1
|
Murthy S, Seabold DA, Gautam LK, Caceres AM, Sease R, Calvert BA, Busch SM, Neely A, Marconett CN, Ryan AL. Culture conditions differentially regulate the inflammatory niche and cellular phenotype of tracheobronchial basal stem cells. Am J Physiol Lung Cell Mol Physiol 2025; 328:L538-L553. [PMID: 39982813 DOI: 10.1152/ajplung.00293.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
Bronchial epithelial cells derived from the tracheobronchial regions of human airways (HBECs) provide a valuable in vitro model for studying pathological mechanisms and evaluating therapeutics. This cell population comprises a mixed population of basal cells (BCs), the predominant stem cell in airways capable of both self-renewal and functional differentiation. Despite their potential for regenerative medicine, BCs exhibit significant phenotypic variability in culture. To investigate how culture conditions influence BC phenotype and function, we expanded three independent BC isolates in three media: airway epithelial cell growth medium (AECGM), dual-SMAD inhibitor (DSI)-enriched AECGM, and PneumaCult Ex plus (PEx+). Analysis through RNA sequencing, immune assays, and impedance measurements revealed that PEx+ media significantly drove cell proliferation and a broad proinflammatory phenotype in BCs. In contrast, BCs expanded in AECGM and displayed increased expression of structural and extracellular matrix components at higher passage. AECGM increased expression of some cytokines at high passage, whereas DSI suppressed inflammation implicating the involvement TGF-β in BC inflammatory processes. Differentiation capacity of BCs declined with time in culture irrespective of expansion media. This was associated with an increase in PLUNC expressing secretory cells in AECGM and PEx+ media consistent with the known immune modulatory role of PLUNC in the airways. These findings highlight the profound impact of media conditions on inflammatory niche established by, and function of, in vitro expanded BCs. The broad proinflammatory phenotype driven by PEx+ media, in particular, should be considered in the development of cell-based models for airway diseases and therapeutic applications.NEW & NOTEWORTHY Airway basal cells, vital for airway regeneration and potential therapies, show significant changes based on culture conditions. Our study reveals that media composition and culture duration greatly affect basal cell properties with profound changes in the proinflammatory phenotype and extracellular matrix deposition driven by changes in growth conditions. These results underscore the critical impact of culture conditions on BC phenotype, influencing cell-based models for airway disease research and therapy.
Collapse
Affiliation(s)
- Shubha Murthy
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Denise A Seabold
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Lalit K Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Adrian M Caceres
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Rosemary Sease
- Department of Medicine, Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, California, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California, United States
| | - Ben A Calvert
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Department of Medicine, Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, California, United States
| | - Shana M Busch
- Department of Medicine, Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, California, United States
| | - Aaron Neely
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, California, United States
| | - Crystal N Marconett
- Department of Medicine, Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, California, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California, United States
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, California, United States
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Department of Medicine, Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, California, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
2
|
Nick HJ, Christeson SE, Bratcher PE. VX-770, C act-A1, and Increased Intracellular cAMP Have Distinct Acute Impacts upon CFTR Activity. Int J Mol Sci 2025; 26:471. [PMID: 39859187 PMCID: PMC11764695 DOI: 10.3390/ijms26020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that is dysfunctional in individuals with cystic fibrosis (CF). The permeability of CFTR can be experimentally manipulated though different mechanisms, including activation via inducing the phosphorylation of residues in the regulatory domain as well as altering the gating/open probability of the channel. Phosphorylation/activation of the channel is achieved by exposure to compounds that increase intracellular cAMP, with forskolin and IBMX commonly used for this purpose. Cact-A1 is a unique CFTR activator that does not increase intracellular cAMP, and VX-770 (ivacaftor) is a CFTR potentiator that is used experimentally and therapeutically to increase the open probability of the channel. Using primary human nasal epithelial cell (HNEC) cultures and Fischer rat thyroid (FRT) epithelial cells exogenously expressing functional CFTR, we examined the impact of VX-770, Cact-A1, and forskolin/IBMX on CFTR activity during analysis in an Ussing chamber. Relative contributions of these compounds to maximal CFTR activity were dependent on order of exposure, the presence of chemical and electrical gradients, the level of constitutive CFTR function, and the cell model tested. Increasing intracellular cAMP appeared to change cellular functions outside of CFTR activity that resulted in alterations in the drive for chloride through CFTR. These results demonstrate that one can utilize combinations of small-molecule CFTR activators and potentiators to provide detailed characterization of CFTR-mediated ion transport in primary HNECs and properties of these modulators in both primary HNECs and FRT cells. Future studies using these approaches may assist in the identification of novel defects in CFTR function and the identification of modulators with unique impacts on CFTR-mediated ion transport.
