1
|
Campi R, De Santis A, Colombo P, Scarpazza P, Masseroli M. Machine learning-based forecast of Helmet-CPAP therapy failure in Acute Respiratory Distress Syndrome patients. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 260:108574. [PMID: 39787918 DOI: 10.1016/j.cmpb.2024.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND AND OBJECTIVE Helmet-Continuous Positive Airway Pressure (H-CPAP) is a non-invasive respiratory support that is used for the treatment of Acute Respiratory Distress Syndrome (ARDS), a severe medical condition diagnosed when symptoms like profound hypoxemia, pulmonary opacities on radiography, or unexplained respiratory failure are present. It can be classified as mild, moderate or severe. H-CPAP therapy is recommended as the initial treatment approach for mild ARDS. Even though the efficacy of H-CPAP in managing patients with moderate-to-severe hypoxemia remains unclear, its use has increased for these cases in response to the emergence of the COVID-19 Pandemic. Using the electronic medical records (EMR) from the Pulmonology Department of Vimercate Hospital, in this study we develop and evaluate a Machine Learning (ML) system able to predict the failure of H-CPAP therapy on ARDS patients. METHODS The Vimercate Hospital EMR provides demographic information, blood tests, and vital parameters of all hospitalizations of patients who are treated with H-CPAP and diagnosed with ARDS. This data is used to create a dataset of 622 records and 38 features, with 70%-30% split between training and test sets. Different ML models such as SVM, XGBoost, Neural Network, Random Forest, and Logistic Regression are iteratively trained in a cross-validation fashion. We also apply a feature selection algorithm to improve predictions quality and reduce the number of features. RESULTS AND CONCLUSIONS The SVM and Neural Network models proved to be the most effective, achieving final accuracies of 95.19% and 94.65%, respectively. In terms of F1-score, the models scored 88.61% and 87.18%, respectively. Additionally, the SVM and XGBoost models performed well with a reduced number of features (23 and 13, respectively). The PaO2/FiO2 Ratio, C-Reactive Protein, and O2 Saturation resulted as the most important features, followed by Heartbeats, White Blood Cells, and D-Dimer, in accordance with the clinical scientific literature.
Collapse
Affiliation(s)
- Riccardo Campi
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, Milano, MI, 20133, Italy.
| | - Antonio De Santis
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, Milano, MI, 20133, Italy.
| | - Paolo Colombo
- Azienda Socio Sanitaria Territoriale della Brianza, Via Santi Cosma e Damiano 10, Vimercate, MB, 20871, Italy.
| | - Paolo Scarpazza
- Azienda Socio Sanitaria Territoriale della Brianza, Via Santi Cosma e Damiano 10, Vimercate, MB, 20871, Italy.
| | - Marco Masseroli
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, Milano, MI, 20133, Italy.
| |
Collapse
|
2
|
Naiditch H, Betts MR, Larman HB, Levi M, Rosenberg AZ. Immunologic and inflammatory consequences of SARS-CoV-2 infection and its implications in renal disease. Front Immunol 2025; 15:1376654. [PMID: 40012912 PMCID: PMC11861071 DOI: 10.3389/fimmu.2024.1376654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/23/2024] [Indexed: 02/28/2025] Open
Abstract
The emergence of the COVID-19 pandemic made it critical to understand the immune and inflammatory responses to the SARS-CoV-2 virus. It became increasingly recognized that the immune response was a key mediator of illness severity and that its mechanisms needed to be better understood. Early infection of both tissue and immune cells, such as macrophages, leading to pyroptosis-mediated inflammasome production in an organ system critical for systemic oxygenation likely plays a central role in the morbidity wrought by SARS-CoV-2. Delayed transcription of Type I and Type III interferons by SARS-CoV-2 may lead to early disinhibition of viral replication. Cytokines such as interleukin-1 (IL-1), IL-6, IL-12, and tumor necrosis factor α (TNFα), some of which may be produced through mechanisms involving nuclear factor kappa B (NF-κB), likely contribute to the hyperinflammatory state in patients with severe COVID-19. Lymphopenia, more apparent among natural killer (NK) cells, CD8+ T-cells, and B-cells, can contribute to disease severity and may reflect direct cytopathic effects of SARS-CoV-2 or end-organ sequestration. Direct infection and immune activation of endothelial cells by SARS-CoV-2 may be a critical mechanism through which end-organ systems are impacted. In this context, endovascular neutrophil extracellular trap (NET) formation and microthrombi development can be seen in the lungs and other critical organs throughout the body, such as the heart, gut, and brain. The kidney may be among the most impacted extrapulmonary organ by SARS-CoV-2 infection owing to a high concentration of ACE2 and exposure to systemic SARS-CoV-2. In the kidney, acute tubular injury, early myofibroblast activation, and collapsing glomerulopathy in select populations likely account for COVID-19-related AKI and CKD development. The development of COVID-19-associated nephropathy (COVAN), in particular, may be mediated through IL-6 and signal transducer and activator of transcription 3 (STAT3) signaling, suggesting a direct connection between the COVID-19-related immune response and the development of chronic disease. Chronic manifestations of COVID-19 also include systemic conditions like Multisystem Inflammatory Syndrome in Children (MIS-C) and Adults (MIS-A) and post-acute sequelae of COVID-19 (PASC), which may reflect a spectrum of clinical presentations of persistent immune dysregulation. The lessons learned and those undergoing continued study likely have broad implications for understanding viral infections' immunologic and inflammatory consequences beyond coronaviruses.
Collapse
Affiliation(s)
- Hiam Naiditch
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael R. Betts
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - H. Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
3
|
Chiu LC, Li HH, Juan YH, Ko HW, Kuo SCH, Lee CS, Chan TM, Lin YJ, Chuang LP, Hu HC, Kao KC, Hsu PC. Ventilatory variables and computed tomography features in COVID-19 ARDS and non-COVID-19-related ARDS: a prospective observational cohort study. Eur J Med Res 2025; 30:57. [PMID: 39875972 PMCID: PMC11773838 DOI: 10.1186/s40001-025-02303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND This study compared the ventilatory variables and computed tomography (CT) features of patients with coronavirus disease 2019 (COVID-19) versus those of patients with pulmonary non-COVID-19-related acute respiratory distress syndrome (ARDS) during the early phase of ARDS. METHODS This prospective, observational cohort study of ARDS patients in Taiwan was performed between February 2017 and June 2018 as well as between October 2020 and January 2024. Analysis was performed on clinical characteristics, including consecutive ventilatory variables during the first week after ARDS diagnosis. Analysis was also performed on CT scans obtained within one week after ARDS onset. RESULTS A total of 222 ARDS patients were divided into a COVID-19 ARDS group (n = 44; 19.8%) and a non-COVID-19 group (all pulmonary origin) (n = 178; 80.2%). No significant difference was observed between the two groups in terms of all-cause hospital mortality (38.6% versus 47.8%, p = 0.277). Pulmonary non-COVID-19 patients presented higher values for mechanical power (MP), MP normalized to predicted body weight (MP/PBW), MP normalized to compliance (MP/compliance), ventilatory ratio (VR), peak inspiratory pressure (Ppeak), and dynamic driving pressure (∆P) as well as lower dynamic compliance from day 1 to day 7 after ARDS onset. In both groups, non-survivors exceeded survivors and presented higher values for MP, MP/PBW, MP/compliance, VR, Ppeak, and dynamic ∆P with lower dynamic compliance from day 1 to day 7 after ARDS onset. The CT severity score for each of the five lung lobes and total CT scores were all significantly higher in the non-COVID-19 group (all p < 0.05). Multivariable logistic regression models revealed that Sequential Organ Failure Assessment (SOFA) score was independently associated with mortality in the COVID-19 group. In the non-COVID-19 group, body mass index, immunocompromised status, SOFA score, MP/PBW and total CT severity scores were independently associated with mortality. CONCLUSIONS In the early course of ARDS, physicians should be aware of the distinctions between COVID-19-related ARDS and non-COVID-19-related ARDS in terms of ventilatory variables and CT imaging presentations. It is also important to tailor the mechanical ventilation settings according to these distinct subsets of ARDS.
Collapse
Affiliation(s)
- Li-Chung Chiu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fu-Shing St., GuiShan, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hsien Li
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fu-Shing St., GuiShan, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yu-Hsiang Juan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Imaging and Intervention, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Taoyuan, Chang Gung University, Taoyuan, Taiwan
| | - How-Wen Ko
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fu-Shing St., GuiShan, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Scott Chih-Hsi Kuo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fu-Shing St., GuiShan, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Shu Lee
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fu-Shing St., GuiShan, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, New Taipei Municipal TuCheng Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Tien-Ming Chan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Yu-Jr Lin
- Research Services Center for Health Information, Chang Gung University, Taoyuan, Taiwan
| | - Li-Pang Chuang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fu-Shing St., GuiShan, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Han-Chung Hu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fu-Shing St., GuiShan, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Chin Kao
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fu-Shing St., GuiShan, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ping-Chih Hsu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fu-Shing St., GuiShan, Taoyuan, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Basilim A, Eljaaly K, Aljuhani O, Korayem GB, Altebainawi AF, Aldhmadi WJ, Alissa A, AlFaifi M, Alharthi AF, Vishwakarma R, Alqahtani R, Alahmari GD, Ibn Khamis AM, Alenazi AA, Alharbi A, Alfaraj L, Alshammari YF, Abdulqader MI, Alharbi MB, Alanazi BM, Alhamazani AE, Al Sulaiman K. Evaluation of Effectiveness and Safety of Dexmedetomidine in non-Mechanically Ventilated COVID-19 Critically ill Patients: A Multicentre Cohort Study. J Intensive Care Med 2025; 40:74-84. [PMID: 39552466 DOI: 10.1177/08850666241268498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background: Dexmedetomidine (DEX) is a highly favored sedative agent in critically ill patients owing to its anxiolytic and analgesic properties, lower risk of delirium, and minimal respiratory depression. Additionally, DEX exhibits anti-inflammatory properties, which have prompted its use in managing COVID-19 patients to mitigate cytokine storm and multi-organ dysfunction. Thus, this study aims to evaluate the safety and effectiveness of DEX use in critically ill patients with COVID-19. Method: This multicenter, retrospective cohort study included adult patients with confirmed COVID-19 who were admitted to the ICUs and did not require invasive mechanical ventilation (MV). Patients were categorized into two groups based on receiving DEX use within 72 h of ICU admission. The primary outcome was respiratory failure requiring invasive MV; other outcomes were considered secondary. Results: A total of 155 patients were included in the study after propensity matching. DEX did not reduce respiratory failure requiring invasive MV (HR 0.66; 95% CI (0.28, 1.53), P = .33). However, the time for invasive MV was statistically significantly shorter in the DEX group compared with the control group (beta coefficient (95%CI): - 1.05 (-2.03, -0.07), P = .03). In contrast, ICU and hospital Length of stay (LOS) were not statistically significant compared to the control group (beta coefficient 0.04 (95% CI -0.29, 0.38), P = .80, and beta coefficient - 0.03 (95% CI -0.33, 0.26), P = .81, respectively). In addition, the 30-day and in-hospital mortality rates were similar between the two groups (HR 1.1; 95% CI 0.97, 1.20, P = .14, and HR 1.01; 95% CI 0.95, 1.06, P = .90, respectively). Conclusion: Dexmedetomidine did not appear to lower the risk of respiratory failure necessitating invasive mechanical ventilation in critically ill patients. However, the mean time for invasive mechanical ventilation was shorter in the DEX group. Future interventional studies are required to confirm our findings.
Collapse
Affiliation(s)
- Ahmed Basilim
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Eljaaly
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ohoud Aljuhani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghazwa B Korayem
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ali F Altebainawi
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail, Saudi Arabia
- Pharmaceutical Care Services, King Salman Specialist Hospital, Hail Health Cluster, Ministry of Health, Hail, Saudi Arabia
| | - Wadha J Aldhmadi
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Abdulrahman Alissa
- Pharmaceutical Care Services, King Abdulla bin Abdulaziz University Hospital, Riyadh, Saudi Arabia
| | - Mashael AlFaifi
- Pharmaceutical Services Administration, King Saud Medical City, Riyadh, Saudi Arabia
| | | | - Ramesh Vishwakarma
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Reem Alqahtani
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ghaida D Alahmari
- Pharmaceutical Services Administration, King Saud Medical City, Riyadh, Saudi Arabia
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Afnan M Ibn Khamis
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abeer A Alenazi
- Pharmaceutical Care Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Aisha Alharbi
- Pharmaceutical Care Department, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Lulwa Alfaraj
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | | | - Marwah I Abdulqader
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mada B Alharbi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Bayan M Alanazi
- Pharmaceutical Care Services, King Salman Specialist Hospital, Hail Health Cluster, Ministry of Health, Hail, Saudi Arabia
| | - Atheer E Alhamazani
- Pharmaceutical Care Services, King Salman Specialist Hospital, Hail Health Cluster, Ministry of Health, Hail, Saudi Arabia
| | - Khalid Al Sulaiman
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Saudi Critical Care Pharmacy Research (SCAPE) Platform, Riyadh, Saudi Arabia
- Saudi Society for Multidisciplinary Research Development and Education (SCAPE Society), Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Svraka AD, Svraka D, Azaric BM, Malic J, Baric G, Kovacevic P. What proteins and albumins in bronchoalveolar lavage fluid and serum could tell us in COVID-19 and influenza acute respiratory distress syndrome on mechanical ventilation patient - A prospective double center study. J Crit Care Med (Targu Mures) 2025; 11:64-69. [PMID: 40017475 PMCID: PMC11864060 DOI: 10.2478/jccm-2025-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 01/08/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction The extent of in vivo damage to the alveolar-capillary membrane in patients with primary lung injury remains unclear. In cases of ARDS related to COVID-19 and Influenza type A, the complexity of the damage increases further, as viral pneumonia cannot currently be treated with a causal approach. Aims of the study Our primary goal is to enhance the understanding of Acute Respiratory Distress Syndrome (ARDS) by demonstrating damage to the alveocapillary membrane in critically ill patients with COVID-19 and influenza type A. We will achieve this by measuring the levels of proteins and albumin in bronchoalveolar fluid (BAL) and serum. Our secondary objective is to assess patient outcomes related to elevated protein and albumin levels in both BAL and blood serum, which will deepen our understanding of this complex condition. Materials and methods Bronchoalveolar lavage (BAL) fluid and serum samples were meticulously collected from a total of 64 patients, categorized into three distinct groups: 30 patients diagnosed with COVID-19-related acute respiratory distress syndrome (ARDS), 14 patients with influenza type A (H1N1 strain), also experiencing ARDS, and a control group consisting of 20 patients who were preoperatively prepared for elective surgical procedures without any diagnosed lung disease. The careful selection and categorization of patients ensure the robustness of our study. BAL samples were taken within the first 24 hours following the commencement of invasive mechanical ventilation in the intensive care unit, alongside measurements of serum albumin levels. In the control group, BAL and serum samples were collected after the induction of general endotracheal anaesthesia. Results Patients in the COVID-19 group are significantly older than those in the Influenza type A (H1N1) group, with median ages of 72.5 years and 62 years, respectively (p < 0.01, Mann-Whitney U test). Furthermore, serum albumin levels (measured in g/L) revealed significant differences across all three groups in the overall sample, yielding a p-value of less than 0.01 according to ANOVA. In terms of treatment outcomes, serum albumin levels also exhibited a significant correlation, with a p-value of 0.03 (Mann-Whitney U test). A reduction in serum albumin levels (below 35 g/L), combined with elevated protein levels in bronchoalveolar lavage (BAL), serves as a predictor of poor outcomes in patients with acute respiratory distress syndrome (ARDS), as indicated by a p-value of less than 0.01 (ANOVA). Conclusions Our findings indicate that protein and albumin levels in bronchoalveolar lavage (BAL) fluid are elevated in severe acute respiratory distress syndrome (ARDS) cases. This suggests that BAL can effectively evaluate protein levels and fractions, which could significantly assist in assessing damage to the alveolocapillary membrane. Additionally, the increased albumin levels in BAL, often accompanied by a decrease in serum albumin levels, may serve as a valuable indicator of compromised integrity of the alveolar-capillary membrane in ARDS, with potential implications for patient care.
Collapse
Affiliation(s)
| | - Dragan Svraka
- Faculty of Medicine, University of Banja Luka,Banjaluka, Bosnia and Herzegovina
- University Clinical Centre of the Republic of Srpska
| | - Bosa Mrjanic Azaric
- Faculty of Medicine, University of Banja Luka,Banjaluka, Bosnia and Herzegovina
| | - Jovana Malic
- Faculty of Medicine, University of Banja Luka,Banjaluka, Bosnia and Herzegovina
- University Clinical Centre of the Republic of Srpska
| | - Goran Baric
- Faculty of Medicine, University of Banja Luka,Banjaluka, Bosnia and Herzegovina
- University Clinical Centre of the Republic of Srpska
| | - Pedja Kovacevic
- Faculty of Medicine, University of Banja Luka,Banjaluka, Bosnia and Herzegovina
- University Clinical Centre of the Republic of Srpska
| |
Collapse
|
6
|
Gloeckl R, Leitl D, Schneeberger T, Jarosch I, Koczulla AR. Rehabilitative interventions in patients with persistent post COVID-19 symptoms-a review of recent advances and future perspectives. Eur Arch Psychiatry Clin Neurosci 2024; 274:1819-1828. [PMID: 37326700 PMCID: PMC11579067 DOI: 10.1007/s00406-023-01631-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
The SARS-CoV-2 pandemic has not only caused millions of deaths but left also millions of people with persistent symptoms behind. These long-term COVID-19 sequelae cause a considerable burden on individuals´ health, healthcare systems, and economies worldwide given the high rate of SARS-CoV-2 infections. Therefore, rehabilitative interventions and strategies are needed to counteract the post COVID-19 sequelae. The importance of rehabilitation for patients with persistent COVID-19 symptoms has been recently also highlighted in a Call for Action by the World Health Organisation. Based on previously published research, but also in line with clinical experience, COVID-19 is not one specific disease but rather presents in different phenotypes that vary in their pathophysiological mechanisms, symptomatic manifestations, and potential interventional approaches. This review provides a proposal for differentiating post COVID-19 patients in non-organ-specific phenotypes that may help clinicians to evaluate patients and to plan therapeutic options. Furthermore, we present current unmet needs and suggest a potential pathway for a specific rehabilitation approach in people with persistent post-COVID symptoms.
