1
|
Eskandari-Malayeri F, Rezaei M. Immune checkpoint inhibitors as mediators for immunosuppression by cancer-associated fibroblasts: A comprehensive review. Front Immunol 2022; 13:996145. [PMID: 36275750 PMCID: PMC9581325 DOI: 10.3389/fimmu.2022.996145] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor microenvironment (TME) is a significant contributor to cancer progression containing complex connections between cellular and chemical components and provides a suitable substrate for tumor growth and development. Growing evidence shows targeting tumor cells while ignoring the surrounding TME is not effective enough to overcome the cancer disease. Fibroblasts are essential sentinels of the stroma that due to certain conditions in TME, such as oxidative stress and local hypoxia, become activated, and play the prominent role in the physical support of tumor cells and the enhancement of tumorigenesis. Activated fibroblasts in TME, defined as cancer-associated fibroblasts (CAFs), play a crucial role in regulating the biological behavior of tumors, such as tumor metastasis and drug resistance. CAFs are highly heterogeneous populations that have different origins and, in addition to their role in supporting stromal cells, have multiple immunosuppressive functions via a membrane and secretory patterns. The secretion of different cytokines/chemokines, interactions that mediate the recruitment of regulatory immune cells and the reprogramming of an immunosuppressive function in immature myeloid cells are just a few examples of how CAFs contribute to the immune escape of tumors through various direct and indirect mechanisms on specific immune cell populations. Moreover, CAFs directly abolish the role of cytotoxic lymphocytes. The activation and overexpression of inhibitory immune checkpoints (iICPs) or their ligands in TME compartments are one of the main regulatory mechanisms that inactivate tumor-infiltrating lymphocytes in cancer lesions. CAFs are also essential players in the induction or expression of iICPs and the suppression of immune response in TME. Based on available studies, CAF subsets could modulate immune cell function in TME through iICPs in two ways; direct expression of iICPs by activated CAFs and indirect induction by production soluble and then upregulation of iICPs in TME. With a focus on CAFs’ direct and indirect roles in the induction of iICPs in TME as well as their use in immunotherapy and diagnostics, we present the evolving understanding of the immunosuppressive mechanism of CAFs in TME in this review. Understanding the complete picture of CAFs will help develop new strategies to improve precision cancer therapy.
Collapse
|
2
|
Characterization of the Endometrial MSC Marker Ectonucleoside Triphosphate Diphosphohydrolase-2 (NTPDase2/CD39L1) in Low- and High-Grade Endometrial Carcinomas: Loss of Stromal Expression in the Invasive Phenotypes. J Pers Med 2021; 11:jpm11050331. [PMID: 33922226 PMCID: PMC8146812 DOI: 10.3390/jpm11050331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Ectonucleoside triphosphate diphosphohydrolase-2 (NTPDase2/CD39L1) has been described in human non-pathological endometrium in both epithelial and stromal components without changes along the cycle. It was identified as a stromal marker of basalis. In the present study, we aimed to evaluate NTPDase2 distribution, using immunolabeling and in situ enzyme activity approaches, in endometrial carcinoma (EC) at different tumor grades. NTPDase2 was present in tumor epithelial EC cells, as in the non-pathological endometria, but the expression underwent changes in subcellular distribution and also tended to decrease with the tumor grade. In stroma, NTPDase2 was identified exclusively at the tumor-myometrial junction but this expression was lost in tumors of invasive phenotype. We have also identified in EC samples the presence of the perivascular population of endometrial mesenchymal stem cells (eMSCs) positive for sushi domain containing 2 (SUSD2) and for NTPDase2, already described in non-tumoral endometrium. Our results point to NTPDase2 as a histopathological marker of tumor invasion in EC, with diagnostic relevance especially in cases of EC coexisting with other endometrial disorders, such as adenomyosis, which occasionally hampers the assessment of tumor invasion parameters.
Collapse
|
3
|
Expression Profile of Stemness Markers CD138, Nestin and Alpha-SMA in Ameloblastic Tumours. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18083899. [PMID: 33917771 PMCID: PMC8068135 DOI: 10.3390/ijerph18083899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022]
Abstract
Ameloblastic carcinoma is a rare malignant odontogenic neoplasm with a poor prognosis. It can arise de novo or from a pre-existing ameloblastoma. Research into stemness marker expression in ameloblastic tumours is lacking. This study aimed to explore the immunohistochemical expression of stemness markers nestin, CD138, and alpha-smooth muscle actin (alpha-SMA) for the characterisation of ameloblastic tumours. Six cases of ameloblastoma and four cases of ameloblastic carcinoma were assessed, including one case of ameloblastic carcinoma arising from desmoplastic ameloblastoma. In all tumour samples, CD138 was positive, whilst alpha-SMA was negative. Nestin was negative in all but one tumour sample. Conversely, the presence or absence of these markers varied in stroma samples. Nestin was observed in one ameloblastic carcinoma stroma sample, whilst CD138 was positive in one ameloblastoma case, one desmoplastic ameloblastoma case, and in two ameloblastic carcinoma stroma samples. Finally, alpha-SMA was found positive only in the desmoplastic ameloblastoma stroma sample. Our results suggest nestin expression to be an indicator for ameloblastic carcinoma, and CD138 and alpha-SMA to be promising biomarkers for the malignant transformation of ameloblastoma. Our data showed that nestin, CD138, and alpha-SMA are novel biomarkers for a better understanding of the origins and behaviour of ameloblastic tumours.
Collapse
|
4
|
Berning L, Scharf L, Aplak E, Stucki D, von Montfort C, Reichert AS, Stahl W, Brenneisen P. In vitro selective cytotoxicity of the dietary chalcone cardamonin (CD) on melanoma compared to healthy cells is mediated by apoptosis. PLoS One 2019; 14:e0222267. [PMID: 31553748 PMCID: PMC6760786 DOI: 10.1371/journal.pone.0222267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma is an aggressive type of cancer and the deadliest form of skin cancer. Even though enormous efforts have been undertaken, in particular the treatment options against the metastasizing form are challenging and the prognosis is generally poor. A novel therapeutical approach is the application of secondary plant constituents occurring in food and food products. Herein, the effect of the dietary chalcone cardamonin, inter alia found in Alpinia species, was tested using human malignant melanoma cells. These data were compared to cardamonin treated normal melanocytes and dermal fibroblasts representing healthy cells. To investigate the impact of cardamonin on tumor and normal cells, it was added to monolayer cell cultures and cytotoxicity, proliferation, tumor invasion, and apoptosis were studied with appropriate cell biological and biochemical methods. Cardamonin treatment resulted in an apoptosis-mediated increase in cytotoxicity towards tumor cells, a decrease in their proliferation rate, and a lowered invasive capacity, whereas the viability of melanocytes and fibroblasts was hardly affected at such concentrations. A selective cytotoxic effect of cardamonin on melanoma cells compared to normal (healthy) cells was shown in vitro. This study along with others highlights that dietary chalcones may be a valuable tool in anticancer therapies which has to be proven in the future in vivo.
Collapse
Affiliation(s)
- Lena Berning
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Lisa Scharf
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Elif Aplak
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Stucki
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Claudia von Montfort
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Andreas S. Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
5
|
Santamaria X, Mas A, Cervelló I, Taylor H, Simon C. Uterine stem cells: from basic research to advanced cell therapies. Hum Reprod Update 2019; 24:673-693. [PMID: 30239705 DOI: 10.1093/humupd/dmy028] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/04/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Stem cell research in the endometrium and myometrium from animal models and humans has led to the identification of endometrial/myometrial stem cells and their niches. This basic knowledge is beginning to be translated to clinical use for incurable uterine pathologies. Additionally, the implication of bone marrow-derived stem cells (BMDSCs) in uterine physiology has opened the field for the exploration of an exogenous and autologous source of stem cells. OBJECTIVE AND RATIONALE In this review, we outline the progress of endometrial and myometrial stem/progenitor cells in both human and mouse models from their characterization to their clinical application, indicating roles in Asherman syndrome, atrophic endometrium and tissue engineering, among others. SEARCH METHODS A comprehensive search of PubMed and Google Scholar up to December 2017 was conducted to identify peer-reviewed literature related to the contribution of bone marrow, endometrial and myometrial stem cells to potential physiological regeneration as well as their implications in pathologies of the human uterus. OUTCOMES The discovery and main characteristics of stem cells in the murine and human endometrium and myometrium are presented together with the relevance of their niches and cross-regulation. The current state of advanced stem cell therapy using BMDSCs in the treatment of Asherman syndrome and atrophic endometrium is analyzed. In the myometrium, the understanding of genetic and epigenetic defects that result in the development of tumor-initiating cells in the myometrial stem niche and thus contribute to the growth of uterine leiomyoma is also presented. Finally, recent advances in tissue engineering based on the creation of novel three-dimensional scaffolds or decellularisation open up new perspectives for the field of uterine transplantation. WIDER IMPLICATIONS More than a decade after their discovery, the knowledge of uterine stem cells and their niches is crystalising into novel therapeutic approaches aiming to treat with cells those conditions that cannot be cured with drugs, particularly the currently incurable uterine pathologies. Additional work and improvements are needed, but the basis has been formed for this therapeutic application of uterine cells.
Collapse
Affiliation(s)
- Xavier Santamaria
- Reproductive Medicine Department, Igenomix Academy, Paterna (Valencia), Spain.,Reproductive Medicine Department, IVI Barcelona, Barcelona, Spain.,Department of Obstetrics and Gynecology, Biomedical Research Group in Gynecology, Vall Hebron Institut de Recerca, Barcelona, Spain
| | - Aymara Mas
- Reproductive Medicine Department, Igenomix Academy, Paterna (Valencia), Spain.,Department of Obstetrics and Gynecology, Reproductive Medicine Research Group, La Fe Health Research Institute, Valencia, Spain
| | - Irene Cervelló
- Department of Obstetrics and Gynecology, Fundación Instituto Valenciano de Infertilidad (FIVI), and Instituto Universitario IVI/INCLIVA, Valencia, Spain
| | - Hugh Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Carlos Simon
- Reproductive Medicine Department, Igenomix Academy, Paterna (Valencia), Spain.,Department of Pediatrics, Obstetrics, and Gynecology, Valencia University and INCLIVA, Valencia, Spain.,Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Abstract
The concept that progression of cancer is regulated by interactions of cancer cells with their microenvironment was postulated by Stephen Paget over a century ago. Contemporary tumour microenvironment (TME) research focuses on the identification of tumour-interacting microenvironmental constituents, such as resident or infiltrating non-tumour cells, soluble factors and extracellular matrix components, and the large variety of mechanisms by which these constituents regulate and shape the malignant phenotype of tumour cells. In this Timeline article, we review the developmental phases of the TME paradigm since its initial description. While illuminating controversies, we discuss the importance of interactions between various microenvironmental components and tumour cells and provide an overview and assessment of therapeutic opportunities and modalities by which the TME can be targeted.
