1
|
Plata VTG, de Jesus Simão J, de Sousa AFB, Alonso-Vale MI, Armelin-Correa L. Impact of fish oil on epigenetic regulation in perirenal adipose tissue of obese mice. Obes Res Clin Pract 2025:S1871-403X(25)00043-2. [PMID: 40246605 DOI: 10.1016/j.orcp.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/10/2025] [Accepted: 03/27/2025] [Indexed: 04/19/2025]
Abstract
It has been demonstrated that fish oil (FO), a source of omega-3 polyunsaturated fatty acids (n-3 PUFA), offers partial protection to mice from the adverse effects of a high-fat diet (HFD) by altering the expression of genes involved in adipogenesis and adipocyte metabolism. Histone 3 lysine 27 (H3K27) modifiers, namely Ezh2, Kdm6a, Kdm6b, Crebbp and Ep300, are vital for the appropriate differentiation and metabolism of adipocytes, as they can either silence or activate transcription. The expansion of perirenal adipose tissue (AT) in obesity is associated with a number of complications, including hypertension and kidney disease. The aim of this study was to assess the expression of H3K27 modifiers and genes involved in adipogenesis and adipocyte metabolism in perirenal AT of HFD-fed and FO-treated (5DHA:1EPA) mice using real-time PCR. This study demonstrates, for the first time, that a high-fat diet (HFD) increases the expression of Kdm6b (H3K27 demethylase) in perirenal AT, and that treatment with FO can completely reverse this effect. Conversely, the expression of the Acly gene, which encodes an enzyme that provides a substrate for histone acetylases, was found to be reduced in HFD-fed mice and this was not reversed by FO treatment. Additionally, transcription factor genes, such as Tbx1, exhibited diminished expression in perirenal AT of mice fed an HFD. These observations suggest that a HFD affects the expression of chromatin modifiers, transcription factors, and metabolic genes in perirenal AT, and that FO can reverse some of these effects, offering a promising avenue for the treatment of obesity.
Collapse
Affiliation(s)
- Victor Tadeu Gonçalves Plata
- Post-graduation Program in Chemical Biology Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Jussara de Jesus Simão
- Post-graduation Program in Chemical Biology Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Andressa França Bispo de Sousa
- Post-graduation Program in Chemical Biology Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Maria Isabel Alonso-Vale
- Post-graduation Program in Chemical Biology Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil; Department of Biological Sciences, Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Lucia Armelin-Correa
- Post-graduation Program in Chemical Biology Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil; Department of Biological Sciences, Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil.
| |
Collapse
|
2
|
Smorenburg JN, Hodun K, McTavish PV, Wang C, Pinheiro MA, Wells KRD, Brunt KR, Nakamura MT, Chabowski A, Mutch DM. EPA/DHA but Not ALA Reduces Visceral Adiposity and Adipocyte Size in High Fat Diet-Induced Obese Delta-6 Desaturase Knockout Mice. Mol Nutr Food Res 2025; 69:e202400721. [PMID: 39707641 PMCID: PMC11744037 DOI: 10.1002/mnfr.202400721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
The objective of this omega-3 feeding study was to elucidate the independent effects of α-linolenic acid (ALA) versus eicosapentaenoic (EPA)/docosahexaenoic acid (DHA) on visceral adiposity and inflammatory signaling in diet-induced obese delta-6 desaturase (Fads2) knockout (KO) mice. Male wildtype (WT) and Fads2 KO mice were fed a high-fat diet (45% kcal from fat) containing either lard (no omega-3s), flaxseed (ALA), or menhaden (EPA/DHA) for 21 weeks. Epididymal white adipose tissue (eWAT) was analyzed for changes in tissue weight, adipocyte size, triacylglycerol (TAG) and fatty acid content, and inflammatory markers. Despite no differences in final body weight, menhaden-fed mice had lower eWAT weight, smaller adipocytes, and lower TAG content compared to lard-fed mice regardless of Fads2 genotype. The eWAT of flaxseed-fed WT mice resembled menhaden-fed mice, while the eWAT of flaxseed-fed KO mice resembled lard-fed mice. No differences were observed in the expression of genes regulating eWAT inflammatory signaling (Tnfα, Nfκb, Mapk14, Mcp1, Ccl5, Tlr4, Nlrp3, or Adipoq) or the abundance of select proteins (p38-MAPK or MCP-1). In conclusion, a high-fat diet containing EPA/DHA, but not ALA, attenuates adipocyte hypertrophy and lowers TAG content but has no effect on eWAT inflammation in a mouse model of long-term diet-induced obesity.