Collapse
Affiliation(s)
- Rainer Gloeckl
- Institute for Pulmonary Rehabilitation Research, Schoen Klinik Berchtesgadener Land, Malterhoeh 1, 83471, Schoenau Am Koenigssee, Germany.
- Department of Pulmonary Rehabilitation, Member of the German Center for Lung Research (DZL), University Medical Center Giessen and Marburg, Philipps-University Marburg (UGMLC), Marburg, Germany.
| | - Daniela Leitl
- Institute for Pulmonary Rehabilitation Research, Schoen Klinik Berchtesgadener Land, Malterhoeh 1, 83471, Schoenau Am Koenigssee, Germany
- Department of Pulmonary Rehabilitation, Member of the German Center for Lung Research (DZL), University Medical Center Giessen and Marburg, Philipps-University Marburg (UGMLC), Marburg, Germany
| | - Tessa Schneeberger
- Institute for Pulmonary Rehabilitation Research, Schoen Klinik Berchtesgadener Land, Malterhoeh 1, 83471, Schoenau Am Koenigssee, Germany
- Department of Pulmonary Rehabilitation, Member of the German Center for Lung Research (DZL), University Medical Center Giessen and Marburg, Philipps-University Marburg (UGMLC), Marburg, Germany
| | - Inga Jarosch
- Institute for Pulmonary Rehabilitation Research, Schoen Klinik Berchtesgadener Land, Malterhoeh 1, 83471, Schoenau Am Koenigssee, Germany
- Department of Pulmonary Rehabilitation, Member of the German Center for Lung Research (DZL), University Medical Center Giessen and Marburg, Philipps-University Marburg (UGMLC), Marburg, Germany
| | - Andreas Rembert Koczulla
- Institute for Pulmonary Rehabilitation Research, Schoen Klinik Berchtesgadener Land, Malterhoeh 1, 83471, Schoenau Am Koenigssee, Germany
- Department of Pulmonary Rehabilitation, Member of the German Center for Lung Research (DZL), University Medical Center Giessen and Marburg, Philipps-University Marburg (UGMLC), Marburg, Germany
- Teaching Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
7
|
Heesakkers H, van der Hoeven JG, Corsten S, Janssen I, Ewalds E, Simons KS, de Blauw M, Rettig TCD, Jacobs C, van Santen S, Slooter AJC, van der Woude MCE, Zegers M, van den Boogaard M. One-year outcomes in COVID-19 and non-COVID-19 intensive care unit survivors. J Crit Care 2024; 84:154858. [PMID: 39003923 DOI: 10.1016/j.jcrc.2024.154858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE To determine differences in one-year multi-domain health outcomes in COVID-19 and non-COVID-19 intensive care unit (ICU) survivors. MATERIALS AND METHODS Adult ICU survivors treated for COVID-19 were compared to a control group consisting of survivors admitted for respiratory distress due to other causes, i.e. non-COVID-19 ARDS or pneumonia. Occurrence of physical (frailty, fatigue, physical symptoms), mental (anxiety, depression, post-traumatic stress) and cognitive symptoms, and quality of life (QoL) scores were measured, using validated questionnaires, before and one year after ICU treatment. RESULTS In total, 506 COVID-19 survivors could be compared to 228 non-COVID-19 survivors. At one-year follow-up, COVID-19 ICU survivors had less physical (76.2% vs. 86.9%, p = 0.001) and mental symptoms (32.0% vs. 47.1%, p < 0.001) than the control group. Cognitive symptoms were comparable (22.5% vs. 17.2%, p = 0.12). However, compared to pre-ICU health symptoms and scores, COVID-19 survivors experienced an increase in symptom occurrence rates in all domains and a decrease in QoL, whereas the control group only experienced an increase in mental and cognitive symptoms, with a similar QoL at one-year follow-up. CONCLUSIONS COVID-19 ICU survivors experience equal or less health problems but a greater decline in QoL one year after ICU admission compared to non-COVID-19 ARDS or pneumonia survivors.
Collapse
Affiliation(s)
- Hidde Heesakkers
- Radboud university medical center, Department Intensive Care, Nijmegen, the Netherlands.
| | | | - Stijn Corsten
- Department of Intensive Care, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Inge Janssen
- Department of Intensive Care, Maasziekenhuis Pantein, Beugen, the Netherlands
| | - Esther Ewalds
- Department of Intensive Care, Bernhoven Hospital, Uden, the Netherlands
| | - Koen S Simons
- Department of Intensive Care, Jeroen Bosch Hospital, 's-Hertogenbosch, the Netherlands
| | - Maaike de Blauw
- Department of Intensive Care, Rijnstate Hospital, Arnhem, the Netherlands
| | - Thijs C D Rettig
- Department of Anesthesiology, Intensive Care and Pain Medicine, Amphia Hospital, Breda, the Netherlands
| | - Crétien Jacobs
- Department of Intensive Care, Elkerliek Hospital, Helmond, the Netherlands
| | - Susanne van Santen
- Department of Intensive Care, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Arjen J C Slooter
- Departments of Psychiatry and Intensive Care and UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Neurology, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| | - Margaretha C E van der Woude
- Department of Intensive Care and department of quality and safety, Heerlen Medical Center, Heerlen, the Netherlands; Department of Intensive Care, Amsterdam UMC, location AC, Amsterdam, the Netherlands
| | - Marieke Zegers
- Radboud university medical center, Department Intensive Care, Nijmegen, the Netherlands
| | - Mark van den Boogaard
- Radboud university medical center, Department Intensive Care, Nijmegen, the Netherlands
| |
Collapse
|
8
|
Nath S, Qurashi H, Kitsios GD, Bain W, Aneis H, Suber T, Prendergast N, Hensley M, Schaefer C, Zhang Y, Bon J, McVerry BJ, Evankovich J, Shah FA. Clinical and biologic profiles of patients with acute respiratory distress syndrome by prevalence of chronic obstructive pulmonary disease or emphysema; a cohort study. Respir Res 2024; 25:400. [PMID: 39516808 PMCID: PMC11549746 DOI: 10.1186/s12931-024-03027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) is characterized by diffuse lung injury. The impact of pre-existing chronic obstructive pulmonary disease (COPD) or emphysema on ARDS pathogenesis is not well characterized. METHODS Secondary analysis of ARDS patients enrolled in the Acute Lung Injury Registry and Biospecimen Repository at the University of Pittsburgh between June 2012 and September 2021. Patients were categorized into two mutually exclusive groups by the prevalence of COPD or emphysema at the time of ARDS diagnosis. The COPD/emphysema group comprised ARDS patients with radiological evidence of emphysema, chart diagnosis of COPD, or both. Demographics, lung mechanics, and clinical outcomes were obtained from the electronic medical record. Host-response biomarkers known to have validated associations with ARDS were previously measured in plasma and lower respiratory tract samples using a customized Luminex assay. Continuous and categorical variables were compared between groups with and without COPD/emphysema. RESULTS 217 patients with ARDS were included in the study, 57 (27%) had COPD/emphysema. Patients with COPD/emphysema were older (median 62 [interquartile range 55-69] versus 53 [41-64] years, p < 0.01), more likely to be male (62% vs. 44%, p = 0.02) and had a higher prevalence of congestive heart failure (25% vs. 4%, p < 0.01) compared to patients without COPD/emphysema. Baseline demographics, laboratory parameters, and mechanical ventilatory characteristics were otherwise similar between the two groups. No difference in 90-day mortality was observed between groups; however, patients with COPD/emphysema had shorter duration of intensive care unit (ICU) stay (median 10 [7-18] versus 16 [9-28] days, p = 0.04) and shorter duration of mechanical ventilation (median 7 [4-16] vs. 12 [6-20] days, p = 0.01). Host response biomarkers in serum and lower respiratory tract samples did not significantly differ between groups. CONCLUSION ARDS patients with COPD or emphysema had similar respiratory mechanics, host response biomarker profiles, and mortality compared to those without COPD or emphysema but with a shorter median duration of mechanical ventilation and ICU length of stay. Future studies should address differences in clinical and biological responses by disease severity, and should investigate the impact of severity of COPD and emphysema on mechanical ventilation and targeted therapeutic strategies in ARDS. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Sridesh Nath
- Department of Medicine, Division of Pulmonary, and Critical Care Medicine, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Hafiz Qurashi
- Department of Medicine, UPMC Health Systems, Pittsburgh, PA, USA
| | - Georgios D Kitsios
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Bain
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Hamam Aneis
- Department of Medicine, UPMC McKeesport Hospital, Pittsburgh, PA, USA
| | - Tomeka Suber
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Niall Prendergast
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Hensley
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caitlin Schaefer
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica Bon
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Bryan J McVerry
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Evankovich
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Faraaz Ali Shah
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA.
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Martins MS, Nascimento MHC, Leal LB, Cardoso WJ, Nobre V, Ravetti CG, Frizera Vassallo P, Teófilo RF, Barauna VG. Use of NIR in COVID-19 Screening: Proof of Principles for Future Application. ACS OMEGA 2024; 9:42448-42454. [PMID: 39431082 PMCID: PMC11483380 DOI: 10.1021/acsomega.4c06092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
The COVID-19 pandemic that affected the world between 2019 and 2022 showed the need for new tools to be tested and developed to be applied in global emergencies. Although standard diagnostic tools exist, such as the reverse-transcription polymerase chain reaction (RT-PCR), these tools have shown severe limitations when mass application is required. Consequently, a pressing need remains to develop a rapid and efficient screening test to deliver reliable results. In this context, near-infrared spectroscopy (NIRS) is a fast and noninvasive vibrational technique capable of identifying the chemical composition of biofluids. This study aimed to develop a rapid NIRS testing methodology to identify individuals with COVID-19 through the spectral analysis of swabs collected from the oral cavity. Swab samples from 67 hospitalized individuals were analyzed using NIR equipment. The spectra were preprocessed, outliers were removed, and classification models were constructed using partial least-squares for discriminant analysis (PLS-DA). Two models were developed: one with all the original variables and another with a limited number of variables selected using ordered predictors selection (OPS-DA). The OPS-DA model effectively reduced the number of redundant variables, thereby improving the diagnostic metrics. The model achieved a sensitivity of 92%, a specificity of 100%, an accuracy of 95%, and an AUROC of 94% for positive samples. These preliminary results suggest that NIRS could be a potential tool for future clinical application. A fast methodology for COVID-19 detection would facilitate medical diagnoses and laboratory routines, helping to ensure appropriate treatment.
Collapse
Affiliation(s)
- Matthews S. Martins
- Department
of Physiological Sciences, Universidade
Federal do Espírito Santo, Av. Mal. Campos, 1468 - Maruípe, Vitória, Espírito Santo 29047-105, Brazil
| | - Marcia H. C. Nascimento
- Department
of Chemistry, Universidade Federal Espírito
Santo, Av. Fernando Ferrari,
514 - Goiabeiras, Vitória, Espírito Santo 29075-910, Brazil
| | - Leonardo B. Leal
- Department
of Physiological Sciences, Universidade
Federal do Espírito Santo, Av. Mal. Campos, 1468 - Maruípe, Vitória, Espírito Santo 29047-105, Brazil
| | - Wilson J. Cardoso
- Departament
of Chemistry, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Vandack Nobre
- Interdisciplinary
Research Center in Intensive Medicine (NIIMI) and Department of Clinical
Medicine, Universidade Federal de Minas
Gerais (UFMG), Av. Prof. Alfredo Balena, 110 - Santa Efigênia, Belo Horizonte, Minas Gerais 30130-100, Brazil
| | - Cecilia G. Ravetti
- Interdisciplinary
Research Center in Intensive Medicine (NIIMI) and Department of Clinical
Medicine, Universidade Federal de Minas
Gerais (UFMG), Av. Prof. Alfredo Balena, 110 - Santa Efigênia, Belo Horizonte, Minas Gerais 30130-100, Brazil
| | - Paula Frizera Vassallo
- Interdisciplinary
Research Center in Intensive Medicine (NIIMI) and Department of Clinical
Medicine, Universidade Federal de Minas
Gerais (UFMG), Av. Prof. Alfredo Balena, 110 - Santa Efigênia, Belo Horizonte, Minas Gerais 30130-100, Brazil
| | - Reinaldo F. Teófilo
- Departament
of Chemistry, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Valerio G. Barauna
- Department
of Physiological Sciences, Universidade
Federal do Espírito Santo, Av. Mal. Campos, 1468 - Maruípe, Vitória, Espírito Santo 29047-105, Brazil
| |
Collapse
|
10
|
Zhao Y, Yao Z, Xu S, Yao L, Yu Z. Glucocorticoid therapy for acute respiratory distress syndrome: Current concepts. JOURNAL OF INTENSIVE MEDICINE 2024; 4:417-432. [PMID: 39310055 PMCID: PMC11411438 DOI: 10.1016/j.jointm.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 09/25/2024]
Abstract
Acute respiratory distress syndrome (ARDS), a fatal critical disease, is induced by various insults. ARDS represents a major global public health burden, and the management of ARDS continues to challenge healthcare systems globally, especially during the pandemic of the coronavirus disease 2019 (COVID-19). There remains no confirmed specific pharmacotherapy for ARDS, despite advances in understanding its pathophysiology. Debate continues about the potential role of glucocorticoids (GCs) as a promising ARDS clinical therapy. Questions regarding GC agent, dose, and duration in patients with ARDS need to be answered, because of substantial variations in GC administration regimens across studies. ARDS heterogeneity likely affects the therapeutic actions of exogenous GCs. This review includes progress in determining the GC mechanisms of action and clinical applications in ARDS, especially during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yuanrui Zhao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhun Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Song Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lan Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
11
|
Tanios M, Wu TT, Nguyen H(M, Smith L, Mahidhara R, Devlin JW. Comparing the impact of targeting limited driving pressure to low tidal volume ventilation on mortality in mechanically ventilated adults with COVID-19 ARDS: an exploratory target trial emulation. BMJ Open Respir Res 2024; 11:e002439. [PMID: 39353713 PMCID: PMC11448172 DOI: 10.1136/bmjresp-2024-002439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND An association between driving pressure (∆P) and the outcomes of invasive mechanical ventilation (IMV) may exist. However, the effect of a sustained limitation of ∆P on mortality in patients with acute respiratory distress syndrome (ARDS), including patients with COVID-19 (COVID-19-related acute respiratory distress syndrome (C-ARDS)) undergoing IMV, has not been rigorously evaluated. The use of emulations of a target trial in intensive care unit research remains in its infancy. To inform future, large ARDS target trials, we explored using a target trial emulation approach to analyse data from a cohort of IMV adults with C-ARDS to determine whether maintaining daily ∆p<15 cm H2O (in addition to traditional low tidal volume ventilation (LTVV) (tidal volume 5-7 cc/PBW+plateau pressure (Pplat) ≤30 cm H2O), compared with LTVV alone, affects the 28-day mortality. METHODS To emulate a target trial, adults with C-ARDS requiring >24 hours of IMV were considered to be assigned to limited ∆P or LTVV. Lung mechanics were measured twice daily after ventilator setting adjustments were made. To evaluate the effect of each lung-protective ventilation (LPV) strategy on the 28-day mortality, we fit a stabilised inverse probability weighted marginal structural model that adjusted for baseline and time-varying confounders known to affect protection strategy use/adherence or survival. RESULTS Among the 92 patients included, 27 (29.3%) followed limited ∆P ventilation, 23 (25.0%) the LTVV strategy and 42 (45.7%) received no LPV strategy. The adjusted estimated 28-day survival was 47.0% (95% CI 23%, 76%) in the limited ∆P group, 70.3% in the LTVV group (95% CI 37.6%, 100%) and 37.6% (95% CI 20.8%, 58.0%) in the no LPV strategy group. INTERPRETATION Limiting ∆P may not provide additional survival benefits for patients with C-ARDS over LTVV. Our results help inform the development of future target trial emulations focused on evaluating LPV strategies, including reduced ∆P, in adults with ARDS.
