CN, Anderson EM, Fazzone B, O'Malley KA, Robinson ST, Berceli SA, Ryan TE, Scali ST. N-acetylcysteine treatment attenuates hemodialysis access-related limb pathophysiology in mice with chronic kidney disease. Am J Physiol Renal Physiol 2023; 325:F271-F282. [PMID: 37439200 PMCID: PMC10511162 DOI: 10.1152/ajprenal.00083.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
The objective of the present study was to determine if treatment with N-acetylcysteine (NAC) could reduce access-related limb dysfunction in mice. Male and female C57BL6J mice were fed an adenine-supplemented diet to induce chronic kidney disease (CKD) prior to the surgical creation of an arteriovenous fistula (AVF) in the iliac vascular bundle. AVF creation significantly increased peak aortic and infrarenal vena cava blood flow velocities, but NAC treatment had no significant impact, indicating that fistula maturation was not impacted by NAC treatment. Hindlimb muscle and paw perfusion recovery and muscle capillary density in the AVF limb were unaffected by NAC treatment. However, NAC treatment significantly increased the mass of the tibialis anterior (P = 0.0120) and soleus (P = 0.0452) muscles post-AVF. There was a significant main effect of NAC treatment on hindlimb grip strength at postoperative day 12 (POD 12) (P = 0.0003), driven by significantly higher grip strength in both male (P = 0.0273) and female (P = 0.0031) mice treated with NAC. There was also a significant main effect of NAC treatment on the walking speed at postoperative day 12 (P = 0.0447), and post hoc testing revealed an improvement in NAC-treated male mice (P = 0.0091). The area of postsynaptic acetylcholine receptors (P = 0.0263) and motor endplates (P = 0.0240) was also increased by NAC treatment. Interestingly, hindlimb skeletal muscle mitochondrial oxidative phosphorylation trended higher in NAC-treated female mice but was not statistically significant (P = 0.0973). Muscle glutathione levels and redox status were not significantly impacted by NAC treatment in either sex. In summary, NAC treatment attenuated some aspects of neuromotor pathology in mice with chronic kidney disease following AVF creation.NEW & NOTEWORTHY Hemodialysis via autogenous arteriovenous fistula (AVF) is the preferred first-line modality for renal replacement therapy in patients with end-stage kidney disease. However, patients undergoing AVF surgery frequently experience a spectrum of hand disability symptoms postsurgery including weakness and neuromotor dysfunction. Unfortunately, no treatment is currently available to prevent or mitigate these symptoms. Here, we provide evidence that daily N-acetylcysteine supplementation can attenuate some aspects of limb neuromotor function in a preclinical mouse model of AVF.
Collapse
Affiliation(s)
- Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Tomas A Cort
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Eric M Kunz
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Jack Moerschel
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Victoria R Palzkill
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Gengfu Dong
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Chatick N Moparthy
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Erik M Anderson
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida, United States
- Malcom Randall Veteran Affairs Medical Center, University of Florida, Gainesville, Florida, United States
| | - Brian Fazzone
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida, United States
- Malcom Randall Veteran Affairs Medical Center, University of Florida, Gainesville, Florida, United States
| | - Kerri A O'Malley
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida, United States
- Malcom Randall Veteran Affairs Medical Center, University of Florida, Gainesville, Florida, United States
| | - Scott T Robinson
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida, United States
- Malcom Randall Veteran Affairs Medical Center, University of Florida, Gainesville, Florida, United States
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida, United States
- Malcom Randall Veteran Affairs Medical Center, University of Florida, Gainesville, Florida, United States
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
- Center for Exercise Science, University of Florida, Gainesville, Florida, United States
| | - Salvatore T Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida, United States
- Malcom Randall Veteran Affairs Medical Center, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
26
|
Liu Y, Pan Y, Tian Z, Wang J, Chen F, Geng Z, Li Q, Liu Z, Zhou X, Zhou K. Association of mitochondrial DNA copy number with chronic kidney disease in older adults. BMC Geriatr 2023; 23:514. [PMID: 37620817 PMCID: PMC10463711 DOI: 10.1186/s12877-023-04203-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction in kidney cells has been implicated in the pathogenesis of chronic kidney disease (CKD). Estimation of mitochondrial DNA copy number (mtDNA-CN) is considered a convenient method for representing mitochondrial function in large samples. However, no study has investigated the association between mtDNA-CN and CKD in older adults with the highest prevalence. The objective is to examine cross-sectional and prospective associations between mtDNA-CN values and CKD risk in older adults to determine whether mtDNA-CN represents a novel potential biomarker for the recognition of CKD risk. PATIENTS AND METHODS In a Chinese community-based cohort of over 65-year-olds, we included 14,467 participants (52.6% females). CKD was defined by eGFR < 60 mL/min/1.73 m2 or ICD-10 codes (patients = 3831 (26.5%)). Participants had peripheral blood levels of mtDNA-CN calculated from probe intensities of the Axiom CAS Array. RESULTS The risk of CKD prevalence decreased with mtDNA-CN per 1-SD increment, independent of established risk factors for older CKD (odds ratio [OR] per SD 0.90, 95% confidence interval [CI] 0.86, 0.93, P < 0.001), and has comparable strength of association with these established risk factors. Furthermore, the progression of kidney function was stratified according to the worsening of eGFR categories. The risk of kidney function progression to a more severe stage gradually decreased as the mtDNA-CN increased (P trend < 0.001). Non-CKD participants in the highest quartile of mtDNA-CN had a lower risk of developing CKD compared to the lowest quartile within 2 years of follow-up, reducing the risk of CKD by 36% (95% CI 0.42, 0.97; P = 0.037). CONCLUSIONS Based on the analysis of the largest sample to date investigating the association between mtDNA-CN and CKD in older adults, higher levels of mtDNA-CN were found to be associated with a lower risk of CKD, suggesting that a reduced level of mtDNA-CN is a potential risk factor for CKD.
Collapse
Affiliation(s)
- Yang Liu
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ying Pan
- Department of Endocrinology, Kunshan Hospital Affiliated to Jiangsu University, 215300, Suzhou, China
| | - Zijian Tian
- Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jing Wang
- Science for Life Laboratory, Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, 58183, Sweden
| | - Fei Chen
- Department of Endocrinology, Friendship Hospital, Beijing, 100029, China
| | - Zhaoxu Geng
- Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qian Li
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ziqing Liu
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaozhou Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kaixin Zhou
- Guangzhou Laboratory, 510000, Guangzhou, China.