Collapse
Affiliation(s)
- Heidi J. Nick
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA; (H.J.N.); (S.E.C.)
| | - Sarah E. Christeson
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA; (H.J.N.); (S.E.C.)
| | - Preston E. Bratcher
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA; (H.J.N.); (S.E.C.)
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Nick HJ, Christeson SE, Bratcher PE. The Functional Impact of VX-770 on the Cystic Fibrosis Transmembrane Conductance Regulator Is Enduring and Increases the Constitutive Activity of This Channel in Primary Airway Epithelia Generated from Healthy Donors. Biomolecules 2024; 14:1378. [PMID: 39595555 PMCID: PMC11591604 DOI: 10.3390/biom14111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
VX-770 is a small-molecule CFTR potentiator that is highly efficacious in individuals with cystic fibrosis caused by mutations in CFTR that result in a defect in channel gating. While studies have reported on the mechanism of action of VX-770, there is still more to learn about the impact that it has on CFTR function in various contexts. The aim of the present study was to examine the longevity and stability of the effect of VX-770 on CFTR function in cultured airway epithelia and to measure the consequences of this interaction. The responses to acute and chronic VX-770 exposure were measured in cultures of expanded and re-differentiated primary human nasal epithelial cells. Acute VX-770 exposure resulted in an increase in CFTR-mediated currents in the absence of exogenous compounds that induce the phosphorylation/activation of CFTR, with acute exposure having the same effect as chronic exposure. The functional impact of VX-770 on CFTR was long-lasting in cultured airway epithelia, as they maintained an electrophysiological profile consistent with the saturation of CFTR with VX-770 over time periods of up to 4 days following a short (0.5 min) or low-dose (100 nM) exposure to VX-770 during an analysis in an Ussing chamber. Rinsing the apical surface prior to VX-770 exposure or exposure during the analysis in the Ussing chamber increased the interaction between VX-770 and the CFTR. Importantly, after short, low-dose exposures to VX-770, the CFTR channels in cultured epithelia appeared to remain saturated with VX-770 for extended periods of time, despite the repetitive rinsing of the apical surface. This finding has implications for patients discontinuing the use of VX-770-containing therapies.
Collapse
Affiliation(s)
- Heidi J. Nick
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | | | - Preston E. Bratcher
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Murthy S, Seabold DA, Gautam LK, Caceres AM, Sease R, Calvert BA, Busch S, Neely A, Marconett CN, Ryan AL. Culture Conditions Differentially Regulate the Inflammatory Niche and Cellular Phenotype of Tracheo-Bronchial Basal Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611264. [PMID: 39282256 PMCID: PMC11398510 DOI: 10.1101/2024.09.04.611264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Human bronchial epithelial cells (HBECs) derived from the tracheo-bronchial regions of human airways provide an excellent in vitro model for studying pathological mechanisms and evaluating therapeutics in human airway cells. This cell population comprises a mixed population of basal cells (BCs), the predominant stem cell in airways capable of both self-renewal and functional differentiation. Despite their potential for regenerative medicine, BCs exhibit significant phenotypic variability in culture. To investigate how culture conditions influence BC phenotype and function, we expanded three independent BC isolates in three media, airway epithelial cell growth medium (AECGM), dual-SMAD inhibitor (DSI)-enriched AECGM, and Pneumacult Ex plus (PEx+). Extensive RNA sequencing, immune assays and electrical measurements revealed that PEx+ media significantly drove cell proliferation and a broad pro-inflammatory phenotype in BCs. In contrast, BCs expanded in AECGM, displayed increased expression of structural and extracellular matrix components at high passage. Whereas culture in AECGM increased expression of some cytokines at high passage, DSI suppressed inflammation altogether thus implicating TGF-β in BC inflammatory processes. Differentiation capacity declined with time in culture irrespective of expansion media except for PLUNC expressing secretory cells that were elevated at high passage in AECGM and PEx+ suggestive of an immune modulatory role of PLUNC in BCs. These findings underscore the profound impact of media conditions on inflammatory niche and function of in vitro expanded BCs. The broad pro-inflammatory phenotype driven by PEx+ media, in particular, should be considered in the development of cell-based models for airway diseases and therapeutic application.
