1
|
Zhang Y, Chen L, Gao J, Cheng Y, Luo F, Bai X, Ding H. Nutritive/non-nutritive sweeteners and high fat diet contribute to dysregulation of sweet taste receptors and metabolic derangements in oral, intestinal and central nervous tissues. Eur J Nutr 2023; 62:3149-3159. [PMID: 37537344 DOI: 10.1007/s00394-023-03187-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/31/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVES Overconsumption of non-nutritive sweeteners is associated with obesity, whereas the underlying mechanisms remain controversial. This study aimed to investigate the effects of long-term consumption of nutritive or non-nutritive sweeteners with or without high fat diet on sweet taste receptor expression in nutrient-sensing tissues and energy regulation dependent on sweet-sensing. METHODS 50 Male Sprague-Dawley rats (140-160 g) were assigned to 10 groups (n = 5/group). All received fructose at 2.5% or 10%, sucralose at 0.01% or 0.015% or water with a normal chow diet or high fat diet for 12 weeks. Food and drink intake were monitored daily. Oral glucose tolerance test and intraperitoneal glucose tolerance test were performed at week 10 and 11 respectively. Serum was obtained for measurement of biochemical parameters. Tongue, duodenum, jejunum, ileum, colon and hypothalamus were rapidly removed to assess gene expression. RESULTS Long-term consumption of sweeteners impaired glucose tolerance, increased calorie intake and body weight. A significant upregulation of sweet taste receptor expression was observed in all the four intestinal segments in groups fed 0.01% sucralose or 0.015% sucralose, most strikingly in the ileum, accompanied by elevated serum glucagon-like peptide-1 levels and up-regulated expression of sodium-dependent glucose cotransporter 1 and glucose transporter 2. A significant down-regulation in the tongue and hypothalamus was observed in groups fed 10% fructose or 0.015% sucralose, with alterations in hypothalamic appetite signals. The presence of high fat diet differentially modulates sweet taste perception in nutrient-sensing tissues. CONCLUSIONS Long-term consumption of whether nutritive sweeteners or non-nutritive sweeteners combined with high fat diet contribute to dysregulation of sweet taste receptor expression in oral, intestinal and central nervous tissues.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Lu Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Jiefang Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Yahong Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Fei Luo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Xinying Bai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
2
|
Kouakou YI, Lee RJ. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms 2023; 11:1295. [PMID: 37317269 PMCID: PMC10221136 DOI: 10.3390/microorganisms11051295] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Bitter and sweet taste G protein-coupled receptors (known as T2Rs and T1Rs, respectively) were originally identified in type II taste cells on the tongue, where they signal perception of bitter and sweet tastes, respectively. Over the past ~15 years, taste receptors have been identified in cells all over the body, demonstrating a more general chemosensory role beyond taste. Bitter and sweet taste receptors regulate gut epithelial function, pancreatic β cell secretion, thyroid hormone secretion, adipocyte function, and many other processes. Emerging data from a variety of tissues suggest that taste receptors are also used by mammalian cells to "eavesdrop" on bacterial communications. These receptors are activated by several quorum-sensing molecules, including acyl-homoserine lactones and quinolones from Gram-negative bacteria such as Pseudomonas aeruginosa, competence stimulating peptides from Streptococcus mutans, and D-amino acids from Staphylococcus aureus. Taste receptors are an arm of immune surveillance similar to Toll-like receptors and other pattern recognition receptors. Because they are activated by quorum-sensing molecules, taste receptors report information about microbial population density based on the chemical composition of the extracellular environment. This review summarizes current knowledge of bacterial activation of taste receptors and identifies important questions remaining in this field.
Collapse
Affiliation(s)
- Yobouet Ines Kouakou
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Robert J. Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Wang W, Mu Q, Feng X, Liu W, Xu H, Chen X, Shi F, Gong T. Sweet Taste Receptor T1R3 Expressed in Leydig Cells Is Closely Related to Homeostasis of the Steroid Hormone Metabolism Profile. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7791-7802. [PMID: 37186581 DOI: 10.1021/acs.jafc.3c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Taste receptor type 1 subunit 3 (T1R3) is initially expressed in mammal tongue for recognition and response of sweet/umami tastants and is critical to nutrient absorption, even endocrine. In this study, down-regulation of related steroidogenic enzymes such as StAR, 3β-HSD, CYP17A1, and 17β-HSD with the decrease of T1R3 expression was found in Leydig cells treated by a T1R3 inhibitor (lactisole). The abundances of progesterone, 17a-hydroxyprogesterone, androstenedione, testosterone, and deoxycorticosterone were down-regulated by 2.3, 3.5, 1.4, 1.6, and 2.2 times, respectively, after T1R3 inhibition. In addition, opposite results were found in saccharin sodium treatment. T1R3 activation contributed to intracellular cyclic adenosine monophosphate (cAMP) accumulation (14.41 ± 0.58 vs 20.21 ± 0.65) and increased testosterone (20.31 ± 3.49 vs 50.01 ± 7.44) and steroidogenic metabolite levels. Coadministration of human chorionic gonadotropin and saccharin sodium resulted in elevating the testosterone and cAMP levels and enhancing the expression levels of steroidogenic-related factors. Similarly, intratesticular injection of lactisole and saccharin sodium further confirmed that T1R3 inhibition/activation affected the expression of related steroidogenic enzymes and the testosterone levels in mice. The above findings suggest that T1R3 plays a role in testicular steroidogenesis.
