1
|
Saigusa R, Asano Y, Yamashita T, Taniguchi T, Takahashi T, Ichimura Y, Toyama T, Yoshizaki A, Miyagaki T, Sugaya M, Sato S. Fli1 deficiency contributes to the downregulation of endothelial protein C receptor in systemic sclerosis: a possible role in prothrombotic conditions. Br J Dermatol 2015; 174:338-47. [DOI: 10.1111/bjd.14183] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2015] [Indexed: 12/20/2022]
Affiliation(s)
- R. Saigusa
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - Y. Asano
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - T. Yamashita
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - T. Taniguchi
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - T. Takahashi
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - Y. Ichimura
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - T. Toyama
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - A. Yoshizaki
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - T. Miyagaki
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - M. Sugaya
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - S. Sato
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| |
Collapse
|
2
|
Abstract
Consensus development sprang from a desire to synthesize clinician and expert opinions on clinical practice and research agendas in the 1950s. And since the American Institute of Medicine formally defined "guidelines" in 1990, there has been a proliferation of clinical practice guidelines (CPG) both formally and informally. This modern decision-making tool used by both physicians and patients, requires extensive planning to overcome the challenges of consensus development while reaping its rewards. Consensus allows for a group approach of multiple experts sharing ideas to form consensus on topics ranging from appropriateness of procedures to research agenda development. Disagreements can shed light on areas of controversy and launch further discussions. It has five main components: three inputs (defining the task, participant identification and recruitment, and information synthesis), the approach (consensus development by explicit or implicit means), and the output (dissemination of results). Each aspect requires extensive planning a priori as they influence the entire process, from how information will be interpreted, the interaction of participants, the resulting judgment, to whether there will be uptake of results. Implicit approaches utilize qualitative methods and/or a simple voting structure of majority wins, and are used in informal consensus development methods and consensus development conferences. Explicit approaches aggregate results or judgments using explicit rules set a priori with definitions of "agreement" or consensus. Because the implicit process can be more opaque, unforeseen challenges can emerge such as the undue influence of a minority. And yet, the logistics of explicit approaches may be more time consuming and not appropriate when speed is a priority. In determining which method to use, it is important to understand the pros and cons of different approaches and how it will affect the overall input, approach, and outcome.
Collapse
Affiliation(s)
- Bory Kea
- Center for Policy and Research in Emergency Medicine (CPR-EM), Department of Emergency Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, MC CR 114, Portland, OR, 97239, USA,
| | | |
Collapse
|
3
|
de Boer JD, Kager LM, Roelofs JJTH, Meijers JCM, de Boer OJ, Weiler H, Isermann B, van 't Veer C, van der Poll T. Overexpression of activated protein C hampers bacterial dissemination during pneumococcal pneumonia. BMC Infect Dis 2014; 14:559. [PMID: 25366058 PMCID: PMC4228088 DOI: 10.1186/s12879-014-0559-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/14/2014] [Indexed: 12/27/2022] Open
Abstract
Background During pneumonia, inflammation and coagulation are activated as part of anti-bacterial host defense. Activated protein C (APC) has anticoagulant and anti-inflammatory properties and until recently was a registered drug for the treatment of severe sepsis. Streptococcus (S.) pneumoniae is the most common causative pathogen in community-acquired pneumonia. Methods We aimed to investigate the effect of high APC levels during experimental pneumococcal pneumonia. Wild type (WT) and APC overexpressing (APChigh)-mice were intranasally infected with S. pneumoniae and sacrificed after 6, 24 or 48 hours, or followed in a survival study. Results In comparison to WT mice, APChigh-mice showed decreased bacterial dissemination to liver and spleen, while no differences in bacterial loads were detected at the primary site of infection. Although no differences in the extent of lung histopathology were seen, APChigh-mice showed a significantly decreased recruitment of neutrophils into lung tissue and bronchoalveolar lavage fluid. Activation of coagulation was not altered in APChigh-mice. No differences in survival were observed between WT and APChigh-mice (P =0.06). Conclusion APC overexpression improves host defense during experimental pneumococcal pneumonia. This knowledge may add to a better understanding of the regulation of the inflammatory and procoagulant responses during severe Gram-positive pneumonia. Electronic supplementary material The online version of this article (doi:10.1186/s12879-014-0559-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes Daan de Boer
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands. .,Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, The Netherlands.
| | - Liesbeth M Kager
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands. .,Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, The Netherlands. .,Center for Experimental and Molecular Medicine (CEMM), Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105 AZ, Amsterdam, The Netherlands.
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands.
| | - Joost C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands. .,Department Plasma Proteins, Sanquin, Amsterdam, The Netherlands.
| | - Onno J de Boer
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands.
| | - Hartmut Weiler
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA.
| | - Berend Isermann
- Department of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University, Magdeburg, Germany.
| | - Cornelis van 't Veer
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands. .,Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, The Netherlands.