Collapse
Affiliation(s)
- Shubha Murthy
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
| | - Denise A. Seabold
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
| | - Lalit K. Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
| | - Adrian M. Caceres
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
| | - Rosemary Sease
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
| | - Ben A. Calvert
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
| | - Shana Busch
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
| | - Aaron Neely
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| | - Crystal N. Marconett
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Amy L. Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
5
|
Han H, Liu C, Li M, Wang J, Liu YS, Zhou Y, Li ZC, Hu R, Li ZH, Wang RM, Guan YY, Zhang B, Wang GL. Increased intracellular Cl - concentration mediates neutrophil extracellular traps formation in atherosclerotic cardiovascular diseases. Acta Pharmacol Sin 2022; 43:2848-2861. [PMID: 35513433 PMCID: PMC9622838 DOI: 10.1038/s41401-022-00911-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/07/2022] [Indexed: 11/09/2022]
Abstract
Neutrophil extracellular traps (NETs) play crucial roles in atherosclerotic cardiovascular diseases such as acute coronary syndrome (ACS). Our preliminary study shows that oxidized low-density lipoprotein (oxLDL)-induced NET formation is accompanied by an elevated intracellular Cl- concentration ([Cl-]i) and reduced cystic fibrosis transmembrane conductance regulator (CFTR) expression in freshly isolated human blood neutrophils. Herein we investigated whether and how [Cl-]i regulated NET formation in vitro and in vivo. We showed that neutrophil [Cl-]i and NET levels were increased in global CFTR null (Cftr-/-) mice in the resting state, which was mimicked by intravenous injection of the CFTR inhibitor, CFTRinh-172, in wild-type mice. OxLDL-induced NET formation was aggravated by defective CFTR function. Clamping [Cl-]i at high levels directly triggered NET formation. Furthermore, we demonstrated that increased [Cl-]i by CFTRinh-172 or CFTR knockout increased the phosphorylation of serum- and glucocorticoid-inducible protein kinase 1 (SGK1) and generation of intracellular reactive oxygen species in neutrophils, and promoted oxLDL-induced NET formation and pro-inflammatory cytokine production. Consistently, peripheral blood samples obtained from atherosclerotic ApoE-/- mice or stable angina (SA) and ST-elevation ACS (STE-ACS) patients exhibited increased neutrophil [Cl-]i and SGK1 activity, decreased CFTR expression, and elevated NET levels. VX-661, a CFTR corrector, reduced the NET formation in the peripheral blood sample obtained from oxLDL-injected mice, ApoE-/- atherosclerotic mice or patients with STE-ACS by lowering neutrophil [Cl-]i. These results demonstrate that elevated neutrophil [Cl-]i during the development of atherosclerosis and ACS contributes to increased NET formation via Cl--sensitive SGK1 signaling, suggesting that defective CFTR function might be a novel therapeutic target for atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Hui Han
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chang Liu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mei Li
- VIP Healthcare Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jin Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yao-Sheng Liu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yi Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zi-Cheng Li
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rui Hu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhi-Hong Li
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ruo-Mei Wang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yong-Yuan Guan
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bin Zhang
- VIP Healthcare Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Guan-Lei Wang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Shaughnessy CA, Yadav S, Bratcher PE, Zeitlin PL. Receptor-mediated activation of CFTR via prostaglandin signaling pathways in the airway. Am J Physiol Lung Cell Mol Physiol 2022; 322:L305-L314. [PMID: 35020527 PMCID: PMC8858663 DOI: 10.1152/ajplung.00388.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations of the gene encoding a cAMP-activated Cl- channel, the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR modulator therapies consist of small-molecule drugs that rescue mutant CFTR. Regimens of single or combinations of CFTR modulators still rely on endogenous levels of cAMP to regulate CFTR activity. We investigated CFTR activation by the natural mediator prostaglandin E2 (PGE2) and lubiprostone (a Food and Drug Administration-approved drug known to target prostaglandin receptors) and tested the hypothesis that receptor-mediated CFTR activators can be used in combination with currently available CFTR modulators to increase function of mutant CFTR. Primary-cultured airway epithelia were assayed in Ussing chambers. Experimental CFTR activators and established CFTR modulators were applied for 24 h and/or acutely and analyzed for their effect on CFTR activity as measured by changes in short-circuit current (ISC). In non-CF airway epithelia, acute application of lubiprostone and PGE2 activated CFTR to the levels comparable to forskolin (Fsk). Pretreatment (24 h) with antagonists to prostaglandin receptors EP2 and EP4 abolished the ability of lubiprostone to acutely activate CFTR. In F508del homozygous airway epithelia pretreated with the triple combination of elexacaftor, tezacaftor, and ivacaftor (ELEXA/TEZ/IVA; i.e., Trikafta), acute application of lubiprostone was able to maximally activate CFTR. Prolonged (24 h) cotreatment of F508del homozygous epithelia with ELEXA/TEZ/IVA and lubiprostone increased acute CFTR activation by ∼60% compared with the treatment with ELEXA/TEZ/IVA alone. This work establishes the feasibility of targeting prostaglandin receptors to activate CFTR on the airway epithelia and demonstrates that cotreatment with lubiprostone can further restore modulator-rescued CFTR.