Collapse
Affiliation(s)
- Maged Tanios
- Long Beach Memorial Medical Center, Long Beach, California, USA
- Division of Pulmonary and Critical Care Medicine, University of California Irvine, Irvine, California, USA
| | - Ting Ting Wu
- Northeastern University - Boston Campus, Boston, Massachusetts, USA
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Louisa Smith
- Pharmacy and Health Systems Sciences, Northeastern University - Boston Campus, Boston, Massachusetts, USA
| | - Raja Mahidhara
- Long Beach Memorial Medical Center, Long Beach, California, USA
- Sound Physicians, Tacoma, Washington, USA
| | - John W Devlin
- Pharmacy and Health Systems Sciences, Northeastern University - Boston Campus, Boston, Massachusetts, USA
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Navas Boada P, Chamorro K, Ballaz S. Survival analysis of COVID-19 versus non-COVID-19 patients requiring intensive care for acute respiratory distress syndrome: An observational retrospective study. CANADIAN JOURNAL OF RESPIRATORY THERAPY : CJRT = REVUE CANADIENNE DE LA THERAPIE RESPIRATOIRE : RCTR 2024; 60:112-121. [PMID: 39268526 PMCID: PMC11392457 DOI: 10.29390/001c.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
Background/Aim This study analyzed clinical factors impacting the survival of COVID-19 patients with acute respiratory distress síndrome, or ARDS (CARDS) to ICU compared to non-COVID-19 ARDS patients. Methods Clinical variables from 1,008 CARDS cases and 332 ARDS cases were computed using learning algorithms. The multivariable Cox proportional hazards regression models with the enter method evaluated risk factors and ICU mortality relationships. The survival analysis was completed with Kaplan-Meier and the log-rank tests. Results A Random Forest model revealed that mechanical ventilation-related factors, oxygenation, blood pH, superinfection, shock, and ICU length of stay have the greatest effects on ICU survival. According to a multivariate Cox model, reintubation and a high-flow nasal cannula were essential for survival in CARDS patients during the ICU stay. The length of stay in the ICU diminishes in patients older than 45 years, regardless of the source of ARDS. Conclusion This study gives recommendations for the respiratory care of ARDS in COVID-19 patients.
Collapse
Affiliation(s)
- Paulo Navas Boada
- School of Biological Sciences and Engineering Universidad Yachay Tech
| | - Kevin Chamorro
- School of Mathematics and Computational Sciences Universidad Yachay Tech
| | | |
Collapse
|
13
|
Martinato LHM, Schmidt D, Piva TC, Deponti GN, Graboski MC, Plentz RDM, Sbruzzi G. Influence of obesity on mortality, mechanical ventilation time and mobility of critical patients with COVID-19. CRITICAL CARE SCIENCE 2024; 36:e20240253en. [PMID: 38985049 PMCID: PMC11208042 DOI: 10.62675/2965-2774.20240253-en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/14/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE To identify the influence of obesity on mortality, time to weaning from mechanical ventilation and mobility at intensive care unit discharge in patients with COVID-19. METHODS This retrospective cohort study was carried out between March and August 2020. All adult patients admitted to the intensive care unit in need of ventilatory support and confirmed to have COVID-19 were included. The outcomes included mortality, time on mechanical ventilation, and mobility at intensive care unit discharge. RESULTS Four hundred and twenty-nine patients were included, 36.6% of whom were overweight and 43.8% of whom were obese. Compared with normal body mass index patients, overweight and obese patients had lower mortality (p = 0.002) and longer intensive care unit survival (log-rank p < 0.001). Compared with patients with a normal body mass index, overweight patients had a 36% lower risk of death (p = 0.04), while patients with obesity presented a 23% lower risk (p < 0.001). There was no association between obesity and time on mechanical ventilation. The level of mobility at intensive care unit discharge did not differ between groups and showed a moderate inverse correlation with length of stay in the intensive care unit (r = -0.461; p < 0.001). CONCLUSION Overweight and obese patients had lower mortality and higher intensive care unit survival rates. The duration of mechanical ventilation and mobility level at intensive care unit discharge did not differ between the groups.
Collapse
Affiliation(s)
- Luísa Helena Machado Martinato
- Hospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPhysical Therapy Service, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brazil.
| | - Débora Schmidt
- Hospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPhysical Therapy Service, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brazil.
| | - Taila Cristina Piva
- Hospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPhysical Therapy Service, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brazil.
| | - Gracieli Nadalon Deponti
- Hospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPhysical Therapy Service, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brazil.
| | - Maricene Colissi Graboski
- Hospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPhysical Therapy Service, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brazil.
| | - Rodrigo Della Méa Plentz
- Postgraduate Program in Rehabilitation ScienceUniversidade Federal de Ciências da Saúde de Porto AlegrePorto AlegreRSBrazilPostgraduate Program in Rehabilitation Science, Universidade Federal de Ciências da Saúde de Porto Alegre - Porto Alegre (RS), Brazil.
| | - Graciele Sbruzzi
- Hospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPhysical Therapy Service, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brazil.
| |
Collapse
|
14
|
Beck-Schimmer B, Schadde E, Pietsch U, Filipovic M, Dübendorfer-Dalbert S, Fodor P, Hübner T, Schuepbach R, Steiger P, David S, Krüger BD, Neff TA, Schläpfer M. Early sevoflurane sedation in severe COVID-19-related lung injury patients. A pilot randomized controlled trial. Ann Intensive Care 2024; 14:41. [PMID: 38536545 PMCID: PMC10973324 DOI: 10.1186/s13613-024-01276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/11/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND This study aimed to assess a potential organ protective effect of volatile sedation in a scenario of severe inflammation with an early cytokine storm (in particular IL-6 elevation) in patients suffering from COVID-19-related lung injury with invasive mechanical ventilation and sedation. METHODS This is a small-scale pilot multicenter randomized controlled trial from four tertiary hospitals in Switzerland, conducted between April 2020 and May 2021. 60 patients requiring mechanical ventilation due to severe COVID-19-related lung injury were included and randomized to 48-hour sedation with sevoflurane vs. continuous intravenous sedation (= control) within 24 h after intubation. The primary composite outcome was determined as mortality or persistent organ dysfunction (POD), defined as the need for mechanical ventilation, vasopressors, or renal replacement therapy at day 28. Secondary outcomes were the length of ICU and hospital stay, adverse events, routine laboratory parameters (creatinine, urea), and plasma inflammatory mediators. RESULTS 28 patients were randomized to sevoflurane, 32 to the control arm. The intention-to-treat analysis revealed no difference in the primary endpoint with 11 (39%) sevoflurane and 13 (41%) control patients (p = 0.916) reaching the primary outcome. Five patients died within 28 days in each group (16% vs. 18%, p = 0.817). Of the 28-day survivors, 6 (26%) and 8 (30%) presented with POD (p = 0.781). There was a significant difference regarding the need for vasopressors (1 (4%) patient in the sevoflurane arm, 7 (26%) in the control one (p = 0.028)). Length of ICU stay, hospital stay, and registered adverse events within 28 days were comparable, except for acute kidney injury (AKI), with 11 (39%) sevoflurane vs. 2 (6%) control patients (p = 0.001). The blood levels of IL-6 in the first few days after the onset of the lung injury were less distinctly elevated than expected. CONCLUSIONS No evident benefits were observed with short sevoflurane sedation on mortality and POD. Unexpectedly low blood levels of IL-6 might indicate a moderate injury with therefore limited improvement options of sevoflurane. Acute renal issues suggest caution in using sevoflurane for sedation in COVID-19. TRIAL REGISTRATION The trial was registered on ClinicalTrials.gov (NCT04355962) on 2020/04/21.
Collapse
Affiliation(s)
- Beatrice Beck-Schimmer
- Institute of Anesthesiology, University Hospital Zurich University of Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Erik Schadde
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Department of Surgery, Rush University, Chicago, IL, USA
| | - Urs Pietsch
- Division of Anesthesiology, Intensive Care, Rescue and Pain Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Miodrag Filipovic
- Division of Anesthesiology, Intensive Care, Rescue and Pain Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | | | - Patricia Fodor
- Institute of Anesthesia and Intensive Care Medicine, City Hospital Triemli, Zurich, Switzerland
| | - Tobias Hübner
- Department of Anesthesia and Intensive Care Medicine, Cantonal Hospital Muensterlingen, Muensterlingen, Switzerland
| | - Reto Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Peter Steiger
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bernard D Krüger
- Institute of Anesthesiology, University Hospital Zurich University of Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland
| | - Thomas A Neff
- Department of Anesthesia and Intensive Care Medicine, Cantonal Hospital Muensterlingen, Muensterlingen, Switzerland
| | - Martin Schläpfer
- Institute of Anesthesiology, University Hospital Zurich University of Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland.
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Jonassen TB, Jørgensen SE, Mitchell NH, Mogensen TH, Berg RMG, Ronit A, Plovsing RR. Alveolar cytokines and interferon autoantibodies in COVID-19 ARDS. Front Immunol 2024; 15:1353012. [PMID: 38571960 PMCID: PMC10987806 DOI: 10.3389/fimmu.2024.1353012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Background Type I interferon (IFN-I) and IFN autoantibodies play a crucial role in controlling SARS-CoV-2 infection. The levels of these mediators have only rarely been studied in the alveolar compartment in patients with COVID-19 acute respiratory distress syndrome (CARDS) but have not been compared across different ARDS etiologies, and the potential effect of dexamethasone (DXM) on these mediators is not known. Methods We assessed the integrity of the alveolo-capillary membrane, interleukins, type I, II, and III IFNs, and IFN autoantibodies by studying the epithelial lining fluid (ELF) volumes, alveolar concentration of protein, and ELF-corrected concentrations of cytokines in two patient subgroups and controls. Results A total of 16 patients with CARDS (four without and 12 with DXM treatment), eight with non-CARDS, and 15 healthy controls were included. The highest ELF volumes and protein levels were observed in CARDS. Systemic and ELF-corrected alveolar concentrations of interleukin (IL)-6 appeared to be particularly low in patients with CARDS receiving DXM, whereas alveolar levels of IL-8 were high regardless of DXM treatment. Alveolar levels of IFNs were similar between CARDS and non-CARDS patients, and IFNα and IFNω autoantibody levels were higher in patients with CARDS and non-CARDS than in healthy controls. Conclusions Patients with CARDS exhibited greater alveolo-capillary barrier disruption with compartmentalization of IL-8, regardless of DXM treatment, whereas systemic and alveolar levels of IL-6 were lower in the DXM-treated subgroup. IFN-I autoantibodies were higher in the BALF of CARDS patients, independent of DXM, whereas IFN autoantibodies in plasma were similar to those in controls.
Collapse
Affiliation(s)
- Trine B. Jonassen
- Department of Anesthesiology and Intensive Care, Copenhagen University Hospital-Amager and Hvidovre Hospitals, Hvidovre, Denmark
| | - Sofie E. Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital (AUH), Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nikki H. Mitchell
- Department of Clinical Biochemistry, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark
| | - Trine H. Mogensen
- Department of Infectious Diseases, Aarhus University Hospital (AUH), Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ronan M. G. Berg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Centre for Physical Activity Research, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - Andreas Ronit
- Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre Hospitals, Hvidovre, Denmark
| | - Ronni R. Plovsing
- Department of Anesthesiology and Intensive Care, Copenhagen University Hospital-Amager and Hvidovre Hospitals, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Al-Yousif N, Nouraie SM, Broerman MJ, Zhang Y, Suber TL, Evankovich J, Bain WG, Kitsios GD, McVerry BJ, Shah FA. Glucocorticoid use in acute respiratory failure from pulmonary causes and association with early changes in the systemic host immune response. Intensive Care Med Exp 2024; 12:24. [PMID: 38441708 PMCID: PMC10914652 DOI: 10.1186/s40635-024-00605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Glucocorticoids are commonly used in patients with or at-risk for acute respiratory distress syndrome (ARDS), but optimal use remains unclear despite well-conducted clinical trials. We performed a secondary analysis in patients previously enrolled in the Acute Lung Injury and Biospecimen Repository at the University of Pittsburgh. The primary aim of our study was to investigate early changes in host response biomarkers in response to real-world use of glucocorticoids in patients with acute respiratory failure due to ARDS or at-risk due to a pulmonary insult. Participants had baseline plasma samples obtained on study enrollment and on follow-up 3 to 5 days later to measure markers of innate immunity (IL-6, IL-8, IL-10, TNFr1, ST2, fractalkine), epithelial injury (sRAGE), endothelial injury (angiopoietin-2), and host response to bacterial infections (procalcitonin, pentraxin-3). In our primary analyses, we investigated the effect of receiving glucocorticoids between baseline and follow-up samples on host response biomarkers measured at follow-up by doubly robust inverse probability weighting analysis. In exploratory analyses, we examined associations between glucocorticoid use and previously characterized host response subphenotypes (hyperinflammatory and hypoinflammatory). RESULTS 67 of 148 participants (45%) received glucocorticoids between baseline and follow-up samples. Dose and type of glucocorticoids varied. Regimens that used hydrocortisone alone were most common (37%), and median daily dose was equivalent to 40 mg methylprednisolone (interquartile range: 21, 67). Participants who received glucocorticoids were more likely to be female, to be on immunosuppressive therapy at baseline, and to have higher baseline levels of ST-2, fractalkine, IL-10, pentraxin-3, sRAGE, and TNFr1. Glucocorticoid use was associated with decreases in IL-6 and increases in fractalkine. In exploratory analyses, glucocorticoid use was more frequent in participants in the hyperinflammatory subphenotype (58% vs 40%, p = 0.05), and was not associated with subphenotype classification at the follow-up time point (p = 0.16). CONCLUSIONS Glucocorticoid use varied in a cohort of patients with or at-risk for ARDS and was associated with early changes in the systemic host immune response.
Collapse
Affiliation(s)
- Nameer Al-Yousif
- Division of Pulmonary, Critical Care, and Sleep Medicine, MetroHealth Medical Center, Cleveland, OH, USA
| | - Seyed M Nouraie
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
| | - Matthew J Broerman
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
| | - Tomeka L Suber
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
| | - John Evankovich
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Aging Institute, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
| | - William G Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Veteran's Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
| | - Bryan J McVerry
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA
| | - Faraaz A Shah
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA.
- Acute Lung Injury and Infection Center, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, UPMC Montefiore NW 628, Pittsburgh, PA, 15213, USA.
- Veteran's Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Aribindi K, Lim M, Lakshminrusimha S, Albertson T. Investigational pharmacological agents for the treatment of ARDS. Expert Opin Investig Drugs 2024; 33:243-277. [PMID: 38316432 DOI: 10.1080/13543784.2024.2315128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Acute Respiratory Distress Syndrome (ARDS) is a heterogeneous form of lung injury with severe hypoxemia and bilateral infiltrates after an inciting event that results in diffuse lung inflammation with a high mortality rate. While research in COVID-related ARDS has resulted in several pharmacotherapeutic agents that have undergone successful investigation, non-COVID ARDS studies have not resulted in many widely accepted pharmacotherapeutic agents despite exhaustive research. AREAS COVERED The aim of this review is to discuss adjuvant pharmacotherapies targeting non-COVID Acute Lung Injury (ALI)/ARDS and novel therapeutics in COVID associated ALI/ARDS. In ARDS, variable data may support selective use of neuromuscular blocking agents, corticosteroids and neutrophil elastase inhibitors, but are not yet universally used. COVID-ALI/ARDS has data supporting the use of IL-6 monoclonal antibodies, corticosteroids, and JAK inhibitor therapy. EXPERT OPINION Although ALI/ARDS modifying pharmacological agents have been identified in COVID-related disease, the data in non-COVID ALI/ARDS has been less compelling. The increased use of more specific molecular phenotyping based on physiologic parameters and biomarkers, will ensure equipoise between groups, and will likely allow more precision in confirming pharmacological agent efficacy in future studies.
Collapse
Affiliation(s)
- Katyayini Aribindi
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
- Department of Medicine, Veterans Affairs North California Health Care System, Mather, CA, USA
| | - Michelle Lim
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| | - Timothy Albertson
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
18
|
Tan DJ, Plasek JM, Hou PC, Baron RM, Atkinson BJ, Zhou L. Investigating the Association Between Dynamic Driving Pressure and Mortality in COVID-19-Related Acute Respiratory Distress Syndrome: A Joint Modeling Approach Using Real-Time Continuously-Monitored Ventilation Data. Crit Care Explor 2024; 6:e1043. [PMID: 38449669 PMCID: PMC10917137 DOI: 10.1097/cce.0000000000001043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
IMPORTANCE AND OBJECTIVES COVID-19-related acute respiratory distress syndrome (ARDS) is associated with high mortality and often necessitates invasive mechanical ventilation (IMV). Previous studies on non-COVID-19 ARDS have shown driving pressure to be robustly associated with ICU mortality; however, those studies relied on "static" driving pressure measured periodically and manually. As "continuous" automatically monitored driving pressure is becoming increasingly available and reliable with more advanced mechanical ventilators, we aimed to examine the effect of this "dynamic" driving pressure in COVID-19 ARDS throughout the entire ventilation period. DESIGN SETTING AND PARTICIPANTS This retrospective, observational study cohort study evaluates the association between driving pressure and ICU mortality in patients with concurrent COVID-19 and ARDS using multivariate joint modeling. The study cohort (n = 544) included all adult patients (≥ 18 yr) with COVID-19 ARDS between March 1, 2020, and April 30, 2021, on volume-control mode IMV for 12 hours or more in a Mass General Brigham, Boston, MA ICU. MEASUREMENTS AND MAIN RESULTS Of 544 included patients, 171 (31.4%) died in the ICU. Increased dynamic ΔP was associated with increased risk in the hazard of ICU mortality (hazard ratio [HR] 1.035; 95% credible interval, 1.004-1.069) after adjusting for other relevant dynamic respiratory biomarkers. A significant increase in risk in the hazard of death was found for every hour of exposure to high intensities of driving pressure (≥ 15 cm H2O) (HR 1.002; 95% credible interval 1.001-1.003). CONCLUSIONS Limiting patients' exposure to high intensities of driving pressure even while under lung-protective ventilation may represent a critical step in improving ICU survival in patients with COVID-19 ARDS. Time-series IMV data could be leveraged to enhance real-time monitoring and decision support to optimize ventilation strategies at the bedside.