Collapse
Affiliation(s)
- James N. Smorenburg
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Katarzyna Hodun
- Department of PhysiologyMedical University of BialystokBialystokPoland
| | - Patrick V. McTavish
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Chenxuan Wang
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | | | - Kyle R. D. Wells
- Department of PharmacologyDalhousie UniversitySaint JohnNew BrunswickCanada
| | - Keith R. Brunt
- Department of PharmacologyDalhousie UniversitySaint JohnNew BrunswickCanada
| | - Manubu T. Nakamura
- Department of Food Science and Human NutritionUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Adrian Chabowski
- Department of PhysiologyMedical University of BialystokBialystokPoland
| | - David M. Mutch
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
3
|
Simao JDJ, Bispo AFDS, Plata VTG, Abel ABM, Saran RJ, Barcella JF, Alonso JCC, Santana AV, Armelin-Correa LM, Alonso-Vale MIC. The Activation of the NF-κB Pathway in Human Adipose-Derived Stem Cells Alters the Deposition of Epigenetic Marks on H3K27 and Is Modulated by Fish Oil. Life (Basel) 2024; 14:1653. [PMID: 39768360 PMCID: PMC11678231 DOI: 10.3390/life14121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Chronic low-grade inflammation in obesity is linked to white adipose tissue (WAT) dysfunction. Plasma lipopolysaccharide (LPS) activates Toll-like receptor 4 (TLR4), triggering NF-κB and worsening these disturbances. Previously, we showed that histone H3 lysine 27 (H3K27) epigenetic modifications affect WAT gene expression in high-fat-diet mice, identifying key pathways in adipose-derived stem cells (ASCs). This study explores whether NF-κB influences H3K27 modifiers in human ASCs and evaluates fish oil (FO) as a modulator. METHODS Human visceral WAT ASCs were stimulated with LPS and treated with FO enriched with eicosapentaenoic acid (EPA). Flow cytometry, PCR array, RT-PCR, and Western blot assays were used. RESULTS LPS increased NF-κB activity, elevating KDM6B demethylase levels and H3K27 acetylation. These epigenetic modifications in LPS-stimulated ASCs were associated with persistent changes in the expression of genes involved in adipogenesis, metabolic regulation, and inflammation, even after LPS removal and cell differentiation. FO mitigated these effects, reducing H3K27 acetylation and promoting methylation. CONCLUSIONS FO demonstrates potential in modulating inflammation-induced epigenetic changes and preserving adipocyte function.
Collapse
Affiliation(s)
- Jussara de Jesus Simao
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
| | - Andressa França de Sousa Bispo
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
| | - Victor Tadeu Gonçalves Plata
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
| | - Ana Beatriz Marques Abel
- Post-Graduate Program in Nutrition, Paulista School of Medicine, Federal University of São Paulo—UNIFESP, Sao Paulo 04023-062, Brazil;
| | - Raphael Justa Saran
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (R.J.S.); (J.F.B.)
| | - Júlia Fernandes Barcella
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (R.J.S.); (J.F.B.)
| | | | - André Valente Santana
- Post-Graduate Program in Interdisciplinary Surgical Science, Paulista School of Medicine, Federal University of São Paulo—UNIFESP, Sao Paulo 04023-062, Brazil;
| | - Lucia Maria Armelin-Correa
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (R.J.S.); (J.F.B.)
| | - Maria Isabel Cardoso Alonso-Vale
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
- Post-Graduate Program in Nutrition, Paulista School of Medicine, Federal University of São Paulo—UNIFESP, Sao Paulo 04023-062, Brazil;
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (R.J.S.); (J.F.B.)
| |
Collapse
|
4
|
de Jesus Simão J, de Sousa Bispo AF, Plata VTG, Abel ABM, Telles MM, Armelin-Correa LM, Alonso-Vale MIC. Fish oil attenuates the expression of the CCL2 chemokine and histone-modifying enzymes in LPS-stimulated human preadipocytes. Metabol Open 2024; 24:100336. [PMID: 39717736 PMCID: PMC11665696 DOI: 10.1016/j.metop.2024.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/25/2024] Open
Abstract
In obesity, C-C chemokine ligand 2 (CCL2) plays a critical role in recruiting macrophages to white adipose tissue (WAT), contributing to chronic inflammation. In this study, we sought to explore the effects of fish oil (FO) on CCL2 expression and histone (H3K27)-modifying enzymes in both human model of preadipocytes and primary adipose-derived stem cells (ASCs). Present findings in preadipocytes lineage evidenced that lipopolysaccharide (LPS) increased TNF-alpha (∼5.8-fold) and CCL2 (∼3.8-fold) expression, modulating H3K27 modifying enzymes expression, including KDM6B and EP300. FO, in turn, significantly attenuated LPS-induced CCL2 expression and secretion and downregulated KDM6B and EP300, elucidating an important mechanism of action involved in the anti-inflammatory role of FO. We next isolated mature hypertrophied adipocytes from patient with overweight and exposed to LPS, resulting in increased CCL2/MCP-1 (∼3.8-fold) and TNF-alpha (∼4.5-fold) expression, effects significantly attenuated by FO. We also generated adipocyte-conditioned medium (ACM) and exposed ASCs to LPS or ACM for up to 72 h to assess CCL2/MCP-1 secretion. ACM from hypertrophied adipocytes stimulated increased CCL2/MCP-1 expression, which was partially reduced by FO. LPS treatment of primary ASCs led to a marked increase in CCL2 secretion, which was completely abolished by FO after 6 h, highlighting its potent anti-inflammatory effect. After 72 h, FO consistently maintained lower levels of CCL2, even during sustained inflammatory stimulation, underscoring its ability to modulate chronic inflammation. Additionally, the inhibition of NF-κB with JSH-23 mimicked the effects of FO on CCL2 expression, further suggesting that the anti-inflammatory actions of FO may involve NF-κB signaling. In conclusion, FO attenuates CCL2 expression and secretion in both preadipocytes and ASCs, providing evidence of its potential in modulating inflammation in WAT progenitor cells by modulating histone-modifying enzymes and inflammatory pathways.