| |
Collapse
|
27
|
Greenwood SA, Oliveira BA, Asgari E, Ayis S, Baker LA, Beckley-Hoelscher N, Goubar A, Banerjee D, Bhandari S, Chilcot J, Burton JO, Kalra PA, Lightfoot CJ, Macdougall IC, McCafferty K, Mercer TH, Okonko DO, Reid C, Reid F, Smith AC, Swift PA, Mangelis A, Watson E, Wheeler DC, Wilkinson TJ, Bramham K. A Randomized Trial of Intravenous Iron Supplementation and Exercise on Exercise Capacity in Iron-Deficient Nonanemic Patients With CKD. Kidney Int Rep 2023; 8:1496-1505. [PMID: 37547514 PMCID: PMC10403653 DOI: 10.1016/j.ekir.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Patients with chronic kidney disease (CKD) are often iron deficient, even when not anemic. This trial evaluated whether iron supplementation enhances exercise capacity of nonanemic patients with CKD who have iron-deficiency. Methods Prospective, multicenter double-blind randomized controlled trial of nondialysis patients with CKD and iron-deficiency but without anemia (Hemoglobin [Hb] >110 g/l). Patients were assigned 1:1 to intravenous (IV) iron therapy, or placebo. An 8-week exercise program commenced at week 4. The primary outcome was the mean between-group difference in 6-minute walk test (6MWT) at 4 weeks. Secondary outcomes included 6MWT at 12 weeks, transferrin saturation (TSAT), serum ferritin (SF), Hb, renal function, muscle strength, functional capacity, quality of life, and adverse events at baseline, 4 weeks, and at 12 weeks. Mean between-group differences were analyzed using analysis of covariance models. Results Among 75 randomized patients, mean (SD) age for iron therapy (n = 37) versus placebo (n = 38) was 54 (16) versus 61 (12) years; estimated glomerular filtration rate (eGFR) (34 [12] vs. 35 [11] ml/min per 1.73 m2], TSAT (23 [12] vs. 21 [6])%; SF (57 [64] vs. 62 [33]) μg/l; Hb (122.4 [9.2] vs. 127 [13.2] g/l); 6MWT (384 [95] vs. 469 [142] meters) at baseline, respectively. No significant mean between-group difference was observed in 6MWT distance at 4 weeks. There were significant increases in SF and TSAT at 4 and 12 weeks (P < 0.02), and Hb at 12 weeks (P = 0.009). There were no between-group differences in other secondary outcomes and no adverse events attributable to iron therapy. Conclusion This trial did not demonstrate beneficial effects of IV iron therapy on exercise capacity at 4 weeks. A larger study is needed to confirm if IV iron is beneficial in nondialysis patients with CKD who are iron-deficient.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Philip A. Kalra
- Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Courtney J. Lightfoot
- University of Leicester, Leicester, UK
- National Institute of Health Research Leicester Biomedical Research Center, Leicester, UK
| | - Iain C. Macdougall
- King’s College Hospital NHS Trust, London, UK
- King’s College London, London, UK
| | | | | | | | - Chante Reid
- King’s College Hospital NHS Trust, London, UK
| | | | - Alice C. Smith
- University of Leicester, Leicester, UK
- National Institute of Health Research Leicester Biomedical Research Center, Leicester, UK
| | | | | | | | | | - Thomas J. Wilkinson
- University of Leicester, Leicester, UK
- National Institute of Health Research, Applied Research Collaboration East Midlands, Leicester, UK
| | - Kate Bramham
- King’s College Hospital NHS Trust, London, UK
- King’s College London, London, UK
| |
Collapse
|
28
|
Balestrieri N, Palzkill V, Pass C, Tan J, Salyers ZR, Moparthy C, Murillo A, Kim K, Thome T, Yang Q, O’Malley KA, Berceli SA, Yue F, Scali ST, Ferreira LF, Ryan TE. Activation of the Aryl Hydrocarbon Receptor in Muscle Exacerbates Ischemic Pathology in Chronic Kidney Disease. Circ Res 2023; 133:158-176. [PMID: 37325935 PMCID: PMC10330629 DOI: 10.1161/circresaha.123.322875] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) accelerates the development of atherosclerosis, decreases muscle function, and increases the risk of amputation or death in patients with peripheral artery disease (PAD). However, the mechanisms underlying this pathobiology are ill-defined. Recent work has indicated that tryptophan-derived uremic solutes, which are ligands for AHR (aryl hydrocarbon receptor), are associated with limb amputation in PAD. Herein, we examined the role of AHR activation in the myopathy of PAD and CKD. METHODS AHR-related gene expression was evaluated in skeletal muscle obtained from mice and human PAD patients with and without CKD. AHRmKO (skeletal muscle-specific AHR knockout) mice with and without CKD were subjected to femoral artery ligation, and a battery of assessments were performed to evaluate vascular, muscle, and mitochondrial health. Single-nuclei RNA sequencing was performed to explore intercellular communication. Expression of the constitutively active AHR was used to isolate the role of AHR in mice without CKD. RESULTS PAD patients and mice with CKD displayed significantly higher mRNA expression of classical AHR-dependent genes (Cyp1a1, Cyp1b1, and Aldh3a1) when compared with either muscle from the PAD condition with normal renal function (P<0.05 for all 3 genes) or nonischemic controls. AHRmKO significantly improved limb perfusion recovery and arteriogenesis, preserved vasculogenic paracrine signaling from myofibers, increased muscle mass and strength, as well as enhanced mitochondrial function in an experimental model of PAD/CKD. Moreover, viral-mediated skeletal muscle-specific expression of a constitutively active AHR in mice with normal kidney function exacerbated the ischemic myopathy evidenced by smaller muscle masses, reduced contractile function, histopathology, altered vasculogenic signaling, and lower mitochondrial respiratory function. CONCLUSIONS These findings establish AHR activation in muscle as a pivotal regulator of the ischemic limb pathology in CKD. Further, the totality of the results provides support for testing of clinical interventions that diminish AHR signaling in these conditions.
Collapse
Affiliation(s)
- Nicholas Balestrieri
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Victoria Palzkill
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Caroline Pass
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Jianna Tan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Zachary R. Salyers
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Chatick Moparthy
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Ania Murillo
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Trace Thome
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Qingping Yang
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Kerri A. O’Malley
- Department of Surgery, The University of Florida, Gainesville, FL, USA
| | - Scott A. Berceli
- Department of Surgery, The University of Florida, Gainesville, FL, USA
| | - Feng Yue
- Department of Animal Sciences, The University of Florida, Gainesville, FL, USA
- Myology Institute, The University of Florida, Gainesville, FL, USA
| | | | - Leonardo F. Ferreira
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- Myology Institute, The University of Florida, Gainesville, FL, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- Myology Institute, The University of Florida, Gainesville, FL, USA
| |
Collapse
|
29
|
Qu L, Jiao B. The Interplay between Immune and Metabolic Pathways in Kidney Disease. Cells 2023; 12:1584. [PMID: 37371054 PMCID: PMC10296595 DOI: 10.3390/cells12121584] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Kidney disease is a significant health problem worldwide, affecting an estimated 10% of the global population. Kidney disease encompasses a diverse group of disorders that vary in their underlying pathophysiology, clinical presentation, and outcomes. These disorders include acute kidney injury (AKI), chronic kidney disease (CKD), glomerulonephritis, nephrotic syndrome, polycystic kidney disease, diabetic kidney disease, and many others. Despite their distinct etiologies, these disorders share a common feature of immune system dysregulation and metabolic disturbances. The immune system and metabolic pathways are intimately connected and interact to modulate the pathogenesis of kidney diseases. The dysregulation of immune responses in kidney diseases includes a complex interplay between various immune cell types, including resident and infiltrating immune cells, cytokines, chemokines, and complement factors. These immune factors can trigger and perpetuate kidney inflammation, causing renal tissue injury and progressive fibrosis. In addition, metabolic pathways play critical roles in the pathogenesis of kidney diseases, including glucose and lipid metabolism, oxidative stress, mitochondrial dysfunction, and altered nutrient sensing. Dysregulation of these metabolic pathways contributes to the progression of kidney disease by inducing renal tubular injury, apoptosis, and fibrosis. Recent studies have provided insights into the intricate interplay between immune and metabolic pathways in kidney diseases, revealing novel therapeutic targets for the prevention and treatment of kidney diseases. Potential therapeutic strategies include modulating immune responses through targeting key immune factors or inhibiting pro-inflammatory signaling pathways, improving mitochondrial function, and targeting nutrient-sensing pathways, such as mTOR, AMPK, and SIRT1. This review highlights the importance of the interplay between immune and metabolic pathways in kidney diseases and the potential therapeutic implications of targeting these pathways.