Collapse
Affiliation(s)
- Daniel J Tan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
- Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Joseph M Plasek
- Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Peter C Hou
- Division of Emergency Critical Care Medicine, Department of Emergency Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Benjamin J Atkinson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Li Zhou
- Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Chatterjee S, Saad F, Sarasaen C, Ghosh S, Krug V, Khatun R, Mishra R, Desai N, Radeva P, Rose G, Stober S, Speck O, Nürnberger A. Exploration of Interpretability Techniques for Deep COVID-19 Classification Using Chest X-ray Images. J Imaging 2024; 10:45. [PMID: 38392093 PMCID: PMC10889835 DOI: 10.3390/jimaging10020045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread, and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosing of infected patients. Medical imaging, such as X-ray and computed tomography (CT), combined with the potential of artificial intelligence (AI), plays an essential role in supporting medical personnel in the diagnosis process. Thus, in this article, five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their ensemble, using majority voting, have been used to classify COVID-19, pneumoniæ and healthy subjects using chest X-ray images. Multilabel classification was performed to predict multiple pathologies for each patient, if present. Firstly, the interpretability of each of the networks was thoroughly studied using local interpretability methods-occlusion, saliency, input X gradient, guided backpropagation, integrated gradients, and DeepLIFT-and using a global technique-neuron activation profiles. The mean micro F1 score of the models for COVID-19 classifications ranged from 0.66 to 0.875, and was 0.89 for the ensemble of the network models. The qualitative results showed that the ResNets were the most interpretable models. This research demonstrates the importance of using interpretability methods to compare different models before making a decision regarding the best performing model.
Collapse
Affiliation(s)
- Soumick Chatterjee
- Data and Knowledge Engineering Group, Otto von Guericke University, 39106 Magdeburg, Germany
- Faculty of Computer Science, Otto von Guericke University, 39106 Magdeburg, Germany
- Genomics Research Centre, Human Technopole, 20157 Milan, Italy
| | - Fatima Saad
- Institute for Medical Engineering, Otto von Guericke University, 39106 Magdeburg, Germany
- Research Campus STIMULATE, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Chompunuch Sarasaen
- Institute for Medical Engineering, Otto von Guericke University, 39106 Magdeburg, Germany
- Research Campus STIMULATE, Otto von Guericke University, 39106 Magdeburg, Germany
- Biomedical Magnetic Resonance, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Suhita Ghosh
- Faculty of Computer Science, Otto von Guericke University, 39106 Magdeburg, Germany
- Artificial Intelligence Lab, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Valerie Krug
- Faculty of Computer Science, Otto von Guericke University, 39106 Magdeburg, Germany
- Artificial Intelligence Lab, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Rupali Khatun
- Department of Mathematics and Computer Science, University of Barcelona, 08028 Barcelona, Spain
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | | | | | - Petia Radeva
- Department of Mathematics and Computer Science, University of Barcelona, 08028 Barcelona, Spain
- Computer Vision Centre, 08193 Cerdanyola, Spain
| | - Georg Rose
- Institute for Medical Engineering, Otto von Guericke University, 39106 Magdeburg, Germany
- Research Campus STIMULATE, Otto von Guericke University, 39106 Magdeburg, Germany
- Centre for Behavioural Brain Sciences, 39106 Magdeburg, Germany
| | - Sebastian Stober
- Faculty of Computer Science, Otto von Guericke University, 39106 Magdeburg, Germany
- Artificial Intelligence Lab, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Oliver Speck
- Research Campus STIMULATE, Otto von Guericke University, 39106 Magdeburg, Germany
- Biomedical Magnetic Resonance, Otto von Guericke University, 39106 Magdeburg, Germany
- Centre for Behavioural Brain Sciences, 39106 Magdeburg, Germany
- German Centre for Neurodegenerative Diseases, 39106 Magdeburg, Germany
| | - Andreas Nürnberger
- Data and Knowledge Engineering Group, Otto von Guericke University, 39106 Magdeburg, Germany
- Faculty of Computer Science, Otto von Guericke University, 39106 Magdeburg, Germany
- Centre for Behavioural Brain Sciences, 39106 Magdeburg, Germany
| |
Collapse
|
20
|
Rollinson TC, McDonald LA, Rose J, Eastwood G, Costa-Pinto R, Modra L, Maeda A, Bacolas Z, Anstey J, Bates S, Bradley S, Dumbrell J, French C, Ghosh A, Haines K, Haydon T, Hodgson CL, Holmes J, Leggett N, McGain F, Moore C, Nelson K, Presneill J, Rotherham H, Said S, Young M, Zhao P, Udy A, Neto AS, Chaba A, Bellomo R. Neuromuscular blockade and oxygenation changes during prone positioning in COVID-19. J Crit Care 2024; 79:154469. [PMID: 37992464 DOI: 10.1016/j.jcrc.2023.154469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
PURPOSE Neuromuscular blockers (NMBs) are often used during prone positioning to facilitate mechanical ventilation in COVID-19 related ARDS. However, their impact on oxygenation is uncertain. METHODS Multi-centre observational study of invasively ventilated COVID-19 ARDS adults treated with prone positioning. We collected data on baseline characteristics, prone positioning, NMB use and patient outcome. We assessed arterial blood gas data during supine and prone positioning and after return to the supine position. RESULTS We studied 548 prone episodes in 220 patients (mean age 54 years, 61% male) of whom 164 (75%) received NMBs. Mean PaO2:FiO2 (P/F ratio) during the first prone episode with NMBs reached 208 ± 63 mmHg compared with 161 ± 66 mmHg without NMBs (Δmean = 47 ± 5 mmHg) for an absolute increase from baseline of 76 ± 56 mmHg versus 55 ± 56 mmHg (padj < 0.001). The mean P/F ratio on return to the supine position was 190 ± 63 mmHg in the NMB group versus 141 ± 64 mmHg in the non-NMB group for an absolute increase from baseline of 59 ± 58 mmHg versus 34 ± 56 mmHg (padj < 0.001). CONCLUSION During prone positioning, NMB is associated with increased oxygenation compared to non-NMB therapy, with a sustained effect on return to the supine position. These findings may help guide the use of NMB during prone positioning in COVID-19 ARDS.
Collapse
Affiliation(s)
- Thomas C Rollinson
- Department of Intensive Care, Austin Health, Melbourne, VIC, Australia; Department of Physiotherapy, Austin Health, Melbourne, VIC, Australia; Department of Physiotherapy, The University of Melbourne, Melbourne, VIC, Australia; Institute for Breathing and Sleep, Melbourne, VIC, Australia.
| | - Luke A McDonald
- Department of Intensive Care, Austin Health, Melbourne, VIC, Australia; Department of Physiotherapy, Austin Health, Melbourne, VIC, Australia
| | - Joleen Rose
- Department of Intensive Care, Austin Health, Melbourne, VIC, Australia; Department of Physiotherapy, Austin Health, Melbourne, VIC, Australia
| | - Glenn Eastwood
- Department of Intensive Care, Austin Health, Melbourne, VIC, Australia; Data Analytics Research and Evaluation Centre, The University of Melbourne and Austin Hospital, Melbourne, VIC, Australia; Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
| | - Rahul Costa-Pinto
- Department of Intensive Care, Austin Health, Melbourne, VIC, Australia; Department of Critical Care, The University of Melbourne, Melbourne, VIC, Australia
| | - Lucy Modra
- Department of Intensive Care, Austin Health, Melbourne, VIC, Australia; Department of Critical Care, The University of Melbourne, Melbourne, VIC, Australia
| | - Akinori Maeda
- Department of Intensive Care, Austin Health, Melbourne, VIC, Australia
| | - Zoe Bacolas
- Department of Physiotherapy, Austin Health, Melbourne, VIC, Australia
| | - James Anstey
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Samantha Bates
- Department of Critical Care, The University of Melbourne, Melbourne, VIC, Australia; Department of Intensive Care, Western Health, VIC, Australia
| | - Scott Bradley
- Department of Intensive Care, Alfred Health, VIC, Australia; Department of Physiotherapy, Alfred Health, VIC, Australia
| | - Jodi Dumbrell
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
| | - Craig French
- Department of Critical Care, The University of Melbourne, Melbourne, VIC, Australia; Department of Intensive Care, Western Health, VIC, Australia
| | - Angaj Ghosh
- Department of Intensive Care, Northern Health, VIC, Australia
| | - Kimberley Haines
- Department of Critical Care, The University of Melbourne, Melbourne, VIC, Australia; Department of Intensive Care, Western Health, VIC, Australia; Department of Physiotherapy, Western Health, VIC, Australia
| | - Tim Haydon
- Department of Critical Care Medicine, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Carol L Hodgson
- Department of Critical Care, The University of Melbourne, Melbourne, VIC, Australia; Department of Intensive Care, Alfred Health, VIC, Australia; Department of Physiotherapy, Alfred Health, VIC, Australia; Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
| | - Jennifer Holmes
- Department of Critical Care Medicine, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Nina Leggett
- Department of Critical Care, The University of Melbourne, Melbourne, VIC, Australia; Department of Intensive Care, Western Health, VIC, Australia; Department of Physiotherapy, Western Health, VIC, Australia
| | - Forbes McGain
- Department of Critical Care, The University of Melbourne, Melbourne, VIC, Australia; Department of Intensive Care, Western Health, VIC, Australia
| | - Cara Moore
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | | | - Jeffrey Presneill
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Hannah Rotherham
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Simone Said
- Department of Intensive Care, Northern Health, VIC, Australia
| | - Meredith Young
- Department of Intensive Care, Alfred Health, VIC, Australia
| | - Peinan Zhao
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
| | - Andrew Udy
- Department of Intensive Care, Alfred Health, VIC, Australia; Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
| | - Ary Serpa Neto
- Department of Intensive Care, Austin Health, Melbourne, VIC, Australia; Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
| | - Anis Chaba
- Department of Intensive Care, Austin Health, Melbourne, VIC, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Health, Melbourne, VIC, Australia; Department of Critical Care, The University of Melbourne, Melbourne, VIC, Australia; Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia; Data Analytics Research and Evaluation Centre, The University of Melbourne and Austin Hospital, Melbourne, VIC, Australia; Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Muscedere J, Maslove DM, Barden CJ, Weaver DF, Boyd JG, Sibley S, Boyd T, Rewa O, Albert M, Roussos M, Norman PA, Day AG. Nebulized Furosemide for Pulmonary Inflammation in Intubated Patients With COVID-19: A Phase 2 Randomized Controlled Double-Blind Study. Crit Care Explor 2024; 6:e1045. [PMID: 38511126 PMCID: PMC10954058 DOI: 10.1097/cce.0000000000001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVES Respiratory failure secondary to COVID-19 is associated with morbidity and mortality. Current anti-inflammatory therapies are effective but are given systemically and have significant side effects. Furosemide has anti-inflammatory properties, can be administered by inhalation, and is inexpensive. We investigated the efficacy of nebulized furosemide as an adjunctive therapy for COVID-19 respiratory failure. DESIGN A double-blind, randomized, placebo-controlled trial. SETTING Multicenter ICU study. PATIENTS Adults requiring invasive mechanical ventilation secondary to COVID-19. INTERVENTION Patients were randomized within 48 hours of intubation to receive inhaled furosemide or placebo until day 28, death, or liberation from mechanical ventilation. MEASUREMENTS AND MAIN RESULTS The study was stopped early due to waning incidence of COVID-19; 39 patients were available for analysis with mean ± sd age of 70.5 (10.8) years, Acute Physiology and Chronic Health Evaluation II 26.1 (7.8) and Fio2 60.0% (21.9). Baseline characteristics were similar between the groups. For the primary outcome of change in Pao2/Fio2 ratio between day 1 and day 6, it was +31.4 (83.5) in the furosemide arm versus +20.1 (92.8) in the control (p = 0.58). For secondary outcomes, furosemide versus control: 60-day mortality was 48% versus 71% (p = 0.20), hospital stay was 25.6 (21.9) versus 27.4 (25.0) days, p = 0.94 and VFD was 6.0 (9.1) versus 3.1 (7.1), p value of equals to 0.28. A post hoc analysis of the hierarchical composite outcome, alive and ventilator-free favored furosemide. There were no adverse events. CONCLUSIONS In this trial of inhaled furosemide for COVID-19 respiratory failure, differences in Pao2/Fio2 ratio to day 6 and other clinical outcomes were not significantly different, although the trial was underpowered due to early termination. Given the favorable profile of inhaled furosemide, further study is warranted in disease states where acute pulmonary inflammation contributes to the underlying pathophysiology.
Collapse
Affiliation(s)
- John Muscedere
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
- Kingston Health Sciences Centre, Kingston, ON, Canada
| | - David M Maslove
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
- Kingston Health Sciences Centre, Kingston, ON, Canada
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | | | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Departments of Medicine, Chemistry, and Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - J Gordon Boyd
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
- Kingston Health Sciences Centre, Kingston, ON, Canada
- Departments of Medicine, Chemistry, and Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Stephanie Sibley
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
- Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Tracy Boyd
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
| | - Oleksa Rewa
- Department of Critical Care Medicine, University of Alberta, Edmonton, AB, Canada
| | - Martin Albert
- Division of Critical Care, Department of Medicine, Hôpital du Sacré-Coeur Research Center, Université de Montréal, Montreal, QC, Canada
| | - Marios Roussos
- Department of Medicine, Division of Critical Care, Hôpital Cité-de-la-Santé, Laval, QC, Canada
| | - Patrick A Norman
- Kingston Health Sciences Centre, Kingston, ON, Canada
- Kingston General Health Research Institute, Kingston, ON, Canada
| | - Andrew G Day
- Kingston Health Sciences Centre, Kingston, ON, Canada
- Kingston General Health Research Institute, Kingston, ON, Canada
| |
Collapse
|
22
|
Zhang X, Su L, Pan P. Advances and Applications of Lung Organoids in the Research on Acute Respiratory Distress Syndrome (ARDS). J Clin Med 2024; 13:346. [PMID: 38256480 PMCID: PMC10816077 DOI: 10.3390/jcm13020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a sudden onset of lung injury characterized by bilateral pulmonary edema, diffuse inflammation, hypoxemia, and a low P/F ratio. Epithelial injury and endothelial injury are notable in the development of ARDS, which is more severe under mechanical stress. This review explains the role of alveolar epithelial cells and endothelial cells under physiological and pathological conditions during the progression of ARDS. Mechanical injury not only causes ARDS but is also a side effect of ventilator-supporting treatment, which is difficult to model both in vitro and in vivo. The development of lung organoids has seen rapid progress in recent years, with numerous promising achievements made. Multiple types of cells and construction strategies are emerging in the lung organoid culture system. Additionally, the lung-on-a-chip system presents a new idea for simulating lung diseases. This review summarizes the basic features and critical problems in the research on ARDS, as well as the progress in lung organoids, particularly in the rapidly developing microfluidic system-based organoids. Overall, this review provides valuable insights into the three major factors that promote the progression of ARDS and how advances in lung organoid technology can be used to further understand ARDS.
Collapse
Affiliation(s)
- Xingwu Zhang
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing 100091, China;
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Longxiang Su
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China
| | - Pan Pan
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing 100091, China;
| |
Collapse
|
23
|
Spadaro S, Jimenez-Santana JD, La Rosa R, Spinazzola G, Argente Navarro P, Volta CA, Scaramuzzo G. Prone Positioning and Molecular Biomarkers in COVID and Non-COVID ARDS: A Narrative Review. J Clin Med 2024; 13:317. [PMID: 38256451 PMCID: PMC10816213 DOI: 10.3390/jcm13020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Prone positioning (PP) represents a therapeutic intervention with the proven capacity of ameliorating gas exchanges and ventilatory mechanics indicated in acute respiratory distress syndrome (ARDS). When PP is selectively applied to moderate-severe cases of ARDS, it sensitively affects clinical outcomes, including mortality. After the COVID-19 outbreak, clinical application of PP peaked worldwide and was applied in 60% of treated cases, according to large reports. Research on this topic has revealed many physiological underpinnings of PP, focusing on regional ventilation redistribution and the reduction of parenchymal stress and strain. However, there is a lack of evidence on biomarkers behavior in different phases and phenotypes of ARDS. Patients response to PP are, to date, decided on PaO2/FiO2 ratio improvement, whereas scarce data exist on biomarker tracking during PP. The purpose of this review is to explore current evidence on the clinical relevance of biomarkers in the setting of moderate-severe ARDS of different etiologies (i.e., COVID and non-COVID-related ARDS). Moreover, this review focuses on how PP may modulate biomarkers and which biomarkers may have a role in outcome prediction in ARDS patients.
Collapse
Affiliation(s)
- Savino Spadaro
- Department of Translational Medicine, University of Ferrara, 44124 Ferrara, Italy; (R.L.R.); (C.A.V.); (G.S.)