Collapse
Affiliation(s)
- Jussara de Jesus Simão
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Andressa França de Sousa Bispo
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Victor Tadeu Gonçalves Plata
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Ana Beatriz Marques Abel
- Post-graduate Program in Nutrition –Paulista School of Medicine, Federal University of São Paulo - UNIFESP, Sao Paulo, Brazil
| | - Monica Marques Telles
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
- Post-graduate Program in Nutrition –Paulista School of Medicine, Federal University of São Paulo - UNIFESP, Sao Paulo, Brazil
| | - Lucia Maria Armelin-Correa
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Maria Isabel Cardoso Alonso-Vale
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
- Post-graduate Program in Nutrition –Paulista School of Medicine, Federal University of São Paulo - UNIFESP, Sao Paulo, Brazil
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| |
Collapse
|
5
|
Yang X, Li X, Hu M, Huang J, Yu S, Zeng H, Mao L. EPA and DHA differentially improve insulin resistance by reducing adipose tissue inflammation-targeting GPR120/PPARγ pathway. J Nutr Biochem 2024; 130:109648. [PMID: 38631512 DOI: 10.1016/j.jnutbio.2024.109648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Insulin resistance (IR) is a global health challenge, often initiated by dysfunctional adipose tissue. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may have different effects on IR, but the mechanisms are unknown. This study aims to evaluate the protective effect of EPA and DHA against IR in a high-fat diet (HFD) mice model and investigate whether EPA and DHA alter IR modulate the G-protein-poupled receptor 120/peroxisome proliferator-activated receptor γ (GPR120/PPARγ) pathway in macrophages and adipocytes, which may affect IR in adipocytes. The findings of this study show that 4% DHA had a better effect in improving IR and reducing inflammatory cytokines in adipose tissue of mice. Additionally, in the cell experiment, the use of AH7614 (a GPR120 antagonist) inhibited the glucose consumption increase and the increasable expression of PPARγ and insulin signaling molecules mediated by DHA in adipocytes. Furthermore, GW9662 (a PPARγ antagonist) hindered the upregulation of glucose consumption and insulin signaling molecule expression induced by EPA and DHA in adipocytes. DHA exhibited significant effects in reducing the number of migrated cells and inflammation. The compounds AH7614 and GW9662 hindered the suppressive effects of EPA and DHA on macrophage-induced IR in adipocytes. These findings suggest that DHA has a stronger potential in improving IR in adipocytes through the GPR120/PPARγ pathway in macrophages, when compared to EPA.
Collapse
Affiliation(s)
- Xian Yang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xudong Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Manjiang Hu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jie Huang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Siyan Yu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Huanting Zeng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Limei Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Dietary n-3 and n-6 polyunsaturated fatty acids differentially modulate the adiponectin and leptinmediated major signaling pathways in visceral and subcutaneous white adipose tissue in high fat diet induced obesity in Wistar rats. Nutr Res 2023; 110:74-86. [PMID: 36689814 DOI: 10.1016/j.nutres.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 12/12/2022] [Accepted: 12/18/2022] [Indexed: 12/29/2022]
Abstract
Obesity is a chronic metabolic disease that involves excessive accumulation of fat in white adipose tissue (WAT). Apart from storing excess fats, WAT also serves as an important endocrine organ secreting adipocytokines such as adiponectin and leptin. Adiponectin and leptin bind to their transmembrane receptors adiponectin receptor 1 (AdipoR1)/adiponectin receptor 2 (AdipoR2) and Ob-R, respectively, and mediate their effect on metabolism by regulating multiple downstream targets. Dietary fat is considered the main culprit behind obesity development. Numerous preclinical studies have highlighted role of essential polyunsaturated fatty acids (PUFAs), particularly n-3 PUFAs, in prevention of obesity. Despite emerging data, there still is no clear understanding of the mechanism of action of n-3 PUFAs and n-6 PUFAs on adipose tissue function in two functionally and anatomically different depots of WAT: visceral and subcutaneous. We designed this study using a high fat diet (HFD) fed rodent model of obesity to test our hypothesis that n-3 and n-6 PUFAs possibly differentially modulate adipokine secretion and downstream metabolic pathways such as peroxisome proliferator-activated receptor-γ (PPAR-γ), protein kinase B (AKT)-forkhead box O1 (FOXO1), and Janus kinase-signal transducer and activator of transcription in obesity. The results of the current study showed that n-3 PUFAs upregulate the expression of AdipoR1/R2 and ameliorate the effects of HFD by modulating adipogenesis via PPAR-γ and by improving glucose tolerance and lipid metabolism via AKT-FOXO1 axis in fish oil fed rats. However, n-6 PUFAs did not show any remarkable change compared with HFD fed animals. Our study highlights that n-3 PUFAs modulate expression of various targets in adiponectin and leptin signaling cascade, bringing about an overall reduction in obesity and improvement in adipose tissue function in HFD induced obesity.
Collapse
|
7
|
Jagielski P, Bolesławska I, Wybrańska I, Przysławski J, Łuszczki E. Effects of a Diet Containing Sources of Prebiotics and Probiotics and Modification of the Gut Microbiota on the Reduction of Body Fat. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1348. [PMID: 36674104 PMCID: PMC9859211 DOI: 10.3390/ijerph20021348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
In 2022, according to the World Health Organization (WHO) report, overweight and obesity have reached epidemic proportions in the WHO European Region, affecting almost 60% of adults. Based on the assessment of BMI (Body Mass Index), a group of 56 women aged 25-45 years (31 women group A average BMI 34.9 ± 4.86 kg/m2 and 25 women group B average BMI 33.4 ± 4.02 kg/m2) were qualified for the study. In a multi-center, two-arm, parallel, non-randomized study, two types of weight-reduction diets (A and B) were used over a 3-month period. In group A, a standard low-energy diet was used with individually adjusted caloric intake of 1100-1300 kcal, with an increase in the amount and frequency of consumption of sauerkraut and groats and a daily intake of fermented milk drinks (300-400 g), fermented cucumbers (100 g), mineral water (1 L) and cod liver oil (5 mL). In group B, a standard low-energy diet with individually adjusted caloric intake of 1100-1300 kcal with daily intake of fermented milk products (150 g), highly mineralized water (0.5 L), once a week fermented cucumbers, and once a week buckwheat groats was used. The following measurements were taken: body weight, body fat mass, water content, body height, waist circumference, and hip circumference. Body weight and body composition were measured using the Tanita MC-780 MA and TANITA BC-601 analyzer using the bioelectric bioimpedance method. The stool samples were analyzed in the microbiology laboratory where quantification of Bifidobcaterium spp., Bacteroides spp., Faecalibacterium prausnitzii species, Akkermansia muciniphila and total bacterial count (TBC) was performed. Under the influence of the introduced nutritional intervention, a statistically significant reduction in body weight, body fat, waist circumference, and hip circumference was demonstrated after 3 months. Under the influence of weight reduction, as well as dietary changes, there was an increase in the number of Akkermansia muciniphila bacteria in the women studied. The low-energy diet containing sources of natural prebiotics and probiotics had a more favorable effect on the number of Faecalibacterium prausnitzii bacteria compared to the standard diet.