Collapse
Affiliation(s)
- Lili Qu
- Division of Nephrology, Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| | - Baihai Jiao
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| |
Collapse
|
30
|
Kayhan M, Vouillamoz J, Rodriguez DG, Bugarski M, Mitamura Y, Gschwend J, Schneider C, Hall A, Legouis D, Akdis CA, Peter L, Rehrauer H, Gewin L, Wenger RH, Khodo SN. Intrinsic TGF-β signaling attenuates proximal tubule mitochondrial injury and inflammation in chronic kidney disease. Nat Commun 2023; 14:3236. [PMID: 37270534 PMCID: PMC10239443 DOI: 10.1038/s41467-023-39050-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
Excessive TGF-β signaling and mitochondrial dysfunction fuel chronic kidney disease (CKD) progression. However, inhibiting TGF-β failed to impede CKD in humans. The proximal tubule (PT), the most vulnerable renal segment, is packed with giant mitochondria and injured PT is pivotal in CKD progression. How TGF-β signaling affects PT mitochondria in CKD remained unknown. Here, we combine spatial transcriptomics and bulk RNAseq with biochemical analyses to depict the role of TGF-β signaling on PT mitochondrial homeostasis and tubulo-interstitial interactions in CKD. Male mice carrying specific deletion of Tgfbr2 in the PT have increased mitochondrial injury and exacerbated Th1 immune response in the aristolochic acid model of CKD, partly, through impaired complex I expression and mitochondrial quality control associated with a metabolic rewiring toward aerobic glycolysis in the PT cells. Injured S3T2 PT cells are identified as the main mediators of the maladaptive macrophage/dendritic cell activation in the absence of Tgfbr2. snRNAseq database analyses confirm decreased TGF-β receptors and a metabolic deregulation in the PT of CKD patients. This study describes the role of TGF-β signaling in PT mitochondrial homeostasis and inflammation in CKD, suggesting potential therapeutic targets that might be used to mitigate CKD progression.
Collapse
Affiliation(s)
- Merve Kayhan
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | | | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Zurich, Switzerland
| | - Julia Gschwend
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Andrew Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - David Legouis
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, Hospital and University of Geneva, Geneva, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Zurich, Switzerland
| | - Leary Peter
- Functional Genomics Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Leslie Gewin
- Department of Internal Medicine, Division of Nephrology, Washington University, St. Louis, USA
- Department of Medicine, St. Louis Veterans Affairs, St. Louis, USA
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
31
|
Prem PN, Chellappan DR, Kurian GA. Impaired renal ischemia reperfusion recovery after bilateral renal artery ligation in rats treated with adenine: role of renal mitochondria. J Bioenerg Biomembr 2023; 55:219-232. [PMID: 37392294 DOI: 10.1007/s10863-023-09974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Vascular calcification (VC) and ischemia reperfusion (IR) injury is characterised to have mitochondrial dysfunction. However, the impact of dysfunctional mitochondria associated with vascular calcified rat kidney challenged to IR is not explored and is addressed in the present study. Male Wistar rats were treated with adenine for 20 days to induce chronic kidney dysfunction and VC. After 63 days, renal IR protocol was performed with subsequent recovery for 24 h and 7 days. Various mitochondrial parameters and biochemical assays were performed to assess kidney function, IR injury and its recovery. Adenine-induced rats with VC, decreased creatinine clearance (CrCl), and severe tissue injury demonstrated an increase in renal tissue damage and decreased CrCl after 24 h of IR (CrCl in ml: IR-0.220.02, VC-IR-0.050.01). Incidentally, the 24 h IR pathology in kidney was similar in both VC-IR and normal rat IR. But, the magnitude of dysfunction was higher with VC-IR due to pre-existing basal tissue alterations. We found severed deterioration in mitochondrial quantity and quality supported by low bioenergetic function in both VC basal tissue and IR challenged sample. However, post 7 days of IR, unlike normal rat IR, VC rat IR did not improve CrCl and corresponding mitochondrial damage in terms of quantity and its function were observed. Based on the above findings, we conclude that IR in VC rat adversely affect the post-surgical recovery, mainly due to the ineffective renal mitochondrial functional restoration from the surgery.
Collapse
Affiliation(s)
- Priyanka N Prem
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - David Raj Chellappan
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - Gino A Kurian
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India.
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
32
|
Balestrieri N, Palzkill V, Pass C, Tan J, Salyers ZR, Moparthy C, Murillo A, Kim K, Thome T, Yang Q, O'Malley KA, Berceli SA, Yue F, Scali ST, Ferreira LF, Ryan TE. Chronic activation of the aryl hydrocarbon receptor in muscle exacerbates ischemic pathology in chronic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541060. [PMID: 37292677 PMCID: PMC10245783 DOI: 10.1101/2023.05.16.541060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic kidney disease (CKD) accelerates the development of atherosclerosis, decreases muscle function, and increases the risk of amputation or death in patients with peripheral artery disease (PAD). However, the cellular and physiological mechanisms underlying this pathobiology are ill-defined. Recent work has indicated that tryptophan-derived uremic toxins, many of which are ligands for the aryl hydrocarbon receptor (AHR), are associated with adverse limb outcomes in PAD. We hypothesized that chronic AHR activation, driven by the accumulation of tryptophan-derived uremic metabolites, may mediate the myopathic condition in the presence of CKD and PAD. Both PAD patients with CKD and mice with CKD subjected to femoral artery ligation (FAL) displayed significantly higher mRNA expression of classical AHR-dependent genes ( Cyp1a1 , Cyp1b1 , and Aldh3a1 ) when compared to either muscle from the PAD condition with normal renal function ( P <0.05 for all three genes) or non-ischemic controls. Skeletal-muscle-specific AHR deletion in mice (AHR mKO ) significantly improved limb muscle perfusion recovery and arteriogenesis, preserved vasculogenic paracrine signaling from myofibers, increased muscle mass and contractile function, as well as enhanced mitochondrial oxidative phosphorylation and respiratory capacity in an experimental model of PAD/CKD. Moreover, viral-mediated skeletal muscle-specific expression of a constitutively active AHR in mice with normal kidney function exacerbated the ischemic myopathy evidenced by smaller muscle masses, reduced contractile function, histopathology, altered vasculogenic signaling, and lower mitochondrial respiratory function. These findings establish chronic AHR activation in muscle as a pivotal regulator of the ischemic limb pathology in PAD. Further, the totality of the results provide support for testing of clinical interventions that diminish AHR signaling in these conditions.