Collapse
Affiliation(s)
- Shelly Maman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Isaac P Witz
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Dias Carvalho P, Guimarães CF, Cardoso AP, Mendonça S, Costa ÂM, Oliveira MJ, Velho S. KRAS Oncogenic Signaling Extends beyond Cancer Cells to Orchestrate the Microenvironment. Cancer Res 2017; 78:7-14. [PMID: 29263151 DOI: 10.1158/0008-5472.can-17-2084] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/29/2017] [Accepted: 10/31/2017] [Indexed: 11/16/2022]
Abstract
KRAS is one of the most frequently mutated oncogenes in cancer, being a potent initiator of tumorigenesis, a strong inductor of malignancy, and a predictive biomarker of response to therapy. Despite the large investment to understand the effects of KRAS activation in cancer cells, pharmacologic targeting of KRAS or its downstream effectors has not yet been successful at the clinical level. Recent studies are now describing new mechanisms of KRAS-induced tumorigenesis by analyzing its effects on the components of the tumor microenvironment. These studies revealed that the activation of KRAS on cancer cells extends to the surrounding microenvironment, affecting the properties and functions of its constituents. Herein, we discuss the most emergent perspectives on the relationship between KRAS-mutant cancer cells and their microenvironment components. Cancer Res; 78(1); 7-14. ©2017 AACR.
Collapse
Affiliation(s)
- Patrícia Dias Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Carlos F Guimarães
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Ana P Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal
| | - Susana Mendonça
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Ângela M Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Sérgia Velho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Drebert Z, De Vlieghere E, Bridelance J, De Wever O, De Bosscher K, Bracke M, Beck IM. Glucocorticoids indirectly decrease colon cancer cell proliferation and invasion via effects on cancer-associated fibroblasts. Exp Cell Res 2017; 362:332-342. [PMID: 29196164 DOI: 10.1016/j.yexcr.2017.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/20/2017] [Accepted: 11/26/2017] [Indexed: 01/02/2023]
Abstract
Cancer-associated fibroblasts (CAFs) support cancer growth, invasion, and metastasis. Glucocorticoids (GCs), drugs often administered together with chemotherapy, are steroidal ligands of the glucocorticoid receptor (GR), a transcription factor which upon activation regulates expression of multiple genes involved in suppression of inflammation. We have previously shown that in dexamethasone (Dex)-treated CAFs derived from colon cancer, production and secretion of several factors related to cancer progression, such as tenascin C (TNC) and hepatocyte growth factor (HGF), were strongly suppressed. In this study we show that GCs can neutralize the cancer cell-promoting properties of CAFs. Conditioned medium from solvent-treated CAFs (CMCTRL) stimulates proliferation, motility and stretched morphotype of GR-deficient HCT8/E11 colon cancer cells. Yet, HCT8/E11 proliferation and stretched morphotype are impaired upon treatment with conditioned medium from Dex-treated CAFs (CMDEX), but HCT8/E11 cell migration is slightly increased under these conditions. Moreover, expression and potential activity of MMP-2 is also reduced in CMDEX compared with CMCTRL. These combined in vitro results concur with the results from in vivo chick chorioallantoic membrane assays, where the co-cultures of CAFs with colon cancer cells displayed impaired tumor formation and cancer cell invasion due to Dex administration. Combined, GC treatment influences cancer cell behavior indirectly through effects on CAFs.
Collapse
Affiliation(s)
- Zuzanna Drebert
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Elly De Vlieghere
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jolien Bridelance
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Karolien De Bosscher
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Receptor Research Laboratories, Nuclear Receptor Lab, VIB Center for Medical Biotechnology, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ilse M Beck
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department Health Sciences, Odisee University College, Ghent, Belgium.
| |
Collapse
|
9
|
Rao SJ, Rao JBM, Rao PJ. Immunohistochemical analysis of stromal fibrocytes and myofibroblasts to envision the invasion and lymph node metastasis in oral squamous cell carcinoma. J Oral Maxillofac Pathol 2017; 21:218-223. [PMID: 28932030 PMCID: PMC5596671 DOI: 10.4103/jomfp.jomfp_8_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Tumor cells work in close coordination with stromal elements from its stage of emergence to metastasis. The study was designed to assess the presence and distribution pattern of stromal fibrocytes and myofibroblasts in oral squamous cell carcinoma (OSCC). Possibility of using these stromal cells as a marker for invasion and lymphnode metastasis was evaluated. Materials and Methods: A total of 40 cases of OSCC consisting twenty cases of each lymph node positive (pN+) and lymph node negative (pN0) samples and ten normal oral mucosa (NOM) tissues were subjected to double immunostaining using CD34 and alpha-smooth muscle actin (α-SMA) antibodies. Stained sections were evaluated semiquantitatively. Results: CD34 fibrocytes were seen in 70% of NOM and none of OSCC samples. α-SMA myofibroblasts were seen in 80% of OSCC and none of NOM samples. A statistically significant difference was found in fibrocyte values (P < 0.001) and myofibroblast values (P < 0.001) between NOM and OSCC study samples. No statistical significance in myofibroblast values between pN0 and pN+ study groups; however, their distribution pattern appreciably varied. Conclusions: This study suggested that fibrocytes could be used as one of the markers for early invasion. Abrupt loss of fibrocytes at the transition zone toward carcinoma and statistical significance in their values supported this inference. Heterogeneity in the distribution pattern of myofibroblasts in tumor stroma indicates that this variability may predict the tumor behavior toward nodal metastasis rather than their mere presence or absence.
Collapse
Affiliation(s)
- Sowmya J Rao
- Department of Oral and Maxillofacial Pathology, Srinivas Institute of Dental Sciences, Mangalore, Karnataka, India
| | | | - Pp Jagadish Rao
- Department of Forensic Medicine and Toxicology, Kasturba Medical College (Affiliated to Manipal University), Mangalore, Karnataka, India
| |
Collapse
|
10
|
Metabolic hijacking: A survival strategy cancer cells exploit? Crit Rev Oncol Hematol 2017; 109:1-8. [DOI: 10.1016/j.critrevonc.2016.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022] Open
|
11
|
Safadi RA, Quda BF, Hammad HM. Immunohistochemical expression of K6, K8, K16, K17, K19, maspin, syndecan-1 (CD138), α-SMA, and Ki-67 in ameloblastoma and ameloblastic carcinoma: diagnostic and prognostic correlations. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 121:402-11. [PMID: 26972539 DOI: 10.1016/j.oooo.2015.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 11/18/2015] [Accepted: 11/26/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To identify cutoff values of markers that correlate with the histopathologic diagnosis of ameloblastic carcinoma (AC) and/or the increased recurrence potential of ameloblastoma (AB). STUDY DESIGN Immunohistochemical expression (IHCE) of 9 selected markers were investigated in 18 non-recurrent ameloblastomas (NRABs), 6 recurrent ameloblastomas (RABs), and 5 ACs. RESULTS No significant difference in IHCE of K6, K8, K16, K17, K18, K19, maspin, or syndecan-1 was observed among study groups. α Smooth muscle actin (α-SMA)-positive area in central epithelial cells significantly differentiated between AB and AC (P = .017; t -test). Ki-67 score significantly differentiated between AB and AC (P < .005; t -test) and between AC and RAB (P = .015; ANOVA/post hoc). CONCLUSIONS Ki-67 score of 75 cells/HPF (ROC curve) is a potential indicator of AC. Clinical recurrence of AB may be predicted by α-SMA expression pattern. Syndecan-1 and α-SMA may indicate a higher aggressive potential of AB when expressed in the stroma.
Collapse
Affiliation(s)
- Rima A Safadi
- Associate Professor, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan.
| | - Basma F Quda
- Oral Medicine Specialist, Ministry of Health, Zarqa, Jordan
| | - Huda M Hammad
- Associate Professor, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
12
|
De Vlieghere E, Verset L, Demetter P, Bracke M, De Wever O. Cancer-associated fibroblasts as target and tool in cancer therapeutics and diagnostics. Virchows Arch 2015; 467:367-82. [PMID: 26259962 DOI: 10.1007/s00428-015-1818-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 12/11/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are drivers of tumour progression and are considered as a target and a tool in cancer diagnostic and therapeutic applications. An increased abundance of CAFs or CAF signatures are recognized as a bad prognostic marker in several cancer types. Tumour-environment biomimetics strongly improve our understanding of the communication between CAFs, cancer cells and other host cells. Several experimental drugs targeting CAFs are in clinical trials for multiple tumour entities; alternatively, CAFs can be exploited as a tool to characterize the functionality of circulating tumour cells or to capture them as a tool to prevent metastasis. The continuous interaction between tissue engineers, biomaterial experts and cancer researchers creates the possibility to biomimic the tumour-environment and provides new opportunities in cancer diagnostics and management.