Collapse
Affiliation(s)
- Paweł Jagielski
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Kraków, Poland
| | - Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | - Iwona Wybrańska
- Clinical Biochemistry, Department of Genetics and Nutrigenomics, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Kraków, Poland
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | - Edyta Łuszczki
- Institute of Health Sciences, Medical College of Rzeszów University, 35-310 Rzeszów, Poland
| |
Collapse
|
8
|
Chronic docosahexaenoic acid supplementation improves metabolic plasticity in subcutaneous adipose tissue of aged obese female mice. J Nutr Biochem 2023; 111:109153. [PMID: 36150680 DOI: 10.1016/j.jnutbio.2022.109153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 01/01/2023]
Abstract
This study aimed to characterize the potential beneficial effects of chronic docosahexaenoic acid (DHA) supplementation on restoring subcutaneous white adipose tissue (scWAT) plasticity in obese aged female mice. Two-month-old female C57BL/6J mice received a control (CT) or a high fat diet (HFD) for 4 months. Then, 6-month-old diet-induced obese (DIO) mice were distributed into the DIO and the DIOMEG group (fed with a DHA-enriched HFD) up to 18 months. In scWAT, the DHA-enriched diet reduced the mean adipocyte size and reversed the upregulation of lipogenic genes induced by the HFD, reaching values even lower than those observed in CT animals. DIO mice exhibited an up-regulation of lipolytic and fatty oxidation gene expressions that was reversed in DHA-supplemented mice except for Cpt1a mRNA levels, which were higher in DIOMEG as compared to CT mice. DHA restored the increase of proinflammatory genes observed in scWAT of DIO mice. While no changes were observed in total macrophage F4/80+/CD11b+ content, the DHA treatment switched scWAT macrophages profile by reducing the M1 marker Cd11c and increasing the M2 marker CD206. These events occurred alongside with a stimulation of beige adipocyte specific genes, the restoration of UCP1 and pAKT/AKT ratio, and a recovery of the HFD-induced Fgf21 upregulation. In summary, DHA supplementation induced a metabolic remodeling of scWAT to a healthier phenotype in aged obese mice by modulating genes controlling lipid accumulation in adipocytes, reducing the inflammatory status, and inducing beige adipocyte markers in obese aged mice.
Collapse
|
9
|
Lv W, Xu D. Docosahexaenoic Acid Delivery Systems, Bioavailability, Functionality, and Applications: A Review. Foods 2022; 11:2685. [PMID: 36076867 PMCID: PMC9455885 DOI: 10.3390/foods11172685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 12/19/2022] Open
Abstract
Docosahexaenoic acid (DHA), mainly found in microalgae and fish oil, is crucial for the growth and development of visual, neurological, and brain. In addition, DHA has been found to improve metabolic disorders associated with obesity and has anti-inflammatory, anti-obesity, and anti-adipogenesis effects. However, DHA applications in food are often limited due to its low water solubility, instability, and poor bioavailability. Therefore, delivery systems have been developed to enhance the remainder of DHA activity and increase DHA homeostasis and bioavailability. This review focused on the different DHA delivery systems and the in vitro and in vivo digestive characteristics. The research progress on cardiovascular diseases, diabetes, visual, neurological/brain, anti-obesity, anti-inflammatory, food applications, future trends, and the development potential of DHA delivery systems were also reviewed. DHA delivery systems could overcome the instability of DHA in gastrointestinal digestion, improve the bioavailability of DHA, and better play the role of its functionality.
Collapse
Affiliation(s)
- Wenwen Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
10
|
Calder PC. Omega-3 fatty acids and metabolic partitioning of fatty acids within the liver in the context of nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care 2022; 25:248-255. [PMID: 35762160 DOI: 10.1097/mco.0000000000000845] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver disease (NAFLD) is now the most prevalent form of liver disease globally, affecting about 25% of the world's adult population. It is more common in those living with obesity, where it may affect as many as 80% of individuals. The aim of this article is to describe recent human studies evaluating the influence of omega-3 fatty acids on de novo lipogenesis (DNL) and hepatic fatty acid partitioning between incorporation into triacylglycerols (TAGs) and β-oxidation, to discuss the relevance of these effects in the context of NAFLD, and to provide an overview of the mechanisms that might be involved. RECENT FINDINGS The omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) decrease hepatic DNL and partition fatty acids away from TAG synthesis and toward β-oxidation. EPA and DHA affect multiple hepatic transcription factors resulting in down-regulation of the DNL pathway and upregulation of β-oxidation. The net result is decreased accumulation of hepatic TAG and lowering of circulating TAG concentrations. Human trials demonstrate that EPA and DHA can decrease liver fat in patients with NAFLD. SUMMARY Increased intake of EPA and DHA may reduce the likelihood of hepatic TAG accumulation and could be used to reduce liver fat in patients with NAFLD.