Collapse
Affiliation(s)
| | - Sangya Yadav
- 1Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Preston E. Bratcher
- 1Department of Pediatrics, National Jewish Health, Denver, Colorado,2Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Pamela L. Zeitlin
- 1Department of Pediatrics, National Jewish Health, Denver, Colorado,2Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
7
|
Shaughnessy CA, Zeitlin PL, Bratcher PE. Net benefit of ivacaftor during prolonged tezacaftor/elexacaftor exposure in vitro. J Cyst Fibros 2022; 21:637-643. [DOI: 10.1016/j.jcf.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022]
|
8
|
Measurements of spontaneous CFTR-mediated ion transport without acute channel activation in airway epithelial cultures after modulator exposure. Sci Rep 2021; 11:22616. [PMID: 34799640 PMCID: PMC8605007 DOI: 10.1038/s41598-021-02044-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Quantitation of CFTR function in vitro is commonly performed by acutely stimulating then inhibiting ion transport through CFTR and measuring the resulting changes in transepithelial voltage (Vte) and current (ISC). While this technique is suitable for measuring the maximum functional capacity of CFTR, it may not provide an accurate estimate of in vivo CFTR activity. To test if CFTR-mediated ion transport could be measured in the absence of acute CFTR stimulation, primary airway epithelia were analyzed in an Ussing chamber with treatment of amiloride followed by CFTR(inh)-172 without acute activation of CFTR. Non-CF epithelia demonstrated a decrease in Vte and ISC following exposure to CFTR(inh)-172 and in the absence of forskolin/IBMX (F/I); this decrease is interpreted as a measure of spontaneous CFTR activity present in these epithelia. In F508del/F508del CFTR epithelia, F/I-induced changes in Vte and ISC were ~ fourfold increased after treatment with VX-809/VX-770, while the magnitude of spontaneous CFTR activities were only ~ 1.6-fold increased after VX-809/VX-770 treatment. Method-dependent discrepancies in the responses of other CF epithelia to modulator treatments were observed. These results serve as a proof of concept for the analysis of CFTR modulator responses in vitro in the absence of acute CFTR activation. Future studies will determine the usefulness of this approach in the development of novel CFTR modulator therapies.
Collapse
|
9
|
Shaughnessy CA, Zeitlin PL, Bratcher PE. Elexacaftor is a CFTR potentiator and acts synergistically with ivacaftor during acute and chronic treatment. Sci Rep 2021; 11:19810. [PMID: 34615919 PMCID: PMC8494914 DOI: 10.1038/s41598-021-99184-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), which lead to early death due to progressive lung disease. The development of small-molecule modulators that directly interact with CFTR to aid in protein folding (“correctors”) and/or increase channel function (“potentiators”) have proven to be highly effective in the therapeutic treatment of CF. Notably, incorporation of the next-generation CFTR corrector, elexacaftor, into a triple combination therapeutic (marketed as Trikafta) has shown tremendous clinical promise in treating CF caused by F508del-CFTR. Here, we report on a newly-described role of elexacaftor as a CFTR potentiator. We explore the acute and chronic actions, pharmacology, and efficacy of elexacaftor as a CFTR potentiator in restoring function to multiple classes of CFTR mutations. We demonstrate that the potentiating action of elexacaftor exhibits multiplicative synergy with the established CFTR potentiator ivacaftor in rescuing multiple CFTR class defects, indicating that a new combination therapeutic of ivacaftor and elexacaftor could have broad impact on CF therapies.
