1
|
Okafor IM, Okoroiwu HU, Ekechi CA. Hemoglobin S and Glucose-6-Phosphate Dehydrogenase Deficiency Coinheritance in AS and SS Individuals in Malaria-Endemic Region: A Study in Calabar, Nigeria. J Glob Infect Dis 2019; 11:118-122. [PMID: 31543654 PMCID: PMC6733195 DOI: 10.4103/jgid.jgid_154_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Malaria placed a huge burden on human life and has been reported to be a key health problem affecting developing countries. This study was designed to assay for glucose-6-phosphate dehydrogenase (G6PD) status and malaria parasite density of individuals with sickle cell gene in University of Calabar Teaching Hospital, Calabar. SUBJECTS AND METHODS The methemoglobin method was used to determine the G6PD status. Thick blood films were used to ascertain the malaria parasite density while hemoglobin genotype was determined using cellulose acetate paper electrophoresis with tris ethylenediaminetetracetic acid borate buffer (pH 8.6). Thirty hemoglobin SS (HbSS) and 30 hemoglobin AS (HbAS) individuals were recruited for the study while 30 hemoglobin AA (HbAA) individuals were recruited as control. RESULTS The study showed a high frequency of G6PD deficiency (17.78%) in the study area while G6PD deficiency was significantly (P < 0.05) higher in HbAA individuals (33.33%) when compared to HbSS (10.00%) and HbAS (10.00%) individuals. The prevalence of malaria parasitemia and parasite density was comparable in the three hemoglobin variants. The distribution of malaria parasitemia and parasite density in both gender among the various hemoglobin variants showed no association (P > 0.05). G6PD deficiency distribution in both gender were found to be comparable (P > 0.05). The distribution of malaria parasitemia in the various hemoglobin variants in the G6PD-deficient individuals showed no significant difference (P > 0.5). However, the parasite density of the HbAS (3100 ± 1828.48 μL) and HbSS (2400 ± 1687.06 μL) were significantly lower than that of HbAA (4040 ± 1529.44 μL). CONCLUSION The result of this study supports the hypothesis that inheriting the G6PD deficiency gene and sickle cell gene (both in homozygous and heterozygous form) reduces the severity of malaria parasite infection and hence protects against severe acute malaria while having less effect on infection.
Collapse
Affiliation(s)
- Ifeyinwa M. Okafor
- Department of Medical Laboratory Science, Hematology Unit, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Henshaw U. Okoroiwu
- Department of Medical Laboratory Science, Hematology Unit, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Chukwudi A. Ekechi
- Department of Medical Laboratory Science, Hematology Unit, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
2
|
Cavanagh DR, Kocken CHM, White JH, Cowan GJM, Samuel K, Dubbeld MA, der Wel AVV, Thomas AW, McBride JS, Arnot DE. Antibody responses to a novel Plasmodium falciparum merozoite surface protein vaccine correlate with protection against experimental malaria infection in Aotus monkeys. PLoS One 2014; 9:e83704. [PMID: 24421900 PMCID: PMC3885447 DOI: 10.1371/journal.pone.0083704] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/06/2013] [Indexed: 11/29/2022] Open
Abstract
The Block 2 region of the merozoite surface protein-1 (MSP-1) of Plasmodium falciparum has been identified as a target of protective immunity by a combination of seroepidemiology and parasite population genetics. Immunogenicity studies in small animals and Aotus monkeys were used to determine the efficacy of recombinant antigens derived from this region of MSP-1 as a potential vaccine antigen. Aotus lemurinus griseimembra monkeys were immunized three times with a recombinant antigen derived from the Block 2 region of MSP-1 of the monkey-adapted challenge strain, FVO of Plasmodium falciparum, using an adjuvant suitable for use in humans. Immunofluorescent antibody assays (IFA) against erythrocytes infected with P. falciparum using sera from the immunized monkeys showed that the MSP-1 Block 2 antigen induced significant antibody responses to whole malaria parasites. MSP-1 Block 2 antigen-specific enzyme-linked immunosorbent assays (ELISA) showed no significant differences in antibody titers between immunized animals. Immunized animals were challenged with the virulent P. falciparum FVO isolate and monitored for 21 days. Two out of four immunized animals were able to control their parasitaemia during the follow-up period, whereas two out of two controls developed fulminating parasitemia. Parasite-specific serum antibody titers measured by IFA were four-fold higher in protected animals than in unprotected animals. In addition, peptide-based epitope mapping of serum antibodies from immunized Aotus showed distinct differences in epitope specificities between protected and unprotected animals.