Collapse
Affiliation(s)
- Elly De Vlieghere
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Laurine Verset
- Departments of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Pieter Demetter
- Departments of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| |
Collapse
|
13
|
O'Connor JW, Riley PN, Nalluri SM, Ashar PK, Gomez EW. Matrix Rigidity Mediates TGFβ1-Induced Epithelial-Myofibroblast Transition by Controlling Cytoskeletal Organization and MRTF-A Localization. J Cell Physiol 2015; 230:1829-39. [PMID: 25522130 DOI: 10.1002/jcp.24895] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 12/12/2014] [Indexed: 12/27/2022]
Abstract
Myofibroblasts mediate normal wound healing and upon chronic activation can contribute to the development of pathological conditions including organ fibrosis and cancer. Myofibroblasts can develop from epithelial cells through an epithelial-mesenchymal transition (EMT) during which epithelial cells exhibit drastic morphological changes and upregulate cytoskeletal associated proteins that enable exertion of large contractile forces and remodeling of the surrounding microenvironment. Increased matrix rigidity is a hallmark of fibrosis and tumor progression and mechanical tension has been identified as a regulator of EMT; however, the mechanisms governing the mechanical regulation of EMT are not completely understood. Here, we find that matrix rigidity regulates transforming growth factor (TGF)-β1-induced EMT, with rigid substrata enabling increased myofibroblast marker expression, cell morphology changes, and cytoskeletal reorganization while soft matrices block these changes. Furthermore, we find that matrix rigidity controls the subcellular localization of myocardin related transcription factor (MRTF)-A, a regulator of cytoskeletal protein expression that contributes to the acquisition of myogenic features during EMT. Results from these studies provide insight into how biophysical cues contribute to myofibroblast development from epithelial cells and may suggest ways to enhance wound healing or to engineer therapeutic solutions for fibrosis and cancer.
Collapse
Affiliation(s)
- Joseph W O'Connor
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania
| | | | | | | | | |
Collapse
|
14
|
Drebert Z, Bracke M, Beck IM. Glucocorticoids and the non-steroidal selective glucocorticoid receptor modulator, compound A, differentially affect colon cancer-derived myofibroblasts. J Steroid Biochem Mol Biol 2015; 149:92-105. [PMID: 25666906 DOI: 10.1016/j.jsbmb.2015.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/27/2015] [Accepted: 02/04/2015] [Indexed: 12/21/2022]
Abstract
The glucocorticoid receptor functions as a ligand-dependent transcription factor that positively or negatively regulates the transcription of various specific target genes. Not only steroidal glucocorticoids can bind and activate the glucocorticoid receptor, but also the intensively examined non-steroidal selective glucocorticoid receptor modulators can do so, albeit with a select effector profile skewed to glucocorticoid receptor transrepression. Glucocorticoids are widely used to treat inflammatory afflictions, but also as anti-cancer therapies or adjuvants thereof. As the impact of glucocorticoids and selective glucocorticoid receptor modulators has scarcely been researched in this setting, we focused on colon cancer and its stromal environment, in particular the stromal myofibroblasts, which are known to influence cancer cells via paracrine signaling. In these myofibroblasts, the glucocorticoid dexamethasone is able to drive the glucocorticoid receptor into the nucleus and thus negatively regulates the expression of particular pro-inflammatory genes in TNFα-stimulated cells. The selective glucocorticoid receptor modulator compound A has an impaired ability to translocate GR, presumably underpinning its modest anti-inflammatory properties in these cells. Only dexamethasone, and not compound A, can upregulate the glucocorticoid receptor transactivation-dependent GILZ expression. Neither dexamethasone, nor compound A affects myofibroblast cell viability. However, compound A retards the growth of this myofibroblast cell line. Additionally, dexamethasone can inhibit the expression of Tenascin C, hepatocyte growth factor, and TGFβ, which are all factors known for their impact on colon cancer cell invasion, in a glucocorticoid receptor-dependent manner. In contrast, compound A can only slightly diminish the expression of just hepatocyte growth factor, and not tenascin C or TGFβ. Combined, our results expose new tumor microenvironment-modulating effects of glucocorticoids and the selective GR modulator compound A.
Collapse
Affiliation(s)
- Zuzanna Drebert
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium
| | - Ilse M Beck
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium.
| |
Collapse
|
15
|
O'Connor JW, Gomez EW. Biomechanics of TGFβ-induced epithelial-mesenchymal transition: implications for fibrosis and cancer. Clin Transl Med 2014; 3:23. [PMID: 25097726 PMCID: PMC4114144 DOI: 10.1186/2001-1326-3-23] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/02/2014] [Indexed: 12/18/2022] Open
Abstract
Fibrosis, a disease that results in loss of organ function, contributes to a significant number of deaths worldwide and sustained fibrotic activation has been suggested to increase the risk of developing cancer in a variety of tissues. Fibrogenesis and tumor progression are regulated in part through the activation and activity of myofibroblasts. Increasing evidence links myofibroblasts found within fibrotic lesions and the tumor microenvironment to a process termed epithelial-mesenchymal transition (EMT), a phenotypic change in which epithelial cells acquire mesenchymal characteristics. EMT can be stimulated by soluble signals, including transforming growth factor (TGF)-β, and recent studies have identified a role for mechanical cues in directing EMT. In this review, we describe the role that EMT plays in fibrogenesis and in the progression of cancer, with particular emphasis placed on biophysical signaling mechanisms that control the EMT program. We further describe specific TGFβ-induced intracellular signaling cascades that are affected by cell- and tissue-level mechanics. Finally, we highlight the implications of mechanical induction of EMT on the development of treatments and targeted intervention strategies for fibrosis and cancer.
Collapse
Affiliation(s)
- Joseph W O'Connor
- Department of Chemical Engineering, The Pennsylvania State University, 204 Fenske Laboratory, 16802 University Park, PA, USA
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, 204 Fenske Laboratory, 16802 University Park, PA, USA ; Department of Biomedical Engineering, The Pennsylvania State University, 16802 University Park, PA, USA
| |
Collapse
|
16
|
Fibroblast-to-myofibroblast switch is mediated by NAD(P)H oxidase generated reactive oxygen species. Biosci Rep 2014; 34:BSR20130091. [PMID: 27919042 PMCID: PMC3891321 DOI: 10.1042/bsr20130091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/26/2013] [Indexed: 01/29/2023] Open
Abstract
Tumour–stroma interaction is a prerequisite for tumour progression in skin cancer. Hereby, a critical step in stromal function is the transition of tumour-associated fibroblasts to MFs (myofibroblasts) by growth factors, for example TGFβ (transforming growth factor beta(). In this study, the question was addressed of whether fibroblast-associated NAD(P)H oxidase (NADH/NADPH oxidase), known to be activated by TGFβ1, is involved in the fibroblast-to-MF switch. The up-regulation of αSMA (alpha smooth muscle actin), a biomarker for MFs, is mediated by a TGFβ1-dependent increase in the intracellular level of ROS (reactive oxygen species). This report demonstrates two novel aspects of the TGFβ1 signalling cascade, namely the generation of ROS due to a biphasic NAD(P)H oxidase activity and a ROS-dependent downstream activation of p38 leading to a transition of dermal fibroblasts to MFs that can be inhibited by the selective NAD(P)H oxidase inhibitor apocynin. These data suggest that inhibition of NAD(P)H oxidase activity prevents the fibroblast-to-MF switch and may be important for chemoprevention in context of a ‘stromal therapy’ which was described earlier.
Collapse
|
17
|
Decreased expression of myosin light chain MYL9 in stroma predicts malignant progression and poor biochemical recurrence-free survival in prostate cancer. Med Oncol 2013; 31:820. [PMID: 24338276 DOI: 10.1007/s12032-013-0820-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/07/2013] [Indexed: 10/25/2022]
Abstract
The aim of this study was to investigate the associations of myosin light chain (MYL9) downregulation with tumor progression and prognosis in patients with prostate cancer (PCa). MYL9 protein expression in human PCa and non-cancerous prostate tissues was detected by Western blot and immunohistochemistry analyses, which was validated by microarray-based Taylor data at mRNA level. Then, the associations of MYL9 expression with clinicopathological features and clinical outcome of PCa patients were statistically analyzed. Both Western blot and immunohistochemistry analyses found that MYL9 expression was significantly decreased (both P < 0.001) in PCa tissues compared with those in non-cancerous prostate tissues. In addition, MYL9 was mainly expressed in the cytoplasm of stromal cells of prostate tissues, and the decreased expression of MYL9 in PCa tissues was significantly correlated with the older age of patients (P = 0.011), the higher Gleason score (P < 0.001), the advanced pathological stage (P = 0.002), the presence of metastasis (P < 0.001) and PSA failure (P = 0.001). Furthermore, both univariate and multivariate analyses showed that the downregulation of MYL9 was an independent predictor of shorter overall survival (P = 0.026 and P = 0.009, respectively) and biochemical recurrence-free survival (P = 0.001 and P = 0.002, respectively). Our data strongly confirmed for the first time that the decreased expression of MYL9 may play an important role in tumor progression of PCa. More importantly, the downregulation of MYL9 may efficiently predict both overall and biochemical recurrence-free survivals in PCa patients.
Collapse
|
18
|
Lotti F, Jarrar AM, Pai RK, Hitomi M, Lathia J, Mace A, Gantt GA, Sukhdeo K, DeVecchio J, Vasanji A, Leahy P, Hjelmeland AB, Kalady MF, Rich JN. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. ACTA ACUST UNITED AC 2013; 210:2851-72. [PMID: 24323355 PMCID: PMC3865474 DOI: 10.1084/jem.20131195] [Citation(s) in RCA: 318] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemotherapy stimulates cancer-associated fibroblasts to secrete interleukin-17A to provide maintenance cues to support the growth of colorectal cancer-initiating cells. Many solid cancers display cellular hierarchies with self-renewing, tumorigenic stemlike cells, or cancer-initiating cells (CICs) at the apex. Whereas CICs often exhibit relative resistance to conventional cancer therapies, they also receive critical maintenance cues from supportive stromal elements that also respond to cytotoxic therapies. To interrogate the interplay between chemotherapy and CICs, we investigated cellular heterogeneity in human colorectal cancers. Colorectal CICs were resistant to conventional chemotherapy in cell-autonomous assays, but CIC chemoresistance was also increased by cancer-associated fibroblasts (CAFs). Comparative analysis of matched colorectal cancer specimens from patients before and after cytotoxic treatment revealed a significant increase in CAFs. Chemotherapy-treated human CAFs promoted CIC self-renewal and in vivo tumor growth associated with increased secretion of specific cytokines and chemokines, including interleukin-17A (IL-17A). Exogenous IL-17A increased CIC self-renewal and invasion, and targeting IL-17A signaling impaired CIC growth. Notably, IL-17A was overexpressed by colorectal CAFs in response to chemotherapy with expression validated directly in patient-derived specimens without culture. These data suggest that chemotherapy induces remodeling of the tumor microenvironment to support the tumor cellular hierarchy through secreted factors. Incorporating simultaneous disruption of CIC mechanisms and interplay with the tumor microenvironment could optimize therapeutic targeting of cancer.
