1
|
Miao X, Alidadipour A, Saed V, Sayyadi F, Jadidi Y, Davoudi M, Amraee F, Jadidi N, Afrisham R. Hepatokines: unveiling the molecular and cellular mechanisms connecting hepatic tissue to insulin resistance and inflammation. Acta Diabetol 2024; 61:1339-1361. [PMID: 39031190 DOI: 10.1007/s00592-024-02335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/06/2024] [Indexed: 07/22/2024]
Abstract
Insulin resistance arising from Non-Alcoholic Fatty Liver Disease (NAFLD) stands as a prevalent global ailment, a manifestation within societies stemming from individuals' suboptimal dietary habits and lifestyles. This form of insulin resistance emerges as a pivotal factor in the development of type 2 diabetes mellitus (T2DM). Emerging evidence underscores the significant role of hepatokines, as hepatic-secreted hormone-like entities, in the genesis of insulin resistance and eventual onset of type 2 diabetes. Hepatokines exert influence over extrahepatic metabolism regulation. Their principal functions encompass impacting adipocytes, pancreatic cells, muscles, and the brain, thereby playing a crucial role in shaping body metabolism through signaling to target tissues. This review explores the most important hepatokines, each with distinct influences. Our review shows that Fetuin-A promotes lipid-induced insulin resistance by acting as an endogenous ligand for Toll-like receptor 4 (TLR-4). FGF21 reduces inflammation in diabetes by blocking the nuclear translocation of nuclear factor-κB (NF-κB) in adipocytes and adipose tissue, while also improving glucose metabolism. ANGPTL6 enhances AMPK and insulin signaling in muscle, and suppresses gluconeogenesis. Follistatin can influence insulin resistance and inflammation by interacting with members of the TGF-β family. Adropin show a positive correlation with phosphoenolpyruvate carboxykinase 1 (PCK1), a key regulator of gluconeogenesis. This article delves into hepatokines' impact on NAFLD, inflammation, and T2DM, with a specific focus on insulin resistance. The aim is to comprehend the influence of these recently identified hormones on disease development and their underlying physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Xiaolei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Arian Alidadipour
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Vian Saed
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Firooze Sayyadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Davoudi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amraee
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Umemura A, Sasaki A, Takamura T, Takayama H, Takeshita Y, Toya Y, Kakisaka K, Hasegawa Y, Ishigaki Y. Relationship between the changes in hepatokine levels and metabolic effects after laparoscopic sleeve gastrectomy in severely obese patients. Surg Today 2024; 54:581-590. [PMID: 37957316 PMCID: PMC11102872 DOI: 10.1007/s00595-023-02767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE To clarify the relationships between the changes in hepatokines and weight loss, and between these changes and the metabolic effects, and the roles played by these changes, after laparoscopic sleeve gastrectomy (LSG). METHODS We recruited 25 Japanese patients with severe obesity, who underwent LSG. We measured two hepatokines: selenoprotein P (SeP) and leukocyte cell-derived chemotaxin 2 (LECT2), at the baseline, and then 6 months and 1 year after LSG. Finally, we compared the changes in the hepatokines with the parameters of type 2 diabetes (T2D) and non-alcoholic steatohepatitis (NASH). RESULTS Changes in LECT2 were correlated with the percentage of total weight loss (ρ = - 0.499, P = 0.024) and the decrease in total fat area (ρ = 0.559, P = 0.003). The changes in SeP were correlated with those in hemoglobin A1c (ρ = 0.526, P = 0.043) and the insulinogenic index (ρ = 0.638, P = 0.010) in T2D patients. In patients with NASH, the LECT2 levels were correlated with liver steatosis (ρ = 0.601). CONCLUSIONS SeP levels decrease in association with HbA1c reduction, whereas LECT2 levels are associated with reductions in fat mass and NASH scores after LSG. Hepatokines may be involved in the pathology of obesity and its complications.
Collapse
Affiliation(s)
- Akira Umemura
- Department of Surgery, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba, Iwate, 028-3695, Japan.
| | - Akira Sasaki
- Department of Surgery, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba, Iwate, 028-3695, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hiroaki Takayama
- Department of Endocrinology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yosuke Toya
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Iwate, 028-3695, Japan
| | - Keisuke Kakisaka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Iwate, 028-3695, Japan
| | - Yutaka Hasegawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Iwate, 028-3695, Japan
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Iwate, 028-3695, Japan
| |
Collapse
|
3
|
Stefanaki K, Ilias I, Paschou SA, Karagiannakis DS. Hepatokines: the missing link in the development of insulin resistance and hyperandrogenism in PCOS? Hormones (Athens) 2023; 22:715-724. [PMID: 37704921 DOI: 10.1007/s42000-023-00487-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
The liver plays a critical role in several metabolic pathways, including the regulation of glucose and lipid metabolism. Non-alcoholic fatty liver disease (NAFLD), the most common chronic liver disease worldwide, is closely associated with insulin resistance (IR) and metabolic syndrome (MetS). Hepatokines, newly discovered proteins secreted by hepatocytes, have been linked to the induction of these metabolic dysregulations. Polycystic ovary syndrome (PCOS), the most common endocrine disorder in women of reproductive age, has been associated with NAFLD and IR, while hyperandrogenism additionally appears to be implicated in the pathogenesis of the latter. However, the potential role of hepatokines in the development of metabolic disorders in PCOS has not been fully investigated. Therefore, the aim of this review is to critically appraise the current evidence regarding the interplay of hepatokines with NAFLD, hyperandrogenism, and IR in PCOS.