- Anesthesia and Intensive Care Unit, Emergency Department, Azienda Ospedaliera Universitaria di Ferrara, 44124 Ferrara, Italy
| | - Jose Daniel Jimenez-Santana
- Department of Anaesthesiology, Hospital Universitari i Politécnic la Fe, 46026 Valencia, Spain; (J.D.J.-S.); (P.A.N.)
| | - Riccardo La Rosa
- Department of Translational Medicine, University of Ferrara, 44124 Ferrara, Italy; (R.L.R.); (C.A.V.); (G.S.)
- Anesthesia and Intensive Care Unit, Emergency Department, Azienda Ospedaliera Universitaria di Ferrara, 44124 Ferrara, Italy
| | - Giorgia Spinazzola
- Department of Emergency, Anesthesiologic and Reanimation Sciences, Fondazione Policlinico Universitario Gemelli, IRCSS, 00168 Rome, Italy;
| | - Pilar Argente Navarro
- Department of Anaesthesiology, Hospital Universitari i Politécnic la Fe, 46026 Valencia, Spain; (J.D.J.-S.); (P.A.N.)
| | - Carlo Alberto Volta
- Department of Translational Medicine, University of Ferrara, 44124 Ferrara, Italy; (R.L.R.); (C.A.V.); (G.S.)
- Anesthesia and Intensive Care Unit, Emergency Department, Azienda Ospedaliera Universitaria di Ferrara, 44124 Ferrara, Italy
| | - Gaetano Scaramuzzo
- Department of Translational Medicine, University of Ferrara, 44124 Ferrara, Italy; (R.L.R.); (C.A.V.); (G.S.)
- Anesthesia and Intensive Care Unit, Emergency Department, Azienda Ospedaliera Universitaria di Ferrara, 44124 Ferrara, Italy
| |
Collapse
|
24
|
Papoutsi E, Andrianopoulos I, Mavrikaki V, Bolaki M, Stamatopoulou V, Toli E, Papathanakos G, Koulouras V, Kondili E, Siempos II, Vaporidi K. A combination of mild-moderate hypoxemia and low compliance is highly prevalent in persistent ARDS: a retrospective study. Respir Res 2024; 25:1. [PMID: 38173002 PMCID: PMC10765810 DOI: 10.1186/s12931-023-02626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The Acute Respiratory Distress Syndrome (ARDS) is characterized by lung inflammation and edema, impairing both oxygenation and lung compliance. Recent studies reported a dissociation between oxygenation and compliance (severe hypoxemia with preserved compliance) in early ARDS and COVID-19-related-ARDS (CARDS). During the pandemic, in patients requiring prolonged mechanical ventilation, we observed the opposite combination (mild-moderate hypoxemia but significantly impaired compliance). The purpose of our study was to investigate the prevalence of this combination of mild-moderate hypoxemia and impaired compliance in persistent ARDS and CARDS. METHODS For this retrospective study, we used individual patient-level data from two independent cohorts of ARDS patients. The ARDSNet cohort included patients from four ARDS Network randomized controlled trials. The CARDS cohort included patients with ARDS due to COVID-19 hospitalized in two intensive care units in Greece. We used a threshold of 150 for PaO2/FiO2 and 30 ml/cmH2O for compliance, estimated the prevalence of each of the four combinations of oxygenation and compliance at baseline, and examined the change in its prevalence from baseline to day 21 in the ARDSNet and CARDS cohorts. RESULTS The ARDSNet cohort included 2909 patients and the CARDS cohort included 349 patients. The prevalence of the combination of mild-moderate hypoxemia and low compliance increased from baseline to day 21 both in the ARDSNet cohort (from 22.2 to 42.7%) and in the CARDS cohort (from 3.1 to 33.3%). Among surviving patients with low compliance, oxygenation improved over time. The 60-day mortality rate was higher for patients who had mild-moderate hypoxemia and low compliance on day 21 (28% and 56% in ARDSNet and CARDS), compared to those who had mild-moderate hypoxemia and high compliance (20% and 50%, respectively). CONCLUSIONS Among patients with ARDS who require prolonged controlled mechanical ventilation, regardless of ARDS etiology, a dissociation between oxygenation and compliance characterized by mild-moderate hypoxemia but low compliance becomes increasingly prevalent. The findings of this study highlight the importance of monitoring mechanics in patients with persistent ARDS.
Collapse
Affiliation(s)
- Eleni Papoutsi
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | | | - Vasiliki Mavrikaki
- Department of Intensive Care, University Hospital of Heraklion, University of Crete School of Medicine, Voutes Campus, Office 8A4, Heraklion, Crete, 70013, Greece
| | - Maria Bolaki
- Department of Intensive Care, University Hospital of Heraklion, University of Crete School of Medicine, Voutes Campus, Office 8A4, Heraklion, Crete, 70013, Greece
| | - Vagia Stamatopoulou
- Department of Intensive Care, University Hospital of Heraklion, University of Crete School of Medicine, Voutes Campus, Office 8A4, Heraklion, Crete, 70013, Greece
| | - Eleni Toli
- Department of Intensive Care Unit, University Hospital of Ioannina, Ioannina, Greece
| | - Georgios Papathanakos
- Department of Intensive Care Unit, University Hospital of Ioannina, Ioannina, Greece
| | - Vasilios Koulouras
- Department of Intensive Care Unit, University Hospital of Ioannina, Ioannina, Greece
| | - Eumorfia Kondili
- Department of Intensive Care, University Hospital of Heraklion, University of Crete School of Medicine, Voutes Campus, Office 8A4, Heraklion, Crete, 70013, Greece
| | - Ilias I Siempos
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Katerina Vaporidi
- Department of Intensive Care, University Hospital of Heraklion, University of Crete School of Medicine, Voutes Campus, Office 8A4, Heraklion, Crete, 70013, Greece.
| |
Collapse
|
25
|
Levine AR, Calfee CS. Subphenotypes of Acute Respiratory Distress Syndrome: Advancing Towards Precision Medicine. Tuberc Respir Dis (Seoul) 2024; 87:1-11. [PMID: 37675452 PMCID: PMC10758309 DOI: 10.4046/trd.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common cause of severe hypoxemia defined by the acute onset of bilateral non-cardiogenic pulmonary edema. The diagnosis is made by defined consensus criteria. Supportive care, including prevention of further injury to the lungs, is the only treatment that conclusively improves outcomes. The inability to find more advanced therapies is due, in part, to the highly sensitive but relatively non-specific current syndromic consensus criteria, combining a heterogenous population of patients under the umbrella of ARDS. With few effective therapies, the morality rate remains 30% to 40%. Many subphenotypes of ARDS have been proposed to cluster patients with shared combinations of observable or measurable traits. Subphenotyping patients is a strategy to overcome heterogeneity to advance clinical research and eventually identify treatable traits. Subphenotypes of ARDS have been proposed based on radiographic patterns, protein biomarkers, transcriptomics, and/or machine-based clustering of clinical and biological variables. Some of these strategies have been reproducible across patient cohorts, but at present all have practical limitations to their implementation. Furthermore, there is no agreement on which strategy is the most appropriate. This review will discuss the current strategies for subphenotyping patients with ARDS, including the strengths and limitations, and the future directions of ARDS subphenotyping.
Collapse
Affiliation(s)
- Andrea R. Levine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carolyn S. Calfee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
26
|
Pavlov I, Li J, Kharat A, Luo J, Ibarra-Estrada M, Perez Y, McNicolas B, Poole D, Roca O, Vines D, Tavernier E, Allen T, Shyamsundar M, Ehrmann S, Simpson SQ, Guérin C, Laffey JG. Awake prone positioning in acute hypoxaemic respiratory failure: An international expert guidance. J Crit Care 2023; 78:154401. [PMID: 37639921 DOI: 10.1016/j.jcrc.2023.154401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/12/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Awake prone positioning (APP) of non-intubated patients with acute hypoxaemic respiratory failure (AHRF) has been inconsistently adopted into routine care of patients with COVID-19, likely due to apparent conflicting evidence from recent trials. This short guideline aims to provide evidence-based recommendations for the use of APP in various clinical scenarios. METHODS An international multidisciplinary panel, assembled for their expertise and representativeness, and supported by a methodologist, performed a systematic literature search, summarized the available evidence derived from randomized clinical trials, and developed recommendations using GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) methodology. RESULTS The panel strongly recommends that APP rather than standard supine care be used in patients with COVID-19 receiving advanced respiratory support (high-flow nasal cannula, continuous positive airway pressure or non-invasive ventilation). Due to lack of evidence from randomized controlled trials, the panel provides no recommendation on the use of APP in patients with COVID-19 supported with conventional oxygen therapy, nor in patients with AHRF due to causes other than COVID-19. CONCLUSION APP should be routinely implemented in patients with COVID-19 receiving advanced respiratory support.
Collapse
Affiliation(s)
- Ivan Pavlov
- Department of Emergency Medicine, Hôpital de Verdun, Montréal, Québec, Canada
| | - Jie Li
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, IL, USA
| | - Aileen Kharat
- Department of Respiratory Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Jian Luo
- Respiratory Medicine Unit and Oxford NIHR Biomedical Research Centre, NDM Experimental Medicine, University of Oxford, Oxford, UK
| | - Miguel Ibarra-Estrada
- Unidad de Terapia Intensiva, Hospital Civil Fray Antonio Alcalde, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Yonatan Perez
- Médecine Intensive Réanimation, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Bairbre McNicolas
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals and School of Medicine, University of Galway, Galway, Ireland
| | - Daniele Poole
- Operative Unit of Anesthesia and Intensive Care, S. Martino Hospital, Belluno, Italy
| | - Oriol Roca
- Servei de Medicina Intensiva, Parc Taulí Hospital Universitari, Parc del Taulí 1, Sabadell, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Vines
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, IL, USA
| | - Elsa Tavernier
- Methods in Patient-Centered Outcomes and Health Research, INSERM UMR 1246, Nantes, France; Clinical Investigation Centre, INSERM 1415 CHRU Tours, Tours, France
| | - Thérèse Allen
- Retired Nurse, and Patient Representative, Galway, Ireland
| | - Murali Shyamsundar
- Wellcome-Wolfson Institute For Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Stephan Ehrmann
- Médecine Intensive Réanimation, Clinical Investigation Center, INSERM 1415, INSERM, Centre d'Etude des Pathologies Respiratoires, Université de Tours - All in Tours, U1100, France
| | | | - Claude Guérin
- Université de Lyon, Lyon, France; Institut Mondor de Recherches Biomédicales, INSERM 955 CNRS, 7200, Créteil, France
| | - John G Laffey
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals and School of Medicine, University of Galway, Galway, Ireland.
| |
Collapse
|
27
|
Lu M, Drohan C, Bain W, Shah FA, Bittner M, Evankovich J, Prendergast NT, Hensley M, Suber TL, Fitzpatrick M, Ramanan R, Murray H, Schaefer C, Qin S, Wang X, Zhang Y, Nouraie SM, Gentry H, Murray C, Patel A, Macatangay BJ, Jacobs J, Mellors JW, Lee JS, Ray P, Ray A, Methé B, Morris A, McVerry BJ, Kitsios GD. Trajectories of Host-Response Subphenotypes in Patients With COVID-19 Across the Spectrum of Respiratory Support. CHEST CRITICAL CARE 2023; 1:100018. [PMID: 38250011 PMCID: PMC10798236 DOI: 10.1016/j.chstcc.2023.100018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Hospitalized patients with severe COVID-19 follow heterogeneous clinical trajectories, requiring different levels of respiratory support and experiencing diverse clinical outcomes. Differences in host immune responses to SARS-CoV-2 infection may account for the heterogeneous clinical course, but we have limited data on the dynamic evolution of systemic biomarkers and related subphenotypes. Improved understanding of the dynamic transitions of host subphenotypes in COVID-19 may allow for improved patient selection for targeted therapies. RESEARCH QUESTION We examined the trajectories of host-response profiles in severe COVID-19 and evaluated their prognostic impact on clinical outcomes. STUDY DESIGN AND METHODS In this prospective observational study, we enrolled 323 inpatients with COVID-19 receiving different levels of baseline respiratory support: (1) low-flow oxygen (37%), (2) noninvasive ventilation (NIV) or high-flow oxygen (HFO; 29%), (3) invasive mechanical ventilation (27%), and (4) extracorporeal membrane oxygenation (7%). We collected plasma samples on enrollment and at days 5 and 10 to measure host-response biomarkers. We classified patients by inflammatory subphenotypes using two validated predictive models. We examined clinical, biomarker, and subphenotype trajectories and outcomes during hospitalization. RESULTS IL-6, procalcitonin, and angiopoietin 2 persistently were elevated in patients receiving higher levels of respiratory support, whereas soluble receptor of advanced glycation end products (sRAGE) levels displayed the inverse pattern. Patients receiving NIV or HFO at baseline showed the most dynamic clinical trajectory, with 24% eventually requiring intubation and exhibiting worse 60-day mortality than patients receiving invasive mechanical ventilation at baseline (67% vs 35%; P < .0001). sRAGE levels predicted NIV failure and worse 60-day mortality for patients receiving NIV or HFO, whereas IL-6 levels were predictive in all patients regardless of level of support (P < .01). Patients classified to a hyperinflammatory subphenotype at baseline (< 10%) showed worse 60-day survival (P < .0001) and 50% of them remained classified as hyperinflammatory at 5 days after enrollment. INTERPRETATION Longitudinal study of the systemic host response in COVID-19 revealed substantial and predictive interindividual variability influenced by baseline levels of respiratory support.
Collapse
Affiliation(s)
- Michael Lu
- Internal Medicine Residency Program, University of Pittsburgh, Pittsburgh, PA
| | - Callie Drohan
- Internal Medicine Residency Program, University of Pittsburgh, Pittsburgh, PA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Faraaz A Shah
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Matthew Bittner
- Internal Medicine Residency Program, University of Pittsburgh, Pittsburgh, PA
| | - John Evankovich
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Niall T Prendergast
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Matthew Hensley
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Tomeka L Suber
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Meghan Fitzpatrick
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Raj Ramanan
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Holt Murray
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Caitlin Schaefer
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Shulin Qin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| | - Xiaohong Wang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Seyed M Nouraie
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Heather Gentry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Cathy Murray
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Asha Patel
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| | | | - Jana Jacobs
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA
| | - John W Mellors
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA
| | - Janet S Lee
- Division of Pulmonary and Critical Care, Washington University School of Medicine, Saint Louis, MO
| | - Prabir Ray
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Barbara Methé
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| | - Alison Morris
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| | - Bryan J McVerry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
28
|
Kuley R, Duvvuri B, Wallin JJ, Bui N, Adona MV, O’Connor NG, Sahi SK, Stanaway IB, Wurfel MM, Morrell ED, Liles WC, Bhatraju PK, Lood C. Mitochondrial N-formyl methionine peptides contribute to exaggerated neutrophil activation in patients with COVID-19. Virulence 2023; 14:2218077. [PMID: 37248708 PMCID: PMC10231045 DOI: 10.1080/21505594.2023.2218077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023] Open
Abstract
Neutrophil dysregulation is well established in COVID-19. However, factors contributing to neutrophil activation in COVID-19 are not clear. We assessed if N-formyl methionine (fMet) contributes to neutrophil activation in COVID-19. Elevated levels of calprotectin, neutrophil extracellular traps (NETs) and fMet were observed in COVID-19 patients (n = 68), particularly in critically ill patients, as compared to HC (n = 19, p < 0.0001). Of note, the levels of NETs were higher in ICU patients with COVID-19 than in ICU patients without COVID-19 (p < 0.05), suggesting a prominent contribution of NETs in COVID-19. Additionally, plasma from COVID-19 patients with mild and moderate/severe symptoms induced in vitro neutrophil activation through fMet/FPR1 (formyl peptide receptor-1) dependent mechanisms (p < 0.0001). fMet levels correlated with calprotectin levels validating fMet-mediated neutrophil activation in COVID-19 patients (r = 0.60, p = 0.0007). Our data indicate that fMet is an important factor contributing to neutrophil activation in COVID-19 disease and may represent a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Runa Kuley
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
- Center for Life Sciences, Mahindra University, Hyderabad, India
| | - Bhargavi Duvvuri
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
| | | | - Nam Bui
- Biomarker Sciences, Gilead Sciences Inc, Foster City, CA, USA
| | - Mary Vic Adona
- Biomarker Sciences, Gilead Sciences Inc, Foster City, CA, USA
| | - Nicholas G. O’Connor
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Sharon K. Sahi
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Ian B. Stanaway
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Mark M. Wurfel
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Eric D. Morrell
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - W. Conrad Liles
- Department of Medicine, University of Washington, Seattle, WA, USA
- Sepsis Center of Research Excellence-UW (SCORE-UW), University of Washington, Seattle, WA, USA
| | - Pavan K. Bhatraju
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
- Sepsis Center of Research Excellence-UW (SCORE-UW), University of Washington, Seattle, WA, USA
| | - Christian Lood
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
| |
Collapse
|
29
|
Yan PD, Markovic D, Hixson RY, Shover CM, Buhr RG, Salehi-Rad R, LeMaster B, Tashkin DP, Fulcher JA, Barjaktarevic IZ. Eosinophil recovery in hospitalized COVID-19 patients is associated with lower rates of ICU admission and in-hospital mortality: An observational cohort analysis. Respir Med Res 2023; 84:101031. [PMID: 37647739 PMCID: PMC10232929 DOI: 10.1016/j.resmer.2023.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 04/20/2023] [Accepted: 05/21/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Admission eosinopenia (<100 cells/μL) is associated with poor clinical outcomes in hospitalized COVID-19 patients. However, the effects of eosinophil recovery (defined as reaching ≥50 eosinophils/μL) during hospitalization on COVID-19 outcomes have been inconsistent. METHODS The study included 1,831 patients admitted to UCLA hospitals between February 2020 and February 2021 with PCR-confirmed COVID-19. Using competing risk regression and modeling eosinophil recovery as a time-dependent covariate, we evaluated the longitudinal relationship between eosinophil recovery and in-hospital outcomes including ICU admission, need for mechanical ventilation, and in-hospital mortality. All analyses were adjusted for covariates including age, BMI, tobacco smoke exposure, comorbidities known to be risk factors for COVID-19 mortality, and treatments including dexamethasone and remdesivir. RESULTS Eosinophil recovery was evaluated in patients with <50 eosinophils/μL on admission (n = 1282). These patients cumulatively amassed 11,633 hospital patient-days; 3,985 of those days qualified as eosinophil recovery events, which were represented by 781 patients achieving at least one instance of eosinophil recovery during hospitalization. Despite no significant difference in the rate of mechanical ventilation, eosinophil recoverers had significantly lower rates of in-hospital mortality (aHR: 0.44 [0.29, 0.65], P = 0.001) and ICU admission (aHR: 0.25 [0.11, 0.61], P = 0.002). CONCLUSION Trending eosinophil counts during hospitalization is simple and can be performed in resource-limited healthcare settings to track the inflammatory status of a patient. Lack of eosinophil recovery events can identify those at risk for future progression to severe COVID.