Collapse
Affiliation(s)
- Weiyong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qi Mu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Xianzhou Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Wenjiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
4
|
Kobayashi K, Han L, Koyama T, Lu SN, Nishimura T. Sweet taste receptor subunit T1R3 regulates casein secretion and phosphorylation of STAT5 in mammary epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119448. [PMID: 36878266 DOI: 10.1016/j.bbamcr.2023.119448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/25/2023] [Accepted: 02/12/2023] [Indexed: 03/06/2023]
Abstract
During lactation, mammary epithelial cells (MECs) on the apical membrane are in contact with lactose in milk, while MECs on the basolateral membrane are in contact with glucose in blood. Both glucose and lactose are sweeteners that are sensed by a sweet taste receptor. Previously, we have shown that lactose exposure on the basolateral membrane, but not the apical membrane, inhibits casein production and phosphorylation of STAT5 in MECs. However, it remains unclear whether MECs have a sweet taste receptor. In this study, we confirmed that the sweet taste receptor subunit T1R3 existed in both the apical and basolateral membranes of MECs. Subsequently, we investigated the influence of apical and basolateral sucralose as a ligand for the sweet taste receptor using a cell culture model. In this model, upper and lower media were separated by the MEC layer with less-permeable tight junctions. The results showed in the absence of glucose, both apical and basolateral sucralose induced phosphorylation of STAT5, which is a positive transcriptional factor for milk production. In contrast, the T1R3 inhibitor basolateral lactisole reducing phosphorylated STAT5 and secreted caseins in the presence of glucose. Furthermore, exposure of the apical membrane to sucralose in the presence of glucose inhibited the phosphorylation of STAT5. Simultaneously, GLUT1 was partially translocated from the basolateral membrane to the cytoplasm in MECs. These results suggest that T1R3 functions as a sweet receptor and is closely involved in casein production in MECs.
Collapse
Affiliation(s)
- Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan.
| | - Liang Han
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| | - Taku Koyama
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| | - Shan-Ni Lu
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| |
Collapse
|
5
|
von Molitor E, Riedel K, Krohn M, Hafner M, Rudolf R, Cesetti T. Sweet Taste Is Complex: Signaling Cascades and Circuits Involved in Sweet Sensation. Front Hum Neurosci 2021; 15:667709. [PMID: 34239428 PMCID: PMC8258107 DOI: 10.3389/fnhum.2021.667709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Sweetness is the preferred taste of humans and many animals, likely because sugars are a primary source of energy. In many mammals, sweet compounds are sensed in the tongue by the gustatory organ, the taste buds. Here, a group of taste bud cells expresses a canonical sweet taste receptor, whose activation induces Ca2+ rise, cell depolarization and ATP release to communicate with afferent gustatory nerves. The discovery of the sweet taste receptor, 20 years ago, was a milestone in the understanding of sweet signal transduction and is described here from a historical perspective. Our review briefly summarizes the major findings of the canonical sweet taste pathway, and then focuses on molecular details, about the related downstream signaling, that are still elusive or have been neglected. In this context, we discuss evidence supporting the existence of an alternative pathway, independent of the sweet taste receptor, to sense sugars and its proposed role in glucose homeostasis. Further, given that sweet taste receptor expression has been reported in many other organs, the physiological role of these extraoral receptors is addressed. Finally, and along these lines, we expand on the multiple direct and indirect effects of sugars on the brain. In summary, the review tries to stimulate a comprehensive understanding of how sweet compounds signal to the brain upon taste bud cells activation, and how this gustatory process is integrated with gastro-intestinal sugar sensing to create a hedonic and metabolic representation of sugars, which finally drives our behavior. Understanding of this is indeed a crucial step in developing new strategies to prevent obesity and associated diseases.
Collapse
Affiliation(s)
- Elena von Molitor
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | | | | | - Mathias Hafner
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Tiziana Cesetti
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| |
Collapse
|
6
|
An alternative pathway for sweet sensation: possible mechanisms and physiological relevance. Pflugers Arch 2020; 472:1667-1691. [PMID: 33030576 DOI: 10.1007/s00424-020-02467-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Sweet substances are detected by taste-bud cells upon binding to the sweet-taste receptor, a T1R2/T1R3 heterodimeric G protein-coupled receptor. In addition, experiments with mouse models lacking the sweet-taste receptor or its downstream signaling components led to the proposal of a parallel "alternative pathway" that may serve as metabolic sensor and energy regulator. Indeed, these mice showed residual nerve responses and behavioral attraction to sugars and oligosaccharides but not to artificial sweeteners. In analogy to pancreatic β cells, such alternative mechanism, to sense glucose in sweet-sensitive taste cells, might involve glucose transporters and KATP channels. Their activation may induce depolarization-dependent Ca2+ signals and release of GLP-1, which binds to its receptors on intragemmal nerve fibers. Via unknown neuronal and/or endocrine mechanisms, this pathway may contribute to both, behavioral attraction and/or induction of cephalic-phase insulin release upon oral sweet stimulation. Here, we critically review the evidence for a parallel sweet-sensitive pathway, involved signaling mechanisms, neural processing, interactions with endocrine hormonal mechanisms, and its sensitivity to different stimuli. Finally, we propose its physiological role in detecting the energy content of food and preparing for digestion.
Collapse
|
7
|
Aghelan Z, Kiani S, Nasiri A, Sadeghi M, Farrokhi A, Khodarahmi R. Factors Influencing Mitochondrial Function as a Key Mediator of Glucose-Induced Insulin Release: Highlighting Nicotinamide Nucleotide Transhydrogenase. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2020; 9:107-122. [PMID: 32934948 PMCID: PMC7489113 DOI: 10.22088/ijmcm.bums.9.2.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic β-cells recognize blood glucose changes and release insulin that is a peptide hormone responsible for stable glycemia. Diabetes, a chronic disorder of insulin insufficiency, leads to disturbed glucose homeostasis and multi-organ problems. Glucose and insulin are key markers in the follow-up and control of this disease. Mitochondrial metabolism of pancreatic beta cells is a crucial part of glucose-stimulated cascade of insulin secretion. Effective factors on β-cells mitochondrial function in production of compounds such as tricarboxylic acid intermediates, glutamate, nicotinamide adenine dinucleotide phosphate, and reactive oxygen species can have great effects on the secretion of insulin under diabetes. This review enhances our knowledge of factors influencing mitochondrial function as a key mediator of glucose-induced insulin release that accordingly will be helpful to further our understanding of the mechanisms implicated in the progressive beta cell failure that results in diabetes.