Collapse
Affiliation(s)
- Katerina Stefanaki
- Department of Clinical Therapeutics, Medical School of the National and Kapodistrian University of Athens, "Alexandra" Hospital, Athens, Greece
| | - Ioannis Ilias
- Department of Endocrinology, Diabetes and Metabolism, "Elena Venizelou" Hospital, Athens, Greece
| | - Stavroula A Paschou
- Department of Clinical Therapeutics, Medical School of the National and Kapodistrian University of Athens, "Alexandra" Hospital, Athens, Greece
| | - Dimitrios S Karagiannakis
- Academic Department of Gastroenterology, Medical School of the National and Kapodistrian University of Athens, "Laiko" General Hospital, Athens, Greece.
| |
Collapse
|
4
|
Shen Y, Song L, Chen T, Jiang H, Yang G, Zhang Y, Zhang X, Lim KK, Meng X, Zhao J, Chen X. Identification of hub genes in digestive system of mandarin fish (Siniperca chuatsi) fed with artificial diet by weighted gene co-expression network analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101112. [PMID: 37516099 DOI: 10.1016/j.cbd.2023.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/01/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Mandarin fish (Siniperca chuatsi) is a carnivorous freshwater fish and an economically important species. The digestive system (liver, stomach, intestine, pyloric caecum, esophagus, and gallbladder) is an important site for studying fish domestication. In our previous study, we found that mandarin fish undergoes adaptive changes in histological morphology and gene expression levels of the digestive system when subjected to artificial diet domestication. However, we are not clear which hub genes are highly associated with domestication. In this study, we performed WGCNA on the transcriptomes of 17 tissues and 9 developmental stages and combined differentially expressed genes analysis in the digestive system to identify the hub genes that may play important functions in the adaptation of mandarin fish to bait conversion. A total of 31,657 genes in 26 samples were classified into 23 color modules via WGCNA. The modules midnightblue, darkred, lightyellow, and darkgreen highly associated with the liver, stomach, esophagus, and gallbladder were extracted, respectively. Tan module was highly related to both intestine and pyloric caecum. The hub genes in liver were cp, vtgc, c1in, c9, lect2, and klkb1. The hub genes in stomach were ghrl, atp4a, gjb3, muc5ac, duox2, and chia2. The hub genes in esophagus were mybpc1, myl2, and tpm3. The hub genes in gallbladder were dyst, npy2r, slc13a1, and slc39a4. The hub genes in the intestine and pyloric caecum were slc15a1, cdhr5, btn3a1, anpep, slc34a2, cdhr2, and ace2. Through pathway analysis, modules highly related to the digestive system were mainly enriched in digestion and absorption, metabolism, and immune-related pathways. After domestication, the hub genes vtgc and lect2 were significantly upregulated in the liver. Chia2 was significantly downregulated in the stomach. Slc15a1, anpep, and slc34a2 were significantly upregulated in the intestine. This study identified the hub genes that may play an important role in the adaptation of the digestive system to artificial diet, which provided novel evidence and ideas for further research on the domestication of mandarin fish from molecular level.
Collapse
Affiliation(s)
- Yawei Shen
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; CCMAR/CIMAR Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Lingyuan Song
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Tiantian Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hewei Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xindang Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Kah Kheng Lim
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Jinliang Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Vinceti M, Urbano T, Chiari A, Filippini T, Wise LA, Tondelli M, Michalke B, Shimizu M, Saito Y. Selenoprotein P concentrations and risk of progression from mild cognitive impairment to dementia. Sci Rep 2023; 13:8792. [PMID: 37258587 PMCID: PMC10232449 DOI: 10.1038/s41598-023-36084-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 05/29/2023] [Indexed: 06/02/2023] Open
Abstract
There is a growing literature investigating the effects of selenium on the central nervous system and cognitive function. However, little is known about the role of selenoprotein P, the main selenium transporter, which can also have adverse biological effects. We conducted a prospective cohort study of individuals aged 42-81 years who received a clinical diagnosis of mild cognitive impairment. Using sandwich ELISA methods, we measured full-length selenoprotein P concentrations in serum and cerebrospinal fluid to assess the relation with dementia incidence during a median follow-up of 47.3 months. We used Cox proportional hazards regression and restricted cubic splines to model such relation. Of the 54 participants, 35 developed dementia during follow-up (including 26 cases of Alzheimer's dementia). Selenoprotein P concentrations in serum and cerebrospinal fluid were highly correlated, and in spline regression analyses they each showed a positive non-linear association with dementia risk, particularly after excluding dementia cases diagnosed within 24 months of follow-up. We also observed differences in association according to the dementia subtypes considered. Risk ratios of dementia peaked at 2-6 at the highest levels of selenoprotein P, when compared to its median level, also depending on matrix, analytical methodology and dementia subtype. Findings of this study, the first to assess selenoprotein P levels in the central nervous system in vivo and the first to use a prospective study design to evaluate associations with dementia, suggest that higher circulating concentrations of selenoprotein P, both in serum and cerebrospinal fluid, predict progression of MCI to dementia. However, further confirmation of these findings is required, given the limited statistical precision of the associations and the potential for residual confounding.