Collapse
Affiliation(s)
- David R. Cavanagh
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Clemens H. M. Kocken
- Biomedical Primate Research Center, Department of Parasitology, Rijswijk, The Netherlands
| | - John H. White
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Graeme J. M. Cowan
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Kay Samuel
- Scottish National Blood Transfusion Service, Cell Therapy Group, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin A. Dubbeld
- Biomedical Primate Research Center, Department of Parasitology, Rijswijk, The Netherlands
| | | | - Alan W. Thomas
- Biomedical Primate Research Center, Department of Parasitology, Rijswijk, The Netherlands
| | - Jana S. McBride
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - David E. Arnot
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Quelhas D, Puyol L, Quintó L, Nhampossa T, Serra-Casas E, Macete E, Aide P, Sanz S, Aponte JJ, Doolan DL, Alonso PL, Menéndez C, Dobaño C. Intermittent preventive treatment with sulfadoxine-pyrimethamine does not modify plasma cytokines and chemokines or intracellular cytokine responses to Plasmodium falciparum in Mozambican children. BMC Immunol 2012; 13:5. [PMID: 22280502 PMCID: PMC3398260 DOI: 10.1186/1471-2172-13-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 01/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cytokines and chemokines are key mediators of anti-malarial immunity. We evaluated whether Intermittent Preventive Treatment in infants with Sulfadoxine-Pyrimethamine (IPTi-SP) had an effect on the acquisition of these cellular immune responses in Mozambican children. Multiple cytokines and chemokines were quantified in plasma by luminex, and antigen-specific cytokine production in whole blood was determined by intracellular cytokine staining and flow cytometry, at ages 5, 9, 12 and 24 months. RESULTS IPTi-SP did not significantly affect the proportion of CD3+ cells producing IFN-γ, IL-4 or IL-10. Overall, plasma cytokine or chemokine concentrations did not differ between treatment groups. Th1 and pro-inflammatory responses were higher than Th2 and anti-inflammatory responses, respectively, and IFN-γ:IL-4 ratios were higher for placebo than for SP recipients. Levels of cytokines and chemokines varied according to age, declining from 5 to 9 months. Plasma concentrations of IL-10, IL-12 and IL-13 were associated with current infection or prior malaria episodes. Higher frequencies of IFN-γ and IL-10 producing CD3+ cells and elevated IL-10, IFN-γ, MCP-1 and IL-13 in plasma were individually associated with increased malaria incidence, at different time points. When all markers were analyzed together, only higher IL-17 at 12 months was associated with lower incidence of malaria up to 24 months. CONCLUSIONS Our work has confirmed that IPTi-SP does not negatively affect the development of cellular immune response during early childhood. This study has also provided new insights as to how these cytokine responses are acquired upon age and exposure to P. falciparum, as well as their associations with malaria susceptibility. TRIAL REGISTRATION ClinicalTrials.gov: NCT00209795.