Collapse
Affiliation(s)
- Zahra Aghelan
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Kiani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abolfazl Nasiri
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Sadeghi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Farrokhi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Iwamura M, Honda R, Nagasawa K. Elevation of the Blood Glucose Level is Involved in an Increase in Expression of Sweet Taste Receptors in Taste Buds of Rat Circumvallate Papillae. Nutrients 2020; 12:nu12040990. [PMID: 32252371 PMCID: PMC7230327 DOI: 10.3390/nu12040990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
The gustation system for sweeteners is well-known to be regulated by nutritional and metabolic conditions, but there is no or little information on the underlying mechanism. Here, we examined whether elevation of the blood glucose level was involved in alteration of the expression of sweet taste receptors in circumvallate papillae (CP) and sweet taste sensitivity in male Sprague-Dawley rats. Rats under 4 h-fed conditions following 18 h-fasting exhibited elevated blood glucose levels and decreased pancreatic T1R3 expression, compared to rats after 18 h-fasting treatment, and they exhibited increased protein expression of sweet taste receptors T1R2 and T1R3 in CP. Under streptozotocin (STZ)-induced diabetes mellites (DM) conditions, the protein expression levels of T1R2 and T1R3 in CP were higher than those under control conditions, and these DM rats exhibited increased lick ratios in a low sucrose concentration range in a brief access test with a mixture of sucrose and quinine hydrochloride (QHCl). These findings indicate that the elevation of blood glucose level is a regulator for an increase in sweet taste receptor protein expression in rat CP, and such alteration in STZ-induced DM rats is involved in enhancement of their sweet taste sensitivity.
Collapse
|
9
|
Carey RM, Lee RJ. Taste Receptors in Upper Airway Innate Immunity. Nutrients 2019; 11:nu11092017. [PMID: 31466230 PMCID: PMC6770031 DOI: 10.3390/nu11092017] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Taste receptors, first identified on the tongue, are best known for their role in guiding our dietary preferences. The expression of taste receptors for umami, sweet, and bitter have been demonstrated in tissues outside of the oral cavity, including in the airway, brain, gastrointestinal tract, and reproductive organs. The extra-oral taste receptor chemosensory pathways and the endogenous taste receptor ligands are generally unknown, but there is increasing data suggesting that taste receptors are involved in regulating some aspects of innate immunity, and may potentially control the composition of the nasal microbiome in healthy individuals or patients with upper respiratory diseases like chronic rhinosinusitis (CRS). For this reason, taste receptors may serve as potential therapeutic targets, providing alternatives to conventional antibiotics. This review focuses on the physiology of sweet (T1R) and bitter (T2R) taste receptors in the airway and their activation by secreted bacterial products. There is particular focus on T2R38 in sinonasal ciliated cells, as well as the sweet and bitter receptors found on specialized sinonasal solitary chemosensory cells. Additionally, this review explores the impact of genetic variations in these receptors on the differential susceptibility of patients to upper airway infections, such as CRS.
Collapse
Affiliation(s)
- Ryan M Carey
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Sigoillot M, Brockhoff A, Neiers F, Poirier N, Belloir C, Legrand P, Charron C, Roblin P, Meyerhof W, Briand L. The Crystal Structure of Gurmarin, a Sweet Taste-Suppressing Protein: Identification of the Amino Acid Residues Essential for Inhibition. Chem Senses 2019; 43:635-643. [PMID: 30137256 DOI: 10.1093/chemse/bjy054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gurmarin is a highly specific sweet taste-suppressing protein in rodents that is isolated from the Indian plant Gymnema sylvestre. Gurmarin consists of 35 amino acid residues containing 3 intramolecular disulfide bridges that form a cystine knot. Here, we report the crystal structure of gurmarin at a 1.45 Å resolution and compare it with previously reported nuclear magnetic resonance solution structures. The atomic structure at this resolution allowed us to identify a very flexible region consisting of hydrophobic residues. Some of these amino acid residues had been identified as a putative binding site for the rat sweet taste receptor in a previous study. By combining alanine-scanning mutagenesis of the gurmarin molecule and a functional cell-based receptor assay, we confirmed that some single point mutations in these positions drastically affect sweet taste receptor inhibition by gurmarin.