| | - Tom van der Poll
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands. .,Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, The Netherlands. .,Division of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Activated protein C has a protective effect against myocardial I/R injury by improvement of endothelial function and activation of AKT1. PLoS One 2012; 7:e38738. [PMID: 22916090 PMCID: PMC3423409 DOI: 10.1371/journal.pone.0038738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 05/09/2012] [Indexed: 01/04/2023] Open
Abstract
Objectives Activated protein C (APC) has a protective efficacy against ischemia-reperfusion (I/R) injury in several organs. The objective of this study was to investigate effect of APC in myocardium with possible mechanism. Methods We used regional and global myocardial I/R injury models of rats. They consisted of I/R injuries (1) by ligation of left coronary artery, or (2) using Langendorff apparatus. Langendorff was used to focus the mechanism of APC excluding coagulation cascade in a working heart. Each experiment had an APC group (n = 10) and a control group with normal saline (n = 10). Injections of these solutions into rats were performed 30 minutes before the planned-I/R injury. Cardiac performance after the procedure was evaluated by echocardiography or indices with Langendorff apparatus. Coronary flow (CF) was measured in the global I/R injury model. Western blotting was performed to detect the change of AKT1 signal in myocardium after global I/R injury. Results LV function improved significantly in the APC group: %EF at 2 weeks after procedure, 70.8%±4.5% vs. 56.5%±0.7%; APC vs. control; p<0.01. Percent LV development pressure (LVDP) also improved in the APC group significantly, 88.8%±45.3% vs. 28.1%±15.4%; APC vs. control; p<0.01. In APC group, %CF improved significantly, 88.5%±15.8% vs. 65.0%±13.4%; APC vs. control; p<0.01. It was enhanced significantly when acetylcholine was administered; % CF: 103.5%±9.9% vs. 87.0%±12.1%; APC vs. control; p<0.05. Western blotting revealed that APC significantly induced activation of phosphorylated AKT1 in myocardium (p<0.05). Conclusions APC has a novel effect to protect myocardium and cardiac performance against I/R injury through improvement of endothelial function and activation of AKT1.
Collapse
|
5
|
Friggeri A, Banerjee S, Xie N, Cui H, De Freitas A, Zerfaoui M, Dupont H, Abraham E, Liu G. Extracellular histones inhibit efferocytosis. Mol Med 2012; 18:825-33. [PMID: 22495510 DOI: 10.2119/molmed.2012.00005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/03/2012] [Indexed: 11/06/2022] Open
Abstract
The uptake and clearance of apoptotic cells by macrophages and other phagocytic cells, a process called efferocytosis, is a major component in the resolution of inflammation. Increased concentrations of extracellular histones are found during acute inflammatory states and appear to contribute to organ system dysfunction and mortality. In these studies, we examined the potential role of histones in modulating efferocytosis. We found that phagocytosis of apoptotic neutrophils or thymocytes by macrophages was significantly diminished in the presence of histones H3 or H4, but not histone H1. Histone H3 demonstrated direct binding to macrophages, an effect that was diminished by preincubation of macrophages with the opsonins growth arrest-specific gene 6 (Gas6) and milk fat globule-epidermal growth factor (EGF) 8 (MFG-E8). Incubation of histone H3 with soluble α(v)β₅ integrin and Mer, but not with α(v)β₃, diminished its binding to macrophages. Phagocytosis of apoptotic cells by alveolar macrophages in vivo was diminished in the presence of histone H3. Incubation of histone H3 with activated protein C, a treatment that degrades histones, abrogated its inhibitory effects on efferocytosis under both in vitro and in vivo conditions. The present studies demonstrate that histones have inhibitory effects on efferocytosis, suggesting a new mechanism by which extracellular histones contribute to acute inflammatory processes and tissue injury.
Collapse
Affiliation(s)
- Arnaud Friggeri
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Frommhold D, Tschada J, Braach N, Buschmann K, Doerner A, Pflaum J, Stahl MS, Wang H, Koch L, Sperandio M, Bierhaus A, Isermann B, Poeschl J. Protein C concentrate controls leukocyte recruitment during inflammation and improves survival during endotoxemia after efficient in vivo activation. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2637-50. [PMID: 21907691 DOI: 10.1016/j.ajpath.2011.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/18/2011] [Accepted: 07/13/2011] [Indexed: 01/13/2023]
Abstract
Anti-inflammatory properties of protein C (PC) concentrate are poorly studied compared to activated protein C, although PC is suggested to be safer in clinical use. We investigated how PC interferes with the leukocyte recruitment cascade during acute inflammation and its efficacy during murine endotoxemia. We found that similar to activated protein infusion, intravenous PC application reduced leukocyte recruitment in inflamed tissues in a dose- and time-dependent manner. During both tumor necrosis factor-α induced and trauma-induced inflammation of the cremaster muscle, intravital microscopy revealed that leukocyte adhesion and transmigration, but not rolling, were profoundly inhibited by 100 U/kg PC. Moreover, PC blocked leukocyte emigration into the bronchoalveolar space during lipopolysaccharide (LPS) induced acute lung injury. PC was efficiently activated in a murine endotoxemia model, which reduced leukocyte infiltration of organs and strongly improved survival (75% versus 25% of control mice). Dependent on the inflammatory model, PC provoked a significant inhibition of leukocyte recruitment as early as 1 hour after administration. PC-induced inhibition of leukocyte recruitment during acute inflammation critically involves thrombomodulin-mediated PC activation, subsequent endothelial PC receptor and protease-activated receptor-1-dependent signaling, and down-regulation of intercellular adhesion molecule 1 leading to reduced endothelial inflammatory response. We conclude that during acute inflammation and sepsis, PC is a fast acting and effective therapeutic approach to block leukocyte recruitment and improve survival.