Collapse
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| |
Collapse
|
11
|
CD4+ and CD8+ T-cell responses in bone marrow to fatty acids in high-fat diets. J Nutr Biochem 2022; 107:109057. [DOI: 10.1016/j.jnutbio.2022.109057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 12/30/2022]
|
12
|
Gao Y, Yuan S, Chen Y, Liu F, Wei Z, Cao W, Li RW, Xu J, Xue C, Tang Q. The improvement effect of astaxanthin-loaded emulsions on obesity is better than that of astaxanthin in the oil phase. Food Funct 2022; 13:3720-3731. [PMID: 35266464 DOI: 10.1039/d1fo03185f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emulsion-based delivery systems have been reported to improve the solubility, stability and bioavailability of astaxanthin. In this study, the ability of astaxanthin-loaded emulsions (AL) to ameliorate obesity induced by a high-fat and high-sucrose diet was explored, using astaxanthin in the oil phase (ASTA) as a comparison. After the administration of AL, ASTA (30 mg per kg body weight), or saline on normal or obese mice for 4 weeks, the body fat accumulation levels, hepatic lipid contents and hepatic fatty acid profiles were detected, and AL showed better anti-obesity properties than ASTA. In an acute feeding experiment, it was first observed that the astaxanthin concentration of AL was higher than that of ASTA in the blood and liver of obese mice. What's more, AL altered the microbial co-occurrence patterns in obese mice. Some gut microbial modules that were significantly correlated with obesity-related physiological parameters were identified. Overall, the improvement effect of AL on obesity is better than that of ASTA due to their higher oral absorbability and modulating effects on the gut microbiota, and we suggest AL as a more suitable astaxanthin product type for obese bodies.
Collapse
Affiliation(s)
- Yuan Gao
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Shihan Yuan
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Yuze Chen
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Fang Liu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Zihao Wei
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Wanxiu Cao
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Robert W Li
- Laboratory of Animal Genomics and Improvement, United States Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD 20705, USA
| | - Jie Xu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China. .,Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266235, China
| | - Qingjuan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
13
|
Yang X, Yi X, Zhang F, Li F, Lang L, Ling M, Lai X, Chen L, Quan L, Fu Y, Feng S, Shu G, Wang L, Zhu X, Gao P, Jiang Q, Wang S. Cytochrome P450 epoxygenase-derived EPA and DHA oxylipins 17,18-epoxyeicosatetraenoic acid and 19,20-epoxydocosapentaenoic acid promote BAT thermogenesis and WAT browning through the GPR120-AMPKα signaling pathway. Food Funct 2022; 13:1232-1245. [PMID: 35019933 DOI: 10.1039/d1fo02608a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mechanisms whereby fish oil rich in EPA and DHA promotes BAT thermogenesis and WAT browning are not fully understood. Thus, this study aimed to investigate the effects of cytochrome P450 (CYP) epoxygenase-derived EPA and DHA oxylipins 17,18-EpETE and 19,20-EpDPE on BAT thermogenesis and WAT browning and explore the underlying mechanism. Stromal vascular cells (SVCs) were subjected to 17,18-EpETE or 19,20-EpDPE treatment and mice were treated with the CYP epoxygenase inhibitor, the thermogenic marker genes were detected and the involvement of GPR120 and AMPKα were assessed. The in vitro results indicated that 17,18-EpETE and 19,20-EpDPE induced brown and beige adipocyte thermogenesis, with increased expression of thermogenic marker gene UCP1 in differentiated SVCs. Meanwhile, the expression of GPR120 and phosphorylation of AMPKα were increased in response to these two oxylipins. However, the inhibition of GPR120 and AMPKα inhibited the promotion of adipocyte thermogenesis. In addition, in the presence of CYP epoxygenase inhibitor MS-PPOH, EPA and DHA had no effect on increasing UCP1 expression in differentiated SVCs. Consistent with the in vitro results, the in vivo findings demonstrated that fish oil had no body fat-lowering effects and no effects on enhancing energy metabolism, iBAT thermogenesis and iWAT browning in mice fed HFD after intraperitoneal injection of CYP epoxygenase inhibitor SKF-525A. Moreover, fish oil had no effect on the elevation of GPR120 expression and activation of AMPKα in iBAT and iWAT in mice fed HFD after intraperitoneal injection of SKF-525A. In summary, our results showed that CYP epoxygenase-derived EPA and DHA oxylipins 17,18-EpETE and 19,20-EpDPE promoted BAT thermogenesis and WAT browning through the GPR120-AMPKα signaling pathway, which might contribute to the thermogenic and anti-obesity effects of fish oil.
Collapse
Affiliation(s)
- Xiaohua Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xin Yi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Limin Lang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Mingfa Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xumin Lai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lulu Quan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yiming Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Shengchun Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
14
|
Lemus-Conejo A, Medrano M, Lopez S, Millan-Linares MC, Rosillo MA, Perez-Simon JA, Muriana FJG, Abia R. MUFAs in High-Fat Diets Protect against Obesity-Induced Bias of Hematopoietic Cell Lineages. Mol Nutr Food Res 2021; 65:e2001203. [PMID: 34132459 DOI: 10.1002/mnfr.202001203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/27/2021] [Indexed: 11/08/2022]
Abstract
SCOPE The role of dietary fatty acids in the generation of bone marrow (BM) immune cells and their trafficking to extramedullary compartments in the obesity is not yet fully understood. METHODS AND RESULTS C57BL/6J mice are randomly assigned to isocaloric high-fat diets (HFDs) formulate with dietary fats rich in saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) or MUFAs fortified with eicosapentaenoic and docosahexaenoic acids for 20 weeks, followed by profiling of the obese metabolic phenotype and immunophenotypic features of immune cells in blood, spleen, and BM. All HFDs induce an obese phenotype, but it becomes largely less disruptive after the HFDs are enriched in MUFAs, which also induce signs of granulopoiesis and an expansion of long-term hematopoietic stem and granulocyte-macrophage progenitor cells in BM. In contrast, a HFD enriched in SFAs disturbs the fitness of medullary lymphocytes and promotes monopoiesis in favor of pro-inflammatory activated subsets. CONCLUSION The reshaping of the fatty acid pools with MUFAs from the diet serves to manipulate the generation and trafficking of immune cells that are biased during obesity. These findings reveal a novel strategy by which dietary MUFAs may be instrumental in combating HFD-induced dysfunctional immune systems.