Collapse
Affiliation(s)
- Maud Sigoillot
- INRA, CNRS, Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne-Franche Comté, Dijon, France
| | - Anne Brockhoff
- Department of Molecular Genetics, German Institute of Human Nutrition, Potsdam-Rehbruecke, Arthur-Scheunert-Allee, Nuthetal, Germany
| | - Fabrice Neiers
- INRA, CNRS, Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne-Franche Comté, Dijon, France
| | - Nicolas Poirier
- INRA, CNRS, Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne-Franche Comté, Dijon, France
| | - Christine Belloir
- INRA, CNRS, Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne-Franche Comté, Dijon, France
| | - Pierre Legrand
- SOLEIL Synchrotron, L'Orme de Merisiers, Saint-Aubin, Gif-sur-Yvette, France
| | - Christophe Charron
- Ingénierie Moléculaire et Physiopathologie Articulaire, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7365, Université de Lorraine, Biopôle de l'Université de Lorraine, Vandoeuvre-les-Nancy Cedex, France
| | - Pierre Roblin
- SOLEIL Synchrotron, L'Orme de Merisiers, Saint-Aubin, Gif-sur-Yvette, France
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition, Potsdam-Rehbruecke, Arthur-Scheunert-Allee, Nuthetal, Germany
| | - Loïc Briand
- INRA, CNRS, Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
11
|
Lasconi C, Pifferi S, Hernandez-Clavijo A, Merigo F, Cecchini MP, Gonzalez-Velandia KY, Agostinelli E, Sbarbati A, Menini A. Bitter tastants and artificial sweeteners activate a subset of epithelial cells in acute tissue slices of the rat trachea. Sci Rep 2019; 9:8834. [PMID: 31222082 PMCID: PMC6586933 DOI: 10.1038/s41598-019-45456-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Bitter and sweet receptors (T2Rs and T1Rs) are expressed in many extra-oral tissues including upper and lower airways. To investigate if bitter tastants and artificial sweeteners could activate physiological responses in tracheal epithelial cells we performed confocal Ca2+ imaging recordings on acute tracheal slices. We stimulated the cells with denatonium benzoate, a T2R agonist, and with the artificial sweeteners sucralose, saccharin and acesulfame-K. To test cell viability we measured responses to ATP. We found that 39% of the epithelial cells responding to ATP also responded to bitter stimulation with denatonium benzoate. Moreover, artificial sweeteners activated different percentages of the cells, ranging from 5% for sucralose to 26% for saccharin, and 27% for acesulfame-K. By using carbenoxolone, a gap junction blocker, we excluded that responses were mainly mediated by Ca2+ waves through cell-to-cell junctions. Pharmacological experiments showed that both denatonium and artificial sweeteners induced a PLC-mediated release of Ca2+ from internal stores. In addition, bitter tastants and artificial sweeteners activated a partially overlapping subpopulation of tracheal epithelial cells. Our results provide new evidence that a subset of ATP-responsive tracheal epithelial cells from rat are activated by both bitter tastants and artificial sweeteners.
Collapse
Affiliation(s)
- Chiara Lasconi
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, School of Medicine, Verona, Italy
| | - Simone Pifferi
- Neurobiology Group, SISSA, International School for Advanced Studies, Trieste, Italy.
| | | | - Flavia Merigo
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, School of Medicine, Verona, Italy
| | - Maria Paola Cecchini
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, School of Medicine, Verona, Italy.
| | | | - Emilio Agostinelli
- Neurobiology Group, SISSA, International School for Advanced Studies, Trieste, Italy
| | - Andrea Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, School of Medicine, Verona, Italy
| | - Anna Menini
- Neurobiology Group, SISSA, International School for Advanced Studies, Trieste, Italy
| |
Collapse
|
12
|
Song X, Liang G, Shi M, Zhou L, Wang F, Zhang L, Huang F, Jiang G. Acute exposure to 3‑deoxyglucosone at high glucose levels impairs insulin secretion from β‑cells by downregulating the sweet taste receptor signaling pathway. Mol Med Rep 2019; 19:5015-5022. [PMID: 31059088 DOI: 10.3892/mmr.2019.10163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/10/2019] [Indexed: 11/06/2022] Open
Abstract
Sweet taste receptors (STRs) expressed on β‑cells stimulate insulin secretion in response to an increase in the circulating level of glucose, maintaining glucose homeostasis. 3‑Deoxyglucosone (3DG), a highly reactive α‑dicarbonyl compound, has been previously described as an independent factor associate with the development of prediabetes. In our previous study, pathological plasma levels of 3DG were induced in normal rats with a single intravenous injection of 50 mg/kg 3DG, and an acute rise in circulating 3DG induced glucose intolerance by impairing the function of pancreatic β‑cells. The present study aimed to investigate whether the deleterious effects of pathological plasma levels of 3DG on β‑cell function and insulin secretion were associated with STRs. INS‑1 cells, an in vitro model to study rat β‑cells, were treated with various concentrations of 3DG (1.85, 30.84 and 61.68 mM) or lactisole (5 mM). Pancreatic islets were collected from rats 2 h after a single intravenous injection of 50 mg/kg 3DG + 0.5 g/kg glucose. The insulin concentration was measured by ELISA. The protein expression levels of components of the STR signaling pathways were determined by western blot analysis. Treatment with 3DG and 25.5 mM glucose for 1 h significantly reduced insulin secretion by INS‑1 cells, which was consistent with the phenotype observed in INS‑1 cells treated with the STR inhibitor lactisole. Accordingly, islets isolated from rats treated with 3DG exhibited a significant reduction in insulin secretion following treatment with 25.5 mM glucose. Furthermore, acute exposure of INS‑1 cells to 3DG following treatment with 25.5 mM glucose for 1 h significantly reduced the protein expression level of the STR subunit taste 1 receptor member 3 and its downstream factors, transient receptor potential cation channel subfamily M member 5 and glucose transporter 2. Notably, islet tissues collected from rats treated with 3DG exhibited a similar downregulation of these factors. The present results suggested that acute exposure to pathologically relevant levels of 3DG in presence of high physiological levels of glucose decreased insulin secretion from β‑cells by, at least in part, downregulating the STR signaling pathway.