Collapse
Affiliation(s)
- Marco Vinceti
- Department of Biomedical, Metabolic, and Neural Sciences, CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neurosciences and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Teresa Urbano
- Department of Biomedical, Metabolic, and Neural Sciences, CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neurosciences and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Annalisa Chiari
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neurosciences and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, University Hospital, Modena, Italy
| | - Tommaso Filippini
- Department of Biomedical, Metabolic, and Neural Sciences, CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neurosciences and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Manuela Tondelli
- Neurology Unit, University Hospital, Modena, Italy
- Primary Care Department, Local Health Unit of Modena, Modena, Italy
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Misaki Shimizu
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
6
|
Amini-Salehi E, Hassanipour S, Joukar F, Daryagasht AA, Khosousi MJ, Sadat Aleali M, Ansar MM, Heidarzad F, Abdzadeh E, Vakilpour A, Mansour-Ghanaei F. Risk Factors of Non-alcoholic Fatty Liver Disease in the Iranian Adult Population: A Systematic Review and Meta-analysis. HEPATITIS MONTHLY 2023; 23. [DOI: 10.5812/hepatmon-131523] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 01/03/2025]
Abstract
Context: Non-alcoholic fatty liver disease (NAFLD) is progressing considerably worldwide. Identifying the risk factors of NAFLD is a critical step in preventing its progression. Methods: In November 2022, two independent researchers studied seven databases, including PubMed, ISI/WoS, ProQuest, Scopus, SID, Magiran, and Google Scholar, and reference list of relevant articles, searching studies that assessed NAFLD risk factors in the Iranian adult population. Heterogeneity between studies was assessed by Cochran’s test and its composition using I2 statistics. A random-effects model was used when heterogeneity was observed; otherwise, a fixed-effects model was applied. Egger’s regression test and Trim-and-Fill analysis were used to assess publication bias. Comprehensive Meta-analysis software (version 3) was used for the analyses of the present study. Results: The results of this study showed significant associations between NAFLD with age (n = 15, odds ratio (OR) = 2.12, 95% CI: 1.79 - 2.51), body mass index (n = 46, OR = 5.00, 95% CI: 3.34 - 7.49), waist circumference (n = 20, OR = 6.37, 95% CI: 3.25 - 12.48), waist-to-hip ratio (n = 17, OR = 4.72, 95% CI: 3.93 - 5.66), total cholesterol (n = 39, OR = 1.80, 95% CI: 1.52 - 2.13), high-density lipoprotein (n = 37, OR = 0.53, 95% CI: 0.44 - 0.65), low-density lipoprotein (n = 31, OR = 1.68, 95% CI: 1.38 - 2.05), triglyceride (n = 31, OR = 3.21, 95% CI: 2.67 - 3.87), alanine aminotransferase (n = 26, OR = 4.06, 95% CI: 2.94 - 5.62), aspartate aminotransferase (n = 27, OR = 2.16, 95% CI: 1.50 - 3.12), hypertension (n = 13, OR = 2.53, 95% CI: 2.32 - 2.77), systolic blood pressure (n = 13, OR = 1.83, 95% CI: 1.53 - 2.18), diastolic blood pressure (n = 14, OR = 1.80, 95% CI: 1.48 - 2.20), fasting blood sugar (n = 31, OR = 2.91, 95% CI: 2.11- 4.01), homeostatic model assessment for insulin resistance (n = 5, OR = 1.92, 95% CI: 1.48 - 2.59), diabetes mellitus (n = 15, OR = 3.04, 95% CI: 2.46 - 3.75), metabolic syndrome (n = 10, OR = 3.56, 95% CI: 2.79 - 4.55), and physical activity (n = 11, OR = 0.32, 95% CI: 0.24 - 0.43) (P < 0.05). Conclusions: In conclusion, several factors are significantly associated with NAFLD. However, anthropometric indices had the strongest relationship with NAFLD in the Iranian adult population.