Collapse
Affiliation(s)
- Fiorenza Lotti
- Department of Stem Cell Biology and Regenerative Medicine, 2 Department of Cellular and Molecular Medicine, and 3 Department of Cancer Biology, Lerner Research Institute; 4 Department of Colorectal Surgery, Digestive Disease Institute; 5 Department of Anatomical Pathology, Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Alili L, Sack M, von Montfort C, Giri S, Das S, Carroll KS, Zanger K, Seal S, Brenneisen P. Downregulation of tumor growth and invasion by redox-active nanoparticles. Antioxid Redox Signal 2013; 19. [PMID: 23198807 PMCID: PMC3752511 DOI: 10.1089/ars.2012.4831] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIMS Melanoma is the most aggressive type of malignant skin cancer derived from uncontrolled proliferation of melanocytes. Melanoma cells possess a high potential to metastasize, and the prognosis for advanced melanoma is rather poor due to its strong resistance to conventional chemotherapeutics. Nanomaterials are at the cutting edge of the rapidly developing area of nanomedicine. The potential of nanoparticles for use as carrier in cancer drug delivery is infinite with novel applications constantly being tested. The noncarrier use of cerium oxide nanoparticles (CNPs) is a novel and promising approach, as those particles per se show an anticancer activity via their oxygen vacancy-mediated chemical reactivity. RESULTS In this study, the question was addressed of whether the use of CNPs might be a valuable tool to counteract the invasive capacity and metastasis of melanoma cells in the future. Therefore, the effect of those nanoparticles on human melanoma cells was investigated in vitro and in vivo. Concentrations of polymer-coated CNPs being nontoxic for stromal cells showed a cytotoxic, proapoptotic, and anti-invasive capacity on melanoma cells. In vivo xenograft studies with immunodeficient nude mice showed a decrease of tumor weight and volume after treatment with CNPs. INNOVATION In summary, the redox-active CNPs have selective pro-oxidative and antioxidative properties, and this study is the first to show that CNPs prevent tumor growth in vivo. CONCLUSION The application of redox-active CNPs may form the basis of new paradigms in the treatment and prevention of cancers.
Collapse
Affiliation(s)
- Lirija Alili
- Medical Faculty, Institute of Biochemistry & Molecular Biology I, Heinrich-Heine-University, 40225 Duesseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rathee D, Thanki M, Bhuva S, Anandjiwala S, Agrawal R. Iridoid glycosides-Kutkin, Picroside I, and Kutkoside from Picrorrhiza kurroa Benth inhibits the invasion and migration of MCF-7 breast cancer cells through the down regulation of matrix metalloproteinases. ARAB J CHEM 2013. [DOI: 10.1016/j.arabjc.2011.01.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
21
|
Mas A, Cervelló I, Gil-Sanchis C, Faus A, Ferro J, Pellicer A, Simón C. Identification and characterization of the human leiomyoma side population as putative tumor-initiating cells. Fertil Steril 2012; 98:741-751.e6. [DOI: 10.1016/j.fertnstert.2012.04.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 12/31/2022]
|
22
|
Dayan D, Salo T, Salo S, Nyberg P, Nurmenniemi S, Costea DE, Vered M. Molecular crosstalk between cancer cells and tumor microenvironment components suggests potential targets for new therapeutic approaches in mobile tongue cancer. Cancer Med 2012; 1:128-40. [PMID: 23342263 PMCID: PMC3544451 DOI: 10.1002/cam4.24] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 12/13/2022] Open
Abstract
We characterized tumor microenvironment (TME) components of mobile tongue (MT) cancer patients in terms of overall inflammatory infiltrate, focusing on the protumorigenic/anti-inflammatory phenotypes and on cancer-associated fibroblasts (CAFs) in order to determine their interrelations and associations with clinical outcomes. In addition, by culturing tongue carcinoma cells (HSC-3) on a three-dimensional myoma organotypic model that mimics TME, we attempted to investigate the possible existence of a molecular crosstalk between cancer cells and TME components. Analysis of 64 cases of MT cancer patients revealed that the overall density of the inflammatory infiltrate was inversely correlated to the density of CAFs (P = 0.01), but that the cumulative density of the protumorigenic/anti-inflammatory phenotypes, including regulatory T cells (Tregs, Foxp3+), tumor-associated macrophages (TAM2, CD163+), and potentially Tregs-inducing immune cells (CD80+), was directly correlated with the density of CAFs (P = 0.01). The hazard ratio (HR) for recurrence in a TME rich in CD163+ Foxp3+ CD80+ was 2.9 (95% CI 1.03–8.6, P = 0.043 compared with low in CD163+ Foxp3+ CD80+). The HR for recurrence in a TME rich in CAFs was 4.1 (95% confidence interval [CI] 1.3–12.8, P = 0.012 compared with low in CAFs). In vitro studies showed cancer-derived exosomes, epithelial–mesenchymal transition process, fibroblast-to-CAF-like cell transdifferentiation, and reciprocal interrelations between different cytokines suggesting the presence of molecular crosstalk between cancer cells and TME components. Collectively, these results highlighted the emerging need of new therapies targeting this crosstalk between the cancer cells and TME components in MT cancer.
Collapse
Affiliation(s)
- Dan Dayan
- Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
23
|
Spector I, Zilberstein Y, Lavy A, Nagler A, Genin O, Pines M. Involvement of host stroma cells and tissue fibrosis in pancreatic tumor development in transgenic mice. PLoS One 2012; 7:e41833. [PMID: 22848627 PMCID: PMC3404977 DOI: 10.1371/journal.pone.0041833] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/26/2012] [Indexed: 12/11/2022] Open
Abstract
Introduction Stroma cells and extracellular matrix (ECM) components provide the pivotal microenvironment for tumor development. The study aimed to evaluate the importance of the pancreatic stroma for tumor development. Methods Pancreatic tumor cells were implanted subcutaneously into green fluorescent protein transgenic mice, and stroma cells invading the tumors were identified through immunohistochemistry. Inhibition of tumor invasion by stroma cells was achieved with halofuginone, an inhibitor of TGFβ/Smad3 signaling, alone or in combination with chemotherapy. The origin of tumor ECM was evaluated with species-specific collagen I antibodies and in situ hybridization of collagen α1(I) gene. Pancreatic fibrosis was induced by cerulean injection and tumors by spleen injection of pancreatic tumor cells. Results Inhibition of stroma cell infiltration and reduction of tumor ECM levels by halofuginone inhibited development of tumors derived from mouse and human pancreatic cancer cells. Halofuginone reduced the number only of stroma myofibroblasts expressing both contractile and collagen biosynthesis markers. Both stroma myofibroblasts and tumor cells generated ECM that contributes to tumor growth. Combination of treatments that inhibit stroma cell infiltration, cause apoptosis of myofibroblasts and inhibit Smad3 phosphorylation, with chemotherapy that increases tumor-cell apoptosis without affecting Smad3 phosphorylation was more efficacious than either treatment alone. More tumors developed in fibrotic than in normal pancreas, and prevention of tissue fibrosis greatly reduced tumor development. Conclusions The utmost importance of tissue fibrosis and of stroma cells for tumor development presents potential new therapy targets, suggesting combination therapy against stroma and neoplastic cells as a treatment of choice.
Collapse
Affiliation(s)
- Itai Spector
- Institute of Animal Sciences, The Volcani Center, Bet Dagan, Israel
- Department of Animal Sciences, Hebrew University of Jerusalem, Rehovot, Israel
| | - Yael Zilberstein
- The Sackler Cellular and Molecular Imaging Center (SCMIC), Tel Aviv University, Tel Aviv, Israel
| | - Adi Lavy
- Institute of Animal Sciences, The Volcani Center, Bet Dagan, Israel
- Department of Animal Sciences, Hebrew University of Jerusalem, Rehovot, Israel
| | - Arnon Nagler
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Olga Genin
- Institute of Animal Sciences, The Volcani Center, Bet Dagan, Israel
| | - Mark Pines
- Institute of Animal Sciences, The Volcani Center, Bet Dagan, Israel
- * E-mail:
| |
Collapse
|
24
|
The role of myofibroblasts in upregulation of S100A8 and S100A9 and the differentiation of myeloid cells in the colorectal cancer microenvironment. Biochem Biophys Res Commun 2012; 423:60-6. [DOI: 10.1016/j.bbrc.2012.05.081] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 05/15/2012] [Indexed: 12/22/2022]
|
25
|
Tumor angiogenesis: Role in locally aggressive biological behavior of ameloblastoma and keratocystic odontogenic tumor. Head Neck 2012; 35:329-34. [DOI: 10.1002/hed.22960] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2011] [Indexed: 12/16/2022] Open
|
26
|
Comparison of myofibroblasts expression in oral squamous cell carcinoma, verrucous carcinoma, high risk epithelial dysplasia, low risk epithelial dysplasia and normal oral mucosa. Head Neck Pathol 2012; 6:305-13. [PMID: 22392407 PMCID: PMC3422591 DOI: 10.1007/s12105-012-0335-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/25/2012] [Indexed: 12/13/2022]
Abstract
The aim was to evaluate and compare the presence of myofibroblasts in oral squamous cell carcinoma (OSCC), verrucous carcinoma (VC), high-risk epithelial dysplasia (HRED), low-risk epithelial dysplasia (LRED), and normal oral mucosa (NOM). The study consisted of 37 OSCC, 15 VC, 15 HRED, 15 LRED and 15 NOM. α-smooth muscle actin (α-SMA) antibody was used to identify myofibroblasts. The α-SMA expression was not observed in NOM and LRED. The α-SMA was expressed in 97.29% of OSCC, 86.66% of VC, 46.66 % of HRED. The α-SMA expression was significantly higher in OSCC than VC (p = 0.023) and HRED (p < 0.000). The α-SMA expression was significantly higher in VC than HRED (p = 0.043). Myofibroblastic expression, as highlighted by α-SMA, is undetectable in NOM and LRED but increases as the disease progresses from potentially malignant disorders, as HRED to VC to invasive OSCC. Thus, proliferation of myofibroblasts may be used as a stromal marker of oral premalignancy and malignancy.