Collapse
Affiliation(s)
- David Frommhold
- Department of Neonatology, University Children's Hospital, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cepinskas G, Wilson JX. Inflammatory response in microvascular endothelium in sepsis: role of oxidants. J Clin Biochem Nutr 2011; 42:175-84. [PMID: 18545638 PMCID: PMC2386519 DOI: 10.3164/jcbn.2008026] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Accepted: 01/08/2008] [Indexed: 12/22/2022] Open
Abstract
Sepsis, as a severe systemic inflammatory response to bacterial infection, represents a major clinical problem. It is characterized by the excessive production of reactive oxygen species (ROS) both in the circulation and in the affected organs. The excessive generation of ROS inevitably leads to oxidative stress in the microvasculature and has been implicated as a causative event in a number of pathologies including sepsis. In this review, we focus on the role of oxidative and nitrosative stress during the early onset of sepsis. Changes in microvascular endothelial cells, the cell type that occurs in all organs, are discussed. The mechanisms underlying septic induction of oxidative and nitrosative stresses, the functional consequences of these stresses, and potential adjunct therapies for microvascular dysfunction in sepsis are identified.
Collapse
Affiliation(s)
- Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, 800 Commissioners Rd. E., London, Ontario, N6A 4G4, Canada
| | | |
Collapse
|
8
|
Aversa S, Pellegrino S, Barberi I, Reiter RJ, Gitto E. Potential utility of melatonin as an antioxidant during pregnancy and in the perinatal period. J Matern Fetal Neonatal Med 2011; 25:207-21. [PMID: 21557691 DOI: 10.3109/14767058.2011.573827] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reactive oxygen species (ROS) play a critical role in the pathogenesis of various diseases during pregnancy and the perinatal period. Newborns are more prone to oxidative stress than individuals later in life. During pregnancy, increased oxygen demand augments the rate of production of ROS and women, even during normal pregnancies, experience elevated oxidative stress compared with non-pregnant women. ROS generation is also increased in the placenta during preeclampsia. Melatonin is a highly effective direct free-radical scavenger, indirect antioxidant, and cytoprotective agent in human pregnancy and it appears to be essential for successful pregnancy. This suggests a role for melatonin in human reproduction and in neonatal pathologies (asphyxia, respiratory distress syndrome, sepsis, etc.). This review summarizes current knowledge concerning the role for melatonin in human pregnancy and in the newborn. Numerous studies agree that short-term melatonin therapy is highly effective in reducing complications during pregnancy and in the neonatal period. No significant toxicity or treatment-related side effects with long-term melatonin therapy in children and adults have been reported. Treatment with melatonin might result in a wide range of health benefits, including improved quality of life and reduced healthcare costs.
Collapse
Affiliation(s)
- Salvatore Aversa
- Neonatal Intensive Care Unit, Department of Pediatrics, University of Messina, Italy
| | | | | | | | | |
Collapse
|
9
|
Abstract
We compared the effects of a new compound (TV7130) with those of activated protein C (APC) in a large animal model of septic shock. Thirty-two fasted, anesthetized, invasively monitored, mechanically ventilated female sheep received 1.5 g/kg body weight of feces into the abdomen to induce sepsis. Immediately after feces injection, all animals received a bolus followed by a continuous infusion of saline (n = 8, bolus 1.5 mL for 15 min, infusion 1.5 mL/[kg·h]), low-dose TV7130 (n = 8; 0.4 mg/kg bolus, 0.4 mg/[kg·h] infusion), high-dose TV7130 (n = 8; 0.8 mg/kg bolus, 0.8 mg/[kg·h] infusion), or APC (n = 8; saline bolus, APC infusion of 0.024 mg/[kg·h]). Experiments were pursued until each sheep's spontaneous death. There were no significant differences among groups in heart rate or cardiac index, but mean arterial pressure, systemic vascular resistance index, and left ventricular stroke work index decreased less in the high-dose TV7130 and APC groups than in the other groups. Gas exchange was preserved better in the high-dose TV7130 and APC groups. Interleukin 6 and lactate concentrations were lower in the high-dose TV7130 and APC groups than in the other groups. Functional capillary density and proportion of perfused vessels, evaluated in the sublingual region using sidestream dark-field videomicroscopy, were significantly higher in the TV7130 and APC groups than in the vehicle group at 16 h. Survival time was significantly longer in the high-dose TV7130 and APC groups than in the other groups (log-rank test, P = 0.0002). TV7130 has similar effects to APC and may be a promising agent for the management of severe sepsis.