Collapse
|
33
|
Hobson S, Arefin S, Witasp A, Hernandez L, Kublickiene K, Shiels PG, Stenvinkel P. Accelerated Vascular Aging in Chronic Kidney Disease: The Potential for Novel Therapies. Circ Res 2023; 132:950-969. [PMID: 37053277 DOI: 10.1161/circresaha.122.321751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The pathophysiology of vascular disease is linked to accelerated biological aging and a combination of genetic, lifestyle, biological, and environmental risk factors. Within the scenario of uncontrolled artery wall aging processes, CKD (chronic kidney disease) stands out as a valid model for detailed structural, functional, and molecular studies of this process. The cardiorenal syndrome relates to the detrimental bidirectional interplay between the kidney and the cardiovascular system. In addition to established risk factors, this group of patients is subjected to a plethora of other emerging vascular risk factors, such as inflammation, oxidative stress, mitochondrial dysfunction, vitamin K deficiency, cellular senescence, somatic mutations, epigenetic modifications, and increased apoptosis. A better understanding of the molecular mechanisms through which the uremic milieu triggers and maintains early vascular aging processes, has provided important new clues on inflammatory pathways and emerging risk factors alike, and to the altered behavior of cells in the arterial wall. Advances in the understanding of the biology of uremic early vascular aging opens avenues to novel pharmacological and nutritional therapeutic interventions. Such strategies hold promise to improve future prevention and treatment of early vascular aging not only in CKD but also in the elderly general population.
Collapse
Affiliation(s)
- S Hobson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - S Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - A Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - L Hernandez
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - K Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - P G Shiels
- School of Molecular Biosciences, MVLS, University of Glasgow, United Kingdom (P.G.S.)
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| |
Collapse
|
34
|
Abstract
Muscle wasting (ie, atrophy) is a serious consequence of chronic kidney disease (CKD) that reduces muscle strength and function. It reduces the quality of life for CKD patients and increases the risks of comorbidities and mortality. Current treatment strategies to prevent or reverse skeletal muscle loss are limited owing to the broad and systemic nature of the initiating signals and the multifaceted catabolic mechanisms that accelerate muscle protein degradation and impair protein synthesis and repair pathways. Recent evidence has shown how organs such as muscle, adipose, and kidney communicate with each other through interorgan exchange of proteins and RNAs during CKD. This crosstalk changes cell functions in the recipient organs and represents an added dimension in the complex processes that are responsible for muscle atrophy in CKD. This complexity creates challenges for the development of effective therapies to ameliorate muscle wasting and weakness in patients with CKD.
Collapse
Affiliation(s)
- Xiaonan H Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, GA
| | - S Russ Price
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC; Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC.
| |
Collapse
|
35
|
Aleuy OA, Gassó D, Tvarijonaviciute A, Risco D, Garcia W, Gonçalves P, Fernández-Llario P, Mentaberre G, Velarde R, Serrano E, Cuenca R. Tissue-specific assessment of oxidative status: Wild boar as a case study. Front Vet Sci 2023; 10:1089922. [PMID: 36950542 PMCID: PMC10025543 DOI: 10.3389/fvets.2023.1089922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
In recent decades, there has been a fast-growing interest in using biomarkers of oxidative stress (BOS) in conservation programs of many vertebrate species. Biomarkers of oxidative stress can be measured in different biological samples (e.g., body fluids and tissues). However, since comparisons of the same battery of BOS among tissues of the same individual are scarce in the literature, the chosen target tissues regularly rely on arbitrary decisions. Our research aimed to determine if the oxidative status of free-ranging wild boar (Sus scrofa) naturally infected with Mycobacterium spp (etiological agent of tuberculosis, TB), varies depending on the sample where it was quantified. We compared antioxidant p-nitrophenyl esterase activity (EA), glutathione peroxidase (GPX) concentrations, and total oxidative status (TOS) in serum, lung, spleen, kidney, and muscle of 63 wild boar hunter-harvested in central Spain. Biomarkers of oxidative stress in serum had higher concentrations than in other tissues. The poor agreement between serum and other tissues highlights the importance of running complete BOS assessments in the same fluid or tissue. Further, low concentrations of BOS in tissues of TB-affected individuals were observed, and significant differences between healthy and sick boar were only detected in the serum of individuals developing mild TB and in the muscle of individuals with mild or severe disease status. However, all organs from wild boars affected with mild TB were not in oxidative imbalance compared to healthy control animals, suggesting that wild boars may cope well with TB. Our data indicate that serum and other tissues can be used as BOS in field conservation programs to monitor wildlife population health. Still, context-specific validations are needed to determine the most appropriate samples to use.
Collapse
Affiliation(s)
- O. Alejandro Aleuy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Diana Gassó
- Wildlife Ecology and Health Group (WE&H), Departament de Ciència Animal, Escola Tècnica Superior d'Enginyeria Agrària (ETSEA), Universitat de Lleida (UdL), Lleida, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - David Risco
- Innovación en Gestión y Conservación de Ungulados S.L., Cáceres, Spain
- Departamento de Medicina Animal, Faculta de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Waldo Garcia
- Innovación en Gestión y Conservación de Ungulados S.L., Cáceres, Spain
| | - Pilar Gonçalves
- Innovación en Gestión y Conservación de Ungulados S.L., Cáceres, Spain
| | | | - Gregorio Mentaberre
- Wildlife Ecology and Health Group (WE&H), Departament de Ciència Animal, Escola Tècnica Superior d'Enginyeria Agrària (ETSEA), Universitat de Lleida (UdL), Lleida, Spain
| | - Roser Velarde
- Wildlife Health and Ecology Group (WE&H), Servei d' Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Emmanuel Serrano
- Wildlife Health and Ecology Group (WE&H), Servei d' Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- *Correspondence: Emmanuel Serrano
| | - Rafaela Cuenca
- Wildlife Health and Ecology Group (WE&H), Servei d' Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- Servei d'Hematologia Clínica Veterinaria (SHCV) – Veterinary Clinical Hematology Service, Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| |
Collapse
|
36
|
Serum Metabolites Characterization Produced by Cats CKD Affected, at the 1 and 2 Stages, before and after Renal Diet. Metabolites 2022; 13:metabo13010043. [PMID: 36676969 PMCID: PMC9863800 DOI: 10.3390/metabo13010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Utilizing metabolomics, a tool for measuring and characterizing low-molecular-weight substances (LMWs), to identify eventual changes in response to dietary intervention is novel in cats with chronic kidney disease (CKD), a condition characterized by retention of uremic solutes. This study aims to assess the serum metabolomic profile of cats in early stages of CKD and to compare the serum metabolomic of CKD cats after 60 days of a renal diet to evaluate the effect of dietary intervention on these metabolites. Twenty-five domestic cats were included in the study. Fifteen cats with CKD stages 1 (n = 6) and 2 (n = 9) according to the International Renal Interest Society (IRIS) were included in the renal groups, and a control group consisting of 10 cats was included. All animals were enrolled on a maintenance diet for 30 days before the experimental period. The metabolomics analysis was performed by gas chromatography-mass spectrometry (GC-MS). Partial least squares discriminant analysis (PLS-DA) was performed on Metaboanalyst 4.0 software. Forty-three metabolites were identified. Citric acid and monostearin were altered in the CKD2 group when compared to CKD1 and the control group at T0. A total of seven serum metabolites differed after 60 days of the renal diet: glycine, fructose, glutamic acid, arachidonic acid, stearic acid, creatinine, and urea. Changes were seen in the serum metabolomic profile after 60 days of the renal diet, and some of the metabolites that changed in response to the diet have beneficial effects on health. Overall, metabolomics markers have the potential to identify early stages of CKD, providing insights into the possible pathophysiologic processes that contribute to the development and progression of CKD.