Collapse
Affiliation(s)
- Ana Lemus-Conejo
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), Seville, 41013, Spain
| | - Mayte Medrano
- Department of Haematology, Instituto de Biomedicina de Sevilla (IBiS/CSIC/CIBERONC), Hospital Universitario Virgen del Rocio, University of Seville, Seville, 41012, Spain
| | - Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), Seville, 41013, Spain
- Department of Cell Biology, Faculty of Biology, University of Seville, Seville, 41012, Spain
- Instituto de Biomedicina de Sevilla (IBiS/CSIC), Hospital Universitario Virgen del Rocio, University of Seville, Seville, 41012, Spain
| | | | - Maria A Rosillo
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), Seville, 41013, Spain
| | - Jose A Perez-Simon
- Department of Haematology, Instituto de Biomedicina de Sevilla (IBiS/CSIC/CIBERONC), Hospital Universitario Virgen del Rocio, University of Seville, Seville, 41012, Spain
| | - Francisco J G Muriana
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), Seville, 41013, Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), Seville, 41013, Spain
| |
Collapse
|
15
|
Parkman JK, Sklioutovskaya-Lopez K, Menikdiwela KR, Freeman L, Moustaid-Moussa N, Kim JH. Effects of high fat diets and supplemental tart cherry and fish oil on obesity and type 2 diabetes in male and female C57BL/6J and TALLYHO/Jng mice. J Nutr Biochem 2021; 94:108644. [PMID: 33838231 DOI: 10.1016/j.jnutbio.2021.108644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/15/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022]
Abstract
Obesogenic and diabetogenic high fat (HF) diets can influence genetic factors in disease development with sexual dimorphic responses. We investigated potential protective effects of tart cherry (TC), fish oil (FO) and TC+FO supplementation in TALLYHO/Jng (TH) and C57BL/6J (B6) mice fed HF diets. Male and female TH and B6 mice were weaned onto five different diets; low fat (LF), HF, and HF supplemented with TC, FO, or TC+FO and maintained. For both males and females on LF, TH mice were heavier and fatter than B6, which was accentuated by HF in males, but not in females. TH males, but not others, developed severe glucose intolerance and hyperglycemia on HF, with reduced mRNA levels of Adipoq and Esr1 in adipose tissue. Considering energy balance, locomotor activity was lower in TH mice than B6 for both sexes without diet effects, except B6 females where HF decreased it. Compared to LF, HF decreased energy expenditure, RER, and food intake (in grams) for both sexes without strain differences. In all mice, but B6 males, HF increased plasma IL6 levels compared to LF. No preventive effects of TC, FO or TC+FO were noted for HF-induced obesity or energy imbalance, but FO alleviated glucose intolerance in TH males. Further, TC and FO decreased plasma IL6 levels, especially in females, without additive or synergistic effects of these two. Collectively, obesogenic and diabetogenic impacts of HF diets differed depending on the genetic predisposition. Moreover, sexually dimorphic effects of dietary supplementation were observed for glucose metabolism and inflammatory markers.
Collapse
Affiliation(s)
- Jacaline K Parkman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | | | - Kalhara R Menikdiwela
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, USA
| | - Logan Freeman
- School of Kinesiology, College of Health Profession, Marshall University, Huntington, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, USA
| | - Jung Han Kim
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA.
| |
Collapse
|
16
|
da Cunha de Sá RDC, Simão JDJ, da Silva VS, de Farias TM, Cruz MM, Antraco VJ, Armelin-Correa L, Alonso-Vale MI. Fish Oil Enriched in EPA, but Not in DHA, Reverses the Metabolic Syndrome and Adipocyte Dysfunction Induced by a High-Fat Diet. Nutrients 2021; 13:nu13030754. [PMID: 33652751 PMCID: PMC7996952 DOI: 10.3390/nu13030754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate the effects of two commercially available fish oils (FOs) containing different proportions of two omega-3 fatty acids (FA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on the metabolic and endocrine dysfunctions of white adipose tissue resulting from obesity. Male C57BL/6J mice, 8 weeks old, received a control or high-fat diet (CO and HF groups, with 9% and 59% energy from fat, respectively) for 8 weeks. The next 8 weeks, the HF group was subdivided into HF, HF+FO/E (HF+5:1 EPA:DHA), and HF+FO/D (HF+5:1 DHA:EPA). Supplementation was performed by gavage, three times a week. All groups that received the HF diet had lower food and caloric intake, but a higher fat intake, body weight (BW) gain, glucose intolerance, and a significant increase in inguinal (ING), retroperitoneal (RP), and epididymal (EPI) adipose tissues when compared to the CO group. Additionally, HF and HF+FO/D groups showed insulin resistance, adipocyte hypertrophy, increased lipolysis and secretion of TNF-α, resistin and IL-10 adipokines by ING and RP adipocytes, and adiponectin only by the HF+FO/D group in ING adipocytes. All of these effects were completely reversed in the HF+FO/E group, which also showed partial reversion in BW gain and glucose intolerance. Both the HF+FO/E and HF+FO/D groups showed a reduction in ING and RP adipose depots when compared to the HF group, but only HF+FO/E in the EPI depot. HF+FO/E, but not HF+FO/D, was able to prevent the changes triggered by obesity in TNF-α, Il-10, and resistin secretion in ING and RP depots. These results strongly suggest that different EPA:DHA ratios have different impacts on the adipose tissue metabolism, FO being rich in EPA, but not in DHA, and effective in reversing the changes induced by obesity.
