1
|
K N, P J, Nalla SV, Dubey I, Kushwaha S. Arsenic-Induced Thyroid Hormonal Alterations and Their Putative Influence on Ovarian Follicles in Balb/c Mice. Biol Trace Elem Res 2024; 202:4087-4100. [PMID: 38093019 DOI: 10.1007/s12011-023-03988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/28/2023] [Indexed: 07/18/2024]
Abstract
Thyroid issues are common among women in their reproductive years, and women with thyroid dysfunction often encounter challenges with fertility. Arsenic is known for its toxic effects on the thyroid and ovaries, investigated independently. However, there is no known study directly or indirectly addressing the association between arsenic, thyroid function, and ovarian reserve. This study aims to investigate the effect of arsenic on thyroid function and its possible implications on ovarian follicular reserve. Female Balb/c mice were given sodium arsenite (0.2 ppm, 2 ppm, and 20 ppm) via drinking water for 30 days. Findings showed that arsenic decreased thyroid hormone levels (fT3 and fT4) while increasing TSH levels, which might have led to elevated levels of FSH and LH. Furthermore, arsenic treatment not only decreased thyroid follicle sizes but also altered the ovarian follicular count. The finding demonstrates that arsenic significantly reduced the expression of LAMP1, a lysosomal marker protein. This reduction leads to increased lysosomal permeability in the thyroid, resulting in a significant release of cathepsin B. These changes led to hypothyroidism, which might indirectly affect the ovaries. Also, the elevated levels of growth differentiation factor-8 in arsenic-treated ovaries indicate impaired folliculogenesis and ovulation. Furthermore, arsenic significantly increased the expressions of pAkt and pFoxo3a, implying that arsenic accelerated the activation of the primordial follicular pools. In conclusion, arsenic disrupts lysosomal stabilization, potentially leading to a decline in circulating fT3 and fT4 levels. This disturbance could, in turn, affect the estrous cycle and may alter the pattern of follicular development.
Collapse
Affiliation(s)
- Nandheeswari K
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Jayapradha P
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Sree Vaishnavi Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Itishree Dubey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
2
|
Doğru AG, Rehders M, Brix K. Investigations on Primary Cilia of Nthy-ori 3-1 Cells upon Cysteine Cathepsin Inhibition or Thyrotropin Stimulation. Int J Mol Sci 2023; 24:ijms24119292. [PMID: 37298246 DOI: 10.3390/ijms24119292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
In the thyroid gland, cysteine cathepsins are secreted upon thyrotropin stimulation for thyroglobulin processing, and they are present at the primary cilia of thyroid epithelial cells. Treatment with protease inhibitors resulted in the loss of cilia from rodent thyrocytes and caused redistribution of the thyroid co-regulating G protein-coupled receptor Taar1 to the endoplasmic reticulum. These findings suggest that ciliary cysteine cathepsins are important to maintain sensory and signaling properties for the proper regulation and homeostasis of thyroid follicles. Therefore, it is important to better understand how cilia structure and frequencies are maintained in human thyroid epithelial cells. Hence, we aimed to investigate the potential role of cysteine cathepsins for the maintenance of primary cilia in the normal human Nthy-ori 3-1 thyroid cell line. This was approached by determining cilia lengths and frequencies in cysteine peptidase inhibition conditions in Nthy-ori 3-1 cell cultures. Cilia lengths were shortened upon 5 h of cysteine peptidase inhibition with cell-impermeable E64. Likewise, cilia lengths and frequencies were decreased upon additional overnight treatment with the cysteine peptidase-targeting, activity-based probe DCG-04. The results suggest that cysteine cathepsin activity is required for the maintenance of the cellular protrusions not only in rodents, but also in human thyrocytes. Hence, thyrotropin stimulation was used to simulate physiological conditions that eventually lead to cathepsin-mediated thyroglobulin proteolysis, which is initiated in the thyroid follicle lumen. Immunoblotting revealed that thyrotropin stimulation conditions result in the secretion of little procathepsin L and some pro- and mature cathepsin S but no cathepsin B from the human Nthy-ori 3-1 cells. Unexpectedly, however, 24 h incubation periods with thyrotropin shortened the cilia although higher amounts of cysteine cathepsins were present in the conditioned media. These data point to the necessity of further studies to delineate which of the cysteine cathepsins plays the most prominent role in cilia shortening and/or elongation. Collectively, the results of our study provide corroboration for the hypothesis of thyroid autoregulation by local mechanisms that our group previously proposed.
Collapse
Affiliation(s)
- Alara Gaye Doğru
- School of Science, Constructor University, Campus Ring 1, D-28759 Bremen, Germany
| | - Maren Rehders
- School of Science, Constructor University, Campus Ring 1, D-28759 Bremen, Germany
| | - Klaudia Brix
- School of Science, Constructor University, Campus Ring 1, D-28759 Bremen, Germany
| |
Collapse
|
3
|
Jing L, Zhang Q. Intrathyroidal feedforward and feedback network regulating thyroid hormone synthesis and secretion. Front Endocrinol (Lausanne) 2022; 13:992883. [PMID: 36187113 PMCID: PMC9519864 DOI: 10.3389/fendo.2022.992883] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones (THs), including T4 and T3, are produced and released by the thyroid gland under the stimulation of thyroid-stimulating hormone (TSH). The homeostasis of THs is regulated via the coordination of the hypothalamic-pituitary-thyroid axis, plasma binding proteins, and local metabolism in tissues. TH synthesis and secretion in the thyrocytes-containing thyroid follicles are exquisitely regulated by an elaborate molecular network comprising enzymes, transporters, signal transduction machineries, and transcription factors. In this article, we synthesized the relevant literature, organized and dissected the complex intrathyroidal regulatory network into structures amenable to functional interpretation and systems-level modeling. Multiple intertwined feedforward and feedback motifs were identified and described, centering around the transcriptional and posttranslational regulations involved in TH synthesis and secretion, including those underpinning the Wolff-Chaikoff and Plummer effects and thyroglobulin-mediated feedback regulation. A more thorough characterization of the intrathyroidal network from a systems biology perspective, including its topology, constituent network motifs, and nonlinear quantitative properties, can help us to better understand and predict the thyroidal dynamics in response to physiological signals, therapeutic interventions, and environmental disruptions.
Collapse
Affiliation(s)
- Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Venugopalan V, Al-Hashimi A, Weber J, Rehders M, Qatato M, Wirth EK, Schweizer U, Heuer H, Verrey F, Brix K. The Amino Acid Transporter Mct10/Tat1 Is Important to Maintain the TSH Receptor at Its Canonical Basolateral Localization and Assures Regular Turnover of Thyroid Follicle Cells in Male Mice. Int J Mol Sci 2021; 22:5776. [PMID: 34071318 PMCID: PMC8198332 DOI: 10.3390/ijms22115776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/03/2022] Open
Abstract
Cathepsin K-mediated thyroglobulin proteolysis contributes to thyroid hormone (TH) liberation, while TH transporters like Mct8 and Mct10 ensure TH release from thyroid follicles into the blood circulation. Thus, thyroid stimulating hormone (TSH) released upon TH demand binds to TSH receptors of thyrocytes, where it triggers Gαq-mediated short-term effects like cathepsin-mediated thyroglobulin utilization, and Gαs-mediated long-term signaling responses like thyroglobulin biosynthesis and thyrocyte proliferation. As reported recently, mice lacking Mct8 and Mct10 on a cathepsin K-deficient background exhibit excessive thyroglobulin proteolysis hinting towards altered TSH receptor signaling. Indeed, a combination of canonical basolateral and non-canonical vesicular TSH receptor localization was observed in Ctsk-/-/Mct8-/y/Mct10-/- mice, which implies prolonged Gαs-mediated signaling since endo-lysosomal down-regulation of the TSH receptor was not detected. Inspection of single knockout genotypes revealed that the TSH receptor localizes basolaterally in Ctsk-/- and Mct8-/y mice, whereas its localization is restricted to vesicles in Mct10-/- thyrocytes. The additional lack of cathepsin K reverses this effect, because Ctsk-/-/Mct10-/- mice display TSH receptors basolaterally, thereby indicating that cathepsin K and Mct10 contribute to TSH receptor homeostasis by maintaining its canonical localization in thyrocytes. Moreover, Mct10-/- mice displayed reduced numbers of dead thyrocytes, while their thyroid gland morphology was comparable to wild-type controls. In contrast, Mct8-/y, Mct8-/y/Mct10-/-, and Ctsk-/-/Mct8-/y/Mct10-/- mice showed enlarged thyroid follicles and increased cell death, indicating that Mct8 deficiency results in altered thyroid morphology. We conclude that vesicular TSH receptor localization does not result in different thyroid tissue architecture; however, Mct10 deficiency possibly modulates TSH receptor signaling for regulating thyrocyte survival.