Collapse
|
27
|
Hendrix A, Gespach C, Bracke M, De Wever O. The tumor ecosystem regulates the roads for invasion and metastasis. Clin Res Hepatol Gastroenterol 2011; 35:714-9. [PMID: 21676670 DOI: 10.1016/j.clinre.2011.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 02/04/2023]
Abstract
Invasive cancer cells traffic from the primary tumor ecosystem to distant metastatic sites. Experimental data are reviewed with a focus on cross-signaling between cancer cells and host cells such as myofibroblasts and mesenchymal stem cells. Invasion-associated cellular activities, namely vesicle exocytosis and epithelial to mesenchymal transition, depend on complex networks of signal transduction pathways including activation of tyrosine kinases, the Rab, Rac and Rho family of small GTPases and cadherin signaling. As clinical validation, some cell types or molecules implicated in invasion-associated activities may serve as prognostic/predictive biomarker or as target for patient-tailored therapy.
Collapse
Affiliation(s)
- An Hendrix
- Laboratory of experimental cancer research, department of radiation oncology and experimental cancer research, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | | | | | | |
Collapse
|
28
|
Tomas D, Spajić B, Milošević M, Demirović A, Marušić Z, Krušlin B. Extensive retraction artefact predicts biochemical recurrence-free survival in prostatic carcinoma. Histopathology 2011; 58:447-54. [PMID: 21323967 DOI: 10.1111/j.1365-2559.2011.03769.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To determine whether the presence and extent of peritumoral retraction artefact could be used to predict biochemical recurrence-free survival in prostatic carcinoma. METHODS AND RESULTS The study included 162 consecutive patients treated by radical retropubic prostatectomy and bilateral lymphadenectomy for clinically localized prostatic carcinoma. A variable degree of retraction artefact was present in all 162 analysed tumours. The extent of retraction artefact in prostatic carcinomas ranged from 5% to 55% with a median value of 15% (interquartile range 10-25%). We found no correlation between the extent of retraction artefact in the tumours and patient's age (P=0.608), preoperative (P=0.362) and postoperative (P=0.279) Gleason score or lymph node metastases (P=0.084). In contrast, the extent of retraction artefact correlated with high preoperative prostate-specific antigen (P<0.001), short follow-up time (P<0.001), seminal vesicle invasion and/or extracapsular extension of the tumour (T3 stage tumours) (P<0.001) and positive surgical margins (P<0.001). Furthermore, extensive retraction artefact was associated with poor biochemical recurrence-free survival in both univariate (P<0.001) and multivariate analyses (P=0.013). CONCLUSION The presence of extensive retraction artefact in prostatic carcinoma correlates with tumour characteristics signifying aggressive behaviour and indicates poor biochemical recurrence-free survival.
Collapse
Affiliation(s)
- Davor Tomas
- Department of Pathology, Sestre milosrdnice University Hospital, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
29
|
Alili L, Sack M, Karakoti AS, Teuber S, Puschmann K, Hirst SM, Reilly CM, Zanger K, Stahl W, Das S, Seal S, Brenneisen P. Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor-stroma interactions. Biomaterials 2011; 32:2918-29. [PMID: 21269688 DOI: 10.1016/j.biomaterials.2010.12.056] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 12/31/2010] [Indexed: 12/27/2022]
Abstract
Tumor-stroma interaction plays an important role in tumor progression. Myofibroblasts, pivotal for tumor progression, populate the microecosystem of reactive stroma. The formation of myofibroblasts is mediated by tumor derived transforming growth factor β1 (TGFβ1) which initiates a reactive oxygen species cell type dependent expression of alpha-smooth muscle actin, a biomarker for myofibroblastic cells. Myofibroblasts express and secrete proinvasive factors significantly increasing the invasive capacity of tumor cells via paracrine mechanisms. Although antioxidants prevent myofibroblast formation, the same antioxidants increase the aggressive behavior of the tumor cells. In this study, the question was addressed of whether redox-active polymer-coated cerium oxide nanoparticles (CNP, nanoceria) affect myofibroblast formation, cell toxicity, and tumor invasion. Herein, nanoceria downregulate both the expression of alpha-smooth muscle actin positive myofibroblastic cells and the invasion of tumor cells. Furthermore, concentrations of nanoceria being non-toxic for normal (stromal) cells show a cytotoxic effect on squamous tumor cells. The treatment with redox-active CNP may form the basis for protection of stromal cells from the dominating influence of tumor cells in tumor-stroma interaction, thus being a promising strategy for chemoprevention of tumor invasion.
Collapse
Affiliation(s)
- Lirija Alili
- Institute of Biochemistry & Molecular Biology I, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Inhibition of pancreatic stellate cell activation by halofuginone prevents pancreatic xenograft tumor development. Pancreas 2010; 39:1008-15. [PMID: 20442678 DOI: 10.1097/mpa.0b013e3181da8aa3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Most solid tumors consist of neoplastic and nonneoplastic cells and extracellular matrix components. In the pancreas, activated stellate cells (PSCs) are the source of the extracellular matrix proteins. We evaluated the significance of PSC activation in tumor establishment and development in mouse xenografts. METHODS Xenografts were established by implanting human pancreatic cancer cells (MiaPaca-2) subcutaneously or orthotopically by injecting them into the spleen. Fibrosis was induced by cerulein. Collagen level was evaluated by Sirius red staining. Prolyl 4-hydroxylase β and stellate cell activation-associated protein (Cygb/STAP) were determined by immunohistochemistry. RESULTS Halofuginone inhibited subcutaneous tumor development implanted with Matrigel and reduced collagen and prolyl 4-hydroxylase β levels. Few tumors, which developed slowly, were observed after MiaPaca-2 implantation without Matrigel. Increase in tumor number and rate of development were observed with addition of PSCs from control pancreas, and further increase was observed when the PSCs were from cerulein-treated mice. Preincubation of the PSCs with halofuginone elicited Cygb/STAP level reduction and tumor growth inhibition. More tumors developed orthotopically in cerulein-treated mice than in controls; this was prevented by halofuginone. CONCLUSIONS Extracellular matrix production by activated PSCs is essential for tumor establishment and growth. Thus, inhibition of PSC activation is a viable means of reducing pancreatic tumor development.
Collapse
|
31
|
Jung DW, Che ZM, Kim J, Kim K, Kim KY, Williams D, Kim J. Tumor-stromal crosstalk in invasion of oral squamous cell carcinoma: a pivotal role of CCL7. Int J Cancer 2010; 127:332-44. [PMID: 19937793 DOI: 10.1002/ijc.25060] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recent studies have shown that stromal fibroblasts have a more profound influence on the initiation and progression of carcinoma than was previously appreciated. This study aimed at investigating the reciprocal relationship between cancer cells and their associated fibroblasts at both the molecular and cellular level in oral squamous cell carcinoma (OSCC). To identify key molecular regulators expressed by carcinoma-associated fibroblasts (CAF) that promote cancer cell invasion, microarrays were performed by comparing cocultured OSCC cells and CAF with monoculture controls. Microarray and real-time PCR analysis identified marked upregulation of the chemokine (C-C motif) ligand 7 (CCL7) in cocultured CAF. ELISA showed an elevated level of CCL7 secretion from CAF stimulated by coculture with OSCC cells. CCL7 promoted the invasion and migration of OSCC cells, and the invasiveness was inhibited by treatment with CCL7 neutralizing antibody. OSCC cells were shown to express CCR1, CCR2 and CCR3, receptors for CCL7, by RT-PCR. In addition, treatment with anti-CCR1 or anti-CCR3 antibody inhibited CCL7-induced OSCC cell migration, implicating that CCL7 promotes cancer cell migration through CCR1 and CCR3 on OSCC cells. Cytokine antibody array analysis of the supernatant from OSCC cell culture revealed that interleukin-1alpha was an inducer of CCL7 secretion by CAF. This study confirms the reciprocal relationship of the molecular crosstalk regulating the invasion of OSCC and describes new potential targets for future therapy.
Collapse
Affiliation(s)
- Da-Woon Jung
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Moore AB, Yu L, Swartz CD, Zheng X, Wang L, Castro L, Kissling GE, Walmer DK, Robboy SJ, Dixon D. Human uterine leiomyoma-derived fibroblasts stimulate uterine leiomyoma cell proliferation and collagen type I production, and activate RTKs and TGF beta receptor signaling in coculture. Cell Commun Signal 2010; 8:10. [PMID: 20537183 PMCID: PMC2897788 DOI: 10.1186/1478-811x-8-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/10/2010] [Indexed: 12/23/2022] Open
Abstract
Background Uterine leiomyomas (fibroids) are benign smooth muscle tumors that often contain an excessive extracellular matrix (ECM). In the present study, we investigated the interactions between human uterine leiomyoma (UtLM) cells and uterine leiomyoma-derived fibroblasts (FB), and their importance in cell growth and ECM protein production using a coculture system. Results We found enhanced cell proliferation, and elevated levels of ECM collagen type I and insulin-like growth factor-binding protein-3 after coculturing. There was also increased secretion of vascular endothelial growth factor, epidermal growth factor, fibroblast growth factor-2, and platelet derived growth factor A and B in the media of UtLM cells cocultured with FB. Protein arrays revealed increased phosphorylated receptor tyrosine kinases (RTKs) of the above growth factor ligands, and immunoblots showed elevated levels of the RTK downstream effector, phospho-mitogen activated protein kinase 44/42 in cocultured UtLM cells. There was also increased secretion of transforming growth factor-beta 1 and 3, and immunoprecipitated transforming growth factor-beta receptor I from cocultured UtLM cells showed elevated phosphoserine expression. The downstream effectors phospho-small mothers against decapentaplegic -2 and -3 protein (SMAD) levels were also increased in cocultured UtLM cells. However, none of the above effects were seen in normal myometrial cells cocultured with FB. The soluble factors released by tumor-derived fibroblasts and/or UtLM cells, and activation of the growth factor receptors and their pathways stimulated the proliferation of UtLM cells and enhanced the production of ECM proteins. Conclusions These data support the importance of interactions between fibroid tumor cells and ECM fibroblasts in vivo, and the role of growth factors, and ECM proteins in the pathogenesis of uterine fibroids.