Collapse
Affiliation(s)
- Peter D Yan
- David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Daniela Markovic
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Roxana Y Hixson
- Division of Pulmonary, Critical Care and Sleep Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Carolyn M Shover
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA, United States; Offsite Care, Santa Rosa, CA, United States
| | - Russell G Buhr
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA, United States; Department of Medicine, Greater Los Angeles Veterans Affairs Health Care System, Los Angeles, CA, United States
| | - Ramin Salehi-Rad
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA, United States; Department of Medicine, Greater Los Angeles Veterans Affairs Health Care System, Los Angeles, CA, United States
| | - Blake LeMaster
- Division of Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Donald P Tashkin
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Jennifer A Fulcher
- Department of Medicine, Greater Los Angeles Veterans Affairs Health Care System, Los Angeles, CA, United States; Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Igor Z Barjaktarevic
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| |
Collapse
|
30
|
Teijeiro-Paradis R, Cherkos Dawit T, Munshi L, Ferguson ND, Fan E. Liberation From Venovenous Extracorporeal Membrane Oxygenation for Respiratory Failure: A Scoping Review. Chest 2023; 164:1184-1203. [PMID: 37353070 DOI: 10.1016/j.chest.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Safe and timely liberation from venovenous extracorporeal membrane oxygenation (ECMO) would be expected to reduce the duration of ECMO, the risk of complications, and costs. However, how to liberate patients from venovenous ECMO effectively remains understudied. RESEARCH QUESTION What is the current state of the evidence on liberation from venovenous ECMO? STUDY DESIGN AND METHODS We systematically searched for relevant publications on liberation from venovenous ECMO in Medline and EMBASE. Citations were included if the manuscripts provided any of the following: criteria for readiness for liberation, a liberation protocol, or a definition of successful decannulation or decannulation failure. We included randomized trials, observational trials, narrative reviews, guidelines, editorials, and commentaries. We excluded single case reports and citations where the full text was unavailable. RESULTS We screened 1,467 citations to identify 39 key publications on liberation from venovenous ECMO. We then summarized the data into five main topics: current strategies used for liberation, criteria used to define readiness for liberation, conducting liberation trials, criteria used to proceed with decannulation, and parameters used to predict decannulation outcomes. INTERPRETATION Practices on liberation from venovenous ECMO are heterogeneous and are influenced strongly by clinician preference. Additional research on liberation thresholds is needed to define optimal liberation strategies and to close existing knowledge gaps in essential topics on liberation from venovenous ECMO.
Collapse
Affiliation(s)
- Ricardo Teijeiro-Paradis
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Tsega Cherkos Dawit
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Mekelle University College of Health Sciences, Mekelle, Ethiopia
| | - Laveena Munshi
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; Division of Respirology & Critical Care, Department of Medicine, Sinai Health System and University Health Network, Toronto, ON, Canada
| | - Niall D Ferguson
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; Division of Respirology & Critical Care, Department of Medicine, Sinai Health System and University Health Network, Toronto, ON, Canada; Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; Division of Respirology & Critical Care, Department of Medicine, Sinai Health System and University Health Network, Toronto, ON, Canada; Toronto General Hospital Research Institute, Toronto, ON, Canada.
| |
Collapse
|
31
|
Chiu MH, Gershkovich B, Yu IL, O'Brien ER, Deng J, McDonald B. Heat shock protein 27 in the pathogenesis of COVID-19 and non-COVID acute respiratory distress syndrome. Cell Stress Chaperones 2023; 28:877-887. [PMID: 37966617 PMCID: PMC10746647 DOI: 10.1007/s12192-023-01381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 11/16/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common cause of hypoxemic respiratory failure in intensive care units that has increased dramatically as a result of the COVID-19 pandemic. In both COVID-19 and non-COVID ARDS, the pathogenesis of lung injury involves local (pulmonary) and systemic inflammation, leading to impaired gas exchange, requirement for mechanical ventilation, and a high risk of mortality. Heat shock protein 27 (HSP27) is a chaperone protein expressed in times of cell stress with roles in modulation of systemic inflammation via the NF-κB pathway. Given its important role as a modulator of inflammation, we sought to investigate the role of HSP27 and its associated auto-antibodies in ARDS caused by both SARS-CoV-2 and non-COVID etiologies. A total of 68 patients admitted to the intensive care unit with ARDS requiring mechanical ventilation were enrolled in a prospective, observational study that included 22 non-COVID-19 and 46 COVID-19 patients. Blood plasma levels of HSP27, anti-HSP27 auto-antibody (AAB), and cytokine profiles were measured on days 1 and 3 of ICU admission along with clinical outcome measures. Patients with COVID-19 ARDS displayed significantly higher levels of HSP27 in plasma, and a higher ratio of HSP27:AAB on both day 1 and day 3 of ICU admission. In patients with COVID-19, higher levels of circulating HSP27 and HSP27:AAB ratio were associated with a more severe systemic inflammatory response and adverse clinical outcomes including more severe hypoxemic respiratory failure. These findings implicate HSP27 as a marker of advanced pathogenesis of disease contributing to the dysregulated systemic inflammation and worse clinical outcomes in COVID-19 ARDS, and therefore may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Michael H Chiu
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary, Calgary, Canada.
- Department of Critical Care Medicine, University of Calgary, Calgary, Canada.
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | | | - Ian-Ling Yu
- Department of Critical Care Medicine, University of Calgary, Calgary, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Edward R O'Brien
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary, Calgary, Canada
| | - Jingti Deng
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary, Calgary, Canada
| | - Braedon McDonald
- Department of Critical Care Medicine, University of Calgary, Calgary, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
32
|
Guzzo F, Lombardi G, Tozzi M, Calvi MR, Azzolini ML, Alba AC, Tamà S, D'Amico MM, Belletti A, Frassanito C, Palumbo D, Doronzio A, Ravizza A, Landoni G, Dell'acqua A, Beretta L, Zangrillo A. Feasibility, safety and efficacy of COVID-19 severe acute respiratory distress syndrome management without invasive mechanical ventilation. Minerva Anestesiol 2023; 89:1013-1021. [PMID: 37733369 DOI: 10.23736/s0375-9393.23.17418-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
BACKGROUND COVID-19 acute respiratory distress syndrome (ARDS) is often managed with mechanical ventilation (MV), requiring sedation and paralysis, with associated risk of complications. There is limited evidence on the use of high flow nasal cannula (HFNC). We hypothesized that management of COVID-19 ARDS without MV is feasible. METHODS Included were all adult patients diagnosed with COVID-19 ARDS, with PaO2/FiO2 ratio <100 at admission, and whose management was initially performed without MV. We evaluated need for intubation during ICU stay, mortality and hospital/ICU length of stay (LOS). RESULTS Out of 118 patients, 41 were managed only with HFNC from hospital admission (and at least during first 24 hours in ICU) and had a PaO2/FiO2 ratio <100 (72.9±13.0). Twenty-nine out of 41 patients never required MV: 24 of them survived and were discharged home. Their median ICU LOS was 11 (7-17) days, and their hospital LOS was 29 (18-45) days. We identified PaO2/FiO2 ratio at ICU admission as the only significant predictor for need for MV during ICU stay. We also identified age, length of non-invasive respiratory support before ICU admission, mean value of PaO2/FiO2 ratio during first half and whole ICU stay as predictors of mortality. CONCLUSIONS It is safe to monitor in ICU and use HFNC in patients affected by COVID-19 ARDS who initially present data suggesting an early need for intubation. The 41 patients admitted with a PaO2/FiO2 ratio <100 and initially treated only with HFNC show a 22% mortality that is in the lower range of what is reported in recent literature.
Collapse
Affiliation(s)
- Francesca Guzzo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy -
| | - Gaetano Lombardi
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Tozzi
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria R Calvi
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria L Azzolini
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ada C Alba
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simona Tamà
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo M D'Amico
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Belletti
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Frassanito
- Department of Anesthesia and Intensive Care, "S. Spirito" Presidio Ospedaliero, Pescara, Italy
| | - Diego Palumbo
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Doronzio
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alfredo Ravizza
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Dell'acqua
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Beretta
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Alberto Zangrillo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
33
|
Suero OR, Valluri SK, Farias-Kovac MH, Simpson L, Loor G, Guerra DM, Diaz-Gomez JL, Chatterjee S. Recovery of Lung Function After 149 Days on Extracorporeal Membrane Oxygenation for COVID-19. Tex Heart Inst J 2023; 50:e238132. [PMID: 37876039 PMCID: PMC10658157 DOI: 10.14503/thij-23-8132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
This report highlights survival and the patient's perspective after prolonged venovenous extracorporeal membrane oxygenation (ECMO) for COVID-19-related respiratory failure. A 36-year-old man with COVID-19 presented with fever, anosmia, and hypoxia. After respiratory deterioration necessitating intubation and lung-protective ventilation, he was referred for ECMO. After 3 days of conventional venovenous ECMO, he required multiple creative cannulation configurations. Adequate sedation and recurrent bradycardia were persistent challenges. After 149 consecutive days of ECMO, he recovered native lung function and was weaned from mechanical ventilation. This represents the longest-duration ECMO support in a survivor of COVID-19 yet reported. Necessary strategies included unconventional cannulation and flexible anticoagulation.
Collapse
Affiliation(s)
- Orlando R. Suero
- Division of Cardiovascular Anesthesia, Department of Anesthesiology, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Anesthesiology, The Texas Heart Institute, Houston, Texas
| | - Sri Kartik Valluri
- Division of Cardiovascular Anesthesia, Department of Anesthesiology, Baylor College of Medicine, Houston, Texas
- Division of Critical Care Medicine, Department of Anesthesiology, Baylor College of Medicine, Houston, Texas
| | - Mario H. Farias-Kovac
- Division of Cardiovascular Anesthesia, Department of Anesthesiology, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Anesthesiology, The Texas Heart Institute, Houston, Texas
| | - Leo Simpson
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Cardiology, The Texas Heart Institute, Houston, Texas
| | - Gabriel Loor
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston, Texas
| | - Diana M. Guerra
- Division of Cardiovascular Anesthesia, Department of Anesthesiology, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Anesthesiology, The Texas Heart Institute, Houston, Texas
| | - Jose L. Diaz-Gomez
- Division of Cardiovascular Anesthesia, Department of Anesthesiology, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Anesthesiology, The Texas Heart Institute, Houston, Texas
| | - Subhasis Chatterjee
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston, Texas
- Division of Trauma and Acute Care Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
34
|
Martin DE, Cadar AN, Bartley JM. Old drug, new tricks: the utility of metformin in infection and vaccination responses to influenza and SARS-CoV-2 in older adults. FRONTIERS IN AGING 2023; 4:1272336. [PMID: 37886013 PMCID: PMC10598609 DOI: 10.3389/fragi.2023.1272336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
In the face of global pathogens such as influenza (flu) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), strategies beyond standard vaccines and virus-specific treatments are critically needed for older populations who are more susceptible to severe disease and death from these infections due to age-related immune dysregulation. Thus, complimentary therapeutics are needed to address the increased risk of complications and death in older adults. Metformin, an FDA approved diabetes drug, is an attractive therapeutic candidate to improve immune defenses and resilience in older adults facing viral challenge. Metformin is already a candidate anti-aging drug, but its benefits have potential to span beyond this and improve specific immune responses. Metformin can target multiple aging hallmarks as well as directly impact innate and adaptive immune cell subsets. Both retrospective and prospective studies have demonstrated metformin's efficacy in improving outcomes after SARS-CoV-2 or flu infections. Moreover, evidence from clinical trials has also suggested that metformin treatment can improve vaccination responses. In totality, these findings suggest that metformin can improve age-related declines in immunological resilience. Strategies to improve outcomes after infection or improve vaccine-induced protection are invaluable for older adults. Moreover, the ability to repurpose an already FDA approved drug has significant advantages in terms of necessary time and resources. Thus, metformin has great potential as a therapeutic to improve age-related immune dysregulation during flu and SARS-CoV-2 infections and should be further explored to confirm its ability to improve overall immunological resilience in older adults.
Collapse
|
35
|
O'Reilly S. Pulmonary fibrosis in COVID-19: mechanisms, consequences and targets. QJM 2023; 116:750-754. [PMID: 37191984 DOI: 10.1093/qjmed/hcad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Pulmonary fibrosis is characterized by extracellular deposition in the lung primarily collagen but also other ECM molecules. The primary cell type responsible for this is the myofibroblast, and this can be induced by various stressors and signals. Infections be they bacterial or viral can cause pulmonary fibrosis (PF). In 2019, severe acute respiratory syndrome coronavirus 2 (SAR-CoV-2) originated in Wuhan, China, has led to a worldwide pandemic and can lead to acute respiratory distress and lung fibrosis. The virus itself can be cleared, but patients may develop long-term PF, which can be debilitating and life-limiting. There is a significantly perturbed immune response that shapes the fibrotic response leading to fibrosis. Given the importance of PF irrespective of cause, understanding the similarities and differences in pathogenesis caused by SARS-CoV-2-induced PF may yield new therapeutic targets. This review examines the pathology associated with the disease and discusses possible targets.
Collapse
Affiliation(s)
- S O'Reilly
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
36
|
de Oliveira MC, Bernardelli RS, Kozesinski-Nakatani AC, Turnes J, Reese FB, Pozzo LC, Deucher RADO, Rossi CU, Tannous LA, Réa-Neto Á. Typical phenotypes of patients with acute respiratory failure with and without COVID-19 and their relationship with outcomes: a cohort study. CRITICAL CARE SCIENCE 2023; 35:355-366. [PMID: 38265317 PMCID: PMC10802779 DOI: 10.5935/2965-2774.20230015-en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/09/2023] [Indexed: 01/25/2024]
Abstract
OBJECTIVE To compare, within a cohort of patients with acute respiratory failure, the phenotypes of patients with and without COVID-19 in the context of the pandemic and evaluate whether COVID-19 is an independent predictor of intensive care unit mortality. METHODS This historical cohort study evaluated 1001 acute respiratory failure patients with suspected COVID-19 admitted to the intensive care unit of 8 hospitals. Patients were classified as COVID-19 cases and non-COVID-19 cases according to real-time polymerase chain reaction results. Data on clinical and demographic characteristics were collected on intensive care unit admission, as well as daily clinical and laboratory data and intensive care unit outcomes. RESULTS Although the groups did not differ in terms of APACHE II or SOFA scores at admission, the COVID-19 group had more initial symptoms of fever, myalgia and diarrhea, had a longer duration of symptoms, and had a higher prevalence of obesity. They also had a lower PaO2/FiO2 ratio, lower platelet levels than non-COVID-19 patients, and more metabolic changes, such as higher levels of blood glucose, C-reactive protein, and lactic dehydrogenase. Patients with non-COVID-19 acute respiratory failure had a higher prevalence of chronic obstructive pulmonary disease/asthma and cardiopathy. Patients with COVID-19 stayed in the hospital longer and had more complications, such as acute kidney failure, severe acute respiratory distress syndrome and severe infection. The all-cause mortality rate was also higher in this group (43.7% in the COVID-19 group versus 27.4% in the non-COVID-19 group). The diagnosis of COVID-19 was a predictor of intensive care unit mortality (odds ratio, 2.77; 95%CI, 1.89 - 4.07; p < 0.001), regardless of age or Charlson Comorbidity Index score. CONCLUSION In a prospective cohort of patients admitted with acute respiratory failure, patients with COVID-19 had a clearly different phenotype and a higher mortality than non-COVID-19 patients. This may help to outline more accurate screening and appropriate and timely treatment for these patients.