Collapse
|
10
|
Maniatis NA, Letsiou E, Orfanos SE, Kardara M, Dimopoulou I, Nakos G, Lekka ME, Roussos C, Armaganidis A, Kotanidou A. Inhaled activated protein C protects mice from ventilator-induced lung injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R70. [PMID: 20403177 PMCID: PMC2887192 DOI: 10.1186/cc8976] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/14/2010] [Accepted: 04/19/2010] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Activated Protein C (APC), an endogenous anticoagulant, improves tissue microperfusion and endothelial cell survival in systemic inflammatory states such as sepsis, but intravenous administration may cause severe bleeding. We have thus addressed the role of APC delivered locally by inhalation in preventing acute lung injury from alveolar overdistention and the subsequent ventilator-induced lung injury (VILI). We also assessed the effects of APC on the activation status of Extracellular- Regulated Kinase 1/2 (ERK) pathway, which has been shown to be involved in regulating pulmonary responses to mechanical stretch. METHODS Inhaled APC (12.5 microg drotrecogin-alpha x 4 doses) or saline was given to tracheotomized C57/Bl6 mice starting 20 min prior to initiation of injurious mechanical ventilation with tidal volume 25 mL/Kg for 4 hours and then hourly thereafter; control groups receiving inhaled saline were ventilated with 8 mL/Kg for 30 min or 4 hr. We measured lung function (respiratory system elastance H), arterial blood gases, surrogates of vascular leak (broncho-alveolar lavage (BAL) total protein and angiotensin-converting enzyme (ACE)-activity), and parameters of inflammation (BAL neutrophils and lung tissue myeloperoxidase (MPO) activity). Morphological alterations induced by mechanical ventilation were examined in hematoxylin-eosin lung tissue sections. The activation status of ERK was probed in lung tissue homogenates by immunoblotting and in paraffin sections by immunohistochemistry. The effect of APC on ERK signaling downstream of the thrombin receptor was tested on A549 human lung epithelial cells by immunoblotting. Statistical analyses were performed using ANOVA with appropriate post-hoc testing. RESULTS In mice subjected to VILI without APC, we observed hypoxemia, increased respiratory system elastance and inflammation, assessed by BAL neutrophil counts and tissue MPO activity. BAL total protein levels and ACE activity were also elevated by VILI, indicating compromise of the alveolo-capillary barrier. In addition to preserving lung function, inhaled APC prevented endothelial barrier disruption and attenuated hypoxemia and the inflammatory response. Mechanistically, we found a strong activation of ERK in lung tissues by VILI, which was prevented by APC, suggestive of pathogenetic involvement of the Mitogen-Activated Kinase pathway. In cultured human lung epithelial cells challenged by thrombin, APC abrogated the activation of ERK and its downstream effector, cytosolic Phospholipase A2. CONCLUSIONS Topical application of APC by inhalation may effectively reduce lung injury induced by mechanical ventilation in mice.
Collapse
Affiliation(s)
- Nikolaos A Maniatis
- 2nd Dept, of Critical Care, Attikon Hospital, National and Kapodistrian University of Athens Medical School, Rimini 1, Haidari, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Administration of human protein C improves survival in an experimental model of sepsis*. Crit Care Med 2010; 38:209-16. [DOI: 10.1097/ccm.0b013e3181b4a972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Abstract
Transfusion-related acute lung injury (TRALI) is the most common cause of serious morbidity and mortality due to hemotherapy. Although the pathogenesis has been related to the infusion of donor antibodies into the recipient, antibody negative TRALI has been reported. Changes in transfusion practices, especially the use of male-only plasma, have decreased the number of antibody-mediated cases and deaths; however, TRALI still occurs. The neutrophil appears to be the effector cell in TRALI and the pathophysiology is centered on neutrophil-mediated endothelial cell cytotoxicity resulting in capillary leak and ALI. This review will detail the pathophysiology of TRALI including recent pre-clinical data, provide insight into newer areas of research, and critically assess current practices to decrease it prevalence and to make transfusion safer.
Collapse
|
13
|
Ding BS, Hong N, Christofidou-Solomidou M, Gottstein C, Albelda SM, Cines DB, Fisher AB, Muzykantov VR. Anchoring fusion thrombomodulin to the endothelial lumen protects against injury-induced lung thrombosis and inflammation. Am J Respir Crit Care Med 2009; 180:247-56. [PMID: 19342415 DOI: 10.1164/rccm.200809-1433oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Endothelial thrombomodulin (TM) regulates thrombosis and inflammation. Diverse forms of pulmonary and vascular injury are accompanied by down-regulation of TM, which aggravates tissue injury. We postulated that anchoring TM to the endothelial surface would restore its protective functions. OBJECTIVES To design an effective and safe strategy to treat pulmonary thrombotic and inflammatory injury. METHODS We synthesized a fusion protein, designated scFv/TM, by linking the extracellular domain of mouse TM to a single-chain variable fragment of an antibody to platelet endothelial cell adhesion molecule-1 (PECAM-1). The targeting and protective functions of scFv/TM were tested in mouse models of lung ischemia-reperfusion and acute lung injury (ALI) caused by intratracheal endotoxin and hyperoxia, both of which caused approximately 50% reduction in the endogenous expression of TM. MEASUREMENTS AND MAIN RESULTS Biochemical assays showed that scFv/TM accelerated protein C activation by thrombin and bound mouse PECAM-1 and cytokine high mobility group-B1. After intravenous injection, scFv/TM preferentially accumulated in the mouse pulmonary vasculature. In a lung model of ischemia-reperfusion injury, scFv/TM attenuated elevation of early growth response-1, inhibited pulmonary deposition of fibrin and leukocyte infiltration, and preserved blood oxygenation more effectively than soluble TM. In an ALI model, scFv/TM, but not soluble TM, suppressed activation of nuclear factor-kappaB, inflammation and edema in the lung and reduced mortality without causing hemorrhage. CONCLUSIONS Targeting TM to the endothelium using an scFv anchor enhances its antithrombotic and antiinflammatory effectiveness in models of ALI.