Collapse
|
37
|
Serrano E, Whitaker-Menezes D, Lin Z, Roche M, Martinez Cantarin MP. Uremic Myopathy and Mitochondrial Dysfunction in Kidney Disease. Int J Mol Sci 2022; 23:ijms232113515. [PMID: 36362298 PMCID: PMC9653774 DOI: 10.3390/ijms232113515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Alterations in muscle structure and function in chronic kidney disease (CKD) patients are associated with poor outcomes. As key organelles in muscle cell homeostasis, mitochondrial metabolism has been studied in the context of muscle dysfunction in CKD. We conducted a study to determine the contribution of oxidative metabolism, glycolysis and fatty acid oxidation to the muscle metabolism in CKD. Mice developed CKD by exposure to adenine in the diet. Muscle of CKD mice showed significant weight loss compared to non-CKD mice, but only extensor digitorum longus (EDL) muscle showed a decreased number of fibers. There was no difference in the proportion of the various muscle fibers in CKD and non-CKD mice. Muscle of CKD mice had decreased expression of proteins associated with oxidative phosphorylation but increased expression of enzymes and transporters associated with glycolysis. In cell culture, myotubes exposed to uremic serum demonstrated decreased oxygen consumption rates (OCR) when glucose was used as substrate, conserved OCR when fatty acids were used and increased lactate production. In conclusion, mice with adenine-induced CKD developed sarcopenia and with increased glycolytic metabolism but without gross changes in fiber structure. In vitro models of uremic myopathy suggest fatty acid utilization is preserved compared to decreased glucose utilization.
Collapse
Affiliation(s)
- Eurico Serrano
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 33 S 9th Street, Suite 700, Philadelphia, PA 19107, USA
| | | | - Zhao Lin
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Megan Roche
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Maria Paula Martinez Cantarin
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 33 S 9th Street, Suite 700, Philadelphia, PA 19107, USA
- Correspondence:
| |
Collapse
|
38
|
Anderson EM, Kim K, Fazzone BJ, Harland KC, Hu Q, Salyers Z, Palzkill VR, Cort TA, Kunz EM, Martin AJ, Neal D, O’Malley KA, Berceli SA, Ryan TE, Scali ST. Influences of renal insufficiency and ischemia on mitochondrial bioenergetics and limb dysfunction in a novel murine iliac arteriovenous fistula model. JVS Vasc Sci 2022; 3:345-362. [PMID: 36439698 PMCID: PMC9692039 DOI: 10.1016/j.jvssci.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Objective Hand disability after hemodialysis access surgery has been common yet has remained poorly understood. Arteriovenous fistula (AVF) hemodynamic perturbations have not reliably correlated with the observed measures of hand function. Chronic kidney disease (CKD) is known to precipitate myopathy; however, the interactive influences of renal insufficiency and ischemia on limb outcomes have remained unknown. We hypothesized that CKD would contribute to access-related hand dysfunction via altered mitochondrial bioenergetics. Using a novel murine AVF model, we sought to characterize the skeletal muscle outcomes in mice with and without renal insufficiency. Methods Male, 8-week-old C57BL/6J mice were fed either an adenine-supplemented diet to induce renal insufficiency (CKD) or a casein-based control chow (CON). After 2 weeks of dietary intervention, the mice were randomly assigned to undergo iliac AVF surgery (n = 12/group) or a sham operation (n = 5/group). Measurements of aortoiliac hemodynamics, hindlimb perfusion, and hindlimb motor function were collected for 2 weeks. The mice were sacrificed on postoperative day 14 to assess skeletal muscle histopathologic features and mitochondrial function. To assess the late outcome trends, 20 additional mice had undergone CKD induction and sham (n = 5) or AVF (n = 15) surgery and followed up for 6 weeks postoperatively before sacrifice. Results The adenine-fed mice had had a significantly reduced glomerular filtration rate and elevated blood urea nitrogen, confirming the presence of CKD. The sham mice had a 100% survival rate and AVF cohorts an 82.1% survival rate with an 84.4% AVF patency rate. The aorta and inferior vena cava velocity measurements and the vessel diameter had increased after AVF creation (P < .0001 vs sham). The AVF groups had had a 78.4% deficit in paw perfusion compared with the contralateral limb after surgery (P < .0001 vs sham). Mitochondrial function was influenced by the presence of CKD. The respiratory capacity of the CKD-sham mice (8443 ± 1509 pmol/s/mg at maximal energy demand) was impaired compared with that of the CON-sham mice (12,870 ± 1203 pmol/s/mg; P = .0001). However, this difference was muted after AVF creation (CKD-AVF, 4478 ± 3685 pmol/s/mg; CON-AVF, 5407 ± 3582 pmol/s/mg; P = .198). The AVF cohorts had had impairments in grip strength (vs sham; P < .0001) and gait (vs sham; P = .012). However, the presence of CKD did not significantly alter the measurements of gross muscle function. The paw perfusion deficits had persisted 6 weeks postoperatively for the AVF mice (P < .0001 vs sham); however, the myopathy had resolved (grip strength, P = .092 vs sham; mitochondrial respiration, P = .108 vs sham). Conclusions CKD and AVF-induced distal limb ischemia both impaired skeletal muscle mitochondrial function. Renal insufficiency was associated with a baseline myopathy that was exacerbated by the acute ischemic injury resulting from AVF creation. However, ischemia was the primary driver of the observed phenotype of gross motor impairment. This model reliably reproduced the local and systemic influences that contribute to access-related hand dysfunction and provides a platform for further mechanistic and therapeutic investigation.
Collapse
Affiliation(s)
- Erik M. Anderson
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL
- Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, FL
| | - Brian J. Fazzone
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL
- Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Kenneth C. Harland
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL
- Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Qiongyao Hu
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL
- Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Zach Salyers
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, FL
| | - Victoria R. Palzkill
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, FL
| | - Tomas A. Cort
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, FL
| | - Eric M. Kunz
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, FL
| | - Andrew J. Martin
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL
- Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Dan Neal
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL
| | - Kerri A. O’Malley
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL
- Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Scott A. Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL
- Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, FL
| | - Salvatore T. Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL
- Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL
| |
Collapse
|
39
|
Pongsuwan K, Kusirisin P, Narongkiattikhun P, Chattipakorn SC, Chattipakorn N. Mitochondria and vascular calcification in chronic kidney disease: Lessons learned from the past to improve future therapy. J Cell Physiol 2022; 237:4369-4396. [PMID: 36183389 DOI: 10.1002/jcp.30891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
Chronic kidney disease-mineral and bone disorders (CKD-MBD) is a common complication of CKD Stages 3-5. Hyperphosphatemia is one of the major metabolic components of CKD-MBD, frequently resulting in vascular calcification (VC) in advanced-stage patients. Also, a long duration of renal replacement therapy can cause the worsening of VC, leading to increased cardiovascular morbidity and mortality. Vascular smooth muscle cells play an important role in the development of VC through osteochondrogenic transformation and the apoptotic process. It has been shown that mitochondrial dysfunction is involved with CKD progression, and excessive oxidative stress can aggravate osteoblastic transformation and VC. Currently, novel interventions targeting mitochondrial function and dynamics, in addition to mitochondrial antioxidants, have been studied with the aim of attenuating VC. This review aims to comprehensively summarize and discuss the experimental and clinical reports concerning mitochondrial studies, along with the purpose of interventions that can improve the outcomes of VC among CKD patients.