Collapse
Affiliation(s)
- Xiudao Song
- Basic Research Laboratory, Suzhou Academy of Wumen Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| | - Guoqiang Liang
- Basic Research Laboratory, Suzhou Academy of Wumen Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| | - Min Shi
- Basic Research Laboratory, Suzhou Academy of Wumen Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| | - Liang Zhou
- Basic Research Laboratory, Suzhou Academy of Wumen Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| | - Fei Wang
- Basic Research Laboratory, Suzhou Academy of Wumen Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| | - Lurong Zhang
- Basic Research Laboratory, Suzhou Academy of Wumen Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| | - Fei Huang
- Basic Research Laboratory, Suzhou Academy of Wumen Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| | - Guorong Jiang
- Basic Research Laboratory, Suzhou Academy of Wumen Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| |
Collapse
|
13
|
Behrens M, Meyerhof W. A role for taste receptors in (neuro)endocrinology? J Neuroendocrinol 2019; 31:e12691. [PMID: 30712315 DOI: 10.1111/jne.12691] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022]
Abstract
The sense of taste is positioned at the forefront when it comes to the interaction of our body with foodborne chemicals. However, the role of our taste system, and in particular its associated taste receptors, is not limited to driving food preferences leading to ingestion or rejection before other organs take over responsibility for nutrient digestion, absorption and metabolic regulation. Taste sensory elements do much more. On the one hand, extra-oral taste receptors from the brain to the gut continue to sense nutrients and noxious substances after ingestion and, on the other hand, the nutritional state feeds back on the taste system. This intricate regulatory network is orchestrated by endocrine factors that are secreted in response to taste receptor signalling and, in turn regulate the taste receptor cells themselves. The present review summarises current knowledge on the endocrine regulation of the taste perceptual system and the release of hunger/satiety regulating factors by gastrointestinal taste receptors. Furthermore, the regulation of blood glucose levels via the activation of pancreatic sweet taste receptors and subsequent insulin secretion, as well as the influence of bitter compounds on thyroid hormone release, is addressed. Finally, the central effects of tastants are discussed briefly.
Collapse
Affiliation(s)
- Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
14
|
Wang F, Song X, Zhou L, Liang G, Huang F, Jiang G, Zhang L. The downregulation of sweet taste receptor signaling in enteroendocrine L-cells mediates 3-deoxyglucosone-induced attenuation of high glucose-stimulated GLP-1 secretion. Arch Physiol Biochem 2018; 124:430-435. [PMID: 29277113 DOI: 10.1080/13813455.2017.1419366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CONTEXT Sweet taste receptors (STRs) involve in regulating the release of glucose-stimulated glucagon-like peptide-1 (GLP-1). Our in vivo and in vitro studies found that 3-deoxyglucosone (3DG) inhibited glucose-stimulated GLP-1 secretion. OBJECTIVE This study investigated the role of STRs in 3DG-induced inhibition of high glucose-stimulated GLP-1 secretion. METHODS STC-1 cells were incubated with lactisole or 3DG for 1 h under 25 mM glucose conditions. Western blotting was used to study the expression of STRs signaling molecules and ELISA was used to analyse GLP-1 and cyclic adenosine monophosphate (cAMP) levels. RESULTS Lactisole inhibited GLP-1 secretion. Exposure to 25 mM glucose increased the expressions of STRs subunits when compared with 5.6 mM glucose. 3DG decreased GLP-1 secretion and STRs subunits expressions, with affecting other components of STRs pathway, including the downregulation of transient receptor potential cation channel subfamily M member 5 (TRPM5) expression and the reduction of intracellular cAMP levels. CONCLUSION 3DG attenuates high glucose-stimulated GLP-1 secretion by reducing STR subunit expression and downstream signaling components.
Collapse
Affiliation(s)
- Fei Wang
- a Suzhou Academy of Wumen Chinese Medicine , Suzhou Hospital of Traditional Chinese Medicine , Suzhou , P. R. China
| | - Xiudao Song
- a Suzhou Academy of Wumen Chinese Medicine , Suzhou Hospital of Traditional Chinese Medicine , Suzhou , P. R. China
| | - Liang Zhou
- a Suzhou Academy of Wumen Chinese Medicine , Suzhou Hospital of Traditional Chinese Medicine , Suzhou , P. R. China
| | - Guoqiang Liang
- a Suzhou Academy of Wumen Chinese Medicine , Suzhou Hospital of Traditional Chinese Medicine , Suzhou , P. R. China
| | - Fei Huang
- a Suzhou Academy of Wumen Chinese Medicine , Suzhou Hospital of Traditional Chinese Medicine , Suzhou , P. R. China
| | - Guorong Jiang
- a Suzhou Academy of Wumen Chinese Medicine , Suzhou Hospital of Traditional Chinese Medicine , Suzhou , P. R. China
| | - Lurong Zhang
- a Suzhou Academy of Wumen Chinese Medicine , Suzhou Hospital of Traditional Chinese Medicine , Suzhou , P. R. China
| |
Collapse
|
15
|
Abstract
Taste buds are the dedicated sensory end organs of taste, comprising a complex and evolving profile of signaling elements. The sensation and ultimate perception of taste depends on the expression of a diverse array of receptors and channels that sense their respective tastes. Receptor regulation is a recognized and well-studied phenomenon in many systems, observed in opioid addiction, insulin resistance and caffeine tolerance. Results from human sensory studies suggest that receptor sensitivity or expression level may decrease after chronic exposure to respective tastants through diet. We review data supporting the theory that taste receptors may become downregulated with exposure to a specific tastant, along with presenting data from a small pilot study, showing the impact of long-term tastant exposure on taste receptor expression in mice. Mice treated with monosodium salt monohydrate (MSG), saccharin and NaCl (typically appetitive tastes) all displayed a significant decrease in mRNA expression for respective umami, sweet and salty receptors/sensory channels. Reduced sensitivity to appetitive tastes may promote overconsumption of foods high in such stimuli.
Collapse
|
16
|
Freund JR, Lee RJ. Taste receptors in the upper airway. World J Otorhinolaryngol Head Neck Surg 2018; 4:67-76. [PMID: 30035264 PMCID: PMC6051256 DOI: 10.1016/j.wjorl.2018.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/26/2018] [Indexed: 02/08/2023] Open
Abstract
Taste receptors were named for their originally-identified expression on the tongue and role in the sensation of taste (gustation). They are now known to be involved in many chemosensory processes outside the tongue. Expression of the receptors for bitter, sweet, and umami was recently identified in many organs, including the brain, airway, gastrointestinal tract, and reproductive systems. We do not yet know the full roles of these receptors in all of these tissues, nor do we know all of the endogenous ligands that activate them. However, taste receptors are emerging as potentially important therapeutic targets. Moreover, they may mediate some off target effects of drugs, as many medications in common clinical use are known to be bitter. The focus of this review is on recent basic and clinical data describing the expression of bitter (T2R) and sweet (T1R) receptors in the airway and their activation by secreted bacterial compounds. These receptors play important roles in innate immune nitric oxide production and antimicrobial peptide secretion, and may be useful targets for stimulating immune responses in the upper respiratory tract via topical therapies. Moreover, genetic variation in these receptors may play a role in the differential susceptibility of patients to certain types of respiratory infections as well as to differential outcomes in patients with chronic rhinosinusitis (CRS). CRS is a syndrome of chronic upper respiratory infection and inflammation and has a significant detrimental impact on patient quality of life. CRS treatment accounts for approximately 20% of adult antibiotic prescriptions and is thus a large driver of the public health crisis of antibiotic resistance. Taste receptors represent a novel class of therapeutic target to potentially stimulate endogenous immune responses and treat CRS patients without conventional antibiotics.