Collapse
Affiliation(s)
- Bi-Sen Ding
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Memos N, Betrosian A, Messaris E, Boutsikou M, Kataki A, Chatzigianni E, Nikolopoulou M, Leandros E, Konstadoulakis M. Administration of Human Protein-C concentrate prevents apoptotic brain cell death after experimental sepsis. Brain Res 2009; 1264:119-26. [DOI: 10.1016/j.brainres.2009.01.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 01/23/2009] [Accepted: 01/24/2009] [Indexed: 10/21/2022]
|
15
|
Schuepbach RA, Feistritzer C, Fernández JA, Griffin JH, Riewald M. Protection of vascular barrier integrity by activated protein C in murine models depends on protease-activated receptor-1. Thromb Haemost 2009; 101:724-33. [PMID: 19350118 PMCID: PMC2680237 DOI: 10.1160/th08-10-0632] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Protease activated receptor-1 (PAR1) mediates barrier protective signalling of activated protein C (APC) in human endothelial cells in vitro and may contribute to APC's beneficial effects in patients with severe sepsis. Mouse models are of key importance for translational research but species differences may limit conclusions for the human system. We analysed whether mouse APC can cleave, activate and induce signalling through murine PAR1 and tested in newly established mouse models if long-term infusion of APC prevents from vascular leakage. Cell surface immunoassays demonstrated efficient cleavage of endogenous murine endothelial PAR1 by either murine or human APC. Pharmacological concentrations of APC of either species had powerful barrier protective effects on cultured murine endothelial cells that required PAR1 cleavage. Vascular endothelial growth factor-mediated hyperpermeability in the skin was reduced by either endogenously generated as well as directly infused recombinant mouse APC in wild-type mice. However APC did not significantly alter the vascular barrier function in PAR1-deficient mice. In endotoxin-challenged mice, infused APC significantly prevented from pulmonary fluid accumulation in the wild-type mice but not in mice lacking PAR1. Our results directly show that murine APC cleaves and signals through PAR1 in mouse endothelial cells. APC reduces vascular permeability in mouse models and PAR1 plays a major role in mediating these effects. Our data in vitro and in vivo support the paradigm that PAR1 contributes to protective effects of APC on vascular barrier integrity in sepsis.
Collapse
Affiliation(s)
- Reto A. Schuepbach
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, USA
| | - Clemens Feistritzer
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, USA
| | - José A. Fernández
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, USA
| | - John H. Griffin
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, USA
| | - Matthias Riewald
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, USA
| |
Collapse
|
16
|
Gitto E, Pellegrino S, Gitto P, Barberi I, Reiter RJ. Oxidative stress of the newborn in the pre- and postnatal period and the clinical utility of melatonin. J Pineal Res 2009; 46:128-39. [PMID: 19054296 DOI: 10.1111/j.1600-079x.2008.00649.x] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Newborns, and especially those delivered preterm, are probably more prone to oxidative stress than individuals later in life. Also during pregnancy, increased oxygen demand augments the rate of production of reactive oxygen species (ROS) and women, even with normal pregnancies, experience elevated oxidative stress and lipid peroxidation compared with nonpregnant women. Also, there appears to be an increase in ROS generation in the placenta of pre-eclamptic women. In comparison with healthy adults, newborn infants have lower levels of plasma antioxidants such as vitamin E, beta-carotene, and sulphydryl groups, lower levels of plasma metal binding proteins including ceruloplasmin and transferrin, and reduced activity of erythrocyte superoxide dismutase. This review summarizes conditions of newborns where there is elevated oxidative stress. Included in this group of conditions is asphyxia, respiratory distress syndrome and sepsis and the review also summarizes the literature related to clinical trials of antioxidant therapies and of melatonin, a highly effective antioxidant and free radical scavenger. The authors document there is general agreement that short-term melatonin therapy may be highly effective and that it has a remarkably benign safety profile, even when neonates are treated with pharmacological doses. Significant complications with long-term melatonin therapy in children and adults also have not been reported. None of the animal studies of maternal melatonin treatment or in postnatal life have shown any treatment-related side effects. The authors conclude that treatment with melatonin might result in a wide range of health benefits, improved quality of life and reduced healthcare costs and may help reduce complications in the neonatal period.
Collapse
Affiliation(s)
- Eloisa Gitto
- Neonatal Intensive Care Unit, Institute of Medical Pediatrics, University of Messina, Messina, Italy
| | | | | | | | | |
Collapse
|
17
|
Plasma from stored packed red blood cells and MHC class I antibodies causes acute lung injury in a 2-event in vivo rat model. Blood 2009; 113:2079-87. [PMID: 19131548 DOI: 10.1182/blood-2008-09-177857] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion death. We hypothesize that TRALI requires 2 events: (1) the clinical condition of the patient and (2) the infusion of antibodies against MHC class I antigens or the plasma from stored blood. A 2-event rat model was developed with saline (NS) or endotoxin (LPS) as the first event and the infusion of plasma from packed red blood cells (PRBCs) or antibodies (OX18 and OX27) against MHC class I antigens as the second event. ALI was determined by Evans blue dye leak from the plasma to the bronchoalveolar lavage fluid (BALF), protein and CINC-1 concentrations in the BALF, and the lung histology. NS-treated rats did not evidence ALI with any second events, and LPS did not cause ALI. LPS-treated animals demonstrated ALI in response to plasma from stored PRBCs, both prestorage leukoreduced and unmodified, and to OX18 and OX27, all in a concentration-dependent fashion. ALI was neutrophil (PMN) dependent, and OX18/OX27 localized to the PMN surface in vivo and primed the oxidase of rat PMNs. We conclude that TRALI is the result of 2 events with the second events consisting of the plasma from stored blood and antibodies that prime PMNs.