Collapse
|
7
|
Zhu MH, Liu YJ, Li CY, Tao F, Yang GJ, Chen J. The emerging roles of leukocyte cell-derived chemotaxin-2 in immune diseases: From mechanisms to therapeutic potential. Front Immunol 2023; 14:1158083. [PMID: 36969200 PMCID: PMC10034042 DOI: 10.3389/fimmu.2023.1158083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Leukocyte cell-derived chemotaxin-2 (LECT2, also named ChM-II), initially identified as a chemokine mediating neutrophil migration, is a multifunctional secreted factor involved in diverse physiological and pathological processes. The high sequence similarity of LECT2 among different vertebrates makes it possible to explore its functions by using comparative biology. LECT2 is associated with many immune processes and immune-related diseases via its binding to cell surface receptors such as CD209a, Tie1, and Met in various cell types. In addition, the misfolding LECT2 leads to the amyloidosis of several crucial tissues (kidney, liver, and lung, etc.) by inducing the formation of insoluble fibrils. However, the mechanisms of LECT2-mediated diverse immune pathogenic conditions in various tissues remain to be fully elucidated due to the functional and signaling heterogeneity. Here, we provide a comprehensive summary of the structure, the “double-edged sword” function, and the extensive signaling pathways of LECT2 in immune diseases, as well as the potential applications of LECT2 in therapeutic interventions in preclinical or clinical trials. This review provides an integrated perspective on the current understanding of how LECT2 is associated with immune diseases, with the aim of facilitating the development of drugs or probes against LECT2 for the theranostics of immune-related diseases.
Collapse
Affiliation(s)
- Ming-Hui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- *Correspondence: Jiong Chen, ; ; Guan-Jun Yang,
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- *Correspondence: Jiong Chen, ; ; Guan-Jun Yang,
| |
Collapse
|
8
|
Yu R, Wang Z, Ma M, Xu P, Liu L, Tinkov AA, Lei XG, Zhou JC. Associations between Circulating SELENOP Level and Disorders of Glucose and Lipid Metabolism: A Meta-Analysis. Antioxidants (Basel) 2022; 11:1263. [PMID: 35883754 PMCID: PMC9311835 DOI: 10.3390/antiox11071263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Selenoprotein P (SELENOP) is an extracellular antioxidant, selenium transporter, and hepatokine interfering with glucose and lipid metabolism. To study the association between the circulating SELENOP concentration and glucose and lipid metabolic diseases (GLMDs), including gestational diabetes (GD), metabolic syndrome (MetS), non-alcoholic fatty liver disease, obesity, and type 2 diabetes, as well as the individual markers, a meta-analysis was conducted by searching multiple databases from their establishment through March 2022 and including 27 articles published between October 2010 and May 2021, involving 4033 participants. Participants with GLMDs had higher levels of SELENOP than those without GLMDs (standardized mean difference = 0.84, 95% CI: 0.16 to 1.51), and the SELENOP levels were positively correlated with the markers of GLMDs (pooled effect size = 0.09, 95% CI: 0.02 to 0.15). Subgroup analyses showed that the SELENOP concentrations were higher in women with GD and lower in individuals with MetS than their counterparts, respectively. Moreover, SELENOP was positively correlated with low-density lipoprotein cholesterol, but not with the other markers of GLMDs. Thus, the heterogenicity derived from diseases or disease markers should be carefully considered while interpreting the overall positive association between SELENOP and GLMDs. Studies with a larger sample size and advanced design are warranted to confirm these findings.
Collapse
Affiliation(s)
- Ruirui Yu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
| | - Zhoutian Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
| | - Miaomiao Ma
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
| | - Ping Xu
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China;
| | - Longjian Liu
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104, USA;
| | - Alexey A. Tinkov
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA;
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
- Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou 510080, China
| |
Collapse
|
9
|
Liu G, Li J, Pang B, Li Y, Xu F, Liao N, Shao D, Jiang C, Shi J. Potential role of selenium in alleviating obesity-related iron dyshomeostasis. Crit Rev Food Sci Nutr 2022; 63:10032-10046. [PMID: 35574661 DOI: 10.1080/10408398.2022.2074961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Obesity is a serious health problem in modern life and increases the risk of many comorbidities including iron dyshomeostasis. In contrast to malnourished anemia, obesity-related iron dyshomeostasis is mainly caused by excessive fat accumulation, inflammation, and disordered gut microbiota. In obesity, iron dyshomeostasis also induces disorders associated with gut microbiota, neurodegenerative injury, oxidative damage, and fat accumulation in the liver. Selenium deficiency is often accompanied by obesity or iron deficiency, and selenium supplementation has been shown to alleviate obesity and overcome iron deficiency. Selenium inhibits fat accumulation and exhibits anti-inflammatory activity. It regulates gut microbiota, prevents neurodegenerative injury, alleviates oxidative damage to the body, and ameliorates hepatic fat accumulation. These effects theoretically meet the requirements for the inhibition of factors underlying obesity-related iron dyshomeostasis. Selenium supplementation may have a potential role in the alleviation of obesity-related iron dyshomeostasis. This review verifies this hypothesis in theory. All the currently reported causes and results of obesity-related iron dyshomeostasis are reviewed comprehensively, together with the effects of selenium. The challenges and strategies of selenium supplementation are also discussed. The findings demonstrate the possibility of selenium-containing drugs or functional foods in alleviating obesity-related iron dyshomeostasis.