Collapse
Affiliation(s)
- Karn Pongsuwan
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prit Kusirisin
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Phoom Narongkiattikhun
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
40
|
Martemucci G, Portincasa P, Di Ciaula A, Mariano M, Centonze V, D'Alessandro AG. Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mech Ageing Dev 2022; 206:111707. [PMID: 35839856 DOI: 10.1016/j.mad.2022.111707] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive loss of tissue and organ function due to genetic and environmental factors, nutrition, and lifestyle. Oxidative stress is one the most important mechanisms of cellular senescence and increased frailty, resulting in several age-linked, noncommunicable diseases. Contributing events include genomic instability, telomere shortening, epigenetic mechanisms, reduced proteome homeostasis, altered stem-cell function, defective intercellular communication, progressive deregulation of nutrient sensing, mitochondrial dysfunction, and metabolic unbalance. These complex events and their interplay can be modulated by dietary habits and the ageing process, acting as potential measures of primary and secondary prevention. Promising nutritional approaches include the Mediterranean diet, the intake of dietary antioxidants, and the restriction of caloric intake. A comprehensive understanding of the ageing processes should promote new biomarkers of risk or diagnosis, but also beneficial treatments oriented to increase lifespan.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.
| | - Michele Mariano
- Unità Operativa Complessa di Radiodiagnostica Universitaria, Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Vincenzo Centonze
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Angela Gabriella D'Alessandro
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
| |
Collapse
|
41
|
Sánchez-Tocino ML, González-Parra E, Miranda Serrano B, Gracia-Iguacel C, de-Alba-Peñaranda AM, López-González A, García Olegario M, Ortíz A, Mas-Fontao S. Evaluation of the impact of an intradialytic exercise programme on sarcopaenia in very elderly haemodialysis patients. Clin Kidney J 2022; 15:1514-1523. [PMID: 35892024 PMCID: PMC9308088 DOI: 10.1093/ckj/sfac046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Sarcopaenia is a highly prevalent condition in persons on haemodialysis (HD). In stable very elderly (75-95 years old) persons on chronic HD, we prospectively studied the European Working Group on Sarcopaenia in Older People (EWGSOP2) steps stability over time in 37 controls and their response to a 12-week intradialytic lower limb exercise programme in 23 persons. Overall dropout was 15% and the main cause for dropout was death (8%). Thus 33 controls and 18 exercise participants were evaluated at 12 weeks. In controls, comorbidity, nutrition, dependency and frailty scales, anthropometric assessments, EWGSOP2 step values and the prevalence of suspected, confirmed and severe sarcopaenia as assessed by EWGSOP2 remained stable. In contrast, in persons who completed the exercise programme, a significant improvement in the five times sit-to-stand (STS-5) test was noted at the end of the 12-week exercise programme (19.2 ± 4.9-15.9 ± 5.9 seconds; P = .001), consistent with the lower limb nature of the exercise programme, that persisted 12 weeks after completion of the programme. Exercise also improved the Fried frailty scale (1.7 ± 1.0-1.1 ± 0.6; P = .004). In conclusion, EWGSOP2 steps remain stable in stable very elderly persons on HD and STS-5 is responsive to a short-term intradialytic lower limb exercise programme. These results may help define EWGSOP2-based primary endpoints in future large-scale clinical trials assessing exercise interventions.
Collapse
Affiliation(s)
| | - Emilio González-Parra
- Servicio de Nefrología e Hipertensión. Fundación Jiménez Díaz, IIS-FJD UAM, Madrid, Spain
| | | | | | | | | | | | - Alberto Ortíz
- Servicio de Nefrología e Hipertensión. Fundación Jiménez Díaz, IIS-FJD UAM, Madrid, Spain
| | - Sebastian Mas-Fontao
- Laboratorio de patología renal y diabetes, CIBERDEM. IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| |
Collapse
|
42
|
Greenwood SA, Beckley-Hoelscher N, Asgari E, Ayis S, Baker LA, Banerjee D, Bhandari S, Bramham K, Chilcot J, Burton J, Kalra PA, Lightfoot CJ, McCafferty K, Mercer TH, Okonko DO, Oliveira B, Reid C, Smith AC, Swift PA, Mangelis A, Watson E, Wheeler DC, Wilkinson TJ, Reid F, Macdougall IC. The effect of intravenous iron supplementation on exercise capacity in iron-deficient but not anaemic patients with chronic kidney disease: study design and baseline data for a multicentre prospective double-blind randomised controlled trial. BMC Nephrol 2022; 23:268. [PMID: 35896969 PMCID: PMC9325952 DOI: 10.1186/s12882-022-02896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Many people living with chronic kidney disease (CKD) are iron deficient, even though they may not be anaemic. The Iron and Muscle study aims to evaluate whether iron supplementation reduces symptoms of fatigue, improves muscle metabolism, and leads to enhanced exercise capacity and physical function. We report here the trial design and baseline characteristics. METHODS This is a prospective, double-blind multicentre randomised controlled trial (RCT) including 75 non-dialysis stage 3-4 CKD patients with iron deficiency but without anaemia. Patients were randomly (1:1) assigned to either: i) intravenous iron therapy, or ii) placebo, with concurrent recruitment of eight CKD non-iron deficient participants and six healthy volunteers. The primary outcome of the study is the six-minute walk test (6MWT) distance between baseline and four-weeks. An additional exercise training programme for patients in both groups was initiated and completed between 4 and 12 weeks, to determine the effect of iron repletion compared to placebo treatment in the context of patients undertaking an exercise programme. Additional secondary outcomes include fatigue, physical function, muscle strength, muscle metabolism, quality of life, resting blood pressure, clinical chemistry, safety and harms associated with the iron therapy intervention and the exercise training intervention, and hospitalisations. All outcomes were conducted at baseline, 4, and 12 weeks, with a nested qualitative study, to investigate the experience of living with iron deficiency and intervention acceptability. The cohort have been recruited and baseline assessments undertaken. RESULTS Seventy-five individuals were recruited. 44% of the randomised cohort were male, the mean (SD) age was 58 (14) years, and 56% were White. Body mass index was 31 (7) kg/m2; serum ferritin was 59 (45) μg/L, transferrin saturation was 22 (10) %, and haemoglobin was 125 (12) g/L at randomisation for the whole group. Estimated glomerular filtration rate was 35 (12) mL/min/1.73 m2 and the baseline 6MWT distance was 429 (174) m. CONCLUSION The results from this study will address a substantial knowledge gap in the effects of intravenous iron therapy, and offer potential clinical treatment options, to improve exercise capacity, physical function, fatigue, and muscle metabolism, for non-dialysis patients with CKD who are iron-deficient but not anaemic. It will also offer insight into the potential novel effects of an 8-week exercise training programme. TRIAL REGISTRATION EudraCT: 2018-000,144-25 Registered 28/01/2019.
Collapse
Affiliation(s)
- Sharlene A Greenwood
- King's College Hospital NHS Trust, London, UK.