Collapse
Affiliation(s)
| | | | | | - Joelle Turnes
- Centro de Estudos e de Pesquisas em Terapia Intensiva - Curitiba
(PR), Brazil
| | | | | | | | | | | | - Álvaro Réa-Neto
- Centro de Estudos e de Pesquisas em Terapia Intensiva - Curitiba
(PR), Brazil
| |
Collapse
|
37
|
Dechert RE. Time to Extubation in COVID-19 and Non-COVID-19 ARDS. Respir Care 2023; 68:1475-1476. [PMID: 37722736 PMCID: PMC10506632 DOI: 10.4187/respcare.11411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
|
38
|
Casale R, Bianco G, Bastos P, Comini S, Corcione S, Boattini M, Cavallo R, Rosa FGD, Costa C. Prevalence and Impact on Mortality of Colonization and Super-Infection by Carbapenem-Resistant Gram-Negative Organisms in COVID-19 Hospitalized Patients. Viruses 2023; 15:1934. [PMID: 37766340 PMCID: PMC10534345 DOI: 10.3390/v15091934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The relationship between superinfection by multidrug-resistant Gram-negative bacteria and mortality among SARS-CoV-2 hospitalized patients is still unclear. Carbapenem-resistant Acinetobacter baumannii and carbapenemase-producing Enterobacterales are among the most frequently isolated species when it comes to hospital-acquired superinfections among SARS-CoV-2 patients. METHODS Herein, a retrospective study was carried out using data from adult patients hospitalized for COVID-19. The interaction between in-hospital mortality and rectal carriage and superinfection by carbapenemase-producing Enterobacterales and/or carbapenem-resistant Acinetobacter baumannii was assessed. RESULTS The incidence of KPC-producing Klebsiella pneumoniae and/or carbapenem-resistant Acinetobacter baumannii rectal carriage was 30%. Bloodstream infection and/or pneumonia due to KPC-producing Klebsiella pneumoniae and/or carbapenem-resistant Acinetobacter baumannii occurred in 20% of patients. A higher Charlson comorbidity index (OR 1.41, 95% CI 1.24-1.59), being submitted to invasive mechanical ventilation/ECMO ≥ 96 h (OR 6.34, 95% CI 3.18-12.62), being treated with systemic corticosteroids (OR 4.67, 95% CI 2.43-9.05) and having lymphopenia at the time of admission (OR 0.54, 95% CI 0.40-0.72) were the features most strongly associated with in-hospital mortality. CONCLUSIONS Although KPC-producing Klebsiella pneumoniae and/or carbapenem-resistant Acinetobacter baumannii rectal carriage, and/or bloodstream infection/pneumonia were diagnosed in a remarkable percentage of COVID-19 patients, their impact on in-hospital mortality was not significant. Further studies are needed to assess the burden of antimicrobial resistance as a legacy of COVID-19 in order to identify future prevention opportunities.
Collapse
Affiliation(s)
- Roberto Casale
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (R.C.); (S.C.); (M.B.); (R.C.); (C.C.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
| | - Gabriele Bianco
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (R.C.); (S.C.); (M.B.); (R.C.); (C.C.)
| | - Paulo Bastos
- Independent Researcher, 1169-056 Lisbon, Portugal;
| | - Sara Comini
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (R.C.); (S.C.); (M.B.); (R.C.); (C.C.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (S.C.); (F.G.D.R.)
| | - Matteo Boattini
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (R.C.); (S.C.); (M.B.); (R.C.); (C.C.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
- Lisbon Academic Medical Centre, 1169-056 Lisbon, Portugal
| | - Rossana Cavallo
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (R.C.); (S.C.); (M.B.); (R.C.); (C.C.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
| | - Francesco Giuseppe De Rosa
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (S.C.); (F.G.D.R.)
- Unit of Infectious Diseases, Cardinal Massaia, 14100 Asti, Italy
| | - Cristina Costa
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (R.C.); (S.C.); (M.B.); (R.C.); (C.C.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
| |
Collapse
|
39
|
Ragel EJ, Harris LK, Campbell RA. Acute respiratory distress syndrome: potential of therapeutic interventions effective in treating progression from COVID-19 to treat progression from other illnesses-a systematic review. BMJ Open Respir Res 2023; 10:e001525. [PMID: 37657844 PMCID: PMC10476125 DOI: 10.1136/bmjresp-2022-001525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/04/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is the most severe form of lung injury, rendering gaseous exchange insufficient, leading to respiratory failure. Despite over 50 years of research on the treatment of ARDS when developed from illnesses such as sepsis and pneumonia, mortality remains high, and no robust pharmacological treatments exist. The progression of SARS-CoV-2 infections to ARDS during the recent global pandemic led to a surge in the number of clinical trials on the condition. Understandably, this explosion in new research focused on COVID-19 ARDS (CARDS) rather than ARDS when developed from other illnesses, yet differences in pathology between the two conditions mean that optimal treatment for them may be distinct. AIM The aim of the present work is to assess whether new therapeutic interventions that have been developed for the treatment of CARDS may also hold strong potential in the treatment of ARDS when developed from other illnesses. The study objectives are achieved through a systematic review of clinical trials. RESULTS The COVID-19 pandemic led to the identification of various therapeutic interventions for CARDS, some but not all of which are optimal for the management of ARDS. Interventions more suited to CARDS pathology include antithrombotics and biologic agents, such as cytokine inhibitors. Cell-based therapies, on the other hand, show promise in the treatment of both conditions, attributed to their broad mechanisms of action and the overlap in the clinical manifestations of the conditions. A shift towards personalised treatments for both CARDS and ARDS, as reflected through the increasing use of biologics, is also evident. CONCLUSIONS As ongoing CARDS clinical trials progress, their findings are likely to have important implications that alter the management of ARDS in patients that develop the condition from illnesses other than COVID-19 in the future.
Collapse
Affiliation(s)
- Emma J Ragel
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
| | - Lynda K Harris
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
- 3St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Richard A Campbell
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
| |
Collapse
|
40
|
Romero MJ, Yue Q, Singla B, Hamacher J, Sridhar S, Moseley AS, Song C, Mraheil MA, Fischer B, Zeitlinger M, Chakraborty T, Fulton D, Gan L, Annex BH, Csanyi G, Eaton DC, Lucas R. Direct endothelial ENaC activation mitigates vasculopathy induced by SARS-CoV2 spike protein. Front Immunol 2023; 14:1241448. [PMID: 37638055 PMCID: PMC10449264 DOI: 10.3389/fimmu.2023.1241448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Although both COVID-19 and non-COVID-19 ARDS can be accompanied by significantly increased levels of circulating cytokines, the former significantly differs from the latter by its higher vasculopathy, characterized by increased oxidative stress and coagulopathy in lung capillaries. This points towards the existence of SARS-CoV2-specific factors and mechanisms that can sensitize the endothelium towards becoming dysfunctional. Although the virus is rarely detected within endothelial cells or in the circulation, the S1 subunit of its spike protein, which contains the receptor binding domain (RBD) for human ACE2 (hACE2), can be detected in plasma from COVID-19 patients and its levels correlate with disease severity. It remains obscure how the SARS-CoV2 RBD exerts its deleterious actions in lung endothelium and whether there are mechanisms to mitigate this. Methods In this study, we use a combination of in vitro studies in RBD-treated human lung microvascular endothelial cells (HL-MVEC), including electrophysiology, barrier function, oxidative stress and human ACE2 (hACE2) surface protein expression measurements with in vivo studies in transgenic mice globally expressing human ACE2 and injected with RBD. Results We show that SARS-CoV2 RBD impairs endothelial ENaC activity, reduces surface hACE2 expression and increases reactive oxygen species (ROS) and tissue factor (TF) generation in monolayers of HL-MVEC, as such promoting barrier dysfunction and coagulopathy. The TNF-derived TIP peptide (a.k.a. solnatide, AP301) -which directly activates ENaC upon binding to its a subunit- can override RBD-induced impairment of ENaC function and hACE2 expression, mitigates ROS and TF generation and restores barrier function in HL-MVEC monolayers. In correlation with the increased mortality observed in COVID-19 patients co-infected with S. pneumoniae, compared to subjects solely infected with SARS-CoV2, we observe that prior intraperitoneal RBD treatment in transgenic mice globally expressing hACE2 significantly increases fibrin deposition and capillary leak upon intratracheal instillation of S. pneumoniae and that this is mitigated by TIP peptide treatment.
Collapse
Affiliation(s)
- Maritza J. Romero
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Qian Yue
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Bhupesh Singla
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Jürg Hamacher
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital, Bern, Switzerland
- Lungen-und Atmungsstiftung, Bern, Switzerland
- Medical Clinic V—Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, Homburg, Germany
| | - Supriya Sridhar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Auriel S. Moseley
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Chang Song
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Mobarak A. Mraheil
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | | | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Trinad Chakraborty
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Lin Gan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Brian H. Annex
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Gabor Csanyi
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Douglas C. Eaton
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Division of Pulmonary and Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
41
|
Zhang W, Zhao M, Pu Z, Yin Q, Shui Y. Chicoric Acid Presented NLRP3-Mediated Pyroptosis through Mitochondrial Damage by PDPK1 Ubiquitination in an Acute Lung Injury Model. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1431-1457. [PMID: 37530505 DOI: 10.1142/s0192415x23500659] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Chicoric acid (CA), a functional food ingredient, is a caffeic acid derivative that is mainly found in lettuce, pulsatilla, and other natural plants. However, the anti-inflammatory effects of CA in acute lung injury (ALI) remain poorly understood. This study was conducted to investigate potential drug usage of CA for ALI and the underlying molecular mechanisms of inflammation. C57BL/6 mice were given injections of liposaccharide (LPS) to establish the in vivo model. Meanwhile, BMDM cells were stimulated with LPS+ATP to build the in vitro model. CA significantly alleviated inflammation and oxidative stress in both the in vivo and in vitro models of ALI through the inhibition of NLR family pyrin domain-containing 3 (NLRP3)-mediated pyroptosis. In addition, CA attenuated mitochondrial damage to suppress NLRP3-mediated pyroptosis in the in vivo and in vitro models of ALI by suppressing the production of reactive oxygen species (ROS) via inhibiting the Akt/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. CA inhibited the interaction between Akt at T308 and phosphoinositide-dependent kinase-1 (PDPK1) at S549, thus promoting the phosphorylation of the Akt protein. Furthermore, CA directly targeted the PDPK1 protein and accelerated PDPK1 ubiquitination, indicating that 91-GLY, 111-LYS, 126-TYR, 162-ALA, 205-ASP, and 223-ASP might be responsible for the interaction between PDPK1 and CA. In conclusion, CA from Lettuce alleviated NLRP3-mediated pyroptosis in the ALI model through ROS-induced mitochondrial damage by activating Akt/Nrf2 pathway via PDPK1 ubiquitination. The present study suggests that CA might be a potential therapeutic drug to treat or prevent ALI in pneumonia or COVID-19.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Pharmacy, Second Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, P. R. China
- Graduate School, Wannan Medical College, Wuhu 241001, Anhui, P. R. China
| | - Min Zhao
- Department of Pharmacy, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian, P. R. China
| | - Zhichen Pu
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, P. R. China
| | - Qin Yin
- Department of Pharmacy, Second Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, P. R. China
- Wannan Medical College, Wuhu 241001, Anhui, P. R. China
| | - Yinping Shui
- Graduate School, Wannan Medical College, Wuhu 241001, Anhui, P. R. China
| |
Collapse
|
42
|
Bellanti F, Kasperczyk S, Kasperczyk A, Dobrakowski M, Pacilli G, Vurchio G, Maddalena A, Quiete S, Lo Buglio A, Capurso C, Serviddio G, Vendemiale G. Alteration of circulating redox balance in coronavirus disease-19-induced acute respiratory distress syndrome. J Intensive Care 2023; 11:30. [PMID: 37408073 PMCID: PMC10320967 DOI: 10.1186/s40560-023-00679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Mechanisms underpinning ARDS induced by COVID-19 are mostly immune-mediated, but need to be completely clarified. This study aimed to investigate redox balance in COVID-19 patients with ARDS, trying to recognize possible differences from typical ARDS related to the pathophysiology of severe disease. METHODS Patients affected by ARDS and positive for the SARS-CoV-2 virus (N = 40, COVID-19) were compared to ARDS patients negative to the molecular test (N = 42, No COVID-19). Circulating markers of redox balance were measured in serum and erythrocytes, and related to markers of inflammation and coagulability. RESULTS No differences in serum markers of oxidative damage were found between both groups, but a reduction in total antioxidant status and serum ceruloplasmin level was observed in COVID-19 rather than No COVID-19 patients. Redox balance alterations were described in erythrocytes from COVID-19 with respect to No COVID-19 group, characterized by increased lipofuscin and malondialdehyde concentration, and reduced glutathione S-transferase and glutathione reductase activity. These markers were associated with circulating indexes of respiratory disease severity (Horowitz index and alveolar-to-arterial oxygen gradient), inflammation (interleukin-6 and interleukin-10), and hypercoagulability (D-dimer) in COVID-19 patients with ARDS. CONCLUSIONS ARDS caused by COVID-19 is sustained by impairment of redox balance, particularly in erythrocytes. This alteration is associated with the pro-inflammatory and pro-coagulant status which characterizes severe COVID-19.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 1, 71122, Foggia, Italy.
| | - Sławomir Kasperczyk
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 41-808, Zabrze, Poland
| | - Aleksandra Kasperczyk
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 41-808, Zabrze, Poland
| | - Michał Dobrakowski
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 41-808, Zabrze, Poland
| | - Gabriella Pacilli
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 1, 71122, Foggia, Italy
| | - Giuseppina Vurchio
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 1, 71122, Foggia, Italy
| | - Alessandro Maddalena
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 1, 71122, Foggia, Italy
| | - Stefano Quiete
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 1, 71122, Foggia, Italy
| | - Aurelio Lo Buglio
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 1, 71122, Foggia, Italy
| | - Cristiano Capurso
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 1, 71122, Foggia, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 1, 71122, Foggia, Italy
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 1, 71122, Foggia, Italy
| |
Collapse
|
43
|
Bernauer E, Alebrand F, Heurich M. Same but Different? Comparing the Epidemiology, Treatments and Outcomes of COVID-19 and Non-COVID-19 ARDS Cases in Germany Using a Sample of Claims Data from 2021 and 2019. Viruses 2023; 15:1324. [PMID: 37376623 DOI: 10.3390/v15061324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a severe lung condition that can be caused by a variety of underlying illnesses. Due to SARS-CoV-2, the number of cases with ARDS has increased worldwide, making it essential to compare this form of acute respiratory failure with classical causes of ARDS. While there have been several studies investigating the differences between COVID-19 and non-COVID-19 ARDS in early stages of the pandemic, little is known about the differences in later phases, especially in Germany. AIM The aim of this study is to characterize and compare the comorbidities, treatments, adverse events, and outcomes of COVID-19-associated ARDS and non-COVID-19 ARDS using a representative sample of German health claims data from the years 2019 and 2021. METHODS We compare percentages and median values of the quantities of interest from the COVID-19 and non-COVID-19 ARDS group, with p-values calculated after conducting Pearson's chi-squared test or the Wilcoxon rank sum test. We also run logistic regressions to access the effect of comorbidities on mortality for COVID-19 ARDS and non-COVID-19 ARDS. RESULTS Despite many similarities, we find that that there are some remarkable differences between COVID-19 and non-COVID-19 ARDS cases in Germany. Most importantly, COVID-19 ARDS cases display fewer comorbidities and adverse events, and are more often treated with non-invasive ventilation and nasal high-flow therapy. CONCLUSIONS This study highlights the importance of comprehending the contrasting epidemiological features and clinical outcomes of COVID-19 and non-COVID-19 ARDS. This understanding can aid in clinical decision making and guide future research initiatives aimed at enhancing the management of patients afflicted with this severe condition.
Collapse
Affiliation(s)
- Eva Bernauer
- BinDoc GmbH, Karlstraße 3, 72072 Tübingen, Germany
| | - Felix Alebrand
- BinDoc GmbH, Karlstraße 3, 72072 Tübingen, Germany
- Clinic for Cardiology and Pneumology, Georg-August-Universität Göttingen, 37075 Göttingen, Germany
| | | |
Collapse
|
44
|
Hsieh YH, Chang HT, Wang PH, Chang MY, Hsu HS. Mortality in patients with COVID-19 versus non-COVID-19- related acute respiratory distress syndrome: A single center retrospective observational cohort study. PLoS One 2023; 18:e0286564. [PMID: 37267339 DOI: 10.1371/journal.pone.0286564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
The pathophysiology of coronavirus disease-2019 (COVID-19)-related acute respiratory distress syndrome (ARDS) varies from other pneumonia-related ARDS. We evaluated whether the mortality rates differed for COVID-19 and non-COVID-19-related ARDS in the Asian population in 2021. This single center retrospective observational cohort study included patients with COVID-19 and non-COVID-19-related ARDS that required invasive mechanical ventilation. The primary outcome was all-cause in-hospital mortality. The secondary outcomes included hospital length of stay, ICU length of stay, duration of mechanical ventilation, and ventilator-free days (VFDs) during the first 28 days. A 1:1 propensity score matching was performed to correct potential confounders by age, obesity or not, and ARDS severity. One-hundred-and-sixty-four patients fulfilled the inclusion criteria. After 1:1 propensity score matching, there were 50 patients in each group. The all-cause in-hospital mortality of all patients was 38 (38%), and no significant differences were found between COVID-19 and non-COVID-19-related ARDS (17 [34%) vs. 21 [42%], p = 0.410). Both groups had length of stay (30.0 [20.0-46.0] vs. 27.0 [13.0-45.0] days, p = 0.312), ICU length of stay (19.0 [13.0-35.0] vs. 16.0 [10.0-32.0] days, p = 0.249), length of mechanical ventilation (19.0 [10.0-36.0] vs. 14.0 [9.0-29.0] days, p = 0.488), and ventilator-free days during the first 28 days (5.5 [0.0-17.0] vs. 0.0 [0.0-14.0] days, p = 0.320). Immunocompromised status (Hazard ratio: 3.63; 95% CI: 1.51-8.74, p = 0.004) and progress to severe ARDS (Hazard ratio: 2.92; 95% CI: 1.18-7.22, p = 0.020) were significant in-hospital mortality-related confounders. There were no significant difference in mortality among both groups. Immunocompromised status and progression to severe ARDS are two possible risk factors for patients with ARDS; COVID-19 is not a mortality-related risk exposure.