Collapse
Affiliation(s)
- Alicia B Moore
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park (RTP), NC 27709, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kamath KP, Vidya M, Shetty N, Karkera BV, Jogi H. Nucleolar organizing regions and alpha-smooth muscle actin expression in a case of ameloblastic carcinoma. Head Neck Pathol 2010; 4:157-62. [PMID: 20333560 PMCID: PMC2878627 DOI: 10.1007/s12105-010-0173-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
Abstract
Ameloblastic carcinoma is a rare lesion of odontogenic origin. It is defined as a malignant epithelial odontogenic tumor that histologically has retained the features of ameloblastic differentiation and also exhibits cytologic features of malignancy, like atypia and mitotic activity. Although this lesion represents a separate entity, differentiating it from ameloblastoma has been often challenging to pathologists. In this case study reporting a case of ameloblastic carcinoma, we have attempted to verify the previous findings on the use of Argyrophilic nucleolar organizing regions (AgNORs) and immunohistochemical staining for the alpha-smooth muscle actin (alpha-SMA) in differentiating ameloblastic carcinoma from ameloblastoma. It was observed that AgNORs was found to be almost twice in ameloblastic carcinoma as it was in ameloblastoma. A difference between the two lesions in the pattern of expression of alpha-SMA was also observed, with alpha-SMA being expressed in the odontogenic epithelium and the stroma of ameloblastic carcinoma whereas, in the case of ameloblastoma, it was found only in the stromal part. These findings suggest that AgNORs and alpha-SMA expression may be used as adjuncts to the routine histopathologic examination to differentiate ameloblastic carcinoma and ameloblastoma.
Collapse
Affiliation(s)
- Kavitha P. Kamath
- Department of Oral Pathology, Yenepoya Dental College, Nithyanand Nagar, Deralakatte, Mangalore, Karnataka 575018 India
| | - M. Vidya
- Department of Oral Pathology, Yenepoya Dental College, Nithyanand Nagar, Deralakatte, Mangalore, Karnataka 575018 India
| | - Nandaprasad Shetty
- Department of Oral Pathology, Yenepoya Dental College, Nithyanand Nagar, Deralakatte, Mangalore, Karnataka 575018 India
| | - Bhavana V. Karkera
- Department of Oral Pathology, Yenepoya Dental College, Nithyanand Nagar, Deralakatte, Mangalore, Karnataka 575018 India
| | - Hemanth Jogi
- Department of Oral Pathology, Yenepoya Dental College, Nithyanand Nagar, Deralakatte, Mangalore, Karnataka 575018 India
| |
Collapse
|
34
|
Cui G, Yuan A, Vonen B, Florholmen J. Progressive cellular response in the lamina propria of the colorectal adenoma-carcinoma sequence. Histopathology 2009; 54:550-60. [PMID: 19413637 DOI: 10.1111/j.1365-2559.2009.03273.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS The lamina propria is inevitably involved in epithelial transformation. The aim was to evaluate the dynamic cellular changes in the tumour lamina propria throughout the colorectal adenoma-carcinoma sequence. METHODS AND RESULTS Using immunohistochemistry and double immunohistochemistry, we examined lamina propria cellular changes in 41 colorectal adenomas, 25 colorectal cancers and 15 control tissues. The results showed that the proliferation labelling index in lamina propria cells began to increase in the precancerous lesions (adenomas) and became even higher in the colorectal cancers; these proliferative cells were primarily identified as myofibroblasts and lymphocytes. Phenotypic analysis revealed gradually increasing lymphocytic infiltration in both the lamina propria and adenomatous epithelium, as well as myofibroblasts in the lamina propria. However, the intraepithelial macrophage density also showed a tendency to increase gradually. Furthermore, cyclooxygenase-2-expressing cell density and microvessel density gradually increased in the tumour lamina propria throughout the adenoma-carcinoma sequence. CONCLUSIONS Progressive cellular responses in the lamina propria could be involved in the adenoma-carcinoma transition.
Collapse
Affiliation(s)
- Guanglin Cui
- Laboratory of Gastroenterology, Institute of Clinical Medicine, Faculty of Medicine, University of Tromsø, Tromsø, Norway.
| | | | | | | |
Collapse
|
35
|
Myofibroblasts in pulmonary and brain metastases of alveolar soft-part sarcoma: a novel target for treatment? Neoplasia 2009; 10:940-8. [PMID: 18714394 DOI: 10.1593/neo.08456] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/03/2008] [Accepted: 06/04/2008] [Indexed: 01/28/2023] Open
Abstract
Alveolar soft-part sarcoma (ASPS) is a rare neoplasm with chromosomal translocation that results in ASPL-TFE3 fusion. It is a slow-growing lesion associated with a high incidence of pulmonary and brain metastases indicating poor survival. We demonstrated that the ASPS metastases include also stromal myofibroblasts. These cells proliferate, express smooth-muscle genes, and synthesize extracellular matrix proteins, all of which are characteristics of activated myofibroblasts. The tumor cells also exhibited stromal components such as transforming growth factor beta (TGFbeta)-dependent, hypoxia-regulated cytoglobin (stellate cell activation association protein, cytg/STAP) and prolyl 4-hydroxylase, a collagen cross-linking enzyme. The pulmonary ASPS myofibroblasts synthesize serum response factor (SRF), a repressor of Smad3-mediated TGFbeta signaling essential for myofibroblast differentiation and Smad3. The phosphorylated active Smad3 was found mostly in the tumor cells. The brain tumor cells express cytg/STAP, but in contrast to the lung metastases, they also express SRF, Smad3, and phospho-Smad3. Halofuginone, an inhibitor of myofibroblasts' activation and Smad3 phosphorylation, inhibited tumor development in xenografts derived from renal carcinoma cells harboring a reciprocal ASPL-TFE3 fusion transcript. This inhibition was associated with the inhibition of TGFbeta/SRF signaling, with the inhibition of myofibroblasts' activation, and with the complete loss in TFE3 synthesis by the tumor cells. These results suggest that the myofibroblasts may serve as a novel target for treatment of ASPS metastases.
Collapse
|
36
|
Matricellular proteins produced by melanocytes and melanomas: in search for functions. CANCER MICROENVIRONMENT 2008; 1:93-102. [PMID: 19308688 PMCID: PMC2654351 DOI: 10.1007/s12307-008-0009-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 02/28/2008] [Indexed: 11/03/2022]
Abstract
Matricellular proteins are modulators of cell-matrix interactions and cellular functions. The group includes thrombospondin, osteopontin, osteonectin/SPARC, tenascin, disintegrins, galectins and CCN proteins. The production of matricellular proteins such as osteopontin, SPARC or tenascin is highly upregulated in melanoma and other tumors but little is known about their functions in tumor growth, survival, and metastasis. The distribution pattern of CCN3 differs from most other matricellular proteins, such that it is produced abundantly by normal melanocytes, but is not significantly expressed in melanoma cells. CCN3 is known to inhibit melanocyte proliferation and stimulate adhesion to collagen type IV, the main component of the basement membrane. CCN3 has a unique role in securing adhesion of melanocytes to the basement membrane distinct from other melanoma-produced matricellular proteins which act as de-adhesive molecules and antagonists of focal adhesion. Qualitative and quantitative changes in matricellular protein expression contribute to melanoma progression similar to the E-cadherin to N-cadherin class switch, allowing melanoma cells to escape from keratinocyte control.
Collapse
|
37
|
Werth C, Stuhlmann D, Cat B, Steinbrenner H, Alili L, Sies H, Brenneisen P. Stromal resistance of fibroblasts against oxidative damage: involvement of tumor cell-secreted platelet-derived growth factor (PDGF) and phosphoinositide 3-kinase (PI3K) activation. Carcinogenesis 2008; 29:404-10. [DOI: 10.1093/carcin/bgm296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
38
|
Soluble cadherins as cancer biomarkers. Clin Exp Metastasis 2007; 24:685-97. [PMID: 17952616 DOI: 10.1007/s10585-007-9104-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 09/19/2007] [Indexed: 01/17/2023]
Abstract
Molecular activities, regulating a balanced tissue organisation, are frequently disturbed during cancer progression. These include protein ectodomain shedding, a post-translational process that substantially changes the functional properties of the substrate protein. In comparison with normal epithelia, cancer cells almost invariably show diminished cadherin-mediated intercellular adhesion. This review will address cadherin ectodomain shedding and its functional consequence in normal physiology and in the tumor environment. Soluble cadherin fragments may retain specific biological activities during cancer cell invasion, angiogenesis and perineural invasion. When diffusion barriers disappear, soluble cadherins are detected in sera from cancer patients. Soluble N-(neural) cadherin may represent a novel diagnosis/prognostic biomarker showing a correlation with PSA in sera of prostate cancer patients. Furthermore, therapeutic monitoring in pancreas adenomacarcinoma revealed a correlation between circulating soluble N-cadherin and CA 19-9. A better understanding of cadherin regulation in cancer progression will likely increase our awareness of the importance of the combinatorial signals that regulate tissue integrity and eventually result in the identification of new therapeutics targeting cadherins.