Collapse
Affiliation(s)
- Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Uchiyama T, Ota H, Ohbayashi C, Takasawa S. Effects of Intermittent Hypoxia on Cytokine Expression Involved in Insulin Resistance. Int J Mol Sci 2021; 22:12898. [PMID: 34884703 PMCID: PMC8657675 DOI: 10.3390/ijms222312898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Sleep apnea syndrome (SAS) is a prevalent disorder characterized by recurrent apnea or hypoxia episodes leading to intermittent hypoxia (IH) and arousals during sleep. Currently, the relationship between SAS and metabolic diseases is being actively analyzed, and SAS is considered to be an independent risk factor for the development and progression of insulin resistance/type 2 diabetes (T2DM). Accumulating evidence suggests that the short cycles of decreased oxygen saturation and rapid reoxygenation, a typical feature of SAS, contribute to the development of glucose intolerance and insulin resistance. In addition to IH, several pathological conditions may also contribute to insulin resistance, including sympathetic nervous system hyperactivity, oxidative stress, vascular endothelial dysfunction, and the activation of inflammatory cytokines. However, the detailed mechanism by which IH induces insulin resistance in SAS patients has not been fully revealed. We have previously reported that IH stress may exacerbate insulin resistance/T2DM, especially in hepatocytes, adipocytes, and skeletal muscle cells, by causing abnormal cytokine expression/secretion from each cell. Adipose tissues, skeletal muscle, and the liver are the main endocrine organs producing hepatokines, adipokines, and myokines, respectively. In this review, we focus on the effect of IH on hepatokine, adipokine, and myokine expression.
Collapse
Affiliation(s)
- Tomoko Uchiyama
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan;
- Department of Diagnostic Pathology, Nara Medical University, Kashihara 634-8522, Japan;
| | - Hiroyo Ota
- Department of Respiratory Medicine, Nara Medical University, Kashihara 634-8522, Japan;
| | - Chiho Ohbayashi
- Department of Diagnostic Pathology, Nara Medical University, Kashihara 634-8522, Japan;
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan;
| |
Collapse
|
11
|
He Y, Qiu R, Wu B, Gui W, Lin X, Li H, Zheng F. Transthyretin contributes to insulin resistance and diminishes exercise-induced insulin sensitivity in obese mice by inhibiting AMPK activity in skeletal muscle. Am J Physiol Endocrinol Metab 2021; 320:E808-E821. [PMID: 33682458 DOI: 10.1152/ajpendo.00495.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Exercise improves obesity-induced insulin resistance and metabolic disorders via mechanisms that remain unclear. Here, we show that the levels of the hepatokine transthyretin (TTR) in circulation are elevated in insulin-resistant individuals including high-fat diet (HFD)-induced obese mice, db/db mice, and patients with metabolic syndrome. Liver Ttr mRNA and circulating TTR levels were reduced in mice by treadmill training, as was the TTR levels in quadriceps femoris muscle; however, AMP-activated protein kinase (AMPK) signaling activity was enhanced. Transgenic overexpression of TTR or injection of purified TTR triggered insulin resistance in mice fed on regular chow (RC). Furthermore, TTR overexpression reduced the beneficial effects of exercise on insulin sensitivity in HFD-fed mice. TTR was internalized by muscle cells via the membrane receptor Grp78 and the internalization into the quadriceps femoris was reduced by treadmill training. The TTR/Grp78 combination in C2C12 cells was increased, whereas the AMPK activity of C2C12 cells was decreased as the TTR concentration rose. In addition, Grp78 silencing prevented the TTR internalization and reversed its inhibitory effect on AMPK activity in C2C12 cells. Our study suggests that elevated circulating TTR may contribute to insulin resistance and counteract the exercise-induced insulin sensitivity improvement; the TTR suppression might be an adaptive response to exercise through enhancing AMPK activity in skeletal muscles.NEW & NOTEWORTHY Exercise improves obesity-induced insulin resistance via mechanisms that remain unclear. The novel findings of the study are that circulating TTR (a hepatokine) level is decreased by exercise, and the elevated circulating TTR, as was the elevated transthyretin internalization mediated by Grp78, counteracts the exercise-induced insulin sensitivity by downregulating AMPK activity in skeletal muscle of obese mice. These data suggest that TTR suppression might be an adaptive response to exercise through the crosstalk between liver and muscle.
Collapse
Affiliation(s)
- Yingzi He
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ruojun Qiu
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Beibei Wu
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Weiwei Gui
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xihua Lin
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Hong Li
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Fenping Zheng
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
12
|
Armandi A, Rosso C, Caviglia GP, Bugianesi E. Insulin Resistance across the Spectrum of Nonalcoholic Fatty Liver Disease. Metabolites 2021; 11:155. [PMID: 33800465 PMCID: PMC8000048 DOI: 10.3390/metabo11030155] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Insulin resistance (IR) is defined as a lower-than-expected response to insulin action from target tissues, leading to the development of type 2 diabetes through the impairment of both glucose and lipid metabolism. IR is a common condition in subjects with nonalcoholic fatty liver disease (NAFLD) and is considered one of the main factors involved in the pathogenesis of nonalcoholic steatohepatitis (NASH) and in the progression of liver disease. The liver, the adipose tissue and the skeletal muscle are major contributors for the development and worsening of IR. In this review, we discuss the sites and mechanisms of insulin action and the IR-related impairment along the spectrum of NAFLD, from simple steatosis to progressive NASH and cirrhosis.