Collapse
|
17
|
Antraco VJ, Hirata BKS, de Jesus Simão J, Cruz MM, da Silva VS, da Cunha de Sá RDC, Abdala FM, Armelin-Correa L, Alonso-Vale MIC. Omega-3 Polyunsaturated Fatty Acids Prevent Nonalcoholic Steatohepatitis (NASH) and Stimulate Adipogenesis. Nutrients 2021; 13:nu13020622. [PMID: 33671850 PMCID: PMC7918199 DOI: 10.3390/nu13020622] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
The increasing impact of obesity on global human health intensifies the importance of studies focusing on agents interfering with the metabolism and remodeling not only of the white adipose tissue (WAT) but also of the liver. In the present study, we have addressed the impact of n-3 PUFA in adipose cells' proliferation and adipogenesis, as well as in the hepatic lipid profile and morphology. Mice were induced to obesity by the consumption of a high-fat diet (HFD) for 16 weeks. At the 9th week, the treatment with fish oil (FO) was initiated and maintained until the end of the period. The FO treatment reduced the animals' body mass, plasma lipids, glucose, plasma transaminases, liver mass, triacylglycerol, and cholesterol liver content when compared to animals consuming only HFD. FO also decreased the inguinal (ing) WAT mass, reduced adipocyte volume, increased adipose cellularity (hyperplasia), and increased the proliferation of adipose-derived stromal cells (AdSCs) which corroborates the increment in the proliferation of 3T3-L1 pre-adipocytes or AdSCs treated in vitro with n-3 PUFA. After submitting the in vitro treated (n-3 PUFA) cells, 3T3-L1 and AdSCs, to an adipogenic cocktail, there was an increase in the mRNA expression of adipogenic transcriptional factors and other late adipocyte markers, as well as an increase in lipid accumulation when compared to not treated cells. Finally, the expression of browning-related genes was also higher in the n-3 PUFA treated group. We conclude that n-3 PUFA exerts an attenuating effect on body mass, dyslipidemia, and hepatic steatosis induced by HFD. FO treatment led to decreasing adiposity and adipocyte hypertrophy in ingWAT while increasing hyperplasia. Data suggest that FO treatment might induce recruitment (by increased proliferation and differentiation) of new adipocytes (white and/or beige) to the ingWAT, which is fundamental for the healthy expansion of WAT.
Collapse
|
18
|
Wei W, Hu M, Huang J, Yu S, Li X, Li Y, Mao L. Anti-obesity effects of DHA and EPA in high fat-induced insulin resistant mice. Food Funct 2021; 12:1614-1625. [DOI: 10.1039/d0fo02448a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Docosahexaenoic acid (DHA, 22:6) and eicosapentaenoic acid (EPA, 20:5) exert their anti-obesity effect by mechanisms dependent or independent of PPARγ and GPR120 signaling in insulin resistant mice.
Collapse
Affiliation(s)
- Wenting Wei
- Department of Nutrition and Food Hygiene
- Guangdong Provincial Key Laboratory of Tropical Disease Research
- School of Public Health
- Southern Medical University
- Guangzhou 510515
| | - Manjiang Hu
- Department of Nutrition and Food Hygiene
- Guangdong Provincial Key Laboratory of Tropical Disease Research
- School of Public Health
- Southern Medical University
- Guangzhou 510515
| | - Jie Huang
- Department of Nutrition and Food Hygiene
- Guangdong Provincial Key Laboratory of Tropical Disease Research
- School of Public Health
- Southern Medical University
- Guangzhou 510515
| | - Siyan Yu
- Department of Nutrition and Food Hygiene
- Guangdong Provincial Key Laboratory of Tropical Disease Research
- School of Public Health
- Southern Medical University
- Guangzhou 510515
| | - Xudong Li
- Department of Nutrition and Food Hygiene
- Guangdong Provincial Key Laboratory of Tropical Disease Research
- School of Public Health
- Southern Medical University
- Guangzhou 510515
| | - Yanhui Li
- Department of Nutrition and Food Hygiene
- Guangdong Provincial Key Laboratory of Tropical Disease Research
- School of Public Health
- Southern Medical University
- Guangzhou 510515
| | - Limei Mao
- Department of Nutrition and Food Hygiene
- Guangdong Provincial Key Laboratory of Tropical Disease Research
- School of Public Health
- Southern Medical University
- Guangzhou 510515
| |
Collapse
|
19
|
da Cunha de Sá RDC, Cruz MM, de Farias TM, da Silva VS, de Jesus Simão J, Telles MM, Alonso-Vale MIC. Fish oil reverses metabolic syndrome, adipocyte dysfunction, and altered adipokines secretion triggered by high-fat diet-induced obesity. Physiol Rep 2020; 8:e14380. [PMID: 32109344 PMCID: PMC7048378 DOI: 10.14814/phy2.14380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
The effect of fish oil (FO) treatment on high-fat (HF) diet-induced obesity and metabolic syndrome was addressed by analyzing dysfunctions in cells of different adipose depots. For this purpose, mice were initially induced to obesity for 8 weeks following a treatment with FO containing high concentration of EPA compared to DHA (5:1), for additional 8 weeks (by gavage, 3 times per week). Despite the higher fat intake, the HF group showed lower food intake but higher body weight, glucose intolerance and insulin resistance, significant dyslipidemia and increased liver, subcutaneous (inguinal-ING) and visceral (retroperitoneal-RP) adipose depots mass, accompanied by adipocyte hypertrophy and decreased cellularity in both adipose tissue depots. FO treatment reversed all these effects, as well as it improved the metabolic activities of isolated adipocytes, such as glucose uptake and lipolysis in both depots, and de novo synthesis of fatty acids in ING adipocytes. HF diet also significantly increased both the pro and anti-inflammatory cytokines expression by adipocytes, while HF + FO did not differ from control group. Collectively, these data show that the concomitant administration of FO with the HF diet is able to revert metabolic changes triggered by the diet-induced obesity, as well as to promote beneficial alterations in adipose cell activities. The main mechanism underlying all systemic effects involves direct and differential effects on ING and RP adipocytes.