Collapse
|
39
|
Sheffer Y, Leon O, Pinthus JH, Nagler A, Mor Y, Genin O, Iluz M, Kawada N, Yoshizato K, Pines M. Inhibition of fibroblast to myofibroblast transition by halofuginone contributes to the chemotherapy-mediated antitumoral effect. Mol Cancer Ther 2007; 6:570-7. [PMID: 17267660 DOI: 10.1158/1535-7163.mct-06-0468] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stromal myofibroblasts play an important role in tumor progression. The transition of fibroblasts to myofibroblasts is characterized by expression of smooth muscle genes and profuse synthesis of extracellular matrix proteins. We evaluated the efficacy of targeting fibroblast-to-myofibroblast transition with halofuginone on tumor progression in prostate cancer and Wilms' tumor xenografts. In both xenografts, low doses of halofuginone treatment, independent of the route of administration, resulted in a trend toward inhibition in tumor development. Moreover, halofuginone synergizes with low dose of docetaxel in prostate cancer and vincristine and dactinomycin in Wilms' tumor xenografts, resulting in significant reduction in tumor volume and weight comparable to the effect observed by high doses of the respective chemotherapies. In prostate cancer and Wilms' tumor xenografts, halofuginone, but not the respective chemotherapies, inhibited the synthesis of collagen type I, alpha-smooth muscle actin, transgelin, and cytoglobin, all of which are characteristics of activated myofibroblasts. Halofuginone, as the respective chemotherapies, increased the synthesis of Wilms' tumor suppressor gene product (WT-1) and prostate apoptosis response gene-4 (Par-4), resulting in apoptosis/necrosis. These results suggest that targeting the fibroblast-to-myofibroblast transition with halofuginone may synergize with low doses of chemotherapy in achieving a significant antitumoral effect, avoiding the need of high-dose chemotherapy and its toxicity without impairing treatment efficacy.
Collapse
Affiliation(s)
- Yuval Sheffer
- Institute of Animal Sciences, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Schneiderhan W, Diaz F, Fundel M, Zhou S, Siech M, Hasel C, Möller P, Gschwend JE, Seufferlein T, Gress T, Adler G, Bachem MG. Pancreatic stellate cells are an important source of MMP-2 in human pancreatic cancer and accelerate tumor progression in a murine xenograft model and CAM assay. J Cell Sci 2007; 120:512-9. [PMID: 17227797 DOI: 10.1242/jcs.03347] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The effect of the characteristic desmoplastic reaction of pancreatic cancer on tumor progression is largely unknown. We investigated whether pancreatic stellate cells, which are responsible for the desmoplastic reaction, support tumor progression. Immunohistology revealed that matrix metalloproteinase-2 (MMP-2), which is suggested to promote pancreatic cancer progression, is present in stellate cells adjacent to cancer cells. In vitro, stellate cells exhibited a much higher basal expression of MMP-2 compared with cancer cells. Panc1-, MiaPaCa2- and SW850-conditioned media stimulated MMP-2 release of stellate cells as detected by zymography. Cancer cells expressed and released basigin [BSG, extracellular matrix metalloproteinase inducer (EMMPRIN), CD147], a glycoprotein that is known to stimulate MMP-2 in mesenchymal cells, as detected by immunostaining, western blot and reverse transcription-polymerase chain reaction. Tumor cell-conditioned medium and BSG purified by affinity chromatography from supernatants of cancer cells, but not supernatants depleted from BSG, stimulated expression of MMP-1 and MMP-2 of stellate cells as demonstrated by western blot and zymography. Moreover, the interaction of stellate cells and cancer cells promoted the invasiveness of Panc-1 cells in the chorioallantoic membrane assay and increased the weight of tumors induced by all carcinoma cell lines in nude mice by 2.1-3.7-fold. Our findings support the assumption that the interaction of stellate cells and cancer cells promotes progression of pancreatic cancer.
Collapse
Affiliation(s)
- Wilhelm Schneiderhan
- Department of Clinical Chemistry and Pathobiochemistry, University of Ulm, Robert-Koch-Str. 8, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cat B, Stuhlmann D, Steinbrenner H, Alili L, Holtkötter O, Sies H, Brenneisen P. Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species. J Cell Sci 2006; 119:2727-38. [PMID: 16757516 DOI: 10.1242/jcs.03011] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myofibroblasts, pivotal for tumor progression, populate the microecosystem of reactive stroma. Using an in vitro tumor-stroma model of skin carcinogenesis, we report here that tumor-cell-derived transforming growth factor β1 (TGFβ1) initiates reactive oxygen species-dependent expression of α-smooth muscle actin, a biomarker for myofibroblastic cells belonging to a group of late-responsive genes. Moreover, protein kinase C (PKC) is involved in lipid hydroperoxide-triggered molecular events underlying transdifferentiation of fibroblasts to myofibroblasts (mesenchymal-mesenchymal transition, MMT). In contrast to fibroblasts, myofibroblasts secrete large amounts of hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and interleukin-6 (IL-6), resulting in a significant increase in the invasive capacity of tumor cells. The thiol N-acetyl-L-cysteine, the micronutrient selenite as well as selenoprotein P and the lipid peroxidation inhibitors α-tocopherol and butylated hydroxytoluene significantly lower both the number of TGFβ1-initiated myofibroblasts and the secretion of HGF, VEGF and IL-6, correlating with a diminished invasive capacity of tumor cells. This novel concept of stromal therapy, namely the protection of stromal cells against the dominating influence of tumor cells in tumor-stroma interaction by antioxidants and micronutrients, may form the basis for prevention of MMT in strategies for chemoprevention of tumor invasion.
Collapse
Affiliation(s)
- Bahar Cat
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Tumours are known as wounds that do not heal - this implies that cells that are involved in angiogenesis and the response to injury, such as endothelial cells and fibroblasts, have a prominent role in the progression, growth and spread of cancers. Fibroblasts are associated with cancer cells at all stages of cancer progression, and their structural and functional contributions to this process are beginning to emerge. Their production of growth factors, chemokines and extracellular matrix facilitates the angiogenic recruitment of endothelial cells and pericytes. Fibroblasts are therefore a key determinant in the malignant progression of cancer and represent an important target for cancer therapies.
Collapse
Affiliation(s)
- Raghu Kalluri
- Center for Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
43
|
McCaig C, Duval C, Hemers E, Steele I, Pritchard DM, Przemeck S, Dimaline R, Ahmed S, Bodger K, Kerrigan DD, Wang TC, Dockray GJ, Varro A. The role of matrix metalloproteinase-7 in redefining the gastric microenvironment in response to Helicobacter pylori. Gastroenterology 2006; 130:1754-63. [PMID: 16697739 DOI: 10.1053/j.gastro.2006.02.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 01/25/2006] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Interactions between epithelial and stromal cells are important determinants of mucosal organization, but the signaling mechanisms are understood incompletely. Matrix metalloproteinase (MMP)-7 is produced uniquely in epithelia, may act on growth factors and matrix proteins, and in the stomach is increased with Helicobacter pylori infection. We have studied the role of MMP-7 in signaling between epithelial cells and a key stromal cell type, the myofibroblast. METHODS Immunohistochemistry and Western blotting were applied to gastric corpus biopsy specimens; primary cultures of human gastric glands and myofibroblasts were used to study the role of MMP-7 in regulating proliferation and migration of the latter, and MMP-7 substrates were identified by proteomic methods. RESULTS Increased abundance of the myofibroblast marker alpha-smooth muscle actin was identified in H. pylori-positive biopsy specimens. Media from H pylori-infected gastric epithelial cultures stimulated proliferation and migration of primary human gastric myofibroblasts and antisense oligonucleotide treatment indicated a role for MMP-7. Proteomic methods identified insulin-like growth factor binding protein (IGFBP)-5 as a substrate for MMP-7 in medium from gastric myofibroblasts. Knockdown of IGFBP-5 by small interfering RNA or immunoneutralization of IGF-II, abolished myofibroblast responses to MMP-7. Proliferation of gastric epithelial cells also was stimulated by MMP-7-treated myofibroblasts via IGF-II. CONCLUSIONS MMP-7 acts as an epithelial-derived signal increasing the bioavailability of IGF-II released from myofibroblasts. Because IGF-II acts on both stromal and epithelial cells, the findings suggest that increased MMP-7 expression contributes to redefining the niche occupied by dividing cells and leading to hyperproliferation in H pylori infection.
Collapse
Affiliation(s)
- Catherine McCaig
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ebihara Y, Masuya M, Larue AC, Fleming PA, Visconti RP, Minamiguchi H, Drake CJ, Ogawa M. Hematopoietic origins of fibroblasts: II. In vitro studies of fibroblasts, CFU-F, and fibrocytes. Exp Hematol 2006; 34:219-29. [PMID: 16459190 DOI: 10.1016/j.exphem.2005.10.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 10/11/2005] [Accepted: 10/11/2005] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Using transplantation of a clonal population of cells derived from a single hematopoietic stem cell (HSC) of transgenic enhanced green fluorescent protein (EGFP) mice, we have documented the hematopoietic origin of myofibroblasts, such as kidney mesangial cells and brain microglial cells. Because myofibroblasts are thought to be an activated form of fibroblasts, we tested the hypothesis that fibroblasts are derived from HSCs. MATERIALS AND METHODS Clones of cells derived from single cells of EGFP Ly-5.2 C57Bl/6 mice were transplanted into lethally irradiated Ly-5.1 mice. Using bone marrow and peripheral blood cells from mice showing high-level multilineage hematopoietic reconstitution, we induced growth of fibroblasts in vitro. RESULTS Culture of EGFP(+) bone marrow cells from clonally engrafted mice revealed adherent cells with morphology typical of fibroblasts. Flow cytometric analysis revealed that the majority of these cells are CD45(-) and express collagen-I and the collagen receptor, discoidin domain receptor 2 (DDR2). Reverse transcriptase polymerase chain reaction analysis of cultured cells demonstrated expression of procollagen 1-alpha1, DDR2, fibronectin, and vimentin mRNA. Fibroblast colonies consisting of EGFP(+) cells were observed in cultures of bone marrow cells from clonally engrafted mice, indicating an HSC origin of fibroblast colony-forming units. Culture of peripheral blood nucleated cells from clonally engrafted mice revealed EGFP(+) cells expressing collagen-I and DDR2, indicating that fibrocytes are also derived from HSCs. CONCLUSION We conclude that a population of fibroblasts and their precursors are derived from HSCs.