Collapse
Affiliation(s)
- Diana Quelhas
- Centro de Investigação em Saúde da Manhiça, Manhiça, Mozambique
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Dubovsky F, Malkin E. Malaria vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
5
|
Baer K, Roosevelt M, Clarkson AB, van Rooijen N, Schnieder T, Frevert U. Kupffer cells are obligatory for Plasmodium yoelii sporozoite infection of the liver. Cell Microbiol 2006; 9:397-412. [PMID: 16953803 DOI: 10.1111/j.1462-5822.2006.00798.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previous studies suggested Plasmodium sporozoites infect hepatocytes after passing through Kupffer cells, but proof has been elusive. Here we present new information strengthening that hypothesis. We used homozygous op/op mice known to have few Kupffer cells because they lack macrophage colony stimulating factor 1 required for macrophage maturation due to a deactivating point mutation in the osteopetrosis gene. We found these mice to have 77% fewer Kupffer cells and to exhibit reduced clearance of colloidal carbon particles compared with heterozygous phenotypically normal littermates. Using a novel quantitative reverse transcription polymerase chain reaction assay for P. yoelii 18S rRNA, we found liver infection of op/op mice to be decreased by 84% compared with controls. However, using another way of limiting Kupffer cells, treatment with liposome-encapsulated clodronate, infection of normal mice was enhanced seven- to 15-fold. This was explained by electron microscopy showing temporary gaps in the sinusoidal cell layer caused by this treatment. Thus, Kupffer cell deficiency in op/op mice decreases sporozoite infection by reducing the number of portals to the liver parenchyma, whereas clodronate increases sporozoite infection by opening portals and providing direct access to hepatocytes. Together these data provide strong support for the hypothesis that Kupffer cells are the portal for sporozoites to hepatocytes and critical for the onset of a malaria infection.
Collapse
Affiliation(s)
- Kerstin Baer
- Department of Medical Parasitology, New York University School of Medicine, 341 E 25 St, New York, NY 10010, USA
| | | | | | | | | | | |
Collapse
|
6
|
van Dijk MR, Douradinha B, Franke-Fayard B, Heussler V, van Dooren MW, van Schaijk B, van Gemert GJ, Sauerwein RW, Mota MM, Waters AP, Janse CJ. Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells. Proc Natl Acad Sci U S A 2005; 102:12194-9. [PMID: 16103357 PMCID: PMC1189305 DOI: 10.1073/pnas.0500925102] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Indexed: 11/18/2022] Open
Abstract
Immunization with Plasmodium sporozoites that have been attenuated by gamma-irradiation or specific genetic modification can induce protective immunity against subsequent malaria infection. The mechanism of protection is only known for radiation-attenuated sporozoites, involving cell-mediated and humoral immune responses invoked by infected hepatocytes cells that contain long-lived, partially developed parasites. Here we analyzed sporozoites of Plasmodium berghei that are deficient in P36p (p36p(-)), a member of the P48/45 family of surface proteins. P36p plays no role in the ability of sporozoites to infect and traverse hepatocytes, but p36p(-) sporozoites abort during development within the hepatocyte. Immunization with p36p(-) sporozoites results in a protective immunity against subsequent challenge with infectious wild-type sporozoites, another example of a specifically genetically attenuated sporozoite (GAS) conferring protective immunity. Comparison of biological characteristics of p36p(-) sporozoites with radiation-attenuated sporozoites demonstrates that liver cells infected with p36p(-) sporozoites disappear rapidly as a result of apoptosis of host cells that may potentiate the immune response. Such knowledge of the biological characteristics of GAS and their evoked immune responses are essential for further investigation of the utility of an optimized GAS-based malaria vaccine.
Collapse
Affiliation(s)
- Melissa R van Dijk
- Department of Parasitology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Glück R, Moser C, Metcalfe IC. Influenza virosomes as an efficient system for adjuvanted vaccine delivery. Expert Opin Biol Ther 2005; 4:1139-45. [PMID: 15268680 DOI: 10.1517/14712598.4.7.1139] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Immunopotentiating reconstituted influenza virosomes possess several characteristics defining them as vaccine adjuvants. Virosomes have been shown to provide vaccine components with protection from extracellular degradation; a regular, repetitive antigen structure aiding presentation to B lymphocytes and fully functional, fusion-active, influenza haemagglutinin envelope proteins that enables receptor-mediated uptake and intracellular processing of the antigen. In addition, virosomes, as vaccine delivery systems, have been shown to be safe and not to engender any antibodies against the phospholipid components. Through the use of virosomes as a delivery vehicle, a number of vaccines have been developed. In humans, virosome-based vaccines containing inactivated hepatitis A and influenza antigens have been found to be efficacious and well-tolerated and have been on the market for several years. Hepatitis B, nucleic acids, cytotoxic drugs, and tetanus and diphtheria toxoids have also been incorporated into virosomes. Further investigations are ongoing in order to define the full potential of virosomes in both prophylactic and immunotherapeutic applications.