Collapse
Affiliation(s)
| | | | | | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.A.); (C.R.); (G.P.C.)
| |
Collapse
|
13
|
Hepatokines as a Molecular Transducer of Exercise. J Clin Med 2021; 10:jcm10030385. [PMID: 33498410 PMCID: PMC7864203 DOI: 10.3390/jcm10030385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023] Open
Abstract
Exercise has health benefits and prevents a range of chronic diseases caused by physiological and biological changes in the whole body. Generally, the metabolic regulation of skeletal muscle through exercise is known to have a protective effect on the pathogenesis of metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D), and cardiovascular disease (CVD). Besides this, the importance of the liver as an endocrine organ is a hot research topic. Hepatocytes also secrete many hepatokines in response to nutritional conditions and/or physical activity. In particular, certain hepatokines play a major role in the regulation of whole-body metabolic homeostasis. In this review, we summarize the recent research findings on the exercise-mediated regulation of hepatokines, including fibroblast growth factor 21, fetuin-A, angiopoietin-like protein 4, and follistatin. These hepatokines serve as molecular transducers of the metabolic benefits of physical activity in chronic metabolic diseases, including NAFLD, T2D, and CVDs, in various tissues.
Collapse
|
14
|
Deng X, Cai Z, Li Y, Wu X, Zhao L, Li H, Chen K, Zhang P, Wang C, Zhao Z, Yang L, Yuan G. Increased Circulating Levels of Ectodysplasin A in Newly Diagnosed Type 2 Diabetic Patients. Front Endocrinol (Lausanne) 2021; 12:737624. [PMID: 34858327 PMCID: PMC8630655 DOI: 10.3389/fendo.2021.737624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Ectodysplasin A (EDA), a newly discovered hepatokine, has recently been considered to be closely related to glycolipid metabolism disorders, but the pathophysiological effects of EDA are still poorly understood. This study was the first time to determine the level of serum EDA in newly diagnosed type 2 diabetes mellitus (T2DM) patients, and to explore the relationships between serum EDA levels and various metabolic indexes. METHODS A total of 184 subjects were enrolled in the study, including 92 subjects with newly diagnosed T2DM and 92 subjects with age- and sex-matched normal glucose tolerance (NGT). Serum EDA levels were determined using enzyme-linked immunosorbent assay (ELISA). Oral glucose tolerance test, glycosylated hemoglobin c (HbA1c), and insulin were also measured. RESULTS Serum EDA levels were significantly increased in the T2DM group than in the NGT group (359.91 ± 117.99 vs. 265.82 ± 86.51 pg/ml, p < 0.001). Serum EDA levels were positively correlated with body mass index (BMI), waist-to-hip ratio (WHR), fasting plasma glucose (FPG), HbA1c, 2-hour postprandial plasma glucose (2hPG), fasting plasma insulin (FIns), fasting C peptide (FCP), triglyceride (TG), HOMA-IR, and negatively correlated with high-density lipoprotein cholesterol (HDL-c) and HOMA-β (p < 0.05). Multiple stepwise regression analysis demonstrated that 2hPG and FIns were independent influencing factors of serum EDA level (p < 0.05). Logistic regression analysis showed that serum EDA level was significantly independently correlated with T2DM (p < 0.05). CONCLUSIONS Serum EDA levels are significantly higher in T2DM patients, suggesting that EDA may play a role in the occurrence and development of T2DM.
Collapse
Affiliation(s)
- Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhensheng Cai
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yanyan Li
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Xunan Wu
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Li Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Haoxiang Li
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Chen
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Panpan Zhang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chenxi Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhicong Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ling Yang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Guoyue Yuan, ; Ling Yang,
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Guoyue Yuan, ; Ling Yang,
| |
Collapse
|
15
|
Jensen-Cody SO, Potthoff MJ. Hepatokines and metabolism: Deciphering communication from the liver. Mol Metab 2020; 44:101138. [PMID: 33285302 PMCID: PMC7788242 DOI: 10.1016/j.molmet.2020.101138] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 12/01/2020] [Indexed: 02/09/2023] Open
Abstract
Background The liver is a key regulator of systemic energy homeostasis and can sense and respond to nutrient excess and deficiency through crosstalk with multiple tissues. Regulation of systemic energy homeostasis by the liver is mediated in part through regulation of glucose and lipid metabolism. Dysregulation of either process may result in metabolic dysfunction and contribute to the development of insulin resistance or fatty liver disease. Scope of review The liver has recently been recognized as an endocrine organ that secretes hepatokines, which are liver-derived factors that can signal to and communicate with distant tissues. Dysregulation of liver-centered inter-organ pathways may contribute to improper regulation of energy homeostasis and ultimately metabolic dysfunction. Deciphering the mechanisms that regulate hepatokine expression and communication with distant tissues is essential for understanding inter-organ communication and for the development of therapeutic strategies to treat metabolic dysfunction. Major conclusions In this review, we discuss liver-centric regulation of energy homeostasis through hepatokine secretion. We highlight key hepatokines and their roles in metabolic control, examine the molecular mechanisms of each hepatokine, and discuss their potential as therapeutic targets for metabolic disease. We also discuss important areas of future studies that may contribute to understanding hepatokine signaling under healthy and pathophysiological conditions.