Collapse
Affiliation(s)
- Yasuhiro Ebihara
- Department of Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, 29401-5799, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Andarawewa KL, Motrescu ER, Chenard MP, Gansmuller A, Stoll I, Tomasetto C, Rio MC. Stromelysin-3 is a potent negative regulator of adipogenesis participating to cancer cell-adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res 2006; 65:10862-71. [PMID: 16322233 DOI: 10.1158/0008-5472.can-05-1231] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The initial invasive processes during cancer development remain largely unknown. Stromelysin-3/matrix metalloproteinase 11 (ST3/MMP11) is associated with tumor invasion and poor prognosis. We present novel evidence that adipocytes present at human breast tumor invasive front are induced by cancer cells to express ST3. Using mouse syngeneic model, light and electron microscopy showed that in ST3-deficient mice but not in wild-type mice, forced cancer cell-adipocyte interaction/crosstalk results in adipocyte membrane alteration, allowing cancer cell fat infiltration and death. Thus, adipocytes are involved in initial cancer cell survival into connective tissue, and this effect is ST3 mediated. This suggested that ST3 might play a role in adipocyte metabolism. Accordingly, ST3-deficient mice exhibited fat excess and increased mRNA levels of peroxisome proliferator-activated receptor gamma (PPARgamma) and adipocyte protein 2 (aP2) adipogenic markers, indicating that, in vivo, ST3 negatively regulates fat homeostasis. Moreover, ST3-deficient mouse embryonic fibroblasts exhibited a dramatic enhanced potential to differentiate into adipocytes associated with increased PPARgamma and aP2 expression, and recombinant ST3 treatment reverted their differentiation. Thus, in vitro, ST3 reduces adipocyte differentiation in an autocrine manner. High fibroblasts/adipocytes ratio is a stroma feature, and peritumoral fibroblast origin remains debated. Our results support the concept that invading cancer cells aberrantly restore the negative ST3 function on adipogenesis into proximal adipocytes/preadipocytes, leading to the accumulation/maintenance of a particular peritumoral fibroblast subpopulation. Accordingly, in human breast tumors, we observed that ST3-expressing peritumoral fibroblasts are distinct from alpha-smooth muscle actin-expressing myofibroblasts. This constitutes the first report of implication of a MMP in cancer cell-adipocyte interaction/crosstalk during early steps of connective tissue invasion.
Collapse
Affiliation(s)
- Kumari L Andarawewa
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 Centre National de la Recherche Scientifique/U596 Institut National de la Sante et de la Recherche Medicale, Université Louis Pasteur, Illkirch Cedex, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Bandapalli OR, Geheeb M, Kobelt D, Kuehnle K, Elezkurtaj S, Herrmann J, Gressner AM, Weiskirchen R, Beule D, Blüthgen N, Herzel H, Franke C, Brand K. Global analysis of host tissue gene expression in the invasive front of colorectal liver metastases. Int J Cancer 2005; 118:74-89. [PMID: 16080196 DOI: 10.1002/ijc.21307] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Host cell reactions are a crucial determinant for tumor invasion. We analyzed on a genomewide scale gene expression differences between microdissected tissues taken from unaffected liver tissue of a human colorectal tumor (LS174) growing in the livers of nude mice and tissue from the host part of the invasive front. Due to the low degree of interspecies cross-hybridization of 15% as determined on Affymetrix microarrays, our xenograft model allowed for the distinction of genes of murine versus human origin even if the respective tissues could not be isolated separately. Using the gene ontology (GO) classification, we were able to determine patterns of up- and downregulated genes in the liver part of the invasive front. We observed a pronounced overrepresentation, e.g., of the GO terms "extracellular matrix," "cell communication," "response to biotic stimulus," "structural molecule activity" and "cell growth," indicating a very pronounced host cell response to tumor invasion. On the single gene level, hepatic stellate cell (HSC) activation markers were overrepresented in the liver part of the invasion front. Immunohistochemistry and qPCR confirmed an activation of HSC as well as an increased number of HSC in the invasive front as compared to the noninvaded liver tissue. In summary, our data demonstrate the feasibility of an interspecies differential gene expression approach on a genomewide scale.
Collapse
Affiliation(s)
- Obul Reddy Bandapalli
- Institute of Biology, Humboldt University Berlin, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Vered M, Shohat I, Buchner A, Dayan D. Myofibroblasts in stroma of odontogenic cysts and tumors can contribute to variations in the biological behavior of lesions. Oral Oncol 2005; 41:1028-33. [PMID: 16139563 DOI: 10.1016/j.oraloncology.2005.06.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 06/05/2005] [Indexed: 01/13/2023]
Abstract
Stromal myofibroblasts (MF) have the potential to facilitate progression of neoplastic epithelial lesions that could contribute to their biological behavior. To assess immunohistochemically the frequency of stromal MF in different odontogenic cysts and tumors and correlate it to their aggressive biological behavior. The study included cases of dentigerous cyst (DC, n = 7), odontogenic keratocyst-parakeratinized type (OKC-P, n = 8), orthokeratinized type (OKC-O, n = 9), ameloblastic fibroma/fibro-odontoma (AMF/O, n = 11), unicystic ameloblastoma (UAM, n = 6), and solid ameloblastoma (SAM, n = 7). Cases of oral squamous cell carcinoma (SCC, n = 5) served as control. Myofibroblast frequency was assessed as the number of alpha smooth muscle actin (alphaSMA)-positive stromal cells in 10 high-power fields, presented as the mean number of positive cells per field. Counts showed that mean number of positive cells in OKC-P (25.7+/-11.4) was significantly higher than in DC (8.7+/-11.6) (p = 0.024) and in SAM (29+/-7) it was significantly higher than in UAM (14.9+/-4.9) and AMF/O (5.6+/-7.5) (p < 0.001). Counts in OKC-P and SAM were not significantly different from SCC (21.3+/-5.3) (p > 0.05). The high frequency of stromal MF in known aggressive odontogenic lesions, such as OKC-P and SAM, implies that MF can contribute to the biological behavior of these odontogenic lesions. Various pharmacological agents that control stromal MF can be used as an aid to reduce extensive and mutilating surgery in cases of remarkably aggressive odontogenic lesions.
Collapse
Affiliation(s)
- Marilena Vered
- Department of Oral Pathology and Oral Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | | | |
Collapse
|
48
|
Rio MC. From a unique cell to metastasis is a long way to go: clues to stromelysin-3 participation. Biochimie 2005; 87:299-306. [PMID: 15781316 DOI: 10.1016/j.biochi.2004.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 11/23/2004] [Indexed: 01/14/2023]
Abstract
Stromelysin-3 (ST3) overexpression is associated with poor patient clinical outcome in numerous carcinomas. The ST3 is expressed by peritumoral fibroblast-like cells. Review of the literature shows that ST3 is an active partner of cancer cells along the whole natural cancer history, and is essential for optimal tumor development as it reduces death of cancer cells invading adjacent connective tissues at the primary tumor site. Paradoxically, ST3 lowers metastasis development in vivo in mice. However, this beneficial effect does not counterbalance the deleterious anti-apoptotic function of ST3.
Collapse
Affiliation(s)
- M C Rio
- Institut de génétique et de biologie moléculaire et cellulaire (IGBMC), CNRS/Inserm U184/ULP BP 163, 67404 Illkirch cedex, CU de Strasbourg, France.
| |
Collapse
|
49
|
Mazzocca A, Coppari R, De Franco R, Cho JY, Libermann TA, Pinzani M, Toker A. A secreted form of ADAM9 promotes carcinoma invasion through tumor-stromal interactions. Cancer Res 2005; 65:4728-38. [PMID: 15930291 DOI: 10.1158/0008-5472.can-04-4449] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor cell invasion is a process regulated by integrins, matrix-degrading enzymes, and interactions with host tissue stromal cells. The ADAM family of proteins plays an important role in modulating various cellular responses. Here, we show that an alternatively spliced variant of ADAM9 is secreted by hepatic stellate cells and promotes carcinoma invasion. ADAM9-S induced a highly invasive phenotype in several human tumor cell lines in Matrigel assays, and the protease activity of ADAM9-S was required for invasion. ADAM9-S binds directly to alpha6beta4 and alpha2beta1 integrins on the surface of colon carcinoma cells through the disintegrin domain. ADAM9-S was also able to cleave laminin and promote invasion. Analysis of human liver metastases revealed that ADAM9 is expressed by stromal liver myofibroblasts, particularly those that are localized within the tumor stroma at the invasive front. These results emphasize the importance of tumor-stromal interactions in invasion and suggest that ADAM9-S can be an important determinant in the ability of cancer cells to invade and colonize the liver.
Collapse
Affiliation(s)
- Antonio Mazzocca
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Migration, proliferation and invasive growth of myofibroblasts are key cellular events during formation of granulation tissue in situations of wound healing, arteriosclerosis and tumor growth. To study the invasive phenotype of myofibroblasts, we established an assay where arterial tissue from chicken embryos was embedded in fibrin gels and stimulated with growth factors. Addition of serum, PDGF-BB and FGF-2, but not VEGF-A, resulted in an outgrowth of cellular sprouts with a pattern that was similar to the organization of cells invading a provisional matrix in an in vivo model of wound healing using the chicken chorioallantoic membrane. Sprouting cells were defined as myofibroblasts based on being alpha-smooth muscle actin-positive but desmin-negative. There was no contribution of endothelial cells in outgrowing sprouts. The acquired myofibroblastic phenotype was stable since sprout-derived cells resumed sprouting in a growth factor-independent manner when re-embedded as spheroids in a fibrin matrix. Invasive growth and sprouting of vascular smooth muscle cells was not limited to chicken cells since a similar response was seen when spheroids composed of purified primary human aortic smooth muscle cells were embedded in fibrin. Finally, a technique for flat visualization of the three-dimensional sprouting and a quantification method is described. This ex vivo model allows quantitative analysis of invasive growth and differentiation of vascular smooth muscle cells and fibroblasts into myofibroblasts.
Collapse
Affiliation(s)
- Witold W Kilarski
- Department of Genetics and Pathology, Vascular Biology Unit, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|