Collapse
Affiliation(s)
- Vaishnavi Venugopalan
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; (V.V.); (A.A.-H.); (J.W.); (M.R.); (M.Q.)
| | - Alaa Al-Hashimi
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; (V.V.); (A.A.-H.); (J.W.); (M.R.); (M.Q.)
| | - Jonas Weber
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; (V.V.); (A.A.-H.); (J.W.); (M.R.); (M.Q.)
| | - Maren Rehders
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; (V.V.); (A.A.-H.); (J.W.); (M.R.); (M.Q.)
| | - Maria Qatato
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; (V.V.); (A.A.-H.); (J.W.); (M.R.); (M.Q.)
| | - Eva K. Wirth
- Berlin Institute of Health, Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Hessische Str. 3-4, D-10115 Berlin, Germany;
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Nußallee 11, D-53115 Bonn, Germany;
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Universitätsklinikum Essen, Hufelandstr. 55, D-45147 Essen, Germany;
| | - François Verrey
- Physiologisches Institut, Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland;
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; (V.V.); (A.A.-H.); (J.W.); (M.R.); (M.Q.)
| |
Collapse
|
5
|
Citterio CE, Rivolta CM, Targovnik HM. Structure and genetic variants of thyroglobulin: Pathophysiological implications. Mol Cell Endocrinol 2021; 528:111227. [PMID: 33689781 DOI: 10.1016/j.mce.2021.111227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Thyroglobulin (TG) plays a main role in the biosynthesis of thyroid hormones (TH), and, thus, it is involved in a wide range of vital functions throughout the life cycle of all vertebrates. Deficiency of TH production due to TG genetic variants causes congenital hypothyroidism (CH), with devastating consequences such as intellectual disability and impaired growth if untreated. To this day, 229 variations in the human TG gene have been identified while the 3D structure of TG has recently appeared. Although TG deficiency is thought to be of autosomal recessive inheritance, the introduction of massive sequencing platforms led to the identification of a variety of monoallelic TG variants (combined with mutations in other thyroid gene products) opening new questions regarding the possibility of oligogenic inheritance of the disease. In this review we discuss remarkable advances in the understanding of the TG architecture and the pathophysiology of CH associated with TG defects, providing new insights for the management of congenital disorders as well as counseling benefits for families with a history of TG abnormalities. Moreover, we summarize relevant aspects of TH synthesis within TG and offer an updated analysis of animal and cellular models of TG deficiency for pathophysiological studies of thyroid dyshormonogenesis while highlighting perspectives for new investigations. All in all, even though there has been sustained progress in understanding the role of TG in thyroid pathophysiology during the past 50 years, functional characterization of TG variants remains an important area of study for future advancement in the field.
Collapse
Affiliation(s)
- Cintia E Citterio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Venugopalan V, Al-Hashimi A, Rehders M, Golchert J, Reinecke V, Homuth G, Völker U, Manirajah M, Touzani A, Weber J, Bogyo MS, Verrey F, Wirth EK, Schweizer U, Heuer H, Kirstein J, Brix K. The Thyroid Hormone Transporter Mct8 Restricts Cathepsin-Mediated Thyroglobulin Processing in Male Mice through Thyroid Auto-Regulatory Mechanisms That Encompass Autophagy. Int J Mol Sci 2021; 22:ijms22010462. [PMID: 33466458 PMCID: PMC7796480 DOI: 10.3390/ijms22010462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
The thyroid gland is both a thyroid hormone (TH) generating as well as a TH responsive organ. It is hence crucial that cathepsin-mediated proteolytic cleavage of the precursor thyroglobulin is regulated and integrated with the subsequent export of TH into the blood circulation, which is enabled by TH transporters such as monocarboxylate transporters Mct8 and Mct10. Previously, we showed that cathepsin K-deficient mice exhibit the phenomenon of functional compensation through cathepsin L upregulation, which is independent of the canonical hypothalamus-pituitary-thyroid axis, thus, due to auto-regulation. Since these animals also feature enhanced Mct8 expression, we aimed to understand if TH transporters are part of the thyroid auto-regulatory mechanisms. Therefore, we analyzed phenotypic differences in thyroid function arising from combined cathepsin K and TH transporter deficiencies, i.e., in Ctsk-/-/Mct10-/-, Ctsk-/-/Mct8-/y, and Ctsk-/-/Mct8-/y/Mct10-/-. Despite the impaired TH export, thyroglobulin degradation was enhanced in the mice lacking Mct8, particularly in the triple-deficient genotype, due to increased cathepsin amounts and enhanced cysteine peptidase activities, leading to ongoing thyroglobulin proteolysis for TH liberation, eventually causing self-thyrotoxic thyroid states. The increased cathepsin amounts were a consequence of autophagy-mediated lysosomal biogenesis that is possibly triggered due to the stress accompanying intrathyroidal TH accumulation, in particular in the Ctsk-/-/Mct8-/y/Mct10-/- animals. Collectively, our data points to the notion that the absence of cathepsin K and Mct8 leads to excessive thyroglobulin degradation and TH liberation in a non-classical pathway of thyroid auto-regulation.
Collapse
Affiliation(s)
- Vaishnavi Venugopalan
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
| | - Alaa Al-Hashimi
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
| | - Maren Rehders
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
| | - Janine Golchert
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany; (J.G.); (V.R.); (G.H.); (U.V.)
| | - Vivien Reinecke
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany; (J.G.); (V.R.); (G.H.); (U.V.)
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany; (J.G.); (V.R.); (G.H.); (U.V.)
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany; (J.G.); (V.R.); (G.H.); (U.V.)
| | - Mythili Manirajah
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
| | - Adam Touzani
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
| | - Jonas Weber
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
| | - Matthew S. Bogyo
- Department of Pathology, School of Medicine, Stanford University, 300 Pasteur Dr., Stanford, CA 94305-5324, USA;
| | - Francois Verrey
- Physiologisches Institut, Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland;
| | - Eva K. Wirth
- Berlin Institute of Health, Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Hessische Str. 3-4, Germany and DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, D-10115 Berlin, Germany;
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Universität Bonn, Nußallee 11, D-53115 Bonn, Germany;
| | - Heike Heuer
- Klinik für Endokrinologie, Diabetologie und Stoffwechsel, Universitätsklinikum Essen (AöR), Universität Duisburg-Essen, Hufelandstr. 55, D-45147 Essen, Germany;
| | - Janine Kirstein
- Fachbereich 2 Biologie/Chemie, Faculty of Cell Biology, Universität Bremen, Leobener Straße 5, D-28359 Bremen, Germany;
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
- Correspondence: ; Tel.: +49-421-200-3246
| |
Collapse
|
7
|
Procathepsin V Is Secreted in a TSH Regulated Manner from Human Thyroid Epithelial Cells and Is Accessible to an Activity-Based Probe. Int J Mol Sci 2020; 21:ijms21239140. [PMID: 33266306 PMCID: PMC7731157 DOI: 10.3390/ijms21239140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022] Open
Abstract
The significance of cysteine cathepsins for the liberation of thyroid hormones from the precursor thyroglobulin was previously shown by in vivo and in vitro studies. Cathepsin L is most important for thyroglobulin processing in mice. The present study aims at specifying the possible contribution of its closest relative, cysteine cathepsin L2/V, to thyroid function. Immunofluorescence analysis on normal human thyroid tissue revealed its predominant localization at the apical plasma membrane of thyrocytes and within the follicle lumen, indicating the secretion of cathepsin V and extracellular tasks rather than its acting within endo-lysosomes. To explore the trafficking pathways of cathepsin V in more detail, a chimeric protein consisting of human cathepsin V tagged with green fluorescent protein (GFP) was stably expressed in the Nthy-ori 3-1 thyroid epithelial cell line. Colocalization studies with compartment-specific markers and analyses of post-translational modifications revealed that the chimeric protein was sorted into the lumen of the endoplasmic reticulum and subsequently transported to the Golgi apparatus, while being N-glycosylated. Immunoblotting showed that the chimeric protein reached endo-lysosomes and it became secreted from the transduced cells. Astonishingly, thyroid stimulating hormone (TSH)-induced secretion of GFP-tagged cathepsin V occurred as the proform, suggesting that TSH upregulates its transport to the plasma membrane before it reaches endo-lysosomes for maturation. The proform of cathepsin V was found to be reactive with the activity-based probe DCG-04, suggesting that it possesses catalytic activity. We propose that TSH-stimulated secretion of procathepsin V is the default pathway in the thyroid to enable its contribution to thyroglobulin processing by extracellular means.