Collapse
Affiliation(s)
- Sharon O Jensen-Cody
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
Shen Y, Cao M, Tang S, Zhao Y, Zhao J, Chen X, Bi Y. Genomic and functional characterization of the lect2 gene from Siniperca chuatsi. FISH & SHELLFISH IMMUNOLOGY 2020; 107:146-155. [PMID: 32991992 DOI: 10.1016/j.fsi.2020.09.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/09/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Mandarin fish (Siniperca chuatsi) is an important economic fish in China. Viral and bacterial diseases seriously affect the artificial culture of S. chuatsi. As a carnivorous fish, artificial feed domestication is also an important means to improve the scale of S. chuatsi culture. Therefore, the study of immunology and digestive physiology is very important to the industrial development of S. chuatsi. In this work, we analyzed the expression and function of the S. chuatsi leukocyte cell-derived chemotaxin 2 (Sc-lect2) gene on a basis of next generation, single-molecule long-read sequencing. Sc-lect2 was mainly expressed in the liver but barely expressed in the gill, skin, muscle, kidney, head kidney, brain, stomach, and intestine. When the fish were infected with infectious spleen and kidney necrosis virus and challenged with lipopolysaccharide and polyinosinic-polycytidylic acid, Sc-lect2 expression significantly increased by about 40, 17, and 7-fold, respectively, compared with unstimulated samples. We also found that Sc-lect2 increases by approximately 8-fold after the fish are fed an artificial diet. These results show that mandarin fish liver can not only digest food but also express specific immune genes. Changes in the diet can cause the differential expression of Sc-lect2 genes. Four Sc-lect2 interaction genes were differentially expressed in the skin or blood. Interestingly, miR-145-3p could inhibit Sc-lect2 gene expression by targeting its coding sequence region. One CpG island in the promoter region showed a high level of methylation, suggesting that high methylation does not affect Sc-lect2 gene expression in the liver.
Collapse
Affiliation(s)
- Yawei Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Ming Cao
- Guangdong Provincial Fishery Germplasm Conservation Center, Guangzhou, 511400, China
| | - Shoujie Tang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yan Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinliang Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
| | - Yanhui Bi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
17
|
Caviglia GP, Rosso C, Armandi A, Gaggini M, Carli F, Abate ML, Olivero A, Ribaldone DG, Saracco GM, Gastaldelli A, Bugianesi E. Interplay between Oxidative Stress and Metabolic Derangements in Non-Alcoholic Fatty Liver Disease: The Role of Selenoprotein P. Int J Mol Sci 2020; 21:8838. [PMID: 33266488 PMCID: PMC7700603 DOI: 10.3390/ijms21228838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Pathogenetic mechanisms involved in the progression of non-alcoholic fatty liver disease (NAFLD) are complex and multifactorial. We investigated oxidative stress through the measurement of selenoprotein P (SeP) in serum and we explored its relation to metabolic derangements and liver damage in a group of non-diabetic NAFLD subjects. Methods: 57 NAFLD patients underwent a double-tracer oral glucose tolerance test (OGTT). Insulin resistance (IR) components were calculated at baseline as follows: hepatic-IR = (endogenous glucose production*insulin); peripheral-IR = (glucose rate of disappearance(Rd)); adipose-tissue(AT)-IR as Lipo-IR = (glycerol rate of appearance (Ra)*insulin) or AT-IR = (free fatty acids (FFAs)*insulin). The lipid and amino acid (AA) profiles were assessed by gas chromatography-mass spectrometry. SeP levels were measured by enzyme immunosorbent assay. Results: Circulating SeP correlated with insulin (rS = 0.28), FFAs (rS = 0.42), glucose Rd (rS = -0.33) and glycerol Ra (rS = -0.34); consistently, SeP levels correlated with Lipo-IR and AT-IR (rS > 0.4). Among the AA and lipid profiles, SeP inversely correlated with serine (rS = -0.31), glycine (rS = -0.44) and branched chain AA (rS = -0.32), and directly correlated with saturated (rS = 0.41) and monounsaturated FFAs (rS = 0.40). Hepatic steatosis and fibrosis increased in subjects with higher levels of SeP. In multivariable regression analysis, SeP was associated with the degree of hepatic fibrosis (t = 2.4, p = 0.022). Conclusions: SeP levels were associated with an altered metabolic profile and to the degree of hepatic fibrosis, suggesting a role in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Gian Paolo Caviglia
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (A.A.); (M.L.A.); (A.O.); (D.G.R.); (G.M.S.); (E.B.)
| | - Chiara Rosso
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (A.A.); (M.L.A.); (A.O.); (D.G.R.); (G.M.S.); (E.B.)
| | - Angelo Armandi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (A.A.); (M.L.A.); (A.O.); (D.G.R.); (G.M.S.); (E.B.)
| | - Melania Gaggini
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, 56121 Pisa, Italy; (M.G.); (F.C.); (A.G.)
| | - Fabrizia Carli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, 56121 Pisa, Italy; (M.G.); (F.C.); (A.G.)
| | - Maria Lorena Abate
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (A.A.); (M.L.A.); (A.O.); (D.G.R.); (G.M.S.); (E.B.)
| | - Antonella Olivero
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (A.A.); (M.L.A.); (A.O.); (D.G.R.); (G.M.S.); (E.B.)
| | - Davide Giuseppe Ribaldone
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (A.A.); (M.L.A.); (A.O.); (D.G.R.); (G.M.S.); (E.B.)