Collapse
|
18
|
Galley H, El Sakka N, Webster N, Lowes D, Cuthbertson B. Activated protein C inhibits chemotaxis and interleukin-6 release by human neutrophils without affecting other neutrophil functions. Br J Anaesth 2008; 100:815-9. [DOI: 10.1093/bja/aen079] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Richardson MA, Gupta A, O'Brien LA, Berg DT, Gerlitz B, Syed S, Sharma GR, Cramer MS, Heuer JG, Galbreath EJ, Grinnell BW. Treatment of sepsis-induced acquired protein C deficiency reverses Angiotensin-converting enzyme-2 inhibition and decreases pulmonary inflammatory response. J Pharmacol Exp Ther 2008; 325:17-26. [PMID: 18182560 DOI: 10.1124/jpet.107.130609] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The protein C (PC) pathway plays an important role in vascular and immune function, and acquired deficiency during sepsis is associated with increased mortality in both animal models and in clinical studies. However, the association of acquired PC deficiency with the pathophysiology of lung injury is unclear. We hypothesized that low PC induced by sepsis would associate with increased pulmonary injury and that replacement with activated protein C (APC) would reverse the activation of pathways associated with injury. Using a cecal ligation and puncture (CLP) model of polymicrobial sepsis, we examined the role of acquired PC deficiency on acute lung injury assessed by analyzing changes in pulmonary pathology, chemokine response, inducible nitric-oxide synthase (iNOS), and the angiotensin pathway. Acquired PC deficiency was strongly associated with an increase in lung inflammation and drivers of pulmonary injury, including angiotensin (Ang) II, thymus and activation-regulated chemokine, plasminogen activator inhibitor (PAI)-1, and iNOS. In contrast, the protective factor angiotensin-converting enzyme (ACE)-2 was significantly suppressed in animals with acquired PC deficiency. The endothelial protein C receptor, required for the cytoprotective signaling of APC, was significantly increased post-CLP, suggesting a compensatory up-regulation of the signaling receptor. Treatment of septic animals with APC reduced pulmonary pathology, suppressed the macrophage inflammatory protein family chemokine response, iNOS expression, and PAI-1 activity and up-regulated ACE-2 expression with concomitant reduction in AngII peptide. These data demonstrate a clear link between acquired PC deficiency and pulmonary inflammatory response in the rat sepsis model and provide support for the concept of APC as a replacement therapy in acute lung injury associated with acquired PC deficiency.
Collapse
Affiliation(s)
- Mark A Richardson
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Wang Z, Su F, Rogiers P, Vincent JL. Beneficial effects of recombinant human activated protein C in a ewe model of septic shock*. Crit Care Med 2007; 35:2594-600. [PMID: 17901839 DOI: 10.1097/01.ccm.0000287590.55294.40] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate the effects of activated protein C (APC) in a clinically relevant animal model of septic shock. DESIGN Prospective, randomized, controlled study. SETTING University medical center research laboratory. SUBJECTS Eighteen female sheep (body weight, 27-35 kg). INTERVENTIONS Animals were fasted, anesthetized, invasively monitored, and mechanically ventilated before receiving 0.5 g/kg body weight of feces intraperitoneally to induce sepsis. Fluid resuscitation with Ringer lactate was titrated to maintain pulmonary artery occlusion pressure at baseline levels. No vasoactive agents or antibiotics were used. Two hours after the induction of sepsis, animals were randomized to receive an infusion of APC (24 microg x kg(-1) x hr(-1), n = 9) or an equivalent volume of vehicle (n = 9) throughout the experimental period. MEASUREMENTS AND MAIN RESULTS The APC-treated animals had significantly higher arterial pressure, urine output, PaO2/FIO2 ratios, and thoracopulmonary compliance than the control animals. They had lower pulmonary arterial pressure and arterial lactate concentrations than the control animals. Plasma colloid oncotic pressure was better maintained in the APC-treated group than in the control group (p < .05). Prothrombin time and activated partial thromboplastin time were altered less, and plasma D-dimer concentrations were significantly lower in the APC-treated group than in the control group (p < .05). The blood protein C concentration and platelet count were maintained better in the APC-treated group than in the control group (p < .05). APC administration was associated with significantly longer survival (median, 27 hrs vs. 20 hrs; p < .05). At postmortem examination, the lung wet/dry ratio was significantly lower in the APC group than in the control group (6.3 +/- 0.7 vs. 7.1 +/- 1.2, p < .05). CONCLUSIONS In this clinically relevant model of septic shock due to fecal peritonitis, administration of APC had beneficial effects on hemodynamic variables, gas exchange, lactic acidosis, and coagulation abnormalities. Higher colloid oncotic pressures and lower lung wet/dry ratios at autopsy suggest preserved endothelial integrity. APC administration resulted in prolonged survival.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Intensive Care, Erasme Hospital, Free University of Brussels, Belgium
| | | | | | | |
Collapse
|
22
|