- King's College London, London, UK.
| | | | | | | | - Luke A Baker
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | | | - Kate Bramham
- King's College Hospital NHS Trust, London, UK
- King's College London, London, UK
| | | | - James Burton
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Philip A Kalra
- Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Courtney J Lightfoot
- Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute of Health Research (NIHR) Leicester Biomedical Research Centre (BRC), Leicester, UK
| | | | | | | | | | - Chante Reid
- King's College Hospital NHS Trust, London, UK
| | - Alice C Smith
- Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute of Health Research (NIHR) Leicester Biomedical Research Centre (BRC), Leicester, UK
| | - Pauline A Swift
- Epsom and St Helier University Hospitals NHS Trust, London, UK
| | | | - Emma Watson
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Thomas J Wilkinson
- Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute of Health Research (NIHR) Applied Research Collaboration (ARC) East Midlands, Leicester, UK
| | | | - Iain C Macdougall
- King's College Hospital NHS Trust, London, UK
- King's College London, London, UK
| |
Collapse
|
43
|
Ho JQ, Abramowitz MK. Clinical Consequences of Metabolic Acidosis-Muscle. Adv Chronic Kidney Dis 2022; 29:395-405. [PMID: 36175077 DOI: 10.1053/j.ackd.2022.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/10/2022] [Accepted: 04/25/2022] [Indexed: 01/25/2023]
Abstract
Metabolic acidosis is common in people with chronic kidney disease and can contribute to functional decline, morbidity, and mortality. One avenue through which metabolic acidosis can result in these adverse clinical outcomes is by negatively impacting skeletal muscle; this can occur through several pathways. First, metabolic acidosis promotes protein degradation and impairs protein synthesis, which lead to muscle breakdown. Second, metabolic acidosis hinders mitochondrial function, which decreases oxidative phosphorylation and reduces energy production. Third, metabolic acidosis directly limits muscle contraction. The purpose of this review is to examine the specific mechanisms of each pathway through which metabolic acidosis affects muscle, the impact of metabolic acidosis on physical function, and the effect of treating metabolic acidosis on functional outcomes.
Collapse
Affiliation(s)
- Jim Q Ho
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Matthew K Abramowitz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY; Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
44
|
Luo S, Yang M, Zhao H, Han Y, Liu Y, Xiong X, Chen W, Li C, Sun L. Mitochondrial DNA-dependent inflammation in kidney diseases. Int Immunopharmacol 2022; 107:108637. [DOI: 10.1016/j.intimp.2022.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/15/2022]
|
45
|
Khacha-ananda S, Intayoung U, Wunnapuk K, Kohsuwan K, Srisai P, Sapbamrer R. Urinary Levels of Sirtuin-1, π-Glutathione S-Transferase, and Mitochondrial DNA in Maize Farmer Occupationally Exposed to Herbicide. TOXICS 2022; 10:toxics10050252. [PMID: 35622665 PMCID: PMC9145378 DOI: 10.3390/toxics10050252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022]
Abstract
Epidemiologic studies have suggested an association between agrochemical exposure and risk of renal injury. Farmers face great risks to developing adverse effects. The most appropriate biomarker related to renal injury needs to be developed to encounter earlier detection. We aim to study the association between early renal biomarker and occupational herbicide exposure in maize farmers, Thailand. Sixty-four farmers were recruited and interviewed concerning demographic data, herbicide usage, and protective behavior. Two spot urines before (pre-work task) and after (post-work task) herbicide spraying were collected. To estimate the intensity of exposure, the cumulative herbicide exposure intensity index (cumulative EII) was also calculated from activities on the farm, type of personal protective equipment (PPE) use, as well as duration and frequency of exposure. Four candidate renal biomarkers including π-GST, sirtuin-1, mitochondrial DNA (mtDNA) were measured. Most subjects were male and mostly sprayed three herbicides including glyphosate-based herbicides (GBH), paraquat, and 2,4-dichlorophenoxyacetic acid (2,4-D). A type of activity in farm was mixing and spraying herbicide. Our finding demonstrated no statistical significance of all biomarker levels between pre- and post-work task urine. To compare between single and cocktail use of herbicide, there was no statistical difference in all biomarker levels between pre- and post-work task urine. However, the urinary mtDNA seems to be increased in post-work task urine. Moreover, the cumulative EII was strongly associated with change in mtDNA content in both ND-1 and COX-3 gene. The possibility of urinary mtDNA as a valuable biomarker was promising as a noninvasive benchmark for early detection of the risk of developing renal injury from herbicide exposure.
Collapse
Affiliation(s)
- Supakit Khacha-ananda
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Road, Sri Phum, Muang, Chiang Mai 50200, Thailand; (U.I.); (K.W.); (K.K.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, 239, Huay Kaew Road, Muang, Chiang Mai 50200, Thailand
- Correspondence:
| | - Unchisa Intayoung
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Road, Sri Phum, Muang, Chiang Mai 50200, Thailand; (U.I.); (K.W.); (K.K.)
| | - Klintean Wunnapuk
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Road, Sri Phum, Muang, Chiang Mai 50200, Thailand; (U.I.); (K.W.); (K.K.)
| | - Kanyapak Kohsuwan
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Road, Sri Phum, Muang, Chiang Mai 50200, Thailand; (U.I.); (K.W.); (K.K.)
| | | | - Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
46
|
Abramicheva PA, Plotnikov EY. Hormonal Regulation of Renal Fibrosis. Life (Basel) 2022; 12:737. [PMID: 35629404 PMCID: PMC9143586 DOI: 10.3390/life12050737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fibrosis is a severe complication of many acute and chronic kidney pathologies. According to current concepts, an imbalance in the synthesis and degradation of the extracellular matrix by fibroblasts is considered the key cause of the induction and progression of fibrosis. Nevertheless, inflammation associated with the damage of tissue cells is among the factors promoting this pathological process. Most of the mechanisms accompanying fibrosis development are controlled by various hormones, which makes humoral regulation an attractive target for therapeutic intervention. In this vein, it is particularly interesting that the kidney is the source of many hormones, while other hormones regulate renal functions. The normal kidney physiology and pathogenesis of many kidney diseases are sex-dependent and thus modulated by sex hormones. Therefore, when choosing therapy, it is necessary to focus on the sex-associated characteristics of kidney functioning. In this review, we considered renal fibrosis from the point of view of vasoactive and reproductive hormone imbalance. The hormonal therapy possibilities for the treatment or prevention of kidney fibrosis are also discussed.
Collapse
Affiliation(s)
- Polina A. Abramicheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Egor Y. Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
47
|
Nguyen M, Mukaneza Y, Tremblay M, Huard G, Tang A, Rose CF, Bémeur C. Renal dysfunction independently predicts muscle mass loss in patients following liver transplantation. CANADIAN LIVER JOURNAL 2022; 5:411-423. [DOI: 10.3138/canlivj-2021-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND: Liver transplantation (LT) is the only curative treatment for cirrhosis. However, the presence of complications can impact outcomes following LT. Sarcopenia, or muscle mass loss, is highly prevalent in patients with cirrhosis and is associated with longer hospitalization stays and a higher infection rate post-surgery. We aimed to identify patients at higher risk of early sarcopenia post-LT. METHODS: This retrospective study included 79 cirrhotic patients who underwent LT. Muscle mass was evaluated using the third lumbar spine vertebra skeletal muscle mass index (SMI) and sarcopenia was defined using established cut-off values. Computerized tomography (CT) scans performed within six-month peri-operative period (three months pre- and post-LT) were included in the study. Complications and comorbidities were collected and correlated to SMI post-LT and predictive models for SMI post-LT were constructed. RESULTS: The overall prevalence of sarcopenia was 46% and 62% before and after LT, respectively. Newly developed sarcopenia was found in 42% of patients. Post-LT sarcopenia was associated with longer hospital stays (54±37 vs 29±10 days, p = 0.002), higher number of infection (3±1 vs 1±2, p = 0.027), and greater number of complications (5±2 vs 3±2, p <0.001) compared to absence of sarcopenia. Multivariate analyses showed that the SMI post-LT was independently associated with pre-LT renal function markers, the glomerular filtration rate (GFR) and creatinine (Model 1, GFR: β = 0.33; 95% CI = 0.04–0.17; p = 0.003; Model 2, Creatinine: β = –0.29; 95% CI = –0.10 to –0.02; p = 0.009). CONCLUSIONS: The present study highlights the potential role of renal dysfunction in the development and persistence of sarcopenia after LT.