Collapse
Affiliation(s)
- Yu-Hsiang Hsieh
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Chest Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Hou-Tai Chang
- Department of Chest Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
- Department of Critical Care Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Ping-Huai Wang
- Department of Chest Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Mei-Yun Chang
- Department of Chest Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Han-Shui Hsu
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
45
|
Jandl K, Berg JL, Birnhuber A, Fliesser E, Borek I, Seeliger B, David S, Schmidt JJ, Gorkiewicz G, Zacharias M, Welte T, Olschewski H, Heinemann A, Wygrecka M, Kwapiszewska G. Basement membrane product, endostatin, as a link between inflammation, coagulation and vascular permeability in COVID-19 and non-COVID-19 acute respiratory distress syndrome. Front Immunol 2023; 14:1188079. [PMID: 37283766 PMCID: PMC10241244 DOI: 10.3389/fimmu.2023.1188079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Background Immune cell recruitment, endothelial cell barrier disruption, and platelet activation are hallmarks of lung injuries caused by COVID-19 or other insults which can result in acute respiratory distress syndrome (ARDS). Basement membrane (BM) disruption is commonly observed in ARDS, however, the role of newly generated bioactive BM fragments is mostly unknown. Here, we investigate the role of endostatin, a fragment of the BM protein collagen XVIIIα1, on ARDS associated cellular functions such as neutrophil recruitment, endothelial cell barrier integrity, and platelet aggregation in vitro. Methods In our study we analyzed endostatin in plasma and post-mortem lung specimens of patients with COVID-19 and non-COVID-19 ARDS. Functionally, we investigated the effect of endostatin on neutrophil activation and migration, platelet aggregation, and endothelial barrier function in vitro. Additionally, we performed correlation analysis for endostatin and other critical plasma parameters. Results We observed increased plasma levels of endostatin in our COVID-19 and non-COVID-19 ARDS cohort. Immunohistochemical staining of ARDS lung sections depicted BM disruption, alongside immunoreactivity for endostatin in proximity to immune cells, endothelial cells, and fibrinous clots. Functionally, endostatin enhanced the activity of neutrophils, and platelets, and the thrombin-induced microvascular barrier disruption. Finally, we showed a positive correlation of endostatin with soluble disease markers VE-Cadherin, c-reactive protein (CRP), fibrinogen, and interleukin (IL)-6 in our COVID-19 cohort. Conclusion The cumulative effects of endostatin on propagating neutrophil chemotaxis, platelet aggregation, and endothelial cell barrier disruption may suggest endostatin as a link between those cellular events in ARDS pathology.
Collapse
Affiliation(s)
- Katharina Jandl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Johannes Lorenz Berg
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | | | - Izabela Borek
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Benjamin Seeliger
- Department of Respiratory Medicine/Infectious Diseases, Hannover Medical School, Member of the German Lung Center (DZL), Hannover, Germany
| | - Sascha David
- Institute of Intensive Care, University Hospital Zurich, Zurich, Switzerland
| | - Julius J. Schmidt
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Gregor Gorkiewicz
- Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria
| | - Martin Zacharias
- Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria
| | - Tobias Welte
- Department of Respiratory Medicine/Infectious Diseases, Hannover Medical School, Member of the German Lung Center (DZL), Hannover, Germany
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Universities of Giessen and Marburg Lung Center, Member of the German Lung Center (DZL), Giessen, Germany
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
46
|
Suber TL, Wendell SG, Mullett SJ, Zuchelkowski B, Bain W, Kitsios GD, McVerry BJ, Ray P, Ray A, Mallampalli RK, Zhang Y, Shah F, Nouraie SM, Lee JS. Serum metabolomic signatures of fatty acid oxidation defects differentiate host-response subphenotypes of acute respiratory distress syndrome. Respir Res 2023; 24:136. [PMID: 37210531 PMCID: PMC10199668 DOI: 10.1186/s12931-023-02447-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/09/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Fatty acid oxidation (FAO) defects have been implicated in experimental models of acute lung injury and associated with poor outcomes in critical illness. In this study, we examined acylcarnitine profiles and 3-methylhistidine as markers of FAO defects and skeletal muscle catabolism, respectively, in patients with acute respiratory failure. We determined whether these metabolites were associated with host-response ARDS subphenotypes, inflammatory biomarkers, and clinical outcomes in acute respiratory failure. METHODS In a nested case-control cohort study, we performed targeted analysis of serum metabolites of patients intubated for airway protection (airway controls), Class 1 (hypoinflammatory), and Class 2 (hyperinflammatory) ARDS patients (N = 50 per group) during early initiation of mechanical ventilation. Relative amounts were quantified by liquid chromatography high resolution mass spectrometry using isotope-labeled standards and analyzed with plasma biomarkers and clinical data. RESULTS Of the acylcarnitines analyzed, octanoylcarnitine levels were twofold increased in Class 2 ARDS relative to Class 1 ARDS or airway controls (P = 0.0004 and < 0.0001, respectively) and was positively associated with Class 2 by quantile g-computation analysis (P = 0.004). In addition, acetylcarnitine and 3-methylhistidine were increased in Class 2 relative to Class 1 and positively correlated with inflammatory biomarkers. In all patients within the study with acute respiratory failure, increased 3-methylhistidine was observed in non-survivors at 30 days (P = 0.0018), while octanoylcarnitine was increased in patients requiring vasopressor support but not in non-survivors (P = 0.0001 and P = 0.28, respectively). CONCLUSIONS This study demonstrates that increased levels of acetylcarnitine, octanoylcarnitine, and 3-methylhistidine distinguish Class 2 from Class 1 ARDS patients and airway controls. Octanoylcarnitine and 3-methylhistidine were associated with poor outcomes in patients with acute respiratory failure across the cohort independent of etiology or host-response subphenotype. These findings suggest a role for serum metabolites as biomarkers in ARDS and poor outcomes in critically ill patients early in the clinical course.
Collapse
Affiliation(s)
- Tomeka L Suber
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Benjamin Zuchelkowski
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bryan J McVerry
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rama K Mallampalli
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Faraaz Shah
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Seyed Mehdi Nouraie
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Janet S Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University at St. Louis, St. Louis, MO, USA
| |
Collapse
|
47
|
Goldberg R, Ye W, Johns K, Mucksavage JJ, Dhandapani S, Quigley JG, Shapiro NL, Benken ST, Wenzler E, Kim KS. Comparison of thrombotic and clinical outcomes in SARS-CoV-2-pneumonia versus other viral pneumonia in an urban academic medical center. Heart Lung 2023; 61:153-157. [PMID: 37290136 DOI: 10.1016/j.hrtlng.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Infection with viral pneumonia (PNA) is known to offset the coagulation cascade. Recent studies assessing novel SARS-CoV-2 infection observed a high frequency of systemic thrombotic events resulting in ambiguity if severity of infection or specific viral strain drive thrombosis and worsen clinical outcomes. Furthermore, limited data exists addressing SARS-CoV-2 in underrepresented patient populations. OBJECTIVES Assess clinical outcomes events and death in patients diagnosed with SARS-CoV-2 pneumonia compared to patients with other types of viral pneumonia. METHODS Retrospective cohort study evaluated electronic medical records in adult patients admitted to University of Illinois Hospital and Health Sciences System (UIHHSS) with primary diagnosis of SARS-CoV-2 PNA or other viral (H1N1 or H3N2) PNA between 10/01/2017 and 09/01/2020. Primary composite outcome was the following event incidence rates: death, ICU admission, infection, thrombotic complications, mechanical ventilation, renal replacement therapy, and major bleeding. RESULTS Of 257 patient records, 199 and 58 patients had SARS-CoV-2 PNA and other viral PNA, respectively. There was no difference in primary composite outcome. Thrombotic events (n = 6, 3%) occurred solely in SARS-CoV-2 PNA patients in the ICU. A significantly higher incidence of renal replacement therapy (8.5% vs 0%, p=0.016) and mortality (15.6% vs 3.4%, p=0.048) occurred in the SARS-CoV-2 PNA group. Multivariable logistic regression analysis revealed age, presence of SARS-CoV-2, and ICU admission, aOR 1.07, 11.37, and 41.95 respectively, was significantly associated with mortality risk during hospitalization; race and ethnicity were not. CONCLUSION Low overall incidence of thrombotic events occurred only in the SARS-CoV-2 PNA group. SARS-CoV-2 PNA may lead to higher incidence of clinical events than those observed in H3N2/H1N1 viral pneumonia, and that race/ethnicity does not drive mortality outcomes.
Collapse
Affiliation(s)
- Rachel Goldberg
- University of Illinois at Chicago, College of Pharmacy, Chicago, IL 60612, USA.
| | - William Ye
- University of Illinois at Chicago, College of Pharmacy, Chicago, IL 60612, USA
| | - Kevin Johns
- University of Illinois at Chicago, College of Pharmacy, Chicago, IL 60612, USA
| | | | - Shvetha Dhandapani
- University of Illinois at Chicago, College of Pharmacy, Chicago, IL 60612, USA
| | - John G Quigley
- University of Illinois at Chicago, College of Pharmacy, Chicago, IL 60612, USA
| | - Nancy L Shapiro
- University of Illinois at Chicago, College of Pharmacy, Chicago, IL 60612, USA
| | - Scott T Benken
- University of Illinois at Chicago, College of Pharmacy, Chicago, IL 60612, USA
| | - Eric Wenzler
- University of Illinois at Chicago, College of Pharmacy, Chicago, IL 60612, USA
| | - Keri S Kim
- University of Illinois at Chicago, College of Pharmacy, Chicago, IL 60612, USA
| |
Collapse
|
48
|
Tekin A, Qamar S, Sharma M, Singh R, Malinchoc M, Bansal V, Deo N, Bogojevic M, Valencia-Morales DJ, Zec S, Zorko-Garbajs N, Sharma N, Lal A, Sanghavi DK, Cartin-Ceba R, Khan SA, La Nou AT, Cherian A, Zabolotskikh IB, Kumar VK, Kashyap R, Walkey AJ, Domecq JP, Yadav H, Gajic O, Odeyemi YE. Development and Validation of an Acute Respiratory Distress Syndrome Prediction Model in Coronavirus Disease 2019: Updated Lung Injury Prediction Score. Mayo Clin Proc 2023; 98:736-747. [PMID: 37028977 PMCID: PMC9800809 DOI: 10.1016/j.mayocp.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/05/2022] [Accepted: 11/22/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To develop and validate an updated lung injury prediction score for coronavirus disease 2019 (COVID-19) (c-LIPS) tailored for predicting acute respiratory distress syndrome (ARDS) in COVID-19. PATIENTS AND METHODS This was a registry-based cohort study using the Viral Infection and Respiratory Illness Universal Study. Hospitalized adult patients between January 2020 and January 2022 were screened. Patients who qualified for ARDS within the first day of admission were excluded. Development cohort consisted of patients enrolled from participating Mayo Clinic sites. The validation analyses were performed on remaining patients enrolled from more than 120 hospitals in 15 countries. The original lung injury prediction score (LIPS) was calculated and enhanced using reported COVID-19-specific laboratory risk factors, constituting c-LIPS. The main outcome was ARDS development and secondary outcomes included hospital mortality, invasive mechanical ventilation, and progression in WHO ordinal scale. RESULTS The derivation cohort consisted of 3710 patients, of whom 1041 (28.1%) developed ARDS. The c-LIPS discriminated COVID-19 patients who developed ARDS with an area under the curve (AUC) of 0.79 compared with original LIPS (AUC, 0.74; P<.001) with good calibration accuracy (Hosmer-Lemeshow P=.50). Despite different characteristics of the two cohorts, the c-LIPS's performance was comparable in the validation cohort of 5426 patients (15.9% ARDS), with an AUC of 0.74; and its discriminatory performance was significantly higher than the LIPS (AUC, 0.68; P<.001). The c-LIPS's performance in predicting the requirement for invasive mechanical ventilation in derivation and validation cohorts had an AUC of 0.74 and 0.72, respectively. CONCLUSION In this large patient sample c-LIPS was successfully tailored to predict ARDS in COVID-19 patients.
Collapse
Affiliation(s)
- Aysun Tekin
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahraz Qamar
- Post-baccalaureate Research Education Program, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Mayank Sharma
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Romil Singh
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Vikas Bansal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Neha Deo
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Marija Bogojevic
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Simon Zec
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nika Zorko-Garbajs
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Department of Vascular Neurology and Intensive Therapy, University Medical Centre Ljubljana, Slovenia
| | - Nikhil Sharma
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amos Lal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Devang K Sanghavi
- Department of Critical Care Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Rodrigo Cartin-Ceba
- Division of Pulmonary, Department of Medicine and Department of Critical Care Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Syed A Khan
- Division of Critical Care Medicine, Mayo Clinic Health System, Mankato, MN, USA
| | - Abigail T La Nou
- Division of Critical Care Medicine, Mayo Clinic Health System, Eau Claire, WI, USA
| | - Anusha Cherian
- Department of Anesthesiology and Critical Care, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Igor B Zabolotskikh
- Department of Anesthesiology, Intensive Care Medicine and Transfusiology, Kuban State Medical University with affiliation Territorial Hospital #2, Krasnodar, Russia
| | | | - Rahul Kashyap
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Allan J Walkey
- Pulmonary Center, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Evans Center of Implementation and Improvement Sciences, Boston University School of Medicine, Boston, MA, USA
| | - Juan P Domecq
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hemang Yadav
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ognjen Gajic
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yewande E Odeyemi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
49
|
Beloncle FM. Is COVID-19 different from other causes of acute respiratory distress syndrome? JOURNAL OF INTENSIVE MEDICINE 2023:S2667-100X(23)00008-7. [PMID: 37362866 PMCID: PMC10085872 DOI: 10.1016/j.jointm.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 06/28/2023]
Abstract
Coronavirus disease 2019 (COVID-19) pneumonia can lead to acute hypoxemic respiratory failure. When mechanical ventilation is needed, almost all patients with COVID-19 pneumonia meet the criteria for acute respiratory distress syndrome (ARDS). The question of the specificities of COVID-19-associated ARDS compared to other causes of ARDS is of utmost importance, as it may justify changes in ventilatory strategies. This review aims to describe the pathophysiology of COVID-19-associated ARDS and discusses whether specific ventilatory strategies are required in these patients.
Collapse
Affiliation(s)
- François M Beloncle
- Medical ICU, University Hospital of Angers, Vent'Lab, University of Angers, Angers 49033, France
| |
Collapse
|
50
|
van Leer B, van Snick JH, Londema M, Nijsten MWN, Kasalak Ö, Slart RHJA, Glaudemans AWJM, Pillay J. [ 18F]FDG-PET/CT in mechanically ventilated critically ill patients with COVID-19 ARDS and persistent inflammation. Clin Transl Imaging 2023; 11:297-306. [PMID: 37275950 PMCID: PMC10008145 DOI: 10.1007/s40336-023-00550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 03/14/2023]
Abstract
Purpose We report the findings of four critically ill patients who underwent an [18F]FDG-PET/CT because of persistent inflammation during the late phase of their COVID-19. Methods Four mechanically ventilated patients with COVID-19 were retrospectively discussed in a research group to evaluate the added value of [18F]FDG-PET/CT. Results Although pulmonary PET/CT findings differed, bilateral lung anomalies could explain the increased CRP and leukocytes in all patients. This underscores the limited ability of the routine laboratory to discriminate inflammation from secondary infections. Based on PET/CT findings, a secondary infection/inflammatory focus was suspected in two patients (pancreatitis and gastritis). Lymphadenopathy was present in patients with a detectable SARS-CoV-2 viral load. Muscle uptake around the hips or shoulders was observed in all patients, possibly due to the process of heterotopic ossification. Conclusion This case series illustrates the diagnostic potential of [18F]FDG-PET/CT imaging in critically ill patients with persistent COVID-19 for the identification of other causes of inflammation and demonstrates that this technique can be performed safely in mechanically ventilated critically ill patients.
Collapse
Affiliation(s)
- Bram van Leer
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, TA29, PO box: 30 001, 9700 RB Groningen, The Netherlands
| | - Johannes H. van Snick
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mark Londema
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, TA29, PO box: 30 001, 9700 RB Groningen, The Netherlands
| | - Maarten W. N. Nijsten
- Department of Critical Care, University Medical Center Groningen, University of Groningen, TA29, PO box: 30 001, 9700 RB Groningen, The Netherlands
| | - Ömer Kasalak
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Riemer H. J. A. Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Andor W. J. M. Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janesh Pillay
- Department of Critical Care, University Medical Center Groningen, University of Groningen, TA29, PO box: 30 001, 9700 RB Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|