Hemodynamic Effects of Activated Protein C in Septic Shock. Intensive Care Med 2007. [DOI: 10.1007/978-0-387-49518-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Shires GT, Fisher O, Murphy P, Williams S, Barber A, Johnson G, Davis B, Pahulu S. Recombinant activated protein C induces dose-dependent changes in inflammatory mediators, tissue damage, and apoptosis in in vivo rat model of sepsis. Surg Infect (Larchmt) 2007; 8:377-86. [PMID: 17635061 DOI: 10.1089/sur.2006.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Sepsis is the tenth leading cause of death in the U.S. and creates a $16.7 billion burden on the healthcare system every year. Sepsis is characterized by a severe uncontrolled inflammatory response to the infection. Various cells and mediators are activated, and the result is a complex interaction between the inflammation and coagulation cascades leading to capillary leakage and end-organ ischemia. Current therapeutic strategies, such as recombinant human activated protein C, focus on this interplay. However, this drug's precise mechanism of action is not well understood. The aim of this study was to assess cytokine production, tissue damage, and apoptosis in a rat model of sepsis in response to various doses of this drug. METHODS Sprague-Dawley rats were divided into eight groups, including negative control, sham, sepsis only, and five treatment groups. The sepsis and treatment groups were given Escherichia coli. Each of the treatment groups received a different dose of recombinant activated protein C to complete 30-min or 270-min infusion times from the onset of sepsis. Serum and tissue samples were collected. Interleukin (IL)-6 concentrations were measured, and serum malondialdehyde (MDA) concentrations were determined to assess generalized tissue damage. Apoptosis in the lung was evaluated using a semi-quantitative ligation-mediated polymerase chain reaction assay. RESULTS The physiologic effects of recombinant activated protein C are dose dependent and determined by the duration of infusion. Higher doses of the drug were associated with less inflammation, apoptosis, and generalized tissue damage. Sepsis increased the mean concentration of MDA (2.1 vs. 10.9 pmol/mg of protein) and IL-6 (0 vs. 10,763 pg/mL) compared with sham-treated animals, as well as the magnitude of apoptosis in lung (2,037 vs. 8,709 pixels) (all p < 0.05). Infusion of recombinant activated protein C attenuated these responses in a dose-response manner. Interleukin-6 and MDA concentrations were increased by lower-dose therapy, but attenuated significantly by the higher-dose infusion at 5 mg/kg/h. Apoptosis was attenuated by both the lower and the higher dose, but more so with the higher dose. CONCLUSIONS These data can assist in establishing an optimal dose and infusion time of this drug for extrapolation to therapy of human beings. The goal now is to elucidate these findings further so that the maximum benefit of the drug may be achieved with the least possible harmful effects.
Collapse
Affiliation(s)
- G Tom Shires
- Department of Surgery, University of Nevada School of Medicine, Las Vegas, Nevada 89102, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wiel E, Costecalde ME, Lebuffe G, Corseaux D, Jude B, Bordet R, Tavernier B, Vallet B. Activated protein C increases sensitivity to vasoconstriction in rabbit Escherichia coli endotoxin-induced shock. Crit Care 2006; 10:R47. [PMID: 16542507 PMCID: PMC1550919 DOI: 10.1186/cc4858] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 02/08/2006] [Accepted: 02/20/2006] [Indexed: 11/15/2022] Open
Abstract
Introduction The aim of this study was to investigate the effects of activated protein C (aPC) on vascular function, endothelial injury, and haemostasis in a rabbit endotoxin-induced shock model. Method This study included 22 male New Zealand rabbits weighing 2.5 to 3 kg each. In vitro vascular reactivity, endothelium CD31-PECAM1 immunohistochemistry, plasma coagulation factors and monocyte tissue factor (TF) expression were performed 5 days (D5) after onset of endotoxic shock (initiated by 0.5 mg/kg intravenous bolus of Escherichia coli lipopolysaccharide (LPS)) with or without treatment with aPC injected as an intravenous 2 mg/kg bolus 1 hour after LPS (LPS+aPC group and LPS group, respectively). Results LPS decreased the sensitivity to phenylephrine (PE) in aortic rings without endothelium (E-) when compared to E- rings from the control group (p < 0.05). This was abolished by NG-nitro-L-arginine methyl ester and not observed in E- rings from aPC-treated rabbits. Although aPC failed to decrease monocyte TF expression in endotoxinic animals at D5, aPC treatment restored the endothelium-dependent sensitivity in response to PE (2.0 ± 0.2 μM in rings with endothelium (E+) versus 1.0 ± 0.2 μM in E- rings (p < 0.05) in the LPS+aPC group versus 2.4 ± 0.3 μM in E+ rings versus 2.2 ± 0.2 μM in E- rings (p value not significant), in the LPS group). Endotoxin-induced de-endothelialisation was reduced by aPC at D5 (28.5 ± 2.3% in the LPS+aPC group versus 40.4 ± 2.4% in the LPS group, p < 0.05). Conclusion These data indicate that aPC increased the sensitivity to a vasoconstrictor agent (PE) associated with restoration of endothelial modulation, and protected against endothelial histological injury in endotoxin-induced shock. It failed to inhibit TF expression at D5 after LPS injection.