Collapse
Affiliation(s)
- Reinhard Glück
- Berna Biotech Ltd, Rehhagstrasse 79, Berne, Switzerland.
| | | | | |
Collapse
|
8
|
Affiliation(s)
- Samantha Lien
- Dept of Protein Engineering, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | | |
Collapse
|
9
|
Moore SA, Surgey EGE, Cadwgan AM. Malaria vaccines: where are we and where are we going? THE LANCET. INFECTIOUS DISEASES 2002; 2:737-43. [PMID: 12467689 DOI: 10.1016/s1473-3099(02)00451-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Malaria is still killing over one million people each year and its incidence is increasing. The need for an effective vaccine is greater than ever. A major difficulty with vaccine research is that the malaria parasite presents thousands of antigens to the human immune system that vary throughout its life cycle. Identifying those that may prove to be vaccine targets is complicated and time consuming. Most vaccines are targeted at individual stages of the malaria life cycle, although it is likely that only the development of a multistage vaccine will offer complete protection to both visitors to, and residents of, a malaria-endemic area. With the development of a successful vaccine other issues such as cost, distribution, education, and compliance will have to be addressed. This review describes some of the current vaccine candidates for immunising against malaria.
Collapse
|
10
|
Matuschewski K, Ross J, Brown SM, Kaiser K, Nussenzweig V, Kappe SHI. Infectivity-associated changes in the transcriptional repertoire of the malaria parasite sporozoite stage. J Biol Chem 2002; 277:41948-53. [PMID: 12177071 DOI: 10.1074/jbc.m207315200] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Injection of Plasmodium salivary gland sporozoites into the vertebrate host by Anopheles mosquitoes initiates malaria infection. Sporozoites develop within oocysts in the mosquito midgut and then enter and mature in the salivary glands. Although morphologically similar, oocyst sporozoites and salivary gland sporozoites differ strikingly in their infectivity to the mammalian host, ability to elicit protective immune responses, and cell motility. Here, we show that differential gene expression coincides with these dramatic phenotypic differences. Using suppression subtractive cDNA hybridization we identified highly up-regulated mRNAs transcribed from 30 distinct genes in salivary gland sporozoites. Of those genes, 29 are not significantly expressed in the parasite's blood stages. The most frequently recovered transcript encodes a protein kinase. Developmental up-regulation of specific mRNAs in the infectious transmission stage of Plasmodium indicates that their translation products may have unique roles in hepatocyte infection and/or development of liver stages.
Collapse
Affiliation(s)
- Kai Matuschewski
- Michael Heidelberger Division, Department of Pathology, New York University School of Medicine, New York 10016, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Respiratory tract infections are a major cause of morbidity and mortality in adults and children worldwide. Because of its anatomical features, which allow gaseous exchange, the respiratory tract is constantly exposed to the outer environment and to the systemic and pulmonary circulation, which may allow infectious microbes, toxins, allergens, dust, and other antigens to enter the lung. The human host is a perpetual battleground between the body's immune system and invading antigens, whether they are microorganisms, chemicals, or cancer cells. Although a vast amount of literature is accumulating on the subject of immune responses to pathogens, the mechanisms underlying specific immunity to many organisms remain unknown. Paradoxically, while the immune response has evolved to confer protection against invading antigens, much human pathology arises when the immune responses are evoked.
Collapse
Affiliation(s)
- Alimuddin I Zumla
- Center for Infectious Diseases and International Health, University College London, Windeyer Institute of Medical Sciences, Room G41, 46 Cleveland Street, London W1P 6DB, UK.
| | | |
Collapse
|