Collapse
Affiliation(s)
- Mimosa Nguyen
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Yvette Mukaneza
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Mélanie Tremblay
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Geneviève Huard
- Centre hospitalier de l’Université de Montréal, Montréal, Québec, Canada
| | - An Tang
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Centre hospitalier de l’Université de Montréal, Montréal, Québec, Canada
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Christopher F Rose
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Chantal Bémeur
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Nutrition, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
48
|
Todoriki S, Hosoda Y, Yamamoto T, Watanabe M, Sekimoto A, Sato H, Mori T, Miyazaki M, Takahashi N, Sato E. Methylglyoxal Induces Inflammation, Metabolic Modulation and Oxidative Stress in Myoblast Cells. Toxins (Basel) 2022; 14:toxins14040263. [PMID: 35448872 PMCID: PMC9030564 DOI: 10.3390/toxins14040263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Uremic sarcopenia is a serious clinical problem associated with physical disability and increased morbidity and mortality. Methylglyoxal (MG) is a highly reactive, dicarbonyl uremic toxin that accumulates in the circulatory system in patients with chronic kidney disease (CKD) and is related to the pathology of uremic sarcopenia. The pathophysiology of uremic sarcopenia is multifactorial; however, the details remain unknown. We investigated the mechanisms of MG-induced muscle atrophy using mouse myoblast C2C12 cells, focusing on intracellular metabolism and mitochondrial injury. We found that one of the causative pathological mechanisms of uremic sarcopenia is metabolic flow change to fatty acid synthesis with MG-induced ATP shortage in myoblasts. Evaluation of cell viability revealed that MG showed toxic effects only in myoblast cells, but not in myotube cells. Expression of mRNA or protein analysis revealed that MG induces muscle atrophy, inflammation, fibrosis, and oxidative stress in myoblast cells. Target metabolomics revealed that MG induces metabolic alterations, such as a reduction in tricarboxylic acid cycle metabolites. In addition, MG induces mitochondrial morphological abnormalities in myoblasts. These changes resulted in the reduction of ATP derived from the mitochondria of myoblast cells. Our results indicate that MG is a pathogenic factor in sarcopenia in CKD.
Collapse
Affiliation(s)
- Sota Todoriki
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan; (S.T.); (Y.H.); (M.W.); (A.S.); (H.S.); (N.T.)
| | - Yui Hosoda
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan; (S.T.); (Y.H.); (M.W.); (A.S.); (H.S.); (N.T.)
| | - Tae Yamamoto
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; (T.Y.); (M.M.)
| | - Mayu Watanabe
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan; (S.T.); (Y.H.); (M.W.); (A.S.); (H.S.); (N.T.)
| | - Akiyo Sekimoto
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan; (S.T.); (Y.H.); (M.W.); (A.S.); (H.S.); (N.T.)
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; (T.Y.); (M.M.)
| | - Hiroshi Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan; (S.T.); (Y.H.); (M.W.); (A.S.); (H.S.); (N.T.)
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; (T.Y.); (M.M.)
| | - Takefumi Mori
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8512, Japan;
| | - Mariko Miyazaki
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; (T.Y.); (M.M.)
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan; (S.T.); (Y.H.); (M.W.); (A.S.); (H.S.); (N.T.)
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; (T.Y.); (M.M.)
| | - Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan; (S.T.); (Y.H.); (M.W.); (A.S.); (H.S.); (N.T.)
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; (T.Y.); (M.M.)
- Correspondence: ; Tel.: +81-22-795-6807
| |
Collapse
|
49
|
Ding XQ, Jian TY, Gai YN, Niu GT, Liu Y, Meng XH, Li J, Lyu H, Ren BR, Chen J. Chicoric Acid Attenuated Renal Tubular Injury in HFD-Induced Chronic Kidney Disease Mice through the Promotion of Mitophagy via the Nrf2/PINK/Parkin Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2923-2935. [PMID: 35195395 DOI: 10.1021/acs.jafc.1c07795] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As the main factor in the pathogenesis of chronic kidney disease (CKD), the excessive apoptosis of renal tubular epithelial cells (RTECs) and its underlying mechanism of action are worth further investigation. Chicoric acid (CA), a major active constituent of the Uyghur folk medicine chicory, was recorded to possess a renal protective effect. The precise effect of CA on renal tubular injury in obesity-related CKD remains unknown. In the current study, CA was proven to ameliorate metabolic disorders including overweight, hyperglycemia, hyperlipidemia, and hyperuricemia in high fat diet (HFD)-fed mice. Furthermore, the reverse effect of CA on renal histological changes and functional damage was confirmed. In vitro, the alleviation of lipid accumulation and cell apoptosis was observed in palmitic acid (PA)-exposed HK2 cells. Treatment with CA reduced mitochondrial damage and oxidative stress in the renal tubule of HFD-fed mice and PA-treated HK2 cells. Finally, CA was observed to activate the Nrf2 pathway; increase PINK and Parkin expression; and regulate LC3, SQSTM1, Mfn2, and FIS1 expression; therefore, it would improve mitochondrial dynamics and mitophagy to alleviate mitochondrial damage in RTECs of obesity-related CKD. These results may provide fresh insights into the promotion of mitophagy in the prevention and alleviation of obesity-related CKD.
Collapse
Affiliation(s)
- Xiao-Qin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Tun-Yu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ya-Nan Gai
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Guan-Ting Niu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xiu-Hua Meng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jing Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Han Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bing-Ru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
50
|
Singh R, Nasci VL, Guthrie G, Ertuglu LA, Butt MK, Kirabo A, Gohar EY. Emerging Roles for G Protein-Coupled Estrogen Receptor 1 in Cardio-Renal Health: Implications for Aging. Biomolecules 2022; 12:412. [PMID: 35327604 PMCID: PMC8946600 DOI: 10.3390/biom12030412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular (CV) and renal diseases are increasingly prevalent in the United States and globally. CV-related mortality is the leading cause of death in the United States, while renal-related mortality is the 8th. Despite advanced therapeutics, both diseases persist, warranting continued exploration of disease mechanisms to develop novel therapeutics and advance clinical outcomes for cardio-renal health. CV and renal diseases increase with age, and there are sex differences evident in both the prevalence and progression of CV and renal disease. These age and sex differences seen in cardio-renal health implicate sex hormones as potentially important regulators to be studied. One such regulator is G protein-coupled estrogen receptor 1 (GPER1). GPER1 has been implicated in estrogen signaling and is expressed in a variety of tissues including the heart, vasculature, and kidney. GPER1 has been shown to be protective against CV and renal diseases in different experimental animal models. GPER1 actions involve multiple signaling pathways: interaction with aldosterone and endothelin-1 signaling, stimulation of the release of nitric oxide, and reduction in oxidative stress, inflammation, and immune infiltration. This review will discuss the current literature regarding GPER1 and cardio-renal health, particularly in the context of aging. Improving our understanding of GPER1-evoked mechanisms may reveal novel therapeutics aimed at improving cardio-renal health and clinical outcomes in the elderly.
Collapse
Affiliation(s)
- Ravneet Singh
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Victoria L. Nasci
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Ginger Guthrie
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Lale A. Ertuglu
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Maryam K. Butt
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Eman Y. Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| |
Collapse
|