Collapse
Affiliation(s)
- Jenna R Freund
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Zhou L, Huang W, Xu Y, Gao C, Zhang T, Guo M, Liu Y, Ding J, Qin L, Xu Z, Long Y, Xu Y. Sweet Taste Receptors Mediated ROS-NLRP3 Inflammasome Signaling Activation: Implications for Diabetic Nephropathy. J Diabetes Res 2018; 2018:7078214. [PMID: 29675433 PMCID: PMC5838486 DOI: 10.1155/2018/7078214] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 12/07/2017] [Accepted: 12/25/2017] [Indexed: 01/14/2023] Open
Abstract
Previous studies demonstrated that ROS-NLRP3 inflammasome signaling activation was involved in the pathogenesis of diabetic nephropathy (DN). Recent research has shown that sweet taste receptors (STRs) are important sentinels of innate immunity. Whether high glucose primes ROS-NLRP3 inflammasome signaling via STRs is unclear. In this study, diabetic mouse model was induced by streptozotocin (STZ) in vivo; mouse glomerular mesangial cells (GMCs) and human proximal tubular cells were stimulated by high glucose (10, 20, and 30 mmol/L) in vitro; STR inhibitor lactisole was used as an intervention reagent to evaluate the role and mechanism of the STRs in the pathogenesis of DN. Our results showed that the expression of STRs and associated signaling components (Gα-gustducin, PLCβ2, and TRPM5) was obviously downregulated under the condition of diabetes in vivo and in vitro. Furthermore, lactisole significantly mitigated the production of intracellular ROS and reversed the high glucose-induced decrease of Ca2+ and the activation of NLRP3 inflammasome signaling in vitro (p < 0.05). These combined results support the hypothesis that STRs could be involved in the activation of ROS-NLRP3 inflammasome signaling in the pathogenesis of DN, suggesting that STRs may act as new therapeutic targets of DN.
Collapse
Affiliation(s)
- Luping Zhou
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- The Graduate School of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wei Huang
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Chenlin Gao
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Ting Zhang
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- The Graduate School of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Man Guo
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- The Graduate School of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Liu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Jingya Ding
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- The Graduate School of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ludan Qin
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- The Graduate School of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zihao Xu
- The Graduate School of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yang Long
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yong Xu
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
18
|
Kojima I, Medina J, Nakagawa Y. Role of the glucose-sensing receptor in insulin secretion. Diabetes Obes Metab 2017; 19 Suppl 1:54-62. [PMID: 28880472 DOI: 10.1111/dom.13013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 11/27/2022]
Abstract
Glucose is a primary stimulator of insulin secretion. It has been thought that glucose exerts its effect by a mechanism solely dependent on glucose metabolism. We show here that glucose induces rapid Ca2+ and cyclic AMP signals in β-cells. These rapid signals are independent of glucose-metabolism and are reproduced by non-metabolizable glucose analogues. These results led us to postulate that glucose activates a cell-surface receptor, namely the glucose-sensing receptor. Rapid signals induced by glucose are blocked by inhibition of a sweet taste receptor subunit T1R3 and a calcium-sensing receptor subunit CaSR. In accordance with these observations, T1R3 and CaSR form a heterodimer. In addition, a heterodimer of T1R3 and CaSR is activated by glucose. These results suggest that a heterodimer of T1R3 and CaSR is a major component of the glucose-sensing receptor. When the glucose-sensing receptor is blocked, glucose-induced insulin secretion is inhibited. Also, ATP production is significantly attenuated by the inhibition of the receptor. Conversely, stimulation of the glucose-sensing receptor by either artificial sweeteners or non-metabolizable glucose analogue increases ATP. Hence, the glucose-sensing receptor signals promote glucose metabolism. Collectively, glucose activates the cell-surface glucose-sensing receptor and promotes its own metabolism. Glucose then enters the cells and is metabolized through already activated metabolic pathways. The glucose-sensing receptor is a key molecule regulating the action of glucose in β-cells.
Collapse
MESH Headings
- Animals
- Calcium Signaling
- Cyclic AMP/metabolism
- Dimerization
- Enzyme Activation
- Gene Expression Regulation
- Glucose/metabolism
- Humans
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/enzymology
- Insulin-Secreting Cells/metabolism
- Models, Biological
- Protein Kinase C/chemistry
- Protein Kinase C/metabolism
- Protein Multimerization
- Receptors, Calcium-Sensing/agonists
- Receptors, Calcium-Sensing/chemistry
- Receptors, Calcium-Sensing/genetics
- Receptors, Calcium-Sensing/metabolism
- Receptors, Cell Surface/agonists
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Second Messenger Systems
Collapse
Affiliation(s)
- Itaru Kojima
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Johan Medina
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yuko Nakagawa
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
19
|
Abstract
The T1R2 (taste type 1 receptor, member 2)/T1R3 (taste type 1 receptor, member 3) sweet taste receptor is expressed in taste buds on the tongue, where it allows the detection of energy-rich carbohydrates of food. This single receptor responds to all compounds perceived as sweet by humans, including natural sugars and natural and artificial sweeteners. Importantly, the T1R2/T1R3 sweet taste receptor is also expressed in extra-oral tissues, including the stomach, pancreas, gut, liver, and brain. Although its physiological role remains to be established in numerous organs, T1R2/T1R3 is suspected to be involved in the regulation of metabolic processes, such as sugar sensing, glucose homeostasis, and satiety hormone release. In this review, the physiological role of the sweet taste receptor in taste perception and metabolic regulation is discussed by focusing on dysfunctions leading to diabetes. Current knowledge of T1R2/T1R3 inhibitors making this receptor a promising therapeutic target for the treatment of type 2 diabetes is also summarized and discussed.