Collapse
|
8
|
Brix K, Szumska J, Weber J, Qatato M, Venugopalan V, Al-Hashimi A, Rehders M. Auto-Regulation of the Thyroid Gland Beyond Classical Pathways. Exp Clin Endocrinol Diabetes 2020; 128:437-445. [PMID: 32074633 DOI: 10.1055/a-1080-2969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This mini-review asks how self-regulation of the thyroid gland is realized at the cellular and molecular levels by canonical and non-canonical means. Canonical pathways of thyroid regulation comprise thyroid stimulating hormone-triggered receptor signaling. As part of non-canonical regulation, we hypothesized an interplay between protease-mediated thyroglobulin processing and thyroid hormone release into the circulation by means of thyroid hormone transporters like Mct8. We proposed a sensing mechanism by different thyroid hormone transporters, present in specific subcellular locations of thyroid epithelial cells, selectively monitoring individual steps of thyroglobulin processing, and thus, the cellular thyroid hormone status. Indeed, we found that proteases and thyroid hormone transporters are functionally inter-connected, however, in a counter-intuitive manner fostering self-thyrotoxicity in particular in Mct8- and/or Mct10-deficient mice. Furthermore, the possible role of the G protein-coupled receptor Taar1 is discussed, because we detected Taar1 at cilia of the apical plasma membrane of thyrocytes in vitro and in situ. Eventually, through pheno-typing Taar1-deficient mice, we identified a co-regulatory role of Taar1 and the thyroid stimulating hormone receptors. Recently, we showed that inhibition of thyroglobulin-processing enzymes results in disappearance of cilia from the apical pole of thyrocytes, while Taar1 is re-located to the endoplasmic reticulum. This pathway features a connection between thyrotropin-stimulated secretion of proteases into the thyroid follicle lumen and substrate-mediated self-assisted control of initially peri-cellular thyroglobulin processing, before its reinternalization by endocytosis, followed by extensive endo-lysosomal liberation of thyroid hormones, which are then released from thyroid follicles by means of thyroid hormone transporters.
Collapse
Affiliation(s)
- Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Joanna Szumska
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany.,Present address of JS is Department of Internal Medicine III, Cardiology, Angiology and Respiratory Medicine, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Jonas Weber
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Maria Qatato
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Vaishnavi Venugopalan
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Alaa Al-Hashimi
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Maren Rehders
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
9
|
Targovnik HM, Scheps KG, Rivolta CM. Defects in protein folding in congenital hypothyroidism. Mol Cell Endocrinol 2020; 501:110638. [PMID: 31751626 DOI: 10.1016/j.mce.2019.110638] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Primary congenital hypothyroidism (CH) is the most common endocrine disease in children and one of the most common preventable causes of both cognitive and motor deficits. CH is a heterogeneous group of thyroid disorders in which inadequate production of thyroid hormone occurs due to defects in proteins involved in the gland organogenesis (dysembryogenesis) or in multiple steps of thyroid hormone biosynthesis (dyshormonogenesis). Dysembryogenesis is associated with genes responsible for the development or growth of thyroid cells: such as NKX2-1, FOXE1, PAX8, NKX2-5, TSHR, TBX1, CDCA8, HOXD3 and HOXB3 resulting in agenesis, hypoplasia or ectopia of thyroid gland. Nevertheless, the etiology of the dysembryogenesis remains unknown for most cases. In contrast, the majority of patients with dyshormonogenesis has been linked to mutations in the SLC5A5, SLC26A4, SLC26A7, TPO, DUOX1, DUOX2, DUOXA1, DUOXA2, IYD or TG genes, which usually originate goiter. About 800 genetic mutations have been reported to cause CH in patients so far, including missense, nonsense, in-frame deletion and splice-site variations. Many of these mutations are implicated in specific domains, cysteine residues or glycosylation sites, affecting the maturation of nascent proteins that go through the secretory pathway. Consequently, misfolded proteins are permanently entrapped in the endoplasmic reticulum (ER) and are translocated to the cytosol for proteasomal degradation by the ER-associated degradation (ERAD) machinery. Despite of all these remarkable advances in the field of the CH pathogenesis, several points on the development of this disease remain to be elucidated. The continuous study of thyroid gene mutations with the application of new technologies will be useful for the understanding of the intrinsic mechanisms related to CH. In this review we summarize the present status of knowledge on the disorders in the protein folding caused by thyroid genes mutations.
Collapse
Affiliation(s)
- Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| | - Karen G Scheps
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| |
Collapse
|
10
|
Szumska J, Batool Z, Al-Hashimi A, Venugopalan V, Skripnik V, Schaschke N, Bogyo M, Brix K. Treatment of rat thyrocytes in vitro with cathepsin B and L inhibitors results in disruption of primary cilia leading to redistribution of the trace amine associated receptor 1 to the endoplasmic reticulum. Biochimie 2019; 166:270-285. [PMID: 31302164 DOI: 10.1016/j.biochi.2019.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
Taar1 is a G protein-coupled receptor (GPCR) confined to primary cilia of rodent thyroid epithelial cells. Taar1-deficient mouse thyroid follicles feature luminal accumulation of thyroglobulin suggesting that Taar1 acts as a regulator of extra- and pericellular thyroglobulin processing, which is mediated by cysteine cathepsin proteases present at the apical plasma membrane of rodent thyrocytes. Here, by immunostaining and confocal laser scanning microscopy, we demonstrated co-localization of cathepsin L, but only little cathepsin B, with Taar1 at primary cilia of rat thyrocytes, the FRT cells. Because proteases were shown to affect half-lives of certain receptors, we determined the effect of cathepsin activity inhibition on sub-cellular localization of Taar1 in FRT cells, whereupon Taar1 localization altered such that it was retained in compartments of the secretory pathway. Since the same effect on Taar1 localization was observed in both cathepsin B and L inhibitor-treated cells, the interaction of cathepsin activities and sub-cellular localization of Taar1 was thought to be indirect. Indeed, we observed that cathepsin inhibition resulted in a lack of primary cilia from FRT cells. Next, we proved that primary cilia are a necessity for Taar1 trafficking to reach the plasma membrane of FRT cells, since the disruption of primary cilia by treatment with β-cyclodextrin resulted in Taar1 retention in compartments of the secretory pathway. Furthermore, in less well-polarized rat thyrocytes, namely in FRTL-5 cells lacking primary cilia, Taar1 was mainly confined to the compartments of the secretory pathway. We conclude that Taar1 localization in polarized thyroid epithelial cells requires the presence of primary cilia, which is dependent on the proteolytic activity of cysteine cathepsins B and L.
Collapse
Affiliation(s)
- Joanna Szumska
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Zaina Batool
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Alaa Al-Hashimi
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Vaishnavi Venugopalan
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Vladislav Skripnik
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
11
|
Abstract
In humans, the thyroid hormones T3 and T4 are synthesized in the thyroid gland in a process that crucially involves the iodoglycoprotein thyroglobulin. The overall structure of thyroglobulin is conserved in all vertebrates. Upon thyroglobulin delivery from thyrocytes to the follicular lumen of the thyroid gland via the secretory pathway, multiple tyrosine residues can become iodinated to form mono-iodotyrosine (MIT) and/or di-iodotyrosine (DIT); however, selective tyrosine residues lead to preferential formation of T4 and T3 at distinct sites. T4 formation involves oxidative coupling between two DIT side chains, and de novo T3 formation involves coupling between an MIT donor and a DIT acceptor. Thyroid hormone synthesis is stimulated by TSH activating its receptor (TSHR), which upregulates the activity of many thyroid gene products involved in hormonogenesis. Additionally, TSH regulates post-translational changes in thyroglobulin that selectively enhance its capacity for T3 formation - this process is important in iodide deficiency and in Graves disease. 167 different mutations, many of which are newly discovered, are now known to exist in TG (encoding human thyroglobulin) that can lead to defective thyroid hormone synthesis, resulting in congenital hypothyroidism.
Collapse
Affiliation(s)
- Cintia E Citterio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología/Cátedra de Genética, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología/Cátedra de Genética, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Qatato M, Szumska J, Skripnik V, Rijntjes E, Köhrle J, Brix K. Canonical TSH Regulation of Cathepsin-Mediated Thyroglobulin Processing in the Thyroid Gland of Male Mice Requires Taar1 Expression. Front Pharmacol 2018; 9:221. [PMID: 29615904 PMCID: PMC5870035 DOI: 10.3389/fphar.2018.00221] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/27/2018] [Indexed: 12/26/2022] Open
Abstract
Trace amine-associated receptor 1 (Taar1) has been suggested as putative receptor of thyronamines. These are aminergic messengers with potential metabolic and neurological effects countering their contingent precursors, the thyroid hormones (THs). Recently, we found Taar1 to be localized at the primary cilia of rodent thyroid epithelial cells in vitro and in situ. Thus, Taar1 is present in a location of thyroid follicles where it might be involved in regulation of cathepsin-mediated proteolytic processing of thyroglobulin, and consequently TH synthesis. In this study, taar1 knock-out male mice (taar1-/-) were used to determine whether Taar1 function would entail differential alterations in thyroid states of young and adult animals. Analyses of blood serum revealed unaltered T4 and T3 concentrations and unaltered T3-over-T4 ratios upon Taar1 deficiency accompanied, however, by elevated TSH concentrations. Interestingly, TSH receptors, typically localized at the basolateral plasma membrane domain of wild type controls, were located at vesicular membranes in thyrocytes of taar1-/- mice. In addition, determination of epithelial extensions in taar1-/- thyroids showed prismatic cells, which might indicate activation states higher than in the wild type. While gross degradation of thyroglobulin was comparable to controls, deregulated thyroglobulin turnover in taar1-/- mice was indicated by luminal accumulation of covalently cross-linked thyroglobulin storage forms. These findings were in line with decreased proteolytic activities of thyroglobulin-solubilizing and -processing proteases, due to upregulated cystatins acting as their endogenous inhibitors in situ. In conclusion, Taar1-deficient mice are hyperthyrotropinemic in the absence of respective signs of primary hypothyroidism such as changes in body weight or TH concentrations in blood serum. Thyrocytes of taar1-/- mice are characterized by non-canonical TSH receptor localization in intracellular compartments, which is accompanied by altered thyroglobulin turnover due to a disbalanced proteolytic network. These finding are of significance considering the rising popularity of using TAAR1 agonists or antagonists as neuromodulating pharmacological drugs. Our study highlights the importance of further evaluating potential off-target effects regarding TSH receptor mislocalization and the thyroglobulin processing machinery, which may not only affect the TH-generating thyroid gland, but may emanate to other TH target organs like the CNS dependent on their proper supply.
Collapse
Affiliation(s)
- Maria Qatato
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Joanna Szumska
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Vladislav Skripnik
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin-Humboldt-Universität zu Berlin-Berlin Institute of Health, Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin-Humboldt-Universität zu Berlin-Berlin Institute of Health, Berlin, Germany
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
13
|
Host Cell Proteases: Cathepsins. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7123490 DOI: 10.1007/978-3-319-75474-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cathepsins are proteolytic enzymes with a broad spectrum of substrates. They are known to reside within endo-lysosomes where they acquire optimal conditions for proteolytic activity and substrate cleavage. However, cathepsins have been detected in locations other than the canonical compartments of the endocytotic pathway. They are often secreted from cells in either proteolytically inactive proform or as mature and active enzyme; this may happen in both physiological and pathological conditions. Moreover, cytosolic and nuclear forms of cathepsins have been described and are currently an emerging field of research aiming at understanding their functions in such unexpected cellular locations. This chapter summarizes the canonical pathways of biosynthesis and transport of cathepsins in healthy cells. We further describe how cathepsins can reach unexpected locations such as the extracellular space or the cytosol and the nuclear matrix. No matter where viruses and cathepsins encounter, several outcomes can be perceived. Thus, scenarios are discussed on how cathepsins may support virus entry into host cells, involve in viral fusion factor and polyprotein processing in different host cell compartments, or help in packaging of viral particles during maturation. It is of note to mention that this review is not meant to comprehensively cover the present literature on viruses encountering cathepsins but rather illustrates, on some representative examples, the possible roles of cathepsins in replication of viruses and in the course of disease.
Collapse
|
14
|
Weber J, McInnes J, Kizilirmak C, Rehders M, Qatato M, Wirth EK, Schweizer U, Verrey F, Heuer H, Brix K. Interdependence of thyroglobulin processing and thyroid hormone export in the mouse thyroid gland. Eur J Cell Biol 2017; 96:440-456. [PMID: 28274595 DOI: 10.1016/j.ejcb.2017.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 02/08/2023] Open
Abstract
Thyroid hormone (TH) target cells need to adopt mechanisms to maintain sufficient levels of TH to ensure regular functions. This includes thyroid epithelial cells, which generate TH in addition to being TH-responsive. However, the cellular and molecular pathways underlying thyroid auto-regulation are insufficiently understood. In order to investigate whether thyroglobulin processing and TH export are sensed by thyrocytes, we inactivated thyroglobulin-processing cathepsins and TH-exporting monocarboxylate transporters (Mct) in the mouse. The states of thyroglobulin storage and its protease-mediated processing and degradation were related to the levels of TH transporter molecules by immunoblotting and immunofluorescence microscopy. Thyroid epithelial cells of cathepsin-deficient mice showed increased Mct8 protein levels at the basolateral plasma membrane domains when compared to wild type controls. While the protein amounts of the thyroglobulin-degrading cathepsin D remained largely unaffected by Mct8 or Mct10 single-deficiencies, a significant increase in the amounts of the thyroglobulin-processing cathepsins B and L was detectable in particular in Mct8/Mct10 double deficiency. In addition, it was observed that larger endo-lysosomes containing cathepsins B, D, and L were typical for Mct8- and/or Mct10-deficient mouse thyroid epithelial cells. These data support the notion of a crosstalk between TH transporters and thyroglobulin-processing proteases in thyroid epithelial cells. We conclude that a defect in exporting thyroxine from thyroid follicles feeds back positively on its cathepsin-mediated proteolytic liberation from the precursor thyroglobulin, thereby adding to the development of auto-thyrotoxic states in Mct8 and/or Mct10 deficiencies. The data suggest TH sensing molecules within thyrocytes that contribute to thyroid auto-regulation.
Collapse
Affiliation(s)
- Jonas Weber
- Jacobs University Bremen, Department of Life Sciences and Chemistry, Campus Ring 1, D-28759 Bremen, Germany
| | - Joseph McInnes
- Jacobs University Bremen, Department of Life Sciences and Chemistry, Campus Ring 1, D-28759 Bremen, Germany
| | - Cise Kizilirmak
- Jacobs University Bremen, Department of Life Sciences and Chemistry, Campus Ring 1, D-28759 Bremen, Germany
| | - Maren Rehders
- Jacobs University Bremen, Department of Life Sciences and Chemistry, Campus Ring 1, D-28759 Bremen, Germany
| | - Maria Qatato
- Jacobs University Bremen, Department of Life Sciences and Chemistry, Campus Ring 1, D-28759 Bremen, Germany
| | - Eva K Wirth
- Charité-Universitätsmedizin Berlin, Institut für Experimentelle Endokrinologie, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Ulrich Schweizer
- Universität Bonn, Institut für Biochemie und Molekularbiologie, Nußallee 11, D-53115 Bonn, Germany
| | - Francois Verrey
- Universität Zürich, Physiologisches Institut, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Heike Heuer
- IUF - Leibniz Institut für umweltmedizinische Forschung, Auf'm Hennekamp 50, D-40225 Düsseldorf, Germany
| | - Klaudia Brix
- Jacobs University Bremen, Department of Life Sciences and Chemistry, Campus Ring 1, D-28759 Bremen, Germany.
| |
Collapse
|
15
|
Szumska J, Qatato M, Rehders M, Führer D, Biebermann H, Grandy DK, Köhrle J, Brix K. Trace Amine-Associated Receptor 1 Localization at the Apical Plasma Membrane Domain of Fisher Rat Thyroid Epithelial Cells Is Confined to Cilia. Eur Thyroid J 2015; 4:30-41. [PMID: 26601071 PMCID: PMC4640295 DOI: 10.1159/000434717] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/02/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The trace amine-associated receptor 1 (Taar1) is one member of the Taar family of G-protein-coupled receptors (GPCR) accepting various biogenic amines as ligands. It has been proposed that Taar1 mediates rapid, membrane-initiated effects of thyronamines, the endogenous decarboxylated and deiodinated relatives of the classical thyroid hormones T4 and T3. OBJECTIVES Although the physiological actions of thyronamines in general and 3-iodothyronamine (T1AM) in particular are incompletely understood, studies published to date suggest that synthetic T1AM-activated Taar1 signaling antagonizes thyromimetic effects exerted by T3. However, the location of Taar1 is currently unknown. METHODS To fill this gap in our knowledge we employed immunofluorescence microscopy and a polyclonal antibody to detect Taar1 protein expression in thyroid tissue from Fisher rats, wild-type and taar1-deficient mice, and in the polarized FRT cells. RESULTS With this approach we found that Taar1 is expressed in the membranes of subcellular compartments of the secretory pathway and on the apical plasma membrane of FRT cells. Three-dimensional analyses further revealed Taar1 immunoreactivity in cilial extensions of postconfluent FRT cell cultures that had formed follicle-like structures. CONCLUSIONS The results suggest Taar1 transport along the secretory pathway and its accumulation in the primary cilium of thyrocytes. These findings are of significance considering the increasing interest in the role of cilia in harboring functional GPCR. We hypothesize that thyronamines can reach and activate Taar1 in thyroid follicular epithelia by acting from within the thyroid follicle lumen, their potential site of synthesis, as part of a nonclassical mechanism of thyroid autoregulation.
Collapse
Affiliation(s)
- Joanna Szumska
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Maria Qatato
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Maren Rehders
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Dagmar Führer
- Department of Endocrinology and Metabolism and Division of Laboratory Research, University of Duisburg-Essen, Essen, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - David K. Grandy
- Department of Physiology and Pharmacology, School of Medicine and the Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oreg., USA
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
- *Dr. Klaudia Brix, Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, DE-28759 Bremen (Germany), E-Mail
| |
Collapse
|
16
|
Brix K, McInnes J, Al-Hashimi A, Rehders M, Tamhane T, Haugen MH. Proteolysis mediated by cysteine cathepsins and legumain-recent advances and cell biological challenges. PROTOPLASMA 2015; 252:755-774. [PMID: 25398648 DOI: 10.1007/s00709-014-0730-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
Proteases play essential roles in protein degradation, protein processing, and extracellular matrix remodeling in all cell types and tissues. They are also involved in protein turnover for maintenance of homeostasis and protein activation or inactivation for cell signaling. Proteases range in function and specificity, with some performing distinct substrate cleavages, while others accomplish proteolysis of a wide range of substrates. As such, different cell types use specialized molecular mechanisms to regulate the localization of proteases and their function within the compartments to which they are destined. Here, we focus on the cysteine family of cathepsin proteases and legumain, which act predominately within the endo-lysosomal pathway. In particular, recent knowledge on cysteine cathepsins and their primary regulator legumain is scrutinized in terms of their trafficking to endo-lysosomal compartments and other less recognized cellular locations. We further explore the mechanisms that regulate these processes and point to pathological cases which arise from detours taken by these proteases. Moreover, the emerging biological roles of specific forms and variants of cysteine cathepsins and legumain are discussed. These may be decisive, pathogenic, or even deadly when localizing to unusual cellular compartments in their enzymatically active form, because they may exert unexpected effects by alternative substrate cleavage. Hence, we propose future perspectives for addressing the actions of cysteine cathepsins and legumain as well as their specific forms and variants. The increasing knowledge in non-canonical aspects of cysteine cathepsin- and legumain-mediated proteolysis may prove valuable for developing new strategies to utilize these versatile proteases in therapeutic approaches.
Collapse
Affiliation(s)
- Klaudia Brix
- Research Area HEALTH, Research Center MOLIFE-Molecular Life Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany,
| | | | | | | | | | | |
Collapse
|
17
|
Porter K, Lin Y, Liton PB. Cathepsin B is up-regulated and mediates extracellular matrix degradation in trabecular meshwork cells following phagocytic challenge. PLoS One 2013; 8:e68668. [PMID: 23844232 PMCID: PMC3700899 DOI: 10.1371/journal.pone.0068668] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/01/2013] [Indexed: 12/24/2022] Open
Abstract
Cells in the trabecular meshwork (TM), a tissue responsible for draining aqueous humor out of the eye, are known to be highly phagocytic. Phagocytic activity in TM cells is thought to play an important role in outflow pathway physiology. However, the molecular mechanisms triggered by phagocytosis in TM cells are unknown. Here we investigated the effects of chronic phagocytic stress on lysosomal function using different phagocytic ligands (E. coli, carboxylated beads, collagen I-coated beads, and pigment). Lysotracker red co-localization and electron micrographs showed the maturation of E. coli- and collagen I-coated beads-containing phagosomes into phagolysosomes. Maturation of phagosomes into phagolysosomes was not observed with carboxylated beads or pigment particles. In addition, phagocytosis of E. coli and collagen I-coated beads led to increased lysosomal mass, and the specific up-regulation and activity of cathepsin B (CTSB). Higher levels of membrane-bound and secreted CTSB were also detected. Moreover, in vivo zymography showed the intralysosomal degradation of ECM components associated with active CTSB, as well as an overall increased gelatinolytic activity in phagocytically challenged TM cells. This increased gelatinolytic activity with phagocytosis was partially blocked with an intracellular CTSB inhibitor. Altogether, these results suggest a potential role of phagocytosis in outflow pathway tissue homeostasis through the up-regulation and/or proteolytic activation of extracellular matrix remodeling genes.
Collapse
Affiliation(s)
- Kristine Porter
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - Yizhi Lin
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - Paloma B. Liton
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
18
|
Suban D, Zajc T, Renko M, Turk B, Turk V, Dolenc I. Cathepsin C and plasma glutamate carboxypeptidase secreted from Fischer rat thyroid cells liberate thyroxin from the N-terminus of thyroglobulin. Biochimie 2011; 94:719-26. [PMID: 22127294 DOI: 10.1016/j.biochi.2011.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/30/2011] [Indexed: 11/28/2022]
Abstract
The release of a thyroid hormone from thyroglobulin is controlled by a complex regulatory system. We focused on the extracellular action of two lysosomal enzymes, cathepsin C (catC, dipeptidyl peptidase I) and PGCP (lysosomal dipeptidase), on thyroglobulin, and their ability to liberate the hormone thyroxin. Cathepsin C, an exopeptidase, removes dipeptides from the N-terminus of substrates, and PGCP hydrolyses dipeptides to amino acids. In vitro experiments proved that cathepsin C removes up to 12 amino acids from the N-terminus of porcine thyroglobulin, including a dipeptide with thyroxin on position 5. The newly formed N-terminus, Arg-Pro-, was not hydrolysed further by cathepsin C. Cell culture experiments with FRTL-5 cell line showed localization of cathepsin C and PGCP and their secretion into the medium. Secretion of the active cathepsin C from FRTL-5 cells is stimulated by TSH, insulin, and/or somatostatin. The released enzymes liberate thyroxin from porcine thyroglobulin added to media. The hormone liberation can be reduced by synthetic inhibitors of cysteine proteinases and metalloproteinases. Additionally, we show that TSH, insulin, and/or somatostatin induce up-regulation of N-acetylglucosaminyltransferase 1, the enzyme responsible for the initiation of biosynthesis of hybrid and complex N-glycosylation of proteins.
Collapse
Affiliation(s)
- Dejan Suban
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The trace element selenium is an essential micronutrient that is required for the biosynthesis of selenocysteine-containing selenoproteins. Most of the known selenoproteins are expressed in the thyroid gland, including some with still unknown functions. Among the well-characterized selenoproteins are the iodothyronine deiodinases, glutathione peroxidases and thioredoxin reductases, enzymes involved in thyroid hormone metabolism, regulation of redox state and protection from oxidative damage. Selenium content in selenium-sensitive tissues such as the liver, kidney or muscle and expression of nonessential selenoproteins, such as the glutathione peroxidases GPx1 and GPx3, is controlled by nutritional supply. The thyroid gland is, however, largely independent from dietary selenium intake and thyroid selenoproteins are preferentially expressed. As a consequence, no explicit effects on thyroid hormone profiles are observed in healthy individuals undergoing selenium supplementation. However, low selenium status correlates with risk of goiter and multiple nodules in European women. Some clinical studies have demonstrated that selenium-deficient patients with autoimmune thyroid disease benefit from selenium supplementation, although the data are conflicting and many parameters must still be defined. The baseline selenium status of an individual could constitute the most important parameter modifying the outcome of selenium supplementation, which might primarily disrupt self-amplifying cycles of the endocrine-immune system interface rectifying the interaction of lymphocytes with thyroid autoantigens. Selenium deficiency is likely to constitute a risk factor for a feedforward derangement of the immune system-thyroid interaction, while selenium supplementation appears to dampen the self-amplifying nature of this derailed interaction.
Collapse
Affiliation(s)
- Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-University Medicine Berlin, Südring 10, CVK, 13353 Berlin, Germany.
| |
Collapse
|
20
|
Tedelind S, Jordans S, Resemann H, Blum G, Bogyo M, Führer D, Brix K. Cathepsin B trafficking in thyroid carcinoma cells. Thyroid Res 2011; 4 Suppl 1:S2. [PMID: 21835049 PMCID: PMC3155108 DOI: 10.1186/1756-6614-4-s1-s2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The cysteine peptidase cathepsin B is important in thyroid physiology by being involved in prohormone processing initiated in the follicle lumen and completed in endo-lysosomal compartments. However, cathepsin B has also been localized to the extrafollicular space in thyroid cancer tissue, and is therefore suggested to promote invasiveness and metastasis in thyroid carcinomas through e.g. extracellular matrix degradation. METHODS Transport of cathepsin B in normal thyroid epithelial and carcinoma cells was investigated through immunolocalization of endogenous cathepsin B in combination with probing protease activity. Transport analyses of cathepsin B-eGFP and its active-site mutant counterpart cathepsin B-C29A-eGFP were used to test whether intrinsic sequences of a protease influence its trafficking. RESULTS Our approach employing activity based probes, which distinguish between active and inactive cysteine proteases, demonstrated that both eGFP-tagged normal and active-site mutated cathepsin B chimeras reached the endo-lysosomal compartments of thyroid epithelial cells, thereby ruling out alterations of sorting signals by mutagenesis of the active-site cysteine. Analysis of chimeric protein trafficking further showed that GFP-tagged cathepsin B was transported to the expected compartments, i.e. endoplasmic reticulum, Golgi apparatus and endo-lysosomes of normal and thyroid carcinoma cell lines. However, the active-site mutated cathepsin B chimera was mostly retained in the endoplasmic reticulum and Golgi of KTC-1 and HTh7 cells. Hence the latter, as the least polarized of the three carcinoma cell lines analyzed, exhibited severe transport defects in that it retained chimeras in pre-endolysosomal compartments. Furthermore, secretion of endogenous cathepsin B and of other cysteine peptidases, which occurs at the apical pole of normal thyroid epithelial cells, was most prominent and occurred in a non-directed fashion in thyroid carcinoma cells. CONCLUSIONS Transport of endogenous and eGFP-tagged active and inactive cathepsin B in the cultured thyroid carcinoma cells reflected the distribution patterns of this protease in thyroid carcinoma tissue. Hence, our studies showed that sub-cellular localization of proteolysis is a crucial step in regulation of tissue homeostasis. We conclude that any interference with protease trafficking resulting in altered regulation of proteolytic events leads to, or is a consequence of the onset and progression of thyroid cancer.
Collapse
Affiliation(s)
- Sofia Tedelind
- School of Engineering and Science, Research Center for Molecular Life Science, Jacobs University Bremen, 28759 Bremen, Germany
| | - Silvia Jordans
- School of Engineering and Science, Research Center for Molecular Life Science, Jacobs University Bremen, 28759 Bremen, Germany
| | - Henrike Resemann
- School of Engineering and Science, Research Center for Molecular Life Science, Jacobs University Bremen, 28759 Bremen, Germany
| | - Galia Blum
- School of Pharmacy, Faculty of Medicine, The Hebrew University, 91120 Jerusalem, Israel
| | - Matthew Bogyo
- Departments of Pathology and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | - Dagmar Führer
- Universitätsklinikum Leipzig Medizinische Klinik III, 04103 Leipzig, Germany; as of June 2011: Klinik für Endokrinologie, Zentrum für Innere Medizin, Bereich Forschung und Lehre im Zentrallabor, 45147 Essen, Germany
| | - Klaudia Brix
- School of Engineering and Science, Research Center for Molecular Life Science, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
21
|
|
22
|
Tedelind S, Poliakova K, Valeta A, Hunegnaw R, Yemanaberhan EL, Heldin NE, Kurebayashi J, Weber E, Kopitar-Jerala N, Turk B, Bogyo M, Brix K. Nuclear cysteine cathepsin variants in thyroid carcinoma cells. Biol Chem 2011; 391:923-35. [PMID: 20536394 DOI: 10.1515/bc.2010.109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cysteine peptidase cathepsin B is important in thyroid physiology by being involved in thyroid prohormone processing initiated in the follicular lumen and completed in endo-lysosomal compartments. However, cathepsin B has also been localized to the extrafollicular space and is therefore suggested to promote invasiveness and metastasis in thyroid carcinomas through, e.g., ECM degradation. In this study, immunofluorescence and biochemical data from subcellular fractionation revealed that cathepsin B, in its single- and two-chain forms, is localized to endo-lysosomes in the papillary thyroid carcinoma cell line KTC-1 and in the anaplastic thyroid carcinoma cell lines HTh7 and HTh74. This distribution is not affected by thyroid stimulating hormone (TSH) incubation of HTh74, the only cell line that expresses a functional TSH-receptor. Immunofluorescence data disclosed an additional nuclear localization of cathepsin B immunoreactivity. This was supported by biochemical data showing a proteolytically active variant slightly smaller than the cathepsin B proform in nuclear fractions. We also demonstrate that immunoreactions specific for cathepsin V, but not cathepsin L, are localized to the nucleus in HTh74 in peri-nucleolar patterns. As deduced from co-localization studies and in vitro degradation assays, we suggest that nuclear variants of cathepsins are involved in the development of thyroid malignancies through modification of DNA-associated proteins.
Collapse
Affiliation(s)
- Sofia Tedelind
- Research Center of Molecular Life Science, School of Engineering and Science, Jacobs University Bremen, Bremen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jordans S, Jenko-Kokalj S, Kühl NM, Tedelind S, Sendt W, Brömme D, Turk D, Brix K. Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions. BMC BIOCHEMISTRY 2009; 10:23. [PMID: 19772638 PMCID: PMC2759951 DOI: 10.1186/1471-2091-10-23] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 09/22/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cysteine cathepsins are known to primarily cleave their substrates at reducing and acidic conditions within endo-lysosomes. Nevertheless, they have also been linked to extracellular proteolysis, that is, in oxidizing and neutral environments. Although the impact of reducing or oxidizing conditions on proteolytic activity is a key to understand physiological protease functions, redox conditions have only rarely been considered in routine enzyme activity assays. Therefore we developed an assay to test for proteolytic processing of a natural substrate by cysteine cathepsins which accounts for redox potentials and pH values corresponding to the conditions in the extracellular space in comparison to those within endo-lysosomes of mammalian cells. RESULTS The proteolytic potencies of cysteine cathepsins B, K, L and S towards thyroglobulin were analyzed under conditions simulating oxidizing versus reducing environments with neutral to acidic pH values. Thyroglobulin, the precursor molecule of thyroid hormones, was chosen as substrate, because it represents a natural target of cysteine cathepsins. Thyroglobulin processing involves thyroid hormone liberation which, under physiological circumstances, starts in the extracellular follicle lumen before being continued within endo-lysosomes. Our study shows that all cathepsins tested were capable of processing thyroglobulin at neutral and oxidizing conditions, although these are reportedly non-favorable for cysteine proteases. All analyzed cathepsins generated distinct fragments of thyroglobulin at extracellular versus endo-lysosomal conditions as demonstrated by SDS-PAGE followed by immunoblotting or N-terminal sequencing. Moreover, the thyroid hormone thyroxine was liberated by the action of cathepsin S at extracellular conditions, while cathepsins B, K and L worked most efficiently in this respect at endo-lysosomal conditions. CONCLUSION The results revealed distinct cleavage patterns at all conditions analyzed, indicating compartment-specific processing of thyroglobulin by cysteine cathepsins. In particular, proteolytic activity of cathepsin S towards the substrate thyroglobulin can now be understood as instrumental for extracellular thyroid hormone liberation. Our study emphasizes that the proteolytic functions of cysteine cathepsins in the thyroid are not restricted to endo-lysosomes but include pivotal roles in extracellular substrate utilization. We conclude that understanding of the interplay and fine adjustment of protease networks in vivo is better approachable by simulating physiological conditions in protease activity assays.
Collapse
Affiliation(s)
- Silvia Jordans
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 6, Research II, Bremen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mayer K, Vreemann A, Qu H, Brix K. Release of endo-lysosomal cathepsins B, D, and L from IEC6 cells in a cell culture model mimicking intestinal manipulation. Biol Chem 2009; 390:471-80. [PMID: 19284293 DOI: 10.1515/bc.2009.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
IEC6 cells were used as an in vitro model system to study the effects of cell damage caused by mechanical manipulation of intestine epithelial cells. We constructed an apparatus that allowed analyzing the consequences of mechanical compression in a standardized and reproducible manner. Manipulation of IEC6 cells induced necrosis rather than apoptosis, and resulted in release of HMGB1, which is known to function as a trigger of inflammatory responses in vivo. Mechanical damage by traumatic injury of the intestine is accompanied by altered protease activities in the extracellular space, but only little is known about the possible contribution of endo-lysosomal cathepsins. Therefore, we tested the supernatants of manipulated cells in our in vitro model system for proteolytic activity and determined release rates by fluorimetric assays. Endo-lysosomal proteases, such as cathepsins B, D, and L, were released from damaged cells within the first 3 h after manipulation. While cathepsin L re-associated with the surfaces of neighboring cells, cathepsins B and D were present in the extracellular space as soluble enzymes. We conclude that our apparatus for mechanical manipulation can be used to approach surgical trauma, thereby focusing on epithelial cells of the intestine mucosa.
Collapse
Affiliation(s)
- Kristina Mayer
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 6, D-28759 Bremen, Germany
| | | | | | | |
Collapse
|
25
|
Mayer K, Iolyeva ME, Meyer-Grahle U, Brix K. Intestine-specific expression of green fluorescent protein-tagged cathepsin B: proof-of-principle experiments. Biol Chem 2008; 389:1085-96. [PMID: 18979632 DOI: 10.1515/bc.2008.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We hypothesized that tissue-specific expression of cathepsin B-enhanced green fluorescent protein (CB-EGFP) can be driven by the A33-antigen promoter that contains positive cis-regulatory elements, including caudal-related homeobox (CDX) binding sites. The intestine-specific transcription factor Cdx1 is crucial for A33-antigen promoter activation and could thereby induce expression of CB-EGFP. This concept was tested by construction of the vector pA33-CathB-EGFP encoding CB-EGFP downstream of the A33-antigen promoter. Its Cdx1 dependence, as an indication of its intestine-specific expression, was tested in Cdx1-negative CHO-K1 cells. Cdx1 expression was achieved upon transfection with pCdx1-DsRed-Express and was indicated by red fluorescence of the simultaneously translated reporter protein. Immunolabeling with Cdx1-specific antibodies showed correct targeting of the transcription factor to its point of action in nuclei of transfected cells. Co-transfection experiments with plasmids pA33-CathB-EGFP and pCdx1-DsRed-Express confirmed the hypothesis that Cdx1 indeed activates CB-EGFP expression in a manner dependent on the A33-antigen promoter. Co-localization with compartment-specific markers and subcellular fractionation confirmed CB-EGFP trafficking along the expected route to endolysosomal compartments. Hence, the A33-antigen promoter represents a potent tool for induction of Cdx1-dependent CB-EGFP expression in vitro. Our proof-of-principle studies confirm the suitability of this approach in visualizing protease transport in Cdx1-positive tissues of the gastrointestinal tract.
Collapse
Affiliation(s)
- Kristina Mayer
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 6, D-28759 Bremen, Germany
| | | | | | | |
Collapse
|
26
|
Mayer K, Iolyeva ME, Meyer-Grahle U, Brix K. Intestine-specific expression of green fluorescent protein-tagged cathepsin B: proof-of-principle experiments. Biol Chem 2008. [DOI: 10.1515/bc.2008.112_bchm.just-accepted] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Spira D, Stypmann J, Tobin DJ, Petermann I, Mayer C, Hagemann S, Vasiljeva O, Günther T, Schüle R, Peters C, Reinheckel T. Cell type-specific functions of the lysosomal protease cathepsin L in the heart. J Biol Chem 2007; 282:37045-52. [PMID: 17942402 DOI: 10.1074/jbc.m703447200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deficiency of the lysosomal cysteine protease cathepsin L (Ctsl) in mice results in a phenotype affecting multiple tissues, including thymus, epidermis, and hair follicles, and in the heart develops as a progressive dilated cardiomyopathy (DCM). To understand the role of Ctsl in the maintenance of regular heart morphology and function, it is critical to determine whether the DCM in Ctsl-/- mice is primarily because of the lack of Ctsl expression and activity in the cardiomyocytes or is caused by the additional extracardiac pathologies. Cardiomyocyte-specific expression of Ctsl in Ctsl-/- mice, using an alpha-myosin heavy chain promoter-Ctsl transgene, results in improved cardiac contraction, normal mRNA expression of atrionatriuretic peptide, normal heart weight, and regular ultrastructure of cardiomyocytes. Epithelial expression of cathepsin L2 (CTSL2) by a K14 promoter-CTSL2-transgene resulted in rescue of the Ctsl-/- hair loss phenotype. In these mice, cardiac atrionatriuretic peptide expression and end systolic heart dimensions were also significantly attenuated. However, cardiac contraction was not improved, and increased heart weight as well as the typical changes in lysosomal ultrastructure of Ctsl-/- hearts persisted. Myocardial fibrosis was detected in all Ctsl-/- mice irrespective of transgene-mediated cardiac Ctsl expression or extracardiac CTSL2 expression. Expression of collagen 1 was not enhanced in Ctsl-/- hearts, but a reduced collagenolytic activity suggests a role for Ctsl in collagen turnover by cardiac fibroblasts. We conclude that the DCM of Ctsl-/- mice is primarily caused by absence of the protease in cardiomyocytes, whereas the complex gross phenotype of Ctsl-deficient mice, i.e. the fur defect, results in additional stress to the heart.
Collapse
Affiliation(s)
- Daniel Spira
- Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Brix K, Dunkhorst A, Mayer K, Jordans S. Cysteine cathepsins: cellular roadmap to different functions. Biochimie 2007; 90:194-207. [PMID: 17825974 DOI: 10.1016/j.biochi.2007.07.024] [Citation(s) in RCA: 312] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 07/26/2007] [Indexed: 12/25/2022]
Abstract
Cysteine cathepsins belong to the papain-like family C1 of clan CA cysteine peptidases. These enzymes are ubiquitously expressed and exert their proteolytic activity mainly, but not exclusively within the compartments along the endocytic pathway. Moreover, cysteine cathepsins are active in pericellular environments as soluble enzymes or bound to cell surface receptors at the plasma membrane, and possibly even within secretory vesicles, the cytosol, mitochondria, and within the nuclei of eukaryotic cells. Proteolytic actions performed by cysteine cathepsins are essential in the maintenance of homeostasis and depend heavily upon their correct sorting and trafficking within cells. As a consequence, the numerous and diverse approaches to identification, qualitative and quantitative determination, and visualization of cysteine cathepsin functions in vitro, in situ, and in vivo cover the entire spectrum of biochemistry, molecular and cell biology. This review focuses upon the transport pathways directing cysteine cathepsins to their points of action and thus emphasizes the broader role and functionality of cysteine cathepsins in a number of specific cellular locales. Such understanding will provide a foundation for future research investigating the involvement of these peptidases with their substrates, inhibitors, and the intertwined proteolytic networks at the hubs of complex biological systems.
Collapse
Affiliation(s)
- Klaudia Brix
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 6, D-28759 Bremen, Germany.
| | | | | | | |
Collapse
|
29
|
Zoeller RT, Tan SW, Tyl RW. General background on the hypothalamic-pituitary-thyroid (HPT) axis. Crit Rev Toxicol 2007; 37:11-53. [PMID: 17364704 DOI: 10.1080/10408440601123446] [Citation(s) in RCA: 276] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This article reviews the thyroid system, mainly from a mammalian standpoint. However, the thyroid system is highly conserved among vertebrate species, so the general information on thyroid hormone production and feedback through the hypothalamic-pituitary-thyroid (HPT) axis should be considered for all vertebrates, while species-specific differences are highlighted in the individual articles. This background article begins by outlining the HPT axis with its components and functions. For example, it describes the thyroid gland, its structure and development, how thyroid hormones are synthesized and regulated, the role of iodine in thyroid hormone synthesis, and finally how the thyroid hormones are released from the thyroid gland. It then progresses to detail areas within the thyroid system where disruption could occur or is already known to occur. It describes how thyroid hormone is transported in the serum and into the tissues on a cellular level, and how thyroid hormone is metabolized. There is an in-depth description of the alpha and beta thyroid hormone receptors and their functions, including how they are regulated, and what has been learned from the receptor knockout mouse models. The nongenomic actions of thyroid hormone are also described, such as in glucose uptake, mitochondrial effects, and its role in actin polymerization and vesicular recycling. The article discusses the concept of compensation within the HPT axis and how this fits into the paradigms that exist in thyroid toxicology/endocrinology. There is a section on thyroid hormone and its role in mammalian development: specifically, how it affects brain development when there is disruption to the maternal, the fetal, the newborn (congenital), or the infant thyroid system. Thyroid function during pregnancy is critical to normal development of the fetus, and several spontaneous mutant mouse lines are described that provide research tools to understand the mechanisms of thyroid hormone during mammalian brain development. Overall this article provides a basic understanding of the thyroid system and its components. The complexity of the thyroid system is clearly demonstrated, as are new areas of research on thyroid hormone physiology and thyroid hormone action developing within the field of thyroid endocrinology. This review provides the background necessary to review the current assays and endpoints described in the following articles for rodents, fishes, amphibians, and birds.
Collapse
Affiliation(s)
- R Thomas Zoeller
- Biology Department, Morrill Science Center, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|
30
|
Giraud A, Dicristofaro J, De Micco C, Lejeune PJ, Barbaria J, Mallet B. A plasminogen-like protein, present in the apical extracellular environment of thyroid epithelial cells, degrades thyroglobulin in vitro. Biochem Biophys Res Commun 2005; 338:1000-4. [PMID: 16259961 DOI: 10.1016/j.bbrc.2005.10.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 10/07/2005] [Indexed: 11/19/2022]
Abstract
The prothyroid hormone, thyroglobulin (Tg), is stored at high concentrations in the thyroid follicular lumen as a soluble 19S homo-dimer and as heavier soluble (27S and 37S) and insoluble (Tgm) forms. Follicular degradation of Tg may contribute to maintaining Tg concentrations compatible with follicle integrity. Here, we report on the presence of a plasminogen-like protein in the follicular lumen of normal human thyroids and its synthesis and apical secretion by cultured epithelial thyroid cells. Since all the main luminal forms of Tg are cleaved by this plasminogen-like protein, we suggest that it contributes to Tg degradation in the follicular lumen.
Collapse
Affiliation(s)
- Annie Giraud
- INSERM U555, Faculté de Médecine, Université de la Méditerranée, 27 Bd. Jean Moulin, 13385 Marseille Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
31
|
Friedrichs B, Tepel C, Reinheckel T, Deussing J, von Figura K, Herzog V, Peters C, Saftig P, Brix K. Thyroid functions of mouse cathepsins B, K, and L. J Clin Invest 2003; 111:1733-45. [PMID: 12782676 PMCID: PMC156100 DOI: 10.1172/jci15990] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Thyroid function depends on processing of the prohormone thyroglobulin by sequential proteolytic events. From in vitro analysis it is known that cysteine proteinases mediate proteolytic processing of thyroglobulin. Here, we have analyzed mice with deficiencies in cathepsins B, K, L, B and K, or K and L in order to investigate which of the cysteine proteinases is most important for proteolytic processing of thyroglobulin in vivo. Immunolabeling demonstrated a rearrangement of the endocytic system and a redistribution of extracellularly located enzymes in thyroids of cathepsin-deficient mice. Cathepsin L was upregulated in thyroids of cathepsin K(-/-) or B(-/-)/K(-/-) mice, suggesting a compensation of cathepsin L for cathepsin K deficiency. Impaired proteolysis resulted in the persistence of thyroglobulin in the thyroids of mice with deficiencies in cathepsin B or L. The typical multilayered appearance of extracellularly stored thyroglobulin was retained in cathepsin K(-/-) mice only. These results suggest that cathepsins B and L are involved in the solubilization of thyroglobulin from its covalently cross-linked storage form. Cathepsin K(-/-)/L(-/-) mice had significantly reduced levels of free thyroxine, indicating that utilization of luminal thyroglobulin for thyroxine liberation is mediated by a combinatory action of cathepsins K and L.
Collapse
Affiliation(s)
- Bianca Friedrichs
- Institut für Zellbiologie and Bonner Forum Biomedizin, Universität Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Linke M, Herzog V, Brix K. Trafficking of lysosomal cathepsin B-green fluorescent protein to the surface of thyroid epithelial cells involves the endosomal/lysosomal compartment. J Cell Sci 2002; 115:4877-89. [PMID: 12432075 DOI: 10.1242/jcs.00184] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cathepsin B, a lysosomal cysteine proteinase, is involved in limited proteolysis of thyroglobulin with thyroxine liberation at the apical surface of thyroid epithelial cells. To analyze the trafficking of lysosomal enzymes to extracellular locations of thyroid epithelial cells, we have expressed a chimeric protein consisting of rat cathepsin B and green fluorescent protein. Heterologous expression in CHO cells validated the integrity of the structural motifs of the chimeric protein for targeting to endocytic compartments. Homologous expression, colocalization and transport experiments with rat thyroid epithelial cell lines FRT or FRTL-5 demonstrated the correct sorting of the chimeric protein into the lumen of the endoplasmic reticulum, and its subsequent transport via the Golgi apparatus and the trans-Golgi network to endosomes and lysosomes. In addition, the chimeras were secreted as active enzymes from FRTL-5 cells in a thyroid-stimulating-hormone-dependent manner. Immunoprecipitation experiments after pulse-chase radiolabeling showed that secreted chimeras lacked the propeptide of cathepsin B. Thus, the results suggest that cathepsin B is first transported to endosomes/lysosomes from where its matured form is retrieved before being secreted, supporting the view that endosome/lysosome-derived cathepsin B contributes to the potential of extracellular proteolysis in the thyroid.
Collapse
Affiliation(s)
- Martin Linke
- Institut für Zellbiologie and Bonner Forum Biomedizin, Universität Bonn, Ulrich-Haberland-Str. 61a, D-53121 Bonn, Germany
| | | | | |
Collapse
|