Collapse
Affiliation(s)
- Eric Wiel
- EA 1046, Laboratory of Pharmacology, University Hospital of Lille, France.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lay AJ, Donahue D, Tsai MJ, Castellino FJ. Acute inflammation is exacerbated in mice genetically predisposed to a severe protein C deficiency. Blood 2006; 109:1984-91. [PMID: 17047151 PMCID: PMC1801051 DOI: 10.1182/blood-2006-07-037945] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The anticoagulant, activated protein C (aPC), possesses antithrombotic, profibrinolytic, anti-inflammatory, and antiapoptotic properties, and the level of this protein is an important marker of acute inflammatory responses. Although infusion of aPC improves survival in a subset of patients with severe sepsis, evidence as to how aPC decreases mortality in these cases is limited. Because a total deficiency of PC shows complete neonatal lethality, no animal model currently exists to address the mechanistic relationships between very low endogenous aPC levels and inflammatory diseases. Here, we show for the first time that novel genetic dosing of PC strongly correlates with survival outcomes following endotoxin (LPS) challenge in mice. The data provide evidence that very low endogenous levels of PC predispose mice to early-onset disseminated intravascular coagulation, thrombocytopenia, hypotension, organ damage, and reduced survival after LPS challenge. Furthermore, evidence of an exacerbated inflammatory response is observed in very low PC mice but is greatly reduced in wild-type cohorts. Reconstitution of low-PC mice with recombinant human aPC improves hypotension and extends survival after LPS challenge. This study directly links host endogenous levels of PC with various coagulation, inflammation, and hemodynamic end points following a severe acute inflammatory challenge.
Collapse
Affiliation(s)
- Angelina J Lay
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
26
|
Sapru A, Wiemels JL, Witte JS, Ware LB, Matthay MA. Acute lung injury and the coagulation pathway: Potential role of gene polymorphisms in the protein C and fibrinolytic pathways. Intensive Care Med 2006; 32:1293-303. [PMID: 16770611 DOI: 10.1007/s00134-006-0223-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 05/03/2006] [Indexed: 11/25/2022]
Abstract
There is evidence that dysregulation of coagulation and fibrinolysis may participate in the pathogenesis of acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS). Altered concentrations of several proteins of the coagulation and fibrinolytic pathways in plasma and pulmonary edema fluid from patients with acute lung injury have been related to the severity of lung injury and clinical outcomes. Polymorphisms in the genes encoding for proteins of the protein C and fibrinolysis pathways are known to regulate the production of the respective proteins. It is plausible that these polymorphisms may be associated with the susceptibility to and severity of illness in ALI and ARDS. Well-designed studies that examine the association of these polymorphisms with susceptibility and severity of ALI and ARDS are needed to test the influence of both genetic and environmental factors on the clinical outcomes in patients with ALI and ARDS. There are several important considerations in the design of these genetic association studies, including selection of candidate genes with the most biological plausibility, definition of the phenotype, selection of appropriate controls, determination of the appropriate sample size and assessment of Hardy-Weinberg equilibrium among controls as a measure of internal validity.
Collapse
Affiliation(s)
- Anil Sapru
- Pediatric Critical Care Medicine, University of California, 505 Parnassus Avenue, Moffitt 680-B, San Francisco, CA 94143-0106, USA.
| | | | | | | | | |
Collapse
|
27
|
Falfán-Valencia R, Camarena A, Juárez A, Becerril C, Montaño M, Cisneros J, Mendoza F, Granados J, Pardo A, Selman M. Major histocompatibility complex and alveolar epithelial apoptosis in idiopathic pulmonary fibrosis. Hum Genet 2005; 118:235-44. [PMID: 16133177 DOI: 10.1007/s00439-005-0035-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 07/12/2005] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by fibroblast expansion, and tissue remodeling. It is considered a multifactorial disease but the possible involved genes are largely unknown. Interestingly, studies regarding the possible role of major histocompatibility complex (MHC) are scanty and show contradictory results. In this study, we evaluated the polymorphisms of the MHC, locus HLA-B, -DRB1, and -DQB1 in a cohort of 75 IPF patients and 95 controls by using PCR and hybridization with sequence-specific oligonucleotide probes. In addition, we examined the effect of bronchoalveolar lavage (BAL) from IPF patients with different MHC haplotypes on alveolar epithelial growth rate by WST-1 cell viability assay and on epithelial apoptosis by flow cytometry and by cleaved caspase-3 in cell homogenates. Three haplotypes were significantly increased in IPF: (1) HLA-B*15-DRB1*0101-DQB1*0501 (OR=10.72, CI=1.43-459.6; pC=0.011); (2) HLA-B*52-DRB1*1402-DQB1*0301 (OR=4.42, CI=1.21-24.1; pC=0.024); and (3) HLA-B*35-DRB1*0407-DQB1*0302 (OR=4.73, CI=1.53-19.5; pC=0.005). BAL from patients with the later haplotype significantly reduced epithelial growth rate ( approximately 30%) and caused epithelial cell apoptosis assayed by cleaved caspase-3 (351.7+/-16.5 pg/10(6) cells versus 264+/-24 from controls, and 274+/-36.8 and 256.5+/-10.7 from the other haplotypes; P<0.05), and DNA breaks labeling by flow cytometry (23.7+/-6.9% versus 3.1+/-0.7% from controls, and 6.5+/-0.6% and 7.6+/-1.2% from the other two haplotypes; P<0.01). These findings suggest that some MHC polymorphisms confer susceptibility to IPF, which might be related with the induction of epithelial cell apoptosis, a critical process in the development of the disease.
Collapse
Affiliation(s)
- Ramcés Falfán-Valencia
- Instituto Nacional de Enfermedades Respiratorias, Tlalpan 4502, CP 14080, México DF, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|