Collapse
Affiliation(s)
- Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation, INRA, CNRS, Université de Bourgogne - Franche-Comté, Dijon, 21000, France
| | - Marie-Chantal Canivenc-Lavier
- Centre des Sciences du Goût et de l'Alimentation, INRA, CNRS, Université de Bourgogne - Franche-Comté, Dijon, 21000, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation, INRA, CNRS, Université de Bourgogne - Franche-Comté, Dijon, 21000, France.
| |
Collapse
|
20
|
Nakagawa Y, Nagasawa M, Medina J, Kojima I. Glucose Evokes Rapid Ca2+ and Cyclic AMP Signals by Activating the Cell-Surface Glucose-Sensing Receptor in Pancreatic β-Cells. PLoS One 2015; 10:e0144053. [PMID: 26630567 PMCID: PMC4667910 DOI: 10.1371/journal.pone.0144053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/12/2015] [Indexed: 12/21/2022] Open
Abstract
Glucose is a primary stimulator of insulin secretion in pancreatic β-cells. High concentration of glucose has been thought to exert its action solely through its metabolism. In this regard, we have recently reported that glucose also activates a cell-surface glucose-sensing receptor and facilitates its own metabolism. In the present study, we investigated whether glucose activates the glucose-sensing receptor and elicits receptor-mediated rapid actions. In MIN6 cells and isolated mouse β-cells, glucose induced triphasic changes in cytoplasmic Ca(2+) concentration ([Ca(2+)]c); glucose evoked an immediate elevation of [Ca(2+)]c, which was followed by a decrease in [Ca(2+)]c, and after a certain lag period it induced large oscillatory elevations of [Ca(2+)]c. Initial rapid peak and subsequent reduction of [Ca(2+)]c were independent of glucose metabolism and reproduced by a nonmetabolizable glucose analogue. These signals were also blocked by an inhibitor of T1R3, a subunit of the glucose-sensing receptor, and by deletion of the T1R3 gene. Besides Ca(2+), glucose also induced an immediate and sustained elevation of intracellular cAMP ([cAMP]c). The elevation of [cAMP]c was blocked by transduction of the dominant-negative Gs, and deletion of the T1R3 gene. These results indicate that glucose induces rapid changes in [Ca(2+)]c and [cAMP]c by activating the cell-surface glucose-sensing receptor. Hence, glucose generates rapid intracellular signals by activating the cell-surface receptor.
Collapse
Affiliation(s)
- Yuko Nakagawa
- Department of Cell Biology, Institute for Molecular & Cellular Regulation, Gunma University, Maebashi, Japan
| | - Masahiro Nagasawa
- Department of Cell Biology, Institute for Molecular & Cellular Regulation, Gunma University, Maebashi, Japan
| | - Johan Medina
- Department of Cell Biology, Institute for Molecular & Cellular Regulation, Gunma University, Maebashi, Japan
| | - Itaru Kojima
- Department of Cell Biology, Institute for Molecular & Cellular Regulation, Gunma University, Maebashi, Japan
- * E-mail:
| |
Collapse
|
21
|
Ciullo DL, Dotson CD. Using Animal Models to Determine the Role of Gustatory Neural Input in the Control of Ingestive Behavior and the Maintenance of Body Weight. CHEMOSENS PERCEPT 2015; 8:61-77. [PMID: 26557212 PMCID: PMC4636125 DOI: 10.1007/s12078-015-9190-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Decades of research have suggested that nutritional intake contributes to the development of human disease, mainly by influencing the development of obesity and obesity-related conditions. A relatively large body of research indicates that functional variation in human taste perception can influence nutritional intake as well as body mass accumulation. However, there are a considerable number of studies that suggest that no link between these variables actually exists. These discrepancies in the literature likely result from the confounding influence of a variety of other, uncontrolled, factors that can influence ingestive behavior. STRATEGY In this review, the use of controlled animal experimentation to alleviate at least some of these issues related to the lack of control of experimental variables is discussed. Specific examples of the use of some of these techniques are examined. DISCUSSION AND CONCLUSIONS The review will close with some specific suggestions aimed at strengthening the link between gustatory neural input and its putative influence on ingestive behaviors and the maintenance of body weight.