Collapse
Affiliation(s)
| | - Pamela L Zeitlin
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.,Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Preston E Bratcher
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.,Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| |
Collapse
|
10
|
Bratcher PE, Yadav S, Shaughnessy CA, Thornell IM, Zeitlin PL. Effect of apical chloride concentration on the measurement of responses to CFTR modulation in airway epithelia cultured from nasal brushings. Physiol Rep 2021; 8:e14603. [PMID: 33038073 PMCID: PMC7547589 DOI: 10.14814/phy2.14603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION One method for assessing the in vitro response to CFTR-modulating compounds is by analysis of epithelial monolayers in an Ussing chamber, where the apical and basolateral surfaces are isolated and the potential difference, short-circuit current, and transepithelial resistance can be monitored. The effect of a chloride ion gradient across airway epithelia on transepithelial chloride transport and the magnitude of CFTR modulator efficacy were examined. METHODS CFTR-mediated changes in the potential difference and transepithelial currents of primary human nasal epithelial cell cultures were quantified in Ussing chambers with either symmetrical solutions or reduced chloride solutions in the apical chamber. CFTR activity in homozygous F508del CFTR epithelia was rescued by treatment with VX-661, C4/C18, 4-phenylbutyrate (4-PBA) for 24 hr at 37°C or by incubation at 29°C for 48 hr. RESULTS Imposing a chloride gradient increased CFTR-mediated and CaCC-mediated ion transport. Treatment of F508del CFTR homozygous cells with CFTR modulating compounds increased CFTR activity, which was significantly more evident in the presence of a chloride gradient. This observation was recapitulated with temperature-mediated F508del CFTR correction. CONCLUSIONS Imposing a chloride gradient during Ussing chamber measurements resulted in increased CFTR-mediated ion transport in expanded non-CF and F508del CFTR homozygous epithelia. In F508del CFTR homozygous epithelia, the magnitude of response to CFTR modulating compounds or low temperature was greater when assayed with a chloride gradient compared to symmetrical chloride, resulting in an apparent increase in measured efficacy. Future work may direct which methodologies utilized to quantify CFTR modulator response in vitro are most appropriate for the estimation of in vivo efficacy.
Collapse
Affiliation(s)
- Preston E Bratcher
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.,Department of Pediatrics, Anschutz Medical Center, University of Colorado Denver, Aurora, CO, USA
| | - Sangya Yadav
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | | | - Ian M Thornell
- Dept. of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Pamela L Zeitlin
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.,Department of Pediatrics, Anschutz Medical Center, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
11
|
Nasal Epithelial Cell-Based Models for Individualized Study in Cystic Fibrosis. Int J Mol Sci 2021; 22:ijms22094448. [PMID: 33923202 PMCID: PMC8123210 DOI: 10.3390/ijms22094448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
The emergence of highly effective CFTR modulator therapy has led to significant improvements in health care for most patients with cystic fibrosis (CF). For some, however, these therapies remain inaccessible due to the rarity of their individual CFTR variants, or due to a lack of biologic activity of the available therapies for certain variants. One proposed method of addressing this gap is the use of primary human cell-based models, which allow preclinical therapeutic testing and physiologic assessment of relevant tissue at the individual level. Nasal cells represent one such tissue source and have emerged as a powerful model for individual disease study. The ex vivo culture of nasal cells has evolved over time, and modern nasal cell models are beginning to be utilized to predict patient outcomes. This review will discuss both historical and current state-of-the art use of nasal cells for study in CF, with a particular focus on the use of such models to inform personalized patient care.
Collapse
|
12
|
Yadav S, Shaughnessy CA, Zeitlin PL, Bratcher PE. Downregulation of epithelial sodium channel (ENaC) activity in human airway epithelia after low temperature incubation. BMJ Open Respir Res 2021; 8:8/1/e000861. [PMID: 33622672 PMCID: PMC7907861 DOI: 10.1136/bmjresp-2020-000861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Accepted: 02/13/2021] [Indexed: 11/12/2022] Open
Abstract
Introduction The incubation of airway epithelia cells at low temperatures is a common in vitro experimental approach used in the field of cystic fibrosis (CF) research to thermo-stabilise F508del-CFTR and increase its functional expression. Given that the airway epithelium includes numerous ion transporters other than CFTR, we hypothesised that there was an impact of low temperature incubation on CFTR-independent ionoregulatory mechanisms in airway epithelia derived from individuals with and without CF. Methods After differentiation at the air–liquid interface, nasal epithelia were incubated at either 37°C or 29°C (low temperature) for 48 hours prior to analysis in an Ussing chamber. Results While F508del-CFTR activity was increased after low temperature incubation, activity of CFTR in non-CF epithelia was unchanged. Importantly, cultures incubated at 29°C demonstrated decreased transepithelial potential difference (TEPD) and short-circuit currents (Isc) at baseline. The predominant factor contributing to the reduced baseline TEPD and Isc in 29°C cultures was the reduced activity of the epithelial sodium channel (ENaC), evidenced by a reduced responsiveness to amiloride. This effect was observed in cells derived from both non-CF and CF donors. Discussion Significant transcriptional downregulation of ENaC subunits β and γ were observed, which may partially explain the decreased ENaC activity. We speculate that low temperature incubation may be a useful experimental paradigm to reduce ENaC activity in in vitro epithelial cultures.
Collapse
Affiliation(s)
- Sangya Yadav
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | | | - Pamela L Zeitlin
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Preston E Bratcher
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA .,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|