- Division of Gastroenterology, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy
| | - Giorgio Maria Saracco
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (A.A.); (M.L.A.); (A.O.); (D.G.R.); (G.M.S.); (E.B.)
- Division of Gastroenterology, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, 56121 Pisa, Italy; (M.G.); (F.C.); (A.G.)
| | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (A.A.); (M.L.A.); (A.O.); (D.G.R.); (G.M.S.); (E.B.)
- Division of Gastroenterology, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy
| |
Collapse
|
18
|
Zhao Y, Ma S, Hu X, Feng M, Xiang R, Li M, Liu C, Lu T, Huang A, Chen J, Wu M, Lu H. JAB1 promotes palmitate-induced insulin resistance via ERK pathway in hepatocytes. J Physiol Biochem 2020; 76:655-662. [PMID: 33051821 DOI: 10.1007/s13105-020-00770-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022]
Abstract
Insulin resistance (IR) is the primary pathological mechanism underlying Type 2 diabetes mellitus (T2DM). Many researches have reported the relationship between chronic inflammation and IR, while the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway is rapidly activated in inflammatory conditions. However, the functional role of ERK1/2 in IR remains to be identified. We here reported that C-Jun activation domain-binding protein-1 (JAB1) was upregulated in IR. In addition, we showed that depletion of JAB1 led to recovery of insulin sensitivity. Given the fact that JAB1 played as an activator of ERK1/2, we assumed JAB1 was involved in IR through ERK pathway. So we assessed the effects of JAB1 knockdown in palmitate acid (PA) treated HepG2 cells. Importantly, JAB1 siRNA blocked the effect of PA-induced activation of ERK1/2. Furthermore, silencing of JAB1 could reduce the release of inflammatory factors, facilitate hepatic glucose uptake and improve lipid metabolism. All these data implicated that JAB1 knockdown might alleviate PA-induced IR through ERK pathway in hepatocytes.
Collapse
Affiliation(s)
- Yun Zhao
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu, 215008, People's Republic of China
| | - Suxian Ma
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu, 215008, People's Republic of China
| | - Xingna Hu
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu, 215008, People's Republic of China
| | - Min Feng
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu, 215008, People's Republic of China
| | - Rong Xiang
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu, 215008, People's Republic of China
| | - Min Li
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu, 215008, People's Republic of China
| | - Chenxiao Liu
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu, 215008, People's Republic of China
| | - Ting Lu
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu, 215008, People's Republic of China
| | - Aijie Huang
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu, 215008, People's Republic of China
| | - Jiaqi Chen
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu, 215008, People's Republic of China
| | - Mian Wu
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu, 215008, People's Republic of China
| | - Honghong Lu
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu, 215008, People's Republic of China.
| |
Collapse
|
19
|
Liu W, Zhang Y, Chen Q, Liu S, Xu W, Shang W, Wang L, Yu J. Melatonin Alleviates Glucose and Lipid Metabolism Disorders in Guinea Pigs Caused by Different Artificial Light Rhythms. J Diabetes Res 2020; 2020:4927403. [PMID: 33150187 PMCID: PMC7603608 DOI: 10.1155/2020/4927403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/14/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Modern lifestyle-associated factors, such as high-calorie intake, high-fat diet (HFD), and excessive artificial light, are risk factors for glucose and lipid metabolism disturbances. Melatonin may be beneficial for managing obesity and diabetes; however, the underlying molecular mechanisms are not well elucidated. We aimed to assess whether melatonin has beneficial effects on constant artificial light-induced fat deposition, lipid metabolism, and insulin resistance. Guinea pigs were randomly divided into five experimental groups: control (C), HFD (H), 12 h light (12HL), 24 h light (24HL), and melatonin (M). The majority of indexes, including insulin resistance and obesity, were measured after 10 weeks. AMP-activated protein kinase α (AMPKα)/peroxisome proliferator-activated receptor-α (PPARα) pathway expression was analyzed by quantitative reverse transcription PCR and western blotting. Although insulin resistance and obesity indexes were higher in the 24HL group than in the 12HL group, they were significantly lower in the M group than in the 24HL group. Melatonin treatment markedly upregulated AMPKα, phosphorylated AMPKα (p-AMPKα), PPARα, and carnitine palmitoyl-CoA transferase 1 A (CPT1A) gene and protein expression. Melatonin may alleviate insulin resistance and obesity caused by persistent artificial light exposure in guinea pigs, likely via activation of the AMPKα/PPARα signaling pathway.
Collapse
Affiliation(s)
- Wei Liu
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yunchao Zhang
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Qi Chen
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Su Liu
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Weilong Xu
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wenbin Shang
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lijuan Wang
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jiangyi Yu
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|