Collapse
Affiliation(s)
- Dana L Ciullo
- Departments of Neuroscience and Psychiatry, Division of Addiction Medicine, University of Florida College of Medicine, and Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA,
| | - Cedrick D Dotson
- Departments of Neuroscience and Psychiatry, Division of Addiction Medicine, University of Florida College of Medicine, and Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA,
| |
Collapse
|
22
|
Hamano K, Nakagawa Y, Ohtsu Y, Li L, Medina J, Tanaka Y, Masuda K, Komatsu M, Kojima I. Lactisole inhibits the glucose-sensing receptor T1R3 expressed in mouse pancreatic β-cells. J Endocrinol 2015; 226:57-66. [PMID: 25994004 DOI: 10.1530/joe-15-0102] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 11/08/2022]
Abstract
Glucose activates the glucose-sensing receptor T1R3 and facilitates its own metabolism in pancreatic β-cells. An inhibitor of this receptor would be helpful in elucidating the physiological function of the glucose-sensing receptor. The present study was conducted to examine whether or not lactisole can be used as an inhibitor of the glucose-sensing receptor. In MIN6 cells, in a dose-dependent manner, lactisole inhibited insulin secretion induced by sweeteners, acesulfame-K, sucralose and glycyrrhizin. The IC50 was ∼4 mmol/l. Lactisole attenuated the elevation of cytoplasmic Ca2+ concentration ([Ca2+]c) evoked by sucralose and acesulfame-K but did not affect the elevation of intracellular cAMP concentration ([cAMP]c) induced by these sweeteners. Lactisole also inhibited the action of glucose in MIN6 cells. Thus, lactisole significantly reduced elevations of intracellular [NADH] and intracellular [ATP] induced by glucose, and also inhibited glucose-induced insulin secretion. To further examine the effect of lactisole on T1R3, we prepared HEK293 cells stably expressing mouse T1R3. In these cells, sucralose elevated both [Ca2+]c and [cAMP]c. Lactisole attenuated the sucralose-induced increase in [Ca2+]c but did not affect the elevation of [cAMP]c. Finally, lactisole inhibited insulin secretion induced by a high concentration of glucose in mouse islets. These results indicate that the mouse glucose-sensing receptor was inhibited by lactisole. Lactisole may be useful in assessing the role of the glucose-sensing receptor in mouse pancreatic β-cells.
Collapse
Affiliation(s)
- Kunihisa Hamano
- Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan
| | - Yuko Nakagawa
- Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiaki Ohtsu
- Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan
| | - Longfei Li
- Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan
| | - Johan Medina
- Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan
| | - Yuji Tanaka
- Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan
| | - Katsuyoshi Masuda
- Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan
| | - Mitsuhisa Komatsu
- Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan
| | - Itaru Kojima
- Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
23
|
Lee RJ, Cohen NA. Taste receptors in innate immunity. Cell Mol Life Sci 2015; 72:217-36. [PMID: 25323130 PMCID: PMC4286424 DOI: 10.1007/s00018-014-1736-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/11/2014] [Accepted: 09/16/2014] [Indexed: 02/07/2023]
Abstract
Taste receptors were first identified on the tongue, where they initiate a signaling pathway that communicates information to the brain about the nutrient content or potential toxicity of ingested foods. However, recent research has shown that taste receptors are also expressed in a myriad of other tissues, from the airway and gastrointestinal epithelia to the pancreas and brain. The functions of many of these extraoral taste receptors remain unknown, but emerging evidence suggests that bitter and sweet taste receptors in the airway are important sentinels of innate immunity. This review discusses taste receptor signaling, focusing on the G-protein-coupled receptors that detect bitter, sweet, and savory tastes, followed by an overview of extraoral taste receptors and in-depth discussion of studies demonstrating the roles of taste receptors in airway innate immunity. Future research on extraoral taste receptors has significant potential for identification of novel immune mechanisms and insights into host-pathogen interactions.
Collapse
Affiliation(s)
- Robert J. Lee
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Ravdin Building, 5th floor, Philadelphia, PA 19104 USA
| | - Noam A. Cohen
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Ravdin Building, 5th floor, Philadelphia, PA 19104 USA
- Philadelphia Veterans Affairs Medical Center Surgical Services, 3900 Woodland Ave, Philadelphia, PA 19104 USA
| |
Collapse
|
24
|
Kojima I, Nakagawa Y, Ohtsu Y, Hamano K, Medina J, Nagasawa M. Return of the glucoreceptor: Glucose activates the glucose-sensing receptor T1R3 and facilitates metabolism in pancreatic β-cells. J Diabetes Investig 2014; 6:256-63. [PMID: 25969708 PMCID: PMC4420555 DOI: 10.1111/jdi.12304] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 01/29/2023] Open
Abstract
Subunits of the sweet taste receptor, namely T1R2 and T1R3, are expressed in mouse pancreatic islets. Quantitatively, the expression of messenger ribonucleic acid for T1R2 is much lower than that of T1R3, and immunoreactive T1R2 is in fact undetectable. Presumably, a homodimer of T1R3 could function as a signaling receptor. Activation of this receptor by adding an artificial sweetener, sucralose, leads to an increase in intracellular adenosine triphosphate ([ATP]c). This increase in [ATP]c is observed in the absence of ambient glucose. Sucralose also augments elevation of [ATP]c induced by methylsuccinate, a substrate for mitochondria. Consequently, activation of T1R3 promotes metabolism in mitochondria and increases [ATP]c. 3-O-Methylglucose, a non-metabolizable analog of glucose, also increases [ATP]c. Conversely, knockdown of T1R3 attenuates elevation of [ATP]c induced by glucose. Hence, glucose promotes its own metabolism by activating T1R3 and augmenting ATP production. Collectively, a homodimer of T1R3 functions as a cell surface glucose-sensing receptor and participates in the action of glucose on insulin secretion. The glucose-sensing receptor T1R3 might be the putative glucoreceptor proposed decades ago by Niki et al. The glucose-sensing receptor is involved in the action of glucose and modulates glucose metabolism in pancreatic β-cells.
Collapse
Affiliation(s)
- Itaru Kojima
- Institute for Molecular & Cellular Regulation, Gunma University Maebashi, Japan
| | - Yuko Nakagawa
- Institute for Molecular & Cellular Regulation, Gunma University Maebashi, Japan
| | - Yoshiaki Ohtsu
- Institute for Molecular & Cellular Regulation, Gunma University Maebashi, Japan
| | - Kunihisa Hamano
- Institute for Molecular & Cellular Regulation, Gunma University Maebashi, Japan
| | - Johan Medina
- Institute for Molecular & Cellular Regulation, Gunma University Maebashi, Japan
| | - Masahiro Nagasawa
- Institute for Molecular & Cellular Regulation, Gunma University Maebashi, Japan
| |
Collapse
|