Collapse
Affiliation(s)
- Roberta D. C. da Cunha de Sá
- Post‐graduate Program in Chemical BiologyInstitute of Environmental Sciences, Chemical and PharmaceuticalFederal University of Sao Paulo ‐UNIFESPDiademaSao PauloBrazil
| | - Maysa M. Cruz
- Post‐graduate Program in Chemical BiologyInstitute of Environmental Sciences, Chemical and PharmaceuticalFederal University of Sao Paulo ‐UNIFESPDiademaSao PauloBrazil
| | - Talita M. de Farias
- Post‐graduate Program in Chemical BiologyInstitute of Environmental Sciences, Chemical and PharmaceuticalFederal University of Sao Paulo ‐UNIFESPDiademaSao PauloBrazil
| | - Viviane S. da Silva
- Post‐graduate Program in Chemical BiologyInstitute of Environmental Sciences, Chemical and PharmaceuticalFederal University of Sao Paulo ‐UNIFESPDiademaSao PauloBrazil
| | - Jussara de Jesus Simão
- Post‐graduate Program in Chemical BiologyInstitute of Environmental Sciences, Chemical and PharmaceuticalFederal University of Sao Paulo ‐UNIFESPDiademaSao PauloBrazil
| | - Monica M. Telles
- Post‐graduate Program in Chemical BiologyInstitute of Environmental Sciences, Chemical and PharmaceuticalFederal University of Sao Paulo ‐UNIFESPDiademaSao PauloBrazil
- Department of Biological SciencesInstitute of Environmental Sciences, Chemical and PharmaceuticalFederal University of Sao Paulo ‐ UNIFESPDiademaSao PauloBrazil
| | - Maria Isabel C. Alonso-Vale
- Post‐graduate Program in Chemical BiologyInstitute of Environmental Sciences, Chemical and PharmaceuticalFederal University of Sao Paulo ‐UNIFESPDiademaSao PauloBrazil
- Department of Biological SciencesInstitute of Environmental Sciences, Chemical and PharmaceuticalFederal University of Sao Paulo ‐ UNIFESPDiademaSao PauloBrazil
| |
Collapse
|
20
|
Cruz MM, Simão JJ, de Sá RDCC, Farias TSM, da Silva VS, Abdala F, Antraco VJ, Armelin-Correa L, Alonso-Vale MIC. Palmitoleic Acid Decreases Non-alcoholic Hepatic Steatosis and Increases Lipogenesis and Fatty Acid Oxidation in Adipose Tissue From Obese Mice. Front Endocrinol (Lausanne) 2020; 11:537061. [PMID: 33117273 PMCID: PMC7561405 DOI: 10.3389/fendo.2020.537061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023] Open
Abstract
We recently demonstrated that palmitoleic acid (C16:1n7), a monounsaturated fatty acid, increases the metabolic and oxidative capacity of 3T3-L1 adipocytes. Herein, the effect of 16:1n7 supplementation on metabolic parameters on white adipose tissue (WAT) and liver of obese mice induced by a high-fat diet (HFD) was addressed by analyzing metabolic (dys)function and altered genes expression in adipose tissue, as well as liver and serum biochemistry analysis. For this purpose, mice were induced to obesity for 8 weeks, and from the 5th week, they received 16:1n7 (300 mg/kg per day) or water for 30 days, by gavage. Subcutaneous inguinal (ING) and epididymal (EPI) WAT were removed for analysis of metabolic, (anti)inflammatory, adipogenic, and thermogenic genes expression by real-time reverse transcriptase-polymerase chain reaction. Additionally, metabolic activities of isolated adipocytes, such as glucose uptake, lipogenesis (triacylglycerol esterification), β-oxidation, and lipolysis in ING adipocytes, were also assessed. Despite the higher fat intake, the HFD group showed lower food intake but higher body weight, increased glucose, significant dyslipidemia, and increased liver and adipose depot mass, accompanied by liver steatosis. The 16:1n7 supplementation slowed down the body mass gain and prevented the increase of lipids in the liver. HFD+n7 animals presented increased fatty acid oxidation and lipogenesis compared to control, but no effect was observed on lipolysis and glucose uptake in ING isolated adipocytes. Besides, 16:1n7 increased the content of the mRNA encoding FABP4, but partially prevented the expression of genes encoding ATGL, HSL, perilipin, lipin, C/EBP-α, PPAR-γ, C/EBP-β, CPT1, NRF1, TFAM, PRDM16, and nitric oxide synthase 2 in ING depot from HFD group of animals. Finally, HFD increased Mcp1 and Tnfα expression, and 16:1n7 promoted a more marked increase in it. In summary, the data show that palmitoleic acid promotes metabolic changes and partially prevents the increase in gene expression on adipocytes triggered by obesity, suggesting that HFD+n7 animals do not require the same magnitude of metabolic adaptation to cope with energy demand from the HFD. In the long term, the effects of 16:1n7 may be more evident and beneficial for the function/dysfunction of WAT from an obese organism, with relevant repercussions in the systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Maysa M. Cruz
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Jussara J. Simão
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Roberta D. C. C. de Sá
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Talita S. M. Farias
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Viviane S. da Silva
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Fernanda Abdala
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Vitor J. Antraco
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Lucia Armelin-Correa
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Maria Isabel C. Alonso-Vale
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
- *Correspondence: Maria Isabel C. Alonso-Vale
| |
Collapse
|