1
|
Kim RK, Truby NL, Silva GM, Picone JA, Miller CS, Baldwin AN, Neve RL, Cui X, Hamilton PJ. Histone H1x in mouse ventral hippocampus associates with, but does not cause behavioral adaptations to stress. Transl Psychiatry 2024; 14:239. [PMID: 38834575 PMCID: PMC11150540 DOI: 10.1038/s41398-024-02931-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
Prior research has identified differential protein expression levels of linker histone H1x within the ventral hippocampus (vHipp) of stress-susceptible versus stress-resilient mice. These mice are behaviorally classified based on their divergent responses to chronic social stress. Here, we sought to determine whether elevated vHipp H1x protein levels directly contribute to these diverging behavioral adaptations to stress. First, we demonstrated that stress-susceptible mice uniquely express elevated vHipp H1x protein levels following chronic stress. Given that linker histones coordinate heterochromatin compaction, we hypothesize that elevated levels of H1x in the vHipp may impede pro-resilience transcriptional adaptations and prevent development of the resilient phenotype following social stress. To test this, 8-10-week-old male C57BL/6 J mice were randomly assigned to groups undergoing 10 days of chronic social defeat stress (CSDS) or single housing, respectively. Following CSDS, mice were classified as susceptible versus resilient based on their social interaction behaviors. We synthesized a viral overexpression (OE) vector for H1x and transduced all stressed and single housed mice with either H1x or control GFP within vHipp. Following viral delivery, we conducted social, anxiety-like, and memory-reliant behavior tests on distinct cohorts of mice. We found no behavioral adaptations following H1x OE compared to GFP controls in susceptible, resilient, or single housed mice. In sum, although we confirm elevated vHipp protein levels of H1x associate with susceptibility to social stress, we observe no significant behavioral consequence of H1x OE. Thus, we conclude elevated levels of H1x are associated with, but are not singularly sufficient to drive development of behavioral adaptations to stress.
Collapse
Affiliation(s)
- R Kijoon Kim
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Natalie L Truby
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Gabriella M Silva
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Joseph A Picone
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Cary S Miller
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Amber N Baldwin
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA, USA
| | - Xiaohong Cui
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Peter J Hamilton
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
2
|
Kim RK, Truby NL, Silva GM, Picone JA, Miller CS, Neve RL, Cui X, Hamilton PJ. Histone H1x in mouse ventral hippocampus correlates with, but does not cause behavioral adaptations to stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565881. [PMID: 37986938 PMCID: PMC10659322 DOI: 10.1101/2023.11.06.565881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Prior research has identified differential protein expression levels of linker histone H1x within the ventral hippocampus (vHipp) of stress-susceptible versus stress-resilient mice. These mice are behaviorally classified based on their divergent responses to chronic social stress. Here, we sought to determine whether elevated vHipp H1x protein levels directly contribute to these diverging behavioral adaptations to stress. First, we demonstrate that stress-susceptible mice uniquely express elevated vHipp H1x protein levels following chronic stress. Given that linker histones coordinate heterochromatin compaction, we hypothesize that elevated levels of H1x in the vHipp may impede pro-resilience transcriptional adaptations and prevent development of the resilient phenotype following social stress. To test this, 8-10-week-old male C57BL/6J mice were randomly assigned to stressed and unstressed groups undergoing 10 days of chronic social defeat stress (CSDS) or single housing respectively. Following CSDS, mice were classified as susceptible versus resilient based on their social interaction behaviors. We synthesized a viral overexpression (OE) vector for H1x and transduced experimental mice with either H1x or control GFP within vHipp. Following viral delivery, we conducted social, anxiety-like, and memory-reliant behavior tests on distinct cohorts of mice. We found no behavioral adaptations following H1x OE compared to GFP controls in susceptible, resilient, or unstressed mice. In sum, although we confirm vHipp protein levels of H1x correlate with susceptibility to social stress, we observe no significant behavioral consequence of H1x OE. Thus, we conclude elevated levels of H1x are correlated with, but are not singularly sufficient to drive development of behavioral adaptations to stress.
Collapse
|
3
|
Abstract
In this review, Prendergast and Reinberg discuss the likelihood that the family of histone H1 variants may be key to understanding several fundamental processes in chromatin biology and underscore their particular contributions to distinctly significant chromatin-related processes. Major advances in the chromatin and epigenetics fields have uncovered the importance of core histones, histone variants and their post-translational modifications (PTMs) in modulating chromatin structure. However, an acutely understudied related feature of chromatin structure is the role of linker histone H1. Previous assumptions of the functional redundancy of the 11 nonallelic H1 variants are contrasted by their strong evolutionary conservation, variability in their potential PTMs, and increased reports of their disparate functions, sub-nuclear localizations and unique expression patterns in different cell types. The commonly accepted notion that histone H1 functions solely in chromatin compaction and transcription repression is now being challenged by work from multiple groups. These studies highlight histone H1 variants as underappreciated facets of chromatin dynamics that function independently in various chromatin-based processes. In this review, we present notable findings involving the individual somatic H1 variants of which there are seven, underscoring their particular contributions to distinctly significant chromatin-related processes.
Collapse
Affiliation(s)
- Laura Prendergast
- Howard Hughes Medical Institute, New York University Langone Health, New York, New York 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical School, New York, New York 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University Langone Health, New York, New York 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical School, New York, New York 10016, USA
| |
Collapse
|
4
|
Amatori S, Tavolaro S, Gambardella S, Fanelli M. The dark side of histones: genomic organization and role of oncohistones in cancer. Clin Epigenetics 2021; 13:71. [PMID: 33827674 PMCID: PMC8025322 DOI: 10.1186/s13148-021-01057-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Background The oncogenic role of histone mutations is one of the most relevant discovery in cancer epigenetics. Recurrent mutations targeting histone genes have been described in pediatric brain tumors, chondroblastoma, giant cell tumor of bone and other tumor types. The demonstration that mutant histones can be oncogenic and drive the tumorigenesis in pediatric tumors, led to the coining of the term “oncohistones.” The first identified histone mutations were localized at or near residues normally targeted by post-translational modifications (PTMs) in the histone N-terminal tails and suggested a possible interference with histone PTMs regulation and reading. Main body In this review, we describe the peculiar organization of the multiple genes that encode histone proteins, and the latter advances in both the identification and the biological role of histone mutations in cancer. Recent works show that recurrent somatic mutations target both N-terminal tails and globular histone fold domain in diverse tumor types. Oncohistones are often dominant-negative and occur at higher frequencies in tumors affecting children and adolescents. Notably, in many cases the mutations target selectively only some of the genes coding the same histone protein and are frequently associated with specific tumor types or, as documented for histone variant H3.3 in pediatric glioma, with peculiar tumors arising from specific anatomic locations. Conclusion The overview of the most recent advances suggests that the oncogenic potential of histone mutations can be exerted, together with the alteration of histone PTMs, through the destabilization of nucleosome and DNA–nucleosome interactions, as well as through the disruption of higher-order chromatin structure. However, further studies are necessary to fully elucidate the mechanism of action of oncohistones, as well as to evaluate their possible application to cancer classification, prognosis and to the identification of new therapies.
Collapse
Affiliation(s)
- Stefano Amatori
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032, Fano, PU, Italy.
| | - Simona Tavolaro
- Fredis Associazione, Via Edoardo Jenner 30, 00151, Rome, Italy
| | - Stefano Gambardella
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032, Fano, PU, Italy.,IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy
| | - Mirco Fanelli
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032, Fano, PU, Italy.
| |
Collapse
|
5
|
Abstract
In eukaryotes, DNA is highly compacted within the nucleus into a structure known as chromatin. Modulation of chromatin structure allows for precise regulation of gene expression, and thereby controls cell fate decisions. Specific chromatin organization is established and preserved by numerous factors to generate desired cellular outcomes. In embryonic stem (ES) cells, chromatin is precisely regulated to preserve their two defining characteristics: self-renewal and pluripotent state. This action is accomplished by a litany of nucleosome remodelers, histone variants, epigenetic marks, and other chromatin regulatory factors. These highly dynamic regulatory factors come together to precisely define a chromatin state that is conducive to ES cell maintenance and development, where dysregulation threatens the survival and fitness of the developing organism.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
6
|
Glaich O, Leader Y, Lev Maor G, Ast G. Histone H1.5 binds over splice sites in chromatin and regulates alternative splicing. Nucleic Acids Res 2019; 47:6145-6159. [PMID: 31076740 PMCID: PMC6614845 DOI: 10.1093/nar/gkz338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 04/17/2019] [Accepted: 04/27/2019] [Indexed: 12/11/2022] Open
Abstract
Chromatin organization and epigenetic markers influence splicing, though the magnitudes of these effects and the mechanisms are largely unknown. Here, we demonstrate that linker histone H1.5 influences mRNA splicing. We observed that linker histone H1.5 binds DNA over splice sites of short exons in human lung fibroblasts (IMR90 cells). We found that association of H1.5 with these splice sites correlated with the level of inclusion of alternatively spliced exons. Exons marked by H1.5 had more RNA polymerase II (RNAP II) stalling near the 3' splice site than did exons not associated with H1.5. In cells depleted of H1.5, we showed that the inclusion of five exons evaluated decreased and that RNAP II levels over these exons were also reduced. Our findings indicate that H1.5 is involved in regulation of splice site selection and alternative splicing, a function not previously demonstrated for linker histones.
Collapse
Affiliation(s)
- Ohad Glaich
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Yodfat Leader
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Galit Lev Maor
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
7
|
de Wit H, Vallet A, Brutscher B, Koorsen G. NMR assignments of human linker histone H1x N-terminal domain and globular domain in the presence and absence of perchlorate. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:249-254. [PMID: 30868366 DOI: 10.1007/s12104-019-09886-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Human linker histone H1 plays a seminal role in eukaryotic DNA packaging. H1 has a tripartite structure consisting of a central, conserved globular domain, which adopts a winged-helix fold, flanked by two variable N- and C-terminal domains. Here we present the backbone resonance assignments of the N-terminal domain and globular domain of human linker histone H1x in the presence and absence of the secondary structure stabilizer sodium perchlorate. Analysis of chemical shift changes between the two conditions is consistent with induction of transient secondary structural elements in the N-terminal domain of H1x in high ionic strength, which suggests that the N-terminal domain adopts significant alpha-helical conformations in the presence of DNA.
Collapse
Affiliation(s)
- Herna de Wit
- University of Johannesburg, PO Box 524, Auckland Park, Johannesburg, South Africa
| | - Alicia Vallet
- University Grenoble Alpes, CEA, CNRS, IBS, 38000, Grenoble, France
| | | | - Gerrit Koorsen
- University of Johannesburg, PO Box 524, Auckland Park, Johannesburg, South Africa.
| |
Collapse
|
8
|
Osunsade A, Prescott NA, Hebert JM, Ray DM, Jmeian Y, Lorenz IC, David Y. A Robust Method for the Purification and Characterization of Recombinant Human Histone H1 Variants. Biochemistry 2019; 58:171-176. [PMID: 30585724 PMCID: PMC6541009 DOI: 10.1021/acs.biochem.8b01060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Higher order compaction of the eukaryotic genome is key to the regulation of all DNA-templated processes, including transcription. This tightly controlled process involves the formation of mononucleosomes, the fundamental unit of chromatin, packaged into higher order architectures in an H1 linker histone-dependent process. While much work has been done to delineate the precise mechanism of this event in vitro and in vivo, major gaps still exist, primarily due to a lack of molecular tools. Specifically, there has never been a successful purification and biochemical characterization of all human H1 variants. Here we present a robust method to purify H1 and illustrate its utility in the purification of all somatic variants and one germline variant. In addition, we performed a first ever side-by-side biochemical comparison, which revealed a gradient of nucleosome binding affinities and compaction capabilities. These data provide new insight into H1 redundancy and lay the groundwork for the mechanistic investigation of disease-driving mutations.
Collapse
Affiliation(s)
- Adewola Osunsade
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-Institutional PhD Program in Chemical Biology, New York, NY
| | - Nicholas A. Prescott
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-Institutional PhD Program in Chemical Biology, New York, NY
| | - Jakob M. Hebert
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-Institutional PhD Program in Chemical Biology, New York, NY
| | - Devin M. Ray
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-Institutional PhD Program in Chemical Biology, New York, NY
- Tri-Institutional MD-PhD Program, New York, NY
| | - Yazen Jmeian
- Tri-Institutional Therapeutics Discovery Institute, New York, NY
| | - Ivo C. Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, NY
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-Institutional PhD Program in Chemical Biology, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY
| |
Collapse
|
9
|
Chikhirzhina E, Starkova T, Polyanichko A. The Role of Linker Histones in Chromatin Structural Organization. 1. H1 Family Histones. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918060064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Rossi A, Moro A, Tebaldi T, Cornella N, Gasperini L, Lunelli L, Quattrone A, Viero G, Macchi P. Identification and dynamic changes of RNAs isolated from RALY-containing ribonucleoprotein complexes. Nucleic Acids Res 2017; 45:6775-6792. [PMID: 28379492 PMCID: PMC5499869 DOI: 10.1093/nar/gkx235] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/30/2017] [Indexed: 12/13/2022] Open
Abstract
RALY is a member of the heterogeneous nuclear ribonucleoprotein family (hnRNP), a large family of RNA-binding proteins involved in many aspects of RNA metabolism. Although RALY interactome has been recently characterized, a comprehensive global analysis of RALY-associated RNAs is lacking and the biological function of RALY remains elusive. Here, we performed RIP-seq analysis to identify RALY interacting RNAs and assessed the role of RALY in gene expression. We demonstrate that RALY binds specific coding and non-coding RNAs and associates with translating mRNAs of mammalian cells. Among the identified transcripts, we focused on ANXA1 and H1FX mRNAs, encoding for Annexin A1 and for the linker variant of the histone H1X, respectively. Both proteins are differentially expressed by proliferating cells and are considered as markers for tumorigenesis. We demonstrate that cells lacking RALY expression exhibit changes in the levels of H1FX and ANXA1 mRNAs and proteins in an opposite manner. We also provide evidence for a direct binding of RALY to the U-rich elements present within the 3΄UTR of both transcripts. Thus, our results identify RALY as a poly-U binding protein and as a regulator of H1FX and ANXA1 in mammalian cells.
Collapse
Affiliation(s)
- Annalisa Rossi
- Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento (TN), Italy
| | - Albertomaria Moro
- Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento (TN), Italy
| | - Toma Tebaldi
- Laboratory of Translational Genomics, CIBIO - Centre for Integrative Biology, University of Trento, Italy
| | - Nicola Cornella
- Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento (TN), Italy
| | - Lisa Gasperini
- Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento (TN), Italy
| | - Lorenzo Lunelli
- Laboratory of Biomolecular Sequence and Structure Analysis for Health, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo (TN), Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, CIBIO - Centre for Integrative Biology, University of Trento, Italy
| | - Gabriella Viero
- Institute of Biophysics, CNR-Italian National Council for Research, via Sommarive 18, 38123 Trento (TN), Italy
| | - Paolo Macchi
- Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento (TN), Italy
| |
Collapse
|
11
|
Ichihara-Tanaka K, Kadomatsu K, Kishida S. Temporally and Spatially Regulated Expression of the Linker Histone H1fx During Mouse Development. J Histochem Cytochem 2017; 65:513-530. [PMID: 28766996 DOI: 10.1369/0022155417723914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The linker histone H1fx is the least characterized member of the H1 family. To investigate the developmental changes of H1fx, we performed an immunohistochemical analysis of its expression pattern from embryos to adult mice. We found that H1fx was highly expressed during gastrulation, and was positive in all embryonic germ layers between E8.5 and E10.5, which mostly overlapped with the expression of the proliferation marker Ki-67. Neural and mesenchyme tissues strongly expressed H1fx at E10.5. H1fx expression began to be restricted at around E12.5. Western blot analysis of brain tissues demonstrated that the total expression level of H1fx gradually decreased with time from E12.5 to adulthood, whereas H1f0 was increased over this period. In adult mice, H1fx was restrictively expressed at the hypothalamus, subventricular zone, subgranular zone, medulla of the adrenal grand, islets of Langerhans, and myenteric plexus. Taken together, these data suggest that H1fx is preferentially expressed in immature embryonic cells and plays some roles in cells with neural properties.
Collapse
Affiliation(s)
- Keiko Ichihara-Tanaka
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, Aichi, Japan (KI-T).,Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan (KI-T, KK, SK)
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan (KI-T, KK, SK)
| | - Satoshi Kishida
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan (KI-T, KK, SK)
| |
Collapse
|
12
|
Starkova TY, Polyanichko AM, Artamonova TO, Khodorkovskii MA, Kostyleva EI, Chikhirzhina EV, Tomilin AN. Post-translational modifications of linker histone H1 variants in mammals. Phys Biol 2017; 14:016005. [PMID: 28000612 DOI: 10.1088/1478-3975/aa551a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The covalent modifications of the linker histone H1 and the core histones are thought to play an important role in the control of chromatin functioning. Histone H1 variants from K562 cell line (hH1), mouse (mH1) and calf (cH1) thymi were studied by matrix-activated laser desorption/ionization fourier transform ion cyclotron resonance mass-spectroscopy (MALDI-FT-ICR-MS). The proteomics analysis revealed novel post-translational modifications of the histone H1, such as meK34-mH1.4, meK35-cH1.1, meK35-mH1.1, meK75-hH1.2, meK75-hH1.3, acK26-hH1.4, acK26-hH1.3 and acK17-hH1.1. The comparison of the hH1, mH1 and cH1 proteins has demonstrated that the types and positions of the post-translational modifications of the globular domains of the H1.2-H1.4 variants are very conservative. However, the post-translational modifications of the N- and C-terminal tails of H1.2, H1.3 and H1.4 are different. The differences of post-translational modifications in the N- and C-terminal tails of H1.2, H1.3 and H1.4 likely lead to the differences in DNA-H1 and H1-protein interactions.
Collapse
Affiliation(s)
- T Yu Starkova
- Institute of Cytology of the Russian Academy of Sciences, St Petersburg, Russia. Saint Petersburg State University, Saint Petersburg, Russia. Author to whom any correspondence should be addressed. The authors made equal contribution to preparation of the manuscript
| | | | | | | | | | | | | |
Collapse
|
13
|
El Kennani S, Adrait A, Shaytan AK, Khochbin S, Bruley C, Panchenko AR, Landsman D, Pflieger D, Govin J. MS_HistoneDB, a manually curated resource for proteomic analysis of human and mouse histones. Epigenetics Chromatin 2017; 10:2. [PMID: 28096900 PMCID: PMC5223428 DOI: 10.1186/s13072-016-0109-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Histones and histone variants are essential components of the nuclear chromatin. While mass spectrometry has opened a large window to their characterization and functional studies, their identification from proteomic data remains challenging. Indeed, the current interpretation of mass spectrometry data relies on public databases which are either not exhaustive (Swiss-Prot) or contain many redundant entries (UniProtKB or NCBI). Currently, no protein database is ideally suited for the analysis of histones and the complex array of mammalian histone variants. RESULTS We propose two proteomics-oriented manually curated databases for mouse and human histone variants. We manually curated >1700 gene, transcript and protein entries to produce a non-redundant list of 83 mouse and 85 human histones. These entries were annotated in accordance with the current nomenclature and unified with the "HistoneDB2.0 with Variants" database. This resource is provided in a format that can be directly read by programs used for mass spectrometry data interpretation. In addition, it was used to interpret mass spectrometry data acquired on histones extracted from mouse testis. Several histone variants, which had so far only been inferred by homology or detected at the RNA level, were detected by mass spectrometry, confirming the existence of their protein form. CONCLUSIONS Mouse and human histone entries were collected from different databases and subsequently curated to produce a non-redundant protein-centric resource, MS_HistoneDB. It is dedicated to the proteomic study of histones in mouse and human and will hopefully facilitate the identification and functional study of histone variants.
Collapse
Affiliation(s)
- Sara El Kennani
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Annie Adrait
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Alexey K Shaytan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| | - Saadi Khochbin
- CNRS UMR 5309 INSERM U1209, Institute of Advanced Biosciences, Université Grenoble Alpes, Grenoble, France
| | - Christophe Bruley
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| | - Delphine Pflieger
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Jérôme Govin
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
14
|
Pan C, Fan Y. Role of H1 linker histones in mammalian development and stem cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:496-509. [PMID: 26689747 DOI: 10.1016/j.bbagrm.2015.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022]
Abstract
H1 linker histones are key chromatin architectural proteins facilitating the formation of higher order chromatin structures. The H1 family constitutes the most heterogeneous group of histone proteins, with eleven non-allelic H1 variants in mammals. H1 variants differ in their biochemical properties and exhibit significant sequence divergence from one another, yet most of them are highly conserved during evolution from mouse to human. H1 variants are differentially regulated during development and their cellular compositions undergo dramatic changes in embryogenesis, gametogenesis, tissue maturation and cellular differentiation. As a group, H1 histones are essential for mouse development and proper stem cell differentiation. Here we summarize our current knowledge on the expression and functions of H1 variants in mammalian development and stem cell differentiation. Their diversity, sequence conservation, complex expression and distinct functions suggest that H1s mediate chromatin reprogramming and contribute to the large variations and complexity of chromatin structure and gene expression in the mammalian genome.
Collapse
Affiliation(s)
- Chenyi Pan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuhong Fan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
15
|
Liao R, Mizzen CA. Interphase H1 phosphorylation: Regulation and functions in chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:476-85. [PMID: 26657617 DOI: 10.1016/j.bbagrm.2015.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022]
Abstract
Many metazoan cell types differentially express multiple non-allelic amino acid sequence variants of histone H1. Although early work revealed that H1 variants, collectively, are phosphorylated during interphase and mitosis, differences between individual H1 variants in the sites they possess for mitotic and interphase phosphorylation have been elucidated only relatively recently. Here, we review current knowledge on the regulation and function of interphase H1 phosphorylation, with a particular emphasis on how differences in interphase phosphorylation among the H1 variants of mammalian cells may enable them to have differential effects on transcription and other chromatin processes.
Collapse
Affiliation(s)
- Ruiqi Liao
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, USA
| | - Craig A Mizzen
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, USA; Institute for Genomic Biology, University of Illinois at Urbana Champaign, USA.
| |
Collapse
|
16
|
Parseghian MH. What is the role of histone H1 heterogeneity? A functional model emerges from a 50 year mystery. AIMS BIOPHYSICS 2015; 2:724-772. [PMID: 31289748 PMCID: PMC6615755 DOI: 10.3934/biophy.2015.4.724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
For the past 50 years, understanding the function of histone H1 heterogeneity has been mired in confusion and contradiction. Part of the reason for this is the lack of a working model that tries to explain the large body of data that has been collected about the H1 subtypes so far. In this review, a global model is described largely based on published data from the author and other researchers over the past 20 years. The intrinsic disorder built into H1 protein structure is discussed to help the reader understand that these histones are multi-conformational and adaptable to interactions with different targets. We discuss the role of each structural section of H1 (as we currently understand it), but we focus on the H1's C-terminal domain and its effect on each subtype's affinity, mobility and compaction of chromatin. We review the multiple ways these characteristics have been measured from circular dichroism to FRAP analysis, which has added to the sometimes contradictory assumptions made about each subtype. Based on a tabulation of these measurements, we then organize the H1 variants according to their ability to condense chromatin and produce nucleosome repeat lengths amenable to that compaction. This subtype variation generates a continuum of different chromatin states allowing for fine regulatory control and some overlap in the event one or two subtypes are lost to mutation. We also review the myriad of disparate observations made about each subtype, both somatic and germline specific ones, that lend support to the proposed model. Finally, to demonstrate its adaptability as new data further refines our understanding of H1 subtypes, we show how the model can be applied to experimental observations of telomeric heterochromatin in aging cells.
Collapse
|
17
|
Hergeth SP, Schneider R. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep 2015; 16:1439-53. [PMID: 26474902 DOI: 10.15252/embr.201540749] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022] Open
Abstract
The linker histone H1 family members are a key component of chromatin and bind to the nucleosomal core particle around the DNA entry and exit sites. H1 can stabilize both nucleosome structure and higher-order chromatin architecture. In general, H1 molecules consist of a central globular domain with more flexible tail regions at both their N- and C-terminal ends. The existence of multiple H1 subtypes and a large variety of posttranslational modifications brings about a considerable degree of complexity and makes studying this protein family challenging. Here, we review recent progress in understanding the function of linker histones and their subtypes beyond their role as merely structural chromatin components. We summarize current findings on the role of H1 in heterochromatin formation, transcriptional regulation and embryogenesis with a focus on H1 subtypes and their specific modifications.
Collapse
Affiliation(s)
| | - Robert Schneider
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U964, Université de Strasbourg, Illkirch, France
| |
Collapse
|
18
|
Abstract
Histone variants are an important part of the histone contribution to chromatin epigenetics. In this review, we describe how the known structural differences of these variants from their canonical histone counterparts impart a chromatin signature ultimately responsible for their epigenetic contribution. In terms of the core histones, H2A histone variants are major players while H3 variant CenH3, with a controversial role in the nucleosome conformation, remains the genuine epigenetic histone variant. Linker histone variants (histone H1 family) haven’t often been studied for their role in epigenetics. However, the micro-heterogeneity of the somatic canonical forms of linker histones appears to play an important role in maintaining the cell-differentiated states, while the cell cycle independent linker histone variants are involved in development. A picture starts to emerge in which histone H2A variants, in addition to their individual specific contributions to the nucleosome structure and dynamics, globally impair the accessibility of linker histones to defined chromatin locations and may have important consequences for determining different states of chromatin metabolism.
Collapse
Affiliation(s)
- Manjinder S Cheema
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W-3P6, Canada.
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W-3P6, Canada.
| |
Collapse
|
19
|
Garfinkel BP, Melamed-Book N, Anuka E, Bustin M, Orly J. HP1BP3 is a novel histone H1 related protein with essential roles in viability and growth. Nucleic Acids Res 2015; 43:2074-90. [PMID: 25662603 PMCID: PMC4344522 DOI: 10.1093/nar/gkv089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/17/2014] [Accepted: 01/23/2015] [Indexed: 12/28/2022] Open
Abstract
The dynamic architecture of chromatin is vital for proper cellular function, and is maintained by the concerted action of numerous nuclear proteins, including that of the linker histone H1 variants, the most abundant family of nucleosome-binding proteins. Here we show that the nuclear protein HP1BP3 is widely expressed in most vertebrate tissues and is evolutionarily and structurally related to the H1 family. HP1BP3 contains three globular domains and a highly positively charged C-terminal domain, resembling similar domains in H1. Fluorescence recovery after photobleaching (FRAP) studies indicate that like H1, binding of HP1BP3 to chromatin depends on both its C and N terminal regions and is affected by the cell cycle and post translational modifications. HP1BP3 contains functional motifs not found in H1 histones, including an acidic stretch and a consensus HP1-binding motif. Transcriptional profiling of HeLa cells lacking HP1BP3 showed altered expression of 383 genes, suggesting a role for HP1BP3 in modulation of gene expression. Significantly, Hp1bp3(-/-) mice present a dramatic phenotype with 60% of pups dying within 24 h of birth and the surviving animals exhibiting a lifelong 20% growth retardation. We suggest that HP1BP3 is a ubiquitous histone H1 like nuclear protein with distinct and non-redundant functions necessary for survival and growth.
Collapse
Affiliation(s)
- Benjamin P Garfinkel
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Naomi Melamed-Book
- Bio-Imaging Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Eli Anuka
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph Orly
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
20
|
Mayor R, Izquierdo-Bouldstridge A, Millán-Ariño L, Bustillos A, Sampaio C, Luque N, Jordan A. Genome distribution of replication-independent histone H1 variants shows H1.0 associated with nucleolar domains and H1X associated with RNA polymerase II-enriched regions. J Biol Chem 2015; 290:7474-91. [PMID: 25645921 DOI: 10.1074/jbc.m114.617324] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Unlike core histones, the linker histone H1 family is more evolutionarily diverse, and many organisms have multiple H1 variants or subtypes. In mammals, the H1 family includes seven somatic H1 variants; H1.1 to H1.5 are expressed in a replication-dependent manner, whereas H1.0 and H1X are replication-independent. Using ChIP-sequencing data and cell fractionation, we have compared the genomic distribution of H1.0 and H1X in human breast cancer cells, in which we previously observed differential distribution of H1.2 compared with the other subtypes. We have found H1.0 to be enriched at nucleolus-associated DNA repeats and chromatin domains, whereas H1X is associated with coding regions, RNA polymerase II-enriched regions, and hypomethylated CpG islands. Further, H1X accumulates within constitutive or included exons and retained introns and toward the 3' end of expressed genes. Inducible H1X knockdown does not affect cell proliferation but dysregulates a subset of genes related to cell movement and transport. In H1X-depleted cells, the promoters of up-regulated genes are not occupied specifically by this variant, have a lower than average H1 content, and, unexpectedly, do not form an H1 valley upon induction. We conclude that H1 variants are not distributed evenly across the genome and may participate with some specificity in chromatin domain organization or gene regulation.
Collapse
Affiliation(s)
- Regina Mayor
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| | - Andrea Izquierdo-Bouldstridge
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| | - Lluís Millán-Ariño
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| | - Alberto Bustillos
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| | - Cristina Sampaio
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| | - Neus Luque
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| | - Albert Jordan
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| |
Collapse
|
21
|
Doenecke D. Chromatin dynamics from S-phase to mitosis: contributions of histone modifications. Cell Tissue Res 2014; 356:467-75. [PMID: 24816984 DOI: 10.1007/s00441-014-1873-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
This review focuses on the major protein moiety of chromosomes, i.e., the histone proteins, on the contribution of their posttranslational modification to structural and functional chromatin dynamics, on the acetylation and methylation of lysine residues, and on the phosphorylation of serine or threonine with respect to various steps during the cell cycle.
Collapse
Affiliation(s)
- Detlef Doenecke
- Department for Molecular Biology, Georg August University, Göttingen, Germany,
| |
Collapse
|
22
|
Biterge B, Schneider R. Histone variants: key players of chromatin. Cell Tissue Res 2014; 356:457-66. [PMID: 24781148 DOI: 10.1007/s00441-014-1862-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/27/2014] [Indexed: 01/01/2023]
Abstract
Histones are fundamental structural components of chromatin. Eukaryotic DNA is wound around an octamer of the core histones H2A, H2B, H3, and H4. Binding of linker histone H1 promotes higher order chromatin organization. In addition to their structural role, histones impact chromatin function and dynamics by, e.g., post-translational histone modifications or the presence of specific histone variants. Histone variants exhibit differential expression timings (DNA replication-independent) and mRNA characteristics compared to canonical histones. Replacement of canonical histones with histone variants can affect nucleosome stability and help to create functionally distinct chromatin domains. In line with this, several histone variants have been implicated in the regulation of cellular processes such as DNA repair and transcriptional activity. In this review, we focus on recent progress in the study of core histone variants H2A.X, H2A.Z, macroH2A, H3.3, and CENP-A, as well as linker histone H1 variants, their functions and their links to development and disease.
Collapse
Affiliation(s)
- Burcu Biterge
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U 964, Université de Strasbourg, 67404, Illkirch, France
| | | |
Collapse
|
23
|
Substrate specificity analysis and novel substrates of the protein lysine methyltransferase NSD1. ACTA ACUST UNITED AC 2014; 21:226-37. [PMID: 24412544 DOI: 10.1016/j.chembiol.2013.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 10/14/2013] [Accepted: 10/21/2013] [Indexed: 12/17/2022]
Abstract
The nuclear receptor binding SET [su(var) 3-9, enhancer of zeste, trithorax] domain-containing protein 1 (NSD1) protein lysine methyltransferase (PKMT) was known to methylate histone H3 lysine 36 (H3K36). We show here that NSD1 prefers aromatic, hydrophobic, and basic residues at the -2, -1 and +2, and +1 sites of its substrate peptide, respectively. We show methylation of 25 nonhistone peptide substrates by NSD1, two of which were (weakly) methylated at the protein level, suggesting that unstructured protein regions are preferred NSD1 substrates. Methylation of H4K20 and p65 was not observed. We discovered strong methylation of H1.5 K168, which represents the best NSD1 substrate protein identified so far, and methylation of H4K44 which was weaker than H3K36. Furthermore, we show that Sotos mutations in the SET domain of NSD1 inactivate the enzyme. Our results illustrate the importance of specificity analyses of PKMTs for understanding protein lysine methylation signaling pathways.
Collapse
|
24
|
Harshman SW, Chen MM, Branson OE, Jacob NK, Johnson AJ, Byrd JC, Freitas MA. Isolation and analysis of linker histones across cellular compartments. J Proteomics 2013; 91:595-604. [PMID: 24013129 DOI: 10.1016/j.jprot.2013.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 07/23/2013] [Accepted: 08/29/2013] [Indexed: 01/09/2023]
Abstract
UNLABELLED Analysis of histones, especially histone H1, is severely limited by immunological reagent availability. This paper describes the application of cellular fractionation with LC-MS for profiling histones in the cytosol and upon chromatin. First, we show that linker histones enriched by cellular fractionation gives less nuclear contamination and higher histone content than when prepared by nuclei isolation. Second, we profiled the soluble linker histones throughout the cell cycle revealing phosphorylation increases as cells reach mitosis. Finally, we monitored histone H1.2-H1.5 translocation to the cytosol in response to the CDK inhibitor flavopiridol in primary CLL cells treated ex vivo. Data shows that all H1 variants translocate in response to drug treatment with no specific order to their cytosolic appearance. The results illustrate the utility of cellular fractionation in conjunction with LC-MS for the analysis of histone H1 throughout the cell. BIOLOGICAL SIGNIFICANCE This paper demonstrates the first time application of cellular fractionation to characterize cytosolic histone H1 by liquid chromatography mass spectrometry (LC-MS). Using the Ramos Burkitt's lymphoma cell line, cellular fractionation was shown to give less nuclear contamination and higher histone content than preparations by nuclei isolation. Further application of the cellular fractionation approach was shown by using primary chronic lymphocytic leukemia (CLL) cells to monitor the movement of histone H1 across cellular compartments in response to the cyclin dependent kinase inhibitor flavopiridol. Collectively, these data establish a mass spectrometric method for exploration into the function of cytosolic histone H1.
Collapse
Affiliation(s)
- Sean W Harshman
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Harshman SW, Young NL, Parthun MR, Freitas MA. H1 histones: current perspectives and challenges. Nucleic Acids Res 2013; 41:9593-609. [PMID: 23945933 PMCID: PMC3834806 DOI: 10.1093/nar/gkt700] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
H1 and related linker histones are important both for maintenance of higher-order chromatin structure and for the regulation of gene expression. The biology of the linker histones is complex, as they are evolutionarily variable, exist in multiple isoforms and undergo a large variety of posttranslational modifications in their long, unstructured, NH2- and COOH-terminal tails. We review recent progress in understanding the structure, genetics and posttranslational modifications of linker histones, with an emphasis on the dynamic interactions of these proteins with DNA and transcriptional regulators. We also discuss various experimental challenges to the study of H1 and related proteins, including limitations of immunological reagents and practical difficulties in the analysis of posttranslational modifications by mass spectrometry.
Collapse
Affiliation(s)
- Sean W Harshman
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA, College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA and Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
26
|
Use of biotinylated plasmid DNA as a surrogate for HSV DNA to identify proteins that repress or activate viral gene expression. Proc Natl Acad Sci U S A 2012; 109:E3549-57. [PMID: 23223531 DOI: 10.1073/pnas.1218783109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ICP0, a key herpes simplex virus regulatory protein, functions first in the nucleus and then in the cytoplasm. The duration of its nuclear sojourn in cells transfected with DNA and then infected is related to the quantity of transfected DNA. Furthermore, ICP0 transactivates both viral genes and genes encoded by the transfected DNA. The data support the hypothesis that ICP0 is retained in the nucleus until it completes the replacement of repressive chromatin with effector proteins that enable transcription of both DNA templates.To identify the effector proteins, we transfected cells with biotinylated DNA encoding a nonviral gene and then infected the cells with wild-type virus. Proteins bound to transfected biotinylated plasmid recovered from mock-treated and infected cells were identified using mass spectrometry followed by appropriate database search. The transfected DNA from mock-infected cells yielded proteins associated with repression, whereas DNA recovered from infected cells included proteins known to enable transcription and proteins that have not been previously associated with that role. To test the hypothesis that the proteins hitherto not known to associate with viral gene expression are nevertheless essential, we tested the role of the DEAD-box helicase Ddx17. We report that Ddx17 plays a critical role in the expression of early and late viral genes. Thus, biotinylated DNA recovered from transfected infected cells can function as a surrogate for viral DNA and is a rich source of proteins that play a role in viral gene expression but which have not been previously identified in that role.
Collapse
|
27
|
Medrzycki M, Zhang Y, McDonald JF, Fan Y. Profiling of linker histone variants in ovarian cancer. FRONT BIOSCI-LANDMRK 2012; 17:396-406. [PMID: 22201751 DOI: 10.2741/3934] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
H1 linker histones play a key role in facilitating higher order chromatin folding. Emerging evidence suggests that H1 and its multiple variants are important epigenetic factors in modulating chromatin function and gene expression. Ovarian cancer is a devastating disease, ranking the fifth leading cause of all women cancer death due to its poor prognosis and difficulty in early diagnosis. Although epigenetic alterations in ovarian cancers are being appreciated in general, the role of H1 has not been explored. Here, using quantitative RT-PCR assays, we systematically examined the expression of 7 H1 genes in 33 human epithelial ovarian tumors. Whereas the expression of H1.3 was markedly increased, the expression of H10, H1.1, H1.4 and H1x were significantly reduced in malignant adenocarcinomas compared with benign adenomas. Strikingly, ovarian adenocarcinomas and adenomas exhibited characteristic expression patterns, and expression profiling of 7 H1 genes in tumor samples discriminated adenocarcinomas vs. adenomas with high accuracy. These findings indicate that the expression of H1 variants is exquisitely regulated and may serve as potential epigenetic biomarkers for ovarian cancer.
Collapse
Affiliation(s)
- Magdalena Medrzycki
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
28
|
Terme JM, Sesé B, Millán-Ariño L, Mayor R, Belmonte JCI, Barrero MJ, Jordan A. Histone H1 variants are differentially expressed and incorporated into chromatin during differentiation and reprogramming to pluripotency. J Biol Chem 2011; 286:35347-35357. [PMID: 21852237 DOI: 10.1074/jbc.m111.281923] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
There are seven linker histone variants in human somatic cells (H1.0 to H1.5 and H1X), and their prevalence varies as a function of cell type and differentiation stage, suggesting that the different variants may have distinct roles. We have revisited this notion by using new methodologies to study pluripotency and differentiation, including the in vitro differentiation of human embryonic stem (ES) and teratocarcinoma cells and the reprogramming of keratinocytes to induced pluripotent stem cells. Our results show that pluripotent cells (PCs) have decreased levels of H1.0 and increased levels of H1.1, H1.3, and H1.5 compared with differentiated cells. PCs have a more diverse repertoire of H1 variants, whereas in differentiated cells, H1.0 expression represents ∼80% of the H1 transcripts. In agreement with their prevalent expression in ES cells, the regulatory regions of H1.3 and H1.5 genes were found to be occupied by pluripotency factors. Moreover, the H1.0 gene promoter contains bivalent domains (H3K4me2 and H3K27me3) in PCs, suggesting that this variant is likely to have an important role during differentiation. Indeed, the knockdown of H1.0 in human ES did not affect self-renewal but impaired differentiation. Accordingly, H1.0 was recruited to the regulatory regions of differentiation and pluripotency genes during differentiation, confirming that this histone variant plays a critical role in the regulation of these genes. Thus, histone H1 variant expression is controlled by a variety of mechanisms that produce distinct but consistent H1 repertoires in pluripotent and differentiated cells that appear critical to maintain the functionality of such cells.
Collapse
Affiliation(s)
- Jean-Michel Terme
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Baldiri i Reixac 4, E-08028 Barcelona, Spain
| | - Borja Sesé
- Center for Regenerative Medicine in Barcelona, Doctor Aiguader 88, E-08003, Barcelona, Spain
| | - Lluis Millán-Ariño
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Baldiri i Reixac 4, E-08028 Barcelona, Spain
| | - Regina Mayor
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Baldiri i Reixac 4, E-08028 Barcelona, Spain
| | - Juan Carlos Izpisúa Belmonte
- Center for Regenerative Medicine in Barcelona, Doctor Aiguader 88, E-08003, Barcelona, Spain; Salk Institute for Biological Studies, La Jolla, California 92037
| | - María José Barrero
- Center for Regenerative Medicine in Barcelona, Doctor Aiguader 88, E-08003, Barcelona, Spain.
| | - Albert Jordan
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Baldiri i Reixac 4, E-08028 Barcelona, Spain.
| |
Collapse
|
29
|
Caterino TL, Hayes JJ. Structure of the H1 C-terminal domain and function in chromatin condensation. Biochem Cell Biol 2011; 89:35-44. [PMID: 21326361 DOI: 10.1139/o10-024] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Linker histones are multifunctional proteins that are involved in a myriad of processes ranging from stabilizing the folding and condensation of chromatin to playing a direct role in regulating gene expression. However, how this class of enigmatic proteins binds in chromatin and accomplishes these functions remains unclear. Here we review data regarding the H1 structure and function in chromatin, with special emphasis on the C-terminal domain (CTD), which typically encompasses approximately half of the mass of the linker histone and includes a large excess of positively charged residues. Owing to its amino acid composition, the CTD was previously proposed to function in chromatin as an unstructured polycation. However, structural studies have shown that the CTD adopts detectable secondary structure when interacting with DNA and macromolecular crowding agents. We describe classic and recent experiments defining the function of this domain in chromatin folding and emerging data indicating that the function of this protein may be linked to intrinsic disorder.
Collapse
Affiliation(s)
- Tamara L Caterino
- Department of Biochemistry and Biophysics, Box 712, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
30
|
Evidence for a dynamic role of the linker histone variant H1x during retinoic acid-induced differentiation of NT2 cells. FEBS Lett 2010; 584:4661-4. [DOI: 10.1016/j.febslet.2010.10.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 10/14/2010] [Accepted: 10/17/2010] [Indexed: 11/22/2022]
|
31
|
Weiss T, Hergeth S, Zeissler U, Izzo A, Tropberger P, Zee BM, Dundr M, Garcia BA, Daujat S, Schneider R. Histone H1 variant-specific lysine methylation by G9a/KMT1C and Glp1/KMT1D. Epigenetics Chromatin 2010; 3:7. [PMID: 20334638 PMCID: PMC2860349 DOI: 10.1186/1756-8935-3-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/24/2010] [Indexed: 01/17/2023] Open
Abstract
Background The linker histone H1 has a key role in establishing and maintaining higher order chromatin structure and in regulating gene expression. Mammals express up to 11 different H1 variants, with H1.2 and H1.4 being the predominant ones in most somatic cells. Like core histones, H1 has high levels of covalent modifications; however, the full set of modifications and their biological role are largely unknown. Results In this study, we used a candidate screen to identify enzymes that methylate H1 and to map their corresponding methylation sites. We found that the histone lysine methyltransferases G9a/KMT1C and Glp1/KMT1D methylate H1.2 in vitro and in vivo, and we mapped this novel site to lysine 187 (H1.2K187) in the C-terminus of H1. This H1.2K187 methylation is variant-specific. The main target for methylation by G9a in H1.2, H1.3, H1.5 and H1.0 is in the C-terminus, whereas H1.4 is preferentially methylated at K26 (H1.4K26me) in the N-terminus. We found that the readout of these marks is different; H1.4K26me can recruit HP1, but H1.2K187me cannot. Likewise, JMJD2D/KDM4 only reverses H1.4K26 methylation, clearly distinguishing these two methylation sites. Further, in contrast to C-terminal H1 phosphorylation, H1.2K187 methylation level is steady throughout the cell cycle. Conclusions We have characterised a novel methylation site in the C-terminus of H1 that is the target of G9a/Glp1 both in vitro and in vivo. To our knowledge, this is the first demonstration of variant-specific histone methylation by the same methyltransferases, but with differing downstream readers, thereby supporting the hypothesis of H1 variants having specific functions.
Collapse
Affiliation(s)
- Thomas Weiss
- MPI for Immunobiology, Stübeweg 51, 79108 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lu A, Zougman A, Pudełko M, Bebenek M, Ziółkowski P, Mann M, Wiśniewski JR. Mapping of lysine monomethylation of linker histones in human breast and its cancer. J Proteome Res 2009; 8:4207-15. [PMID: 19552482 DOI: 10.1021/pr9000652] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Linker histones H1 are key modulators of chromatin structure. Tightness of their binding to DNA is regulated by posttranslational modifications. In this study we have analyzed posttranslational modifications of five major variants of H1 in human tissue - H1.0, H1.2, H1.3, H1.4, and H1.5. To improve sequence coverage, tryptic peptides of H1 were separated by HPLC and the individual fractions were analyzed using a peptide on-chip implementation of nanoelectrospray (TriVersa), coupled to a linear ion trap-orbitrap hybrid instrument. For quantitative analysis of lysine methylation, ionization efficiencies of methylated and nonmethylated peptides were determined using synthetic peptides. Our analysis revealed that monomethylation of lysine residues alongside with phosphorylation of serine and threonine residues is the major modification of H1 in tissue. We found that most prominent methylation sites are in the N-terminal tail and the globular domain of H1. In the C- terminal domains we identified only few and less abundant methylation sites. Quantitative analysis revealed that up to 25% of H1.4 is methylated at K-26 in human tissues. Another prominent methylation site was mapped to K-27 in H1.5, which resembles the K-26 site in H1.4. In H1.0 five less abundant (<1% of H1.0) sites were identified. Analysis of patient matched pairs of cancer and adjacent normal breast demonstrated high variation in H1 methylation between individuals.
Collapse
Affiliation(s)
- Aiping Lu
- Department of Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF. PLoS One 2009; 4:e0007243. [PMID: 19794910 PMCID: PMC2748705 DOI: 10.1371/journal.pone.0007243] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/07/2009] [Indexed: 12/16/2022] Open
Abstract
Although ubiquitously present in chromatin, the function of the linker histone subtypes is partly unknown and contradictory studies on their properties have been published. To explore whether the various H1 subtypes have a differential role in the organization and dynamics of chromatin we have incorporated all of the somatic human H1 subtypes into minichromosomes and compared their influence on nucleosome spacing, chromatin compaction and ATP-dependent remodeling. H1 subtypes exhibit different affinities for chromatin and different abilities to promote chromatin condensation, as studied with the Atomic Force Microscope. According to this criterion, H1 subtypes can be classified as weak condensers (H1.1 and H1.2), intermediate condensers (H1.3) and strong condensers (H1.0, H1.4, H1.5 and H1x). The variable C-terminal domain is required for nucleosome spacing by H1.4 and is likely responsible for the chromatin condensation properties of the various subtypes, as shown using chimeras between H1.4 and H1.2. In contrast to previous reports with isolated nucleosomes or linear nucleosomal arrays, linker histones at a ratio of one per nucleosome do not preclude remodeling of minichromosomes by yeast SWI/SNF or Drosophila NURF. We hypothesize that the linker histone subtypes are differential organizers of chromatin, rather than general repressors.
Collapse
|
34
|
Orthaus S, Klement K, Happel N, Hoischen C, Diekmann S. Linker histone H1 is present in centromeric chromatin of living human cells next to inner kinetochore proteins. Nucleic Acids Res 2009; 37:3391-406. [PMID: 19336418 PMCID: PMC2691837 DOI: 10.1093/nar/gkp199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 03/09/2009] [Accepted: 03/10/2009] [Indexed: 01/04/2023] Open
Abstract
The vertebrate kinetochore complex assembles at the centromere on alpha-satellite DNA. In humans, alpha-satellite DNA has a repeat length of 171 bp slightly longer than the DNA in the chromatosome containing the linker histone H1. The centromere-binding protein CENP-B binds specifically to alpha-satellite DNA with properties of a centromeric-linker histone. Here, we analysed if linker histone H1 is present at or excluded from centromeric chromatin by CENP-B. By immunostaining we detected the presence, but no enrichment or depletion of five different H1 subtypes at centromeric chromatin. The binding dynamics of H1 at centromeric sites were similar to that at other locations in the genome. These dynamics did not change in CENP-B depleted cells, suggesting that CENP-B and H1 co-exist in centromeric chromatin with no or little functional overlap. By bimolecular fluorescence complementation (BiFC) and Förster resonance energy transfer (FRET), we revealed that the linker histone H1 subtypes H1 degrees and H1.2 bind to centromeric chromatin in interphase nuclei in direct neighbourhood to inner kinetochore proteins.
Collapse
Affiliation(s)
- S. Orthaus
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| | - K. Klement
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| | - N. Happel
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| | - C. Hoischen
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| | - S. Diekmann
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| |
Collapse
|
35
|
Evans DL, Connor MA, Moss LD, Lackay S, Leary JH, Krunkosky T, Jaso-Friedmann L. Cellular expression and antimicrobial function of a phylogenetically conserved novel histone 1x-like protein on mouse cells: a potential new class of pattern recognition receptor. J Leukoc Biol 2009; 86:133-41. [DOI: 10.1189/jlb.1108682] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
36
|
Pyo SH, Lee JH, Lee YH, Yoon JW, Kim JH. Purification and characterization of histone H1 variants from human placenta. BIOTECHNOL BIOPROC E 2009. [DOI: 10.1007/s12257-008-0186-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Connor MA, Jaso-Friedmann L, Leary JH, Evans DL. Role of nonspecific cytotoxic cells in bacterial resistance: Expression of a novel pattern recognition receptor with antimicrobial activity. Mol Immunol 2009; 46:953-61. [DOI: 10.1016/j.molimm.2008.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/09/2008] [Accepted: 09/11/2008] [Indexed: 11/26/2022]
|
38
|
Raghuram N, Carrero G, Th’ng J, Hendzel MJ. Molecular dynamics of histone H1This paper is one of a selection of papers published in this Special Issue, entitled CSBMCB’s 51st Annual Meeting – Epigenetics and Chromatin Dynamics, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2009; 87:189-206. [DOI: 10.1139/o08-127] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The histone H1 family of nucleoproteins represents an important class of structural and architectural proteins that are responsible for maintaining and stabilizing higher-order chromatin structure. Essential for mammalian cell viability, they are responsible for gene-specific regulation of transcription and other DNA-dependent processes. In this review, we focus on the wealth of information gathered on the molecular kinetics of histone H1 molecules using novel imaging techniques, such as fluorescence recovery after photobleaching. These experiments have shed light on the effects of H1 phosphorylation and core histone acetylation in influencing chromatin structure and dynamics. We also delineate important concepts surrounding the C-terminal domain of H1, such as the intrinsic disorder hypothesis, and how it affects H1 function. Finally, we address the biochemical mechanisms behind low-affinity H1 binding.
Collapse
Affiliation(s)
- Nikhil Raghuram
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| | - Gustavo Carrero
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| | - John Th’ng
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| | - Michael J. Hendzel
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| |
Collapse
|
39
|
Eirín-López JM, González-Romero R, Dryhurst D, Méndez J, Ausió J. Long-Term Evolution of Histone Families: Old Notions and New Insights into Their Mechanisms of Diversification Across Eukaryotes. Evol Biol 2009. [DOI: 10.1007/978-3-642-00952-5_8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Warneboldt J, Haller F, Horstmann O, Danner BC, Füzesi L, Doenecke D, Happel N. Histone H1x is highly expressed in human neuroendocrine cells and tumours. BMC Cancer 2008; 8:388. [PMID: 19108733 PMCID: PMC2631592 DOI: 10.1186/1471-2407-8-388] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 12/24/2008] [Indexed: 11/14/2022] Open
Abstract
Background Histone H1x is a ubiquitously expressed member of the H1 histone family. H1 histones, also called linker histones, stabilize compact, higher order structures of chromatin. In addition to their role as structural proteins, they actively regulate gene expression and participate in chromatin-based processes like DNA replication and repair. The epigenetic contribution of H1 histones to these mechanisms makes it conceivable that they also take part in malignant transformation. Methods Based on results of a Blast data base search which revealed an accumulation of expressed sequence tags (ESTs) of H1x in libraries from neuroendocrine tumours (NETs), we evaluated the expression of H1x in NETs from lung and the gastrointestinal tract using immunohistochemisty. Relative protein and mRNA levels of H1x were analysed by Western blot analysis and quantitative real-time RT-PCR, respectively. Since several reports describe a change of the expression level of the replacement subtype H1.0 during tumourigenesis, the analysis of this subtype was included in this study. Results We found an increased expression of H1x but not of H1.0 in NET tissues in comparison to corresponding normal tissues. Even though the analysed NETs were heterogenous regarding their grade of malignancy, all except one showed a considerably higher protein amount of H1x compared with corresponding non-neoplastic tissue. Furthermore, double-labelling of H1x and chromogranin A in sections of pancreas and small intestine revealed that H1x is highly expressed in neuroendocrine cells of these tissues. Conclusion We conclude that the high expression of histone H1x in NETs is probably due to the abundance of this protein in the cells from which these tumours originate.
Collapse
Affiliation(s)
- Julia Warneboldt
- Institute for Biochemistry and Molecular Cell Biology, University of Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Happel N, Doenecke D. Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 2008; 431:1-12. [PMID: 19059319 DOI: 10.1016/j.gene.2008.11.003] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/31/2008] [Accepted: 11/02/2008] [Indexed: 01/21/2023]
Abstract
The lysine-rich H1 histone family in mammals includes eleven different subtypes, and thus it is the most divergent class of histone proteins. The central globular H1 domain asymmetrically interacts with DNA at the exit or entry end of the nucleosomal core DNA, and the C-terminal domain has a major impact on the linker DNA conformation and chromatin condensation. H1 histones are thus involved in the formation of higher order chromatin structures, and they modulate the accessibility of regulatory proteins, chromatin remodeling factors and histone modification enzymes to their target sites. The major posttranslational modification of H1 histones is phosphorylation, which reaches a peak during G2 and mitosis. Phosphorylation is, however, also involved in the control of DNA replication and it contributes to the regulation of gene expression. Disruption of linker histone genes, initially performed in order to delineate subtype-specific functions, revealed that disruption of one or two H1 subtype genes is quantitatively compensated by an increased expression of other subtypes. This suggests a functional redundancy among H1 subtypes. However, the inactivation of three subtypes and the reduction of the H1 moiety in half finally resulted in a phenotypic effect. On the other hand, studies on the role of particular subtypes at specific developmental stages in lower eukaryotes, but also in vertebrates suggest that specific subtypes of H1 participate in particular systems of gene regulation.
Collapse
Affiliation(s)
- Nicole Happel
- Institute of Biochemistry and Molecular Cell Biology, University of Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | | |
Collapse
|
42
|
Shechter D, Nicklay JJ, Chitta RK, Shabanowitz J, Hunt DF, Allis CD. Analysis of histones in Xenopus laevis. I. A distinct index of enriched variants and modifications exists in each cell type and is remodeled during developmental transitions. J Biol Chem 2008; 284:1064-74. [PMID: 18957438 DOI: 10.1074/jbc.m807273200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Histone proteins contain epigenetic information that is encoded both in the relative abundance of core histones and variants and particularly in the post-translational modification of these proteins. We determined the presence of such variants and covalent modifications in seven tissue types of the anuran Xenopus laevis, including oocyte, egg, sperm, early embryo equivalent (pronuclei incubated in egg extract), S3 neurula cells, A6 kidney cells, and erythrocytes. We first developed a new robust method for isolating the stored, predeposition histones from oocytes and eggs via chromatography on heparin-Sepharose, whereas we isolated chromatinized histones via conventional acid extraction. We identified two previously unknown H1 isoforms (H1fx and H1B.Sp) present on sperm chromatin. We immunoblotted this global collection of histones with many specific post-translational modification antibodies, including antibodies against methylated histone H3 on Lys(4), Lys(9), Lys(27), Lys(79), Arg(2), Arg(17), and Arg(26); methylated histone H4 on Lys(20); methylated H2A and H4 on Arg(3); acetylated H4 on Lys(5), Lys(8), Lys(12), and Lys(16) and H3 on Lys(9) and Lys(14); and phosphorylated H3 on Ser(10) and H2A/H4 on Ser(1). Furthermore, we subjected a subset of these histones to two-dimensional gel analysis and subsequent immunoblotting and mass spectrometry to determine the global remodeling of histone modifications that occurs as development proceeds. Overall, our observations suggest that each metazoan cell type may have a unique histone modification signature correlated with its differentiation status.
Collapse
Affiliation(s)
- David Shechter
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
43
|
Sancho M, Diani E, Beato M, Jordan A. Depletion of human histone H1 variants uncovers specific roles in gene expression and cell growth. PLoS Genet 2008; 4:e1000227. [PMID: 18927631 PMCID: PMC2563032 DOI: 10.1371/journal.pgen.1000227] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 09/15/2008] [Indexed: 11/19/2022] Open
Abstract
At least six histone H1 variants exist in somatic mammalian cells that bind to the linker DNA and stabilize the nucleosome particle contributing to higher order chromatin compaction. In addition, H1 seems to be actively involved in the regulation of gene expression. However, it is not well known whether the different variants have distinct roles or if they regulate specific promoters. We have explored this by inducible shRNA-mediated knock-down of each of the H1 variants in a human breast cancer cell line. Rapid inhibition of each H1 variant was not compensated for by changes of expression of other variants. Microarray experiments have shown a different subset of genes to be altered in each H1 knock-down. Interestingly, H1.2 depletion caused specific effects such as a cell cycle G1-phase arrest, the repressed expression of a number of cell cycle genes, and decreased global nucleosome spacing. On its side, H1.4 depletion caused cell death in T47D cells, providing the first evidence of the essential role of an H1 variant for survival in a human cell type. Thus, specific phenotypes are observed in breast cancer cells depleted of individual histone H1 variants, supporting the theory that distinct roles exist for the linker histone variants. Eukaryotic DNA is packaged into chromatin through its association with histone proteins. The linker histone H1 sits at the base of the nucleosome near the DNA entry and exit sites to stabilize two full turns of DNA. In particular, histone H1 participates in nucleosome spacing and formation of the higher-order chromatin structure. In addition, H1 seems to be actively involved in the regulation of gene expression. Histone H1 in mammals is a family of closely related, single-gene encoded proteins, including five somatic subtypes (from H1.1 to H1.5) and a terminally differentiated expressed isoform (H1.0). It is not well known whether the different variants have distinct roles or if they regulate specific promoters. We have explored this by inducible knock-down of each of the H1 variants in breast cancer cells. A different subset of genes is altered in each H1 knock-down, and depletion has different effects on cell survival. Interestingly, H1.2 and H1.4 depletion specifically caused arrest of cell proliferation. Concomitant with this, H1.2 depletion caused decreased global nucleosome spacing and repressed expression of a number of cell cycle genes. Thus, specific phenotypes are observed in breast cancer cells depleted of individual histone H1 variants.
Collapse
Affiliation(s)
- Mónica Sancho
- Centre de Regulació Genòmica (CRG-UPF), Barcelona, Spain
| | - Erika Diani
- Centre de Regulació Genòmica (CRG-UPF), Barcelona, Spain
| | - Miguel Beato
- Centre de Regulació Genòmica (CRG-UPF), Barcelona, Spain
| | - Albert Jordan
- Centre de Regulació Genòmica (CRG-UPF), Barcelona, Spain
- * E-mail:
| |
Collapse
|
44
|
Happel N, Doenecke D, Sekeri-Pataryas KE, Sourlingas TG. H1 histone subtype constitution and phosphorylation state of the ageing cell system of human peripheral blood lymphocytes. Exp Gerontol 2008; 43:184-99. [DOI: 10.1016/j.exger.2007.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 11/13/2007] [Accepted: 11/27/2007] [Indexed: 11/15/2022]
|
45
|
Bhan S, May W, Warren SL, Sittman DB. Global gene expression analysis reveals specific and redundant roles for H1 variants, H1c and H1(0), in gene expression regulation. Gene 2008; 414:10-8. [PMID: 18372120 DOI: 10.1016/j.gene.2008.01.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
Abstract
In mammals, the functional significance of the presence of evolutionarily conserved, multiple non-allelic H1 variants remains unclear. We used a unique overproduction approach coupled with cell cycle synchronization and early time point assays to assess differential effects of H1 variants, H1c and H1(0), on global gene expression in the absence of compensatory events that may mask variant-specific effects. We found that H1c and H1(0) act primarily as specific rather than global regulators of gene expression. Many of the genes affected were uniquely targeted by either H1c or H1(0), affirming that H1 variants have some unique roles. We also identified genes that were affected by both variants, in which cases the expression of these genes was, for the most part, affected similarly by both the variants. This observation suggests that as well as having specific functions, the H1 variants share common roles in the organization of chromatin. We further noted that H1(0) repressed more genes than did H1c, which may underlie the prevailing notion that H1(0) is a stronger repressor of transcription.
Collapse
Affiliation(s)
- Sheetal Bhan
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | |
Collapse
|
46
|
Histone H1 of Trypanosoma cruzi is concentrated in the nucleolus region and disperses upon phosphorylation during progression to mitosis. EUKARYOTIC CELL 2008; 7:560-8. [PMID: 18281601 DOI: 10.1128/ec.00460-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phosphorylation of histone H1 is intimately related to the cell cycle progression in higher eukaryotes, reaching maximum levels during mitosis. We have previously shown that in the flagellated protozoan Trypanosoma cruzi, which does not condense chromatin during mitosis, histone H1 is phosphorylated at a single cyclin-dependent kinase site. By using an antibody that recognizes specifically the phosphorylated T. cruzi histone H1 site, we have now confirmed that T. cruzi histone H1 is also phosphorylated in a cell cycle-dependent manner. Differently from core histones, the bulk of nonphosphorylated histone H1 in G(1) and S phases of the cell cycle is concentrated in the central regions of the nucleus, which contains the nucleolus and less densely packed chromatin. When cells pass G(2), histone H1 becomes phosphorylated and starts to diffuse. At the onset of mitosis, histone H1 phosphorylation is maximal and found in the entire nuclear space. As permeabilized parasites preferentially lose phosphorylated histone H1, we conclude that this modification promotes its release from less condensed and nucleolar chromatin after G(2).
Collapse
|
47
|
Stoldt S, Wenzel D, Schulze E, Doenecke D, Happel N. G1 phase-dependent nucleolar accumulation of human histone H1x. Biol Cell 2007; 99:541-52. [PMID: 17868027 DOI: 10.1042/bc20060117] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION H1 histones are a protein family comprising several subtypes. Although specific functions of the individual subtypes could not be determined so far, differential roles are indicated by varied nuclear distributions as well as differential expression patterns of the H1 subtypes. Although the group of replication-dependent H1 subtypes is synthesized during S phase, the replacement H1 subtype, H1 degrees , is also expressed in a replication-independent manner in non-proliferating cells. Recently we showed, by protein biochemical analysis, that the ubiquitously expressed subtype H1x is enriched in the micrococcal nuclease-resistant part of chromatin and that, although it shares common features with H1 degrees , its expression is differentially regulated, since, in contrast to H1 degrees , growth arrest or induction of differentiation did not induce an accumulation of H1x. RESULTS In the present study, we show that H1x exhibits a cell-cycle-dependent change of its nuclear distribution. This H1 subtype showed a nucleolar accumulation during the G(1) phase, and it was evenly distributed in the nucleus during S phase and G(2). Immunocytochemical analysis of the intranucleolar distribution of H1x indicated that it is located mainly in the condensed nucleolar chromatin. In addition, we demonstrate that the amount of H1x protein remained nearly unchanged during S phase progression, which is in contrast to the replication-dependent subtypes. CONCLUSION These results suggest that the differential localization of H1x provides a mechanism for a control of H1x activity by means of shuttling between nuclear subcompartments instead of a controlled turnover of the protein.
Collapse
Affiliation(s)
- Stefan Stoldt
- Institute for Biochemistry and Molecular Cell Biology, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|
48
|
Takata H, Matsunaga S, Morimoto A, Ono-Maniwa R, Uchiyama S, Fukui K. H1.X with different properties from other linker histones is required for mitotic progression. FEBS Lett 2007; 581:3783-8. [PMID: 17632103 DOI: 10.1016/j.febslet.2007.06.076] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 06/29/2007] [Indexed: 01/25/2023]
Abstract
We report here the characterization of H1.X, a human histone H1 subtype. We demonstrate that H1.X accumulates in the nucleolus during interphase and is distributed at the chromosome periphery during mitosis. In addition, the results of fluorescence recovery after photobleaching indicate that the exchange of H1.X on and off chromatin is faster than that of the other H1 subtypes. Furthermore, RNA interference experiments reveal that H1.X is required for chromosome alignment and segregation. Our results suggest that H1.X has important functions in mitotic progression, which are different from those of the other H1 subtypes.
Collapse
Affiliation(s)
- Hideaki Takata
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Parseghian MH, Luhrs KA. Beyond the walls of the nucleus: the role of histones in cellular signaling and innate immunity. Biochem Cell Biol 2007; 84:589-604. [PMID: 16936831 DOI: 10.1139/o06-082] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although they are one of the oldest family of proteins known (first described in 1884 by Kossel), histones continue to surprise researchers with their ever expanding roles in biology. In the past 25 years, the view of core histone octamers as a simple spool around which DNA in the nucleus is wound and linker histones as mere fasteners clipping it all together has transformed into the realization that histones play a vital role in transcriptional regulation. Through post-translational modifications, histones control the accessibility of transcription factors and a host of other proteins to multiple, conceivably thousands of, genes at once. While researchers have spent decades deciphering the role of histones in the overall structure of chromatin, it might surprise some to find that an entirely separate faction of scientists have focused on the role of histones beyond the confines of the nuclear envelope. In the past decade, there has been an accumulation of observations that suggest that histones can be found at the mitochondrion during the onset of apoptotic signaling and even at the cell surface, acting as a receptor for bacterial and viral proteins. More provocatively, immunologists are becoming convinced that they can also be found in the lumen of several tissues, acting as antimicrobial agents--critical components of an ancient innate immune system. Perhaps nowhere is this observation as dramatic as in the ability of neutrophils to entrap bacterial pathogens by casting out "nets" of DNA and histones that not only act as a physical barrier, but also display bactericidal activity. As our views regarding the role of histones inside and outside the cell evolve, some have begun to develop therapies that either utilize or target histones in the fight against cancer, microbial infection, and autoimmune disease. It is our goal here to begin the process of merging the dichotomous lives of histones both within and without the nuclear membrane.
Collapse
Affiliation(s)
- Missag H Parseghian
- Peregrine Pharmaceuticals, Inc, Research and Development, 14272 Franklin Avenue, Tustin, CA 92780, USA.
| | | |
Collapse
|
50
|
Goebel W, Obermeyer N, Bleicher N, Kratzmeier M, Eibl HJ, Doenecke D, Albig W. Apoptotic DNA fragmentation is not related to the phosphorylation state of histone H1. Biol Chem 2007; 388:197-206. [PMID: 17261083 DOI: 10.1515/bc.2007.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Changes in chromatin structure, histone phosphorylation and cleavage of DNA into nucleosome-size fragments are characteristic features of apoptosis. Since H1 histones bind to the site of DNA cleavage between nucleosomal cores, the question arises as to whether the state of H1 phosphorylation influences the rate of internucleosomal cleavage. Here, we tested the relation between DNA fragmentation and H1 phosphorylation both in cultured cells and in vitro. In Jurkat cells, hyperosmotic mannitol concentration resulted in apoptosis, including nucleosomal fragmentation, whereas apoptosis induction by increased NaCl concentration was not accompanied by DNA fragmentation. However, both treatments induced dephosphorylation of H1 histones. In contrast, treatment of Raji cells with alkylphosphocholine led to induction of apoptosis with internucleosomal fragmentation, albeit without notable histone H1 dephosphorylation. These results demonstrate that dephosphorylation of H1 histones is neither a prerequisite for nor a consequence of internucleosomal cleavage. Moreover, we observed with an in vitro assay that the known enhancing effect of H1 histones on the activity of the apoptosis-induced endonuclease DFF40 is independent of the subtype or the phosphorylation state of the linker histone.
Collapse
Affiliation(s)
- Wiebke Goebel
- Institute for Biochemistry and Molecular Cell